1. Spin 3/2 representation

Spin 3/2 forms a four dimensional irreducible representation of SU(2). Use basis states

\[
J_z|3/2\rangle = 3/2|3/2\rangle, \quad J_z|1/2\rangle = 1/2|1/2\rangle, \quad J_z| -1/2\rangle = -1/2| -1/2\rangle, \quad J_z| -3/2\rangle = -3/2| -3/2\rangle, \quad (1)
\]

Write down the angular momentum operator \(J_x, J_y, J_z \) as 4 \times 4 matrices. (Use the formula in the lecture note for \(J_x \) and \(J_y \).)

2. Addition of angular momentum

Consider the addition of a \(j_1 = 1/2 \) and a \(j_2 = 1 \) angular momentum.

(1) What angular momentum component is contained in this addition? That is, if we take the direct product of a \(j_1 = 1/2 \) irrep and a \(j = 1 \) irrep and decompose the composite representation into the direct sum of irreps, what irreps do we obtain? (Just apply the conclusion we obtained in class. You do not need to derive it from the character of the irreps.)

(2) Determine the Clebsch-Gordon coefficient for the addition of \(j_1 = 1/2 \) and \(j_2 = 1 \). Your answer may depend on some arbitrary choice of phase factors. Make the choice so that the the CG coefficients are all real. (There is still an ambiguity of \(\pm \) signs. Either choice is ok.)

3. Electric dipole as vector operator

The electric dipole operator represents the potential energy of an electron in a uniform electric field \(-e \vec{E} \cdot \vec{r} = -e(E_x x + E_y y + E_z z)\). While the dipole operator pointing in a particular direction breaks the SO(3) rotation symmetry, the set of all dipole operators (of the same \(|E|\)) forms a representation of the SO(3) rotation group. Rotation is generated by the angular momentum operator \(\vec{J} = \vec{r} \times \vec{p} \), where \(\vec{r} = (x, y, z) \) is the vector operator of spatial location (we also write it as \((r_x, r_y, r_z)\)) and \(\vec{p} = (p_x, p_y, p_z) \) is the vector operator of momentum.

(1) Use the commutation relation \([r_a, p_b] = i \delta_{ab}\) to show that \([J_a, r_b] = i \epsilon_{abc} r_c\). This is similar to the commutation relation between angular momentum operators \([J_a, J_b] = i \epsilon_{abc} J_c\). Using this commutation relation between angular momentum operators, we showed in homework 7 problem 1 that \(\vec{J} \) rotates as a three dimensional vector under rotation generated by \(\vec{J} \). Convince yourself that the same conclusion applies to \(\vec{r} \). That is, \(\vec{r} \) rotates as a three dimensional vector under rotation generated by \(\vec{J} \). You do not need to show work for this part.

(2) In fact we can interpret the commutation relation \([J_a, r_b] = i \epsilon_{abc} r_c\) as the action of \(J_a \) on \(r_b \). Consider the three dimensional operator space with basis operators \(r_x, r_y \) and \(r_z \). \(J_a \) can be interpreted as a linear transformation in this space. Write down the action of \(J_x, J_y, J_z \) as three dimensional matrices in this operator space.

(3) Which dipole operator remains invariant under rotation around \(z \) axis?

(4) Which dipole operator remains invariant under rotation around \(z \) axis up to a phase factor? (You may need to use complex \(E_x, E_y, E_z \).)
Which irrep of $SO(3)$ does the operator space form?

4. Electric quadrupole selection rule

The electric quadrupole operators contain a set of nine operators defined as

$$D_{ij} = 3r_ir_j - r^2\delta_{ij}$$ \hspace{1cm} (2)

where r_i, $i = 1, 2, 3$, are the x, y and z spatial coordinates of the electron. Notice that these nine operators are not independent. In particular,

$$D_{11} + D_{22} + D_{33} = 0, D_{12} = D_{21}, D_{23} = D_{32}, D_{31} = D_{13}$$ \hspace{1cm} (3)

Therefore, only five of them are independent.

1. Define $r_+ = -\frac{1}{\sqrt{2}}(r_1 + ir_2)$, $r_- = \frac{1}{\sqrt{2}}(r_1 - ir_2)$. Denote $r_0 \equiv r_z$, $J_0 \equiv J_z$. Calculate $[J_a, r_b]$, where $a,b = 0, +, -$.

2. Consider the set of five quadrupole operators

$$F_0 = \frac{2}{\sqrt{6}}(r_0^2 + r_+r_-), F_1 = \sqrt{2}r_+r_0, F_{-1} = \sqrt{2}r_-r_0, F_2 = r_+^2, F_{-2} = r_-^2$$ \hspace{1cm} (4)

Show that by interpreting the commutator $[J_a, F_b]$ as the action of J_a on the five dimensional operator space of F_b, the quadrupole operators F_b transform under $SO(3)$ rotation as the $j = 2$ representation. (hint: calculate $[J_0, F_b]$, $[J_+, F_b]$, $[J_-, F_b]$ using the relation $[A, BC] = B[A, C] + [A, B]C$. You can use Mathematica to help with the computation.)

3. If a single electron transits from one atomic orbital (labeled by nlm) to another atomic orbital (labeled by $n'l'm'$) due to the application of the electric quadrupole operator, what is the selection rule for $\delta l = l' - l$ and $\delta m = m' - m$?