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Abstract

The basic tradeoff in lossy compression is that between the compression ratio (rate) and the fidelity

of reproduction of the object that is compressed. Traditional (asymptotic) information theory seeks

to describe the optimum tradeoff between rate and fidelity achievable in the limit of infinite length

of the source block to be compressed. A perennial question in information theory is how relevant

the asymptotic fundamental limits are when the communication system is forced to operate at a

given fixed blocklength. The finite blocklength (delay) constraint is inherent to all communication

scenarios. In fact, in many systems of current interest, such as real-time multimedia communication,

delays are strictly constrained, while in packetized data communication, packets are frequently on

the order of 1000 bits.

Motivated by critical practical interest in non-asymptotic information-theoretic limits, this thesis

studies the optimum rate-fidelity tradeoffs in lossy source coding and joint source-channel coding at

a given fixed blocklength.

While computable formulas for the asymptotic fundamental limits are available for a wide class

of channels and sources, the luxury of being able to compute exactly (in polynomial time) the

non-asymptotic fundamental limit of interest is rarely affordable. One can at most hope to obtain

bounds and approximations to the information-theoretic non-asymptotic fundamental limits. The

main findings of this thesis include tight bounds to the non-asymptotic fundamental limits in lossy

data compression and transmission, valid for general sources without any assumptions on ergodicity

or memorylessness. Moreover, in the stationary memoryless case this thesis shows a simple formula

approximating the nonasymptotic fundamental limits which involves only two parameters of the

source.

This thesis considers scenarios where one must put aside traditional asymptotic thinking. A strik-

ing observation made by Shannon states that separate design of source and channel codes achieves

the asymptotic fundamental limit of joint source-channel coding. At finite blocklengths, however,

joint source-channel code design brings considerable performance advantage over a separate one.

Furthermore, in some cases uncoded transmission is the best known strategy in the non-asymptotic

regime, even if it is suboptimal asymptotically. This thesis also treats the lossy compression problem

in which the compressor observes the source through a noisy channel, which is asymptotically equiv-

alent to a certain conventional lossy source coding problem but whose nonasymptotic fidelity-rate

tradeoff is quite different.
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Chapter 1

Introduction

1.1 Nonasymptotic information theory

This thesis drops the key simplifying assumption of the traditional (asymptotic) information theory

that allows the blocklength to grow indefinitely and focuses on the best tradeoffs achievable in

the finite blocklength regime in lossy data compression and joint source-channel coding. Since in

many systems of current interest, such as real-time multimedia communication, delays are strictly

constrained, while in packetized data communication, packets are frequently on the order of 1000 bits,

non-asymptotic information-theoretic limits bear critical practical interest. Not only the knowledge

of such theoretical limits allows us to assess what is achievable at a given fixed blocklengh, but it

also sheds light on the characteristics of a good code. For example, as we will show in Section 2.9,

a Gaussian source can be represented with small mean-square error even nonasymptically when all

codewords lie on the surface of an n-dimensional sphere. The nonasymptotic analysis motivates the

re-evaluation of existing codes and design principles based on asymptotic insights (for example, in

Chapter 3 we will see that separate design of source and channel codes is suboptimal in the finite

blocklength regime) and provides theoretical guidance for new code design (sometimes no coding at

all performs best, see Section 3.8).

The challenge in attaining the ambitious goal of assessing the optimal nonasymptotically achiev-

able tradeoffs is that information-theoretic nonasymptotic fundamental limits in general do not

admit exact computable (in polynomial time) solutions. In fact, many researchers used to believe

that such a nonasymptotic information theory could be nothing more than a collection of brute-

force computations tailored to a specific problem. As Shannon admitted in 1953 [1, p.188],“A finite

1



delay theory of information... would indeed be of great practical importance, but the mathematical

difficulties are formidable.” Despite those challenges, we are able to show very general tight bounds

and simple approximations to the non-asymptotic fundamental limits of lossy data compression and

transmission.

In doing so, we follow an approach to nonasymptotic information theory pioneered by Polyanskiy

and Verdú [2–4] in the context of channel coding. A roadmap propounded in [3,4] to finite blocklength

analysis of communications systems can be outlined as follows.

1) Identify the key random variable that governs the information-theoretic limits of a given com-

munication system.

2) Derive novel bounds in terms of that random variable that tightly sandwich the nonasymptotic

fundamental limit.

3) Perform a refined analysis of the new bounds leading to a compact approximation of the nonasymp-

totic fundamental limit.

4) Demonstrate that the approximation is accurate in the regime of practically relevant blocklengths.

While refinements to Shannon’s asymptotic channel coding theorem [5] have been studied previously

using a central limit theorem approximation (e.g. [6]) and a large deviations approximation (e.g.

[7]), the issue of how relevant these approximations are at a given fixed blocklength had not been

addressed until the work of Polyanskiy and Verdú [3].

To put the contribution of this thesis in perspective, we now proceed to review the recent ad-

vancements in accessing the nonasymptotic fundamental limits of channel coding and almost lossless

data compression.

1.2 Channel coding

The basic task of channel coding is to transmit M equiprobable messages over a noisy channel so

that they can be distinguished reliably at the receiver end (see Fig. 1.2). The information-theoretic

fundamental limit of channel coding is the maximum (over all encoding and decoding functions,

regardless of their complexity) number of messages compatible with a given probability of error ǫ.

In the standard block setting, the encoder maps the message to a sequence of channel input symbols
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of length n, while the decoder observes that sequence contaminated by random noise and attempts

to recover the original message. The channel coding rate is given by logM
n .

The maximum channel coding rate compatible with vanishing error probability achievable in the

limit of large blocklength is called the channel capacity and is denoted by C. Shannon’s ground-

breaking result [5] states that if the channel is stationary and memoryless, the channel capacity is

given by the maximum (over all channel input distributions) mutual information between the chan-

nel input and its output. The mutual information is the expectation of the random variable called

the information density

ıX;Y (x; y) = log
dPY |X=x

dPY
(y) (1.1)

where PX → PY |X → PY
1, and, as demonstrated in [3, 4], it is precisely that random variable that

determines the finite blocklength coding rate. In particular, the Gaussian approximation of R(n, ǫ),

the maximum achievable coding rate at blocklength n and error probability ǫ, is given by, for finite

alphabet stationary memoryless channels [3, 4, 6]

nR(n, ǫ) = nC −
√
nV Q−1 (ǫ) +O (logn) (1.2)

where V is the channel dispersion given by the variance of the channel information density evaluated

with the capacity-achieving input distribution, and Q−1 (·) is the inverse of the standard Gaussian

complementary cdf. As demonstrated in [3, 4], the approximation in (1.2) is not only beautifully

concise but is also extremely tight for the practically relevant blocklengths of order 1000.

X Y{1, . . . ,M} {1, . . . ,M}

Figure 1.1: Channel coding setup.

1.3 Lossless data compression

In the basic setup of (almost) lossless compression, depicted in Fig. 1.2, a discrete source S is

compressed so that encoder and decoder agree with probability at least 1 − ǫ, i.e. P [S 6= Z] ≤ ǫ.

The nonasymptotic fundamental limit is given by the minimum number M⋆(ǫ) of distinct source

1We write PX → PY |X → PY to indicate that PY is the marginal of PXPY |X , i.e. PY (y) =
∑

y PY |X(y|x)PX(x).
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encoder outputs compatible with a given error probability ǫ.

As pointed out by Verdú [8], the nonasymptotic fundamental limits of fixed-length almost lossless

and variable-length strictly lossless data compression without prefix constraints are identical. In the

latter case, ǫ corresponds to the probability of exceeding a target encoded length.

Lossless data compression is an exception in the world of information theory because the optimal

encoding and decoding functions are known, permitting an exact computation of the nonasymptotic

fundamental limit M⋆(ǫ). The optimal encoder indexes M largest probability source outcomes

and discards the rest, thereby maximizing the probability of correct reconstruction. A parametric

expression for M⋆(ǫ) is provided in [9]. The random variable which corresponds (in a sense that can

be formalized) to the number of bits required to compress a given source outcome is the information

in s, defined by

ıS(s) = log
1

PS(s)
(1.3)

For example, the information in k i.i.d. coin flips with bias p is given by

ıSk(sk) = j log
1

p
+ (k − j) log 1

1− p (1.4)

where j is the number of ones in sk. If we let the blocklength increase indefinitely, by the law of

large numbers the information in most source outcomes would be near its mean, which is equal to

kh(p), where h(·) is the binary entropy function

h(p) = p log
1

p
+ (1− p) log 1

1− p (1.5)

At finite blocklengths, however, the stochastic variability of ıSk(Sk) plays an important role. In

fact, R(k, ǫ), the minimum achievable source coding rate at blocklength k and error probability ǫ, is

tightly bounded in terms of the cdf of that random variable [9]. Moreover, the minimum achievable

compression rate of k i.i.d. random variables with common distribution PS can be expanded as [6]2

kR(k, ǫ) = kH(S) +
√
kV (S)Q−1 (ǫ)− 1

2
log k +O (1) (1.6)

where H(S) and V (S) are the entropy and the varentropy of the source, given by the mean and the

variance of the information in S, respectively. The idea behind this approximation is that by the

central-limit theorem the distribution of ıSk(Sk) =
∑k

i=1 ıS(Si) is close to N (kH(S), kV(S)), and
2See also [9] where the completeness of Strassen’s proof is disputed.
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since the nonasymptotic fundamental limit is bounded in terms of the cdf of that random variable

we have (1.6).

ZS

{1, . . . ,M}

Figure 1.2: Source coding setup.

1.4 Lossy data compression

The fundamental problem of lossy compression is to represent an object with the fidelity of reproduc-

tion possible while satisfying a constraint on the compression ratio (rate). In the basic setup of lossy

compression, depicted in Fig. 1.2, we are given a source alphabetM, a reproduction alphabet M̂,

a distortion measure d :M×M̂ 7→ [0,+∞] to assess the fidelity of reproduction, and a probability

distribution of the object S to be compressed down to M distinct values.

Unlike the channel coding setup of Section 1.2 as well as the (almost) lossless data compres-

sion setup of Section 1.3 in both of which the figure of merit is the block error rate, the lossy

compression framework permits a study of reproduction of digital data under a symbol error rate

constraint. Moreover, the lossy compression formalism encompasses compression of continuous and

mixed sources, such as photographic images, audio and video.

Following the information-theoretic philosophy put forth by Claude Shannon in [5], this thesis

is concerned with the fundamental rate-fidelity tradeoff achievable, regardless of coding complexity,

rather than with designing efficient encoding and decoding functions, which is the main focus of

coding theory.

In the conventional fixed-to-fixed (or block) settingM and M̂ are the k−fold Cartesian products

of the letter alphabets S and Ŝ, and the object to be compressed becomes a vector Sk of length k,

and the compression rate is given by logM
k . The remarkable insight made by Claude Shannon [10]

reveals that it pays to describe the entire vector Sk at once, rather then each entry individually,

even if the entries are independent. Indeed, in the basic task to digitize i.i.d. Gaussian random

variables, the optimum one bit quantizer achieves the mean square error of π−2
π ≈ 0.36, while the

optimal block code in the limit achieves the mean square error of 1
4 . In another basic example where

the goal is to compress 1000 fair coin flips down to 500, the optimum bit-by-bit strategy stores half
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of the bits and guesses the rest, achieving the average BER of 1/4, while the optimum rate- 12 block

code achieves the average BER of 0.11, in the limit of infinite blocklength [10]. Note however that

achieving these asymptotic limits requires unbounded blocklength, while the best estimate of the

BER of the optimum rate - 12 code operating on blocks of length 1000 provided by the classical theory

is that the BER is between 1/4 and 0.11. To narrow down the gap between the upper and lower

bounds to the optimal finite blocklength coding rate is one of the main goals of this thesis.

The minimum rate achievable in the limit of infinite length of the source block compatible with

a given average distortion d is called the rate-distortion function and is denoted R(d). Shannon’s

beautiful result [10,11] states that the rate-distortion function of a stationary memoryless source with

separable (i.e. additive, or per-letter) distortion measure is given by the minimal mutual information

between the source and the reproduction subject to an average distortion constraint. For example,

for the i.i.d. binary source with bias p, the rate-distortion function is given by

R(d) = h(p)− h(d) (1.7)

where d ≤ p < 1
2 is the tolerable bit error rate.

As we will see in Chapter 2, the key random variable governing non-asymptotic fundamental

limits in lossy data compression is the so-called d-tilted information, S(s, d) (Section 2.2), which

essentially quantifies the number of bits required to represent source outcome s of the source S with

distortion measure d within distortion d. For example, the BER-tilted information in k i.i.d. coin

flips with bias p is given by

Sk(sk, d) = j log
1

p
+ (k − j) log 1

1− p − kh(d) (1.8)

where j is the number of ones in sk. If d = 0, the d-tilted information is given by the informa-

tion in sk in (1.4). As in Sections 1.2 and 1.3, the mean of the key random variable, Sk(Sk, d),

is equal to the asymptotic fundamental limit, kR(d), which agrees with the intuition that long

sequences concentrate near their mean. At finite blocklength, however, the whole distribution of

Sk(Sk, d) matters. Indeed, tight upper and lower bounds to the nonasymptotic fundamental limit

that we develop in Section 2.5 connect the probability that the distortion of the best code with

M representation points exceeds level d (operational quantity) to the probability that the d-tilted

information exceeds logM (information-theoretic quantity). Moreover, as we show in Section 2.6,

unless the blocklength is extremely short, the minimum finite blocklength coding rate for stationary
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memoryless sources with separable distortion is well approximated by

kR(k, d, ǫ) = kR(d) +
√
kV(d)Q−1 (ǫ) +O (log k) , (1.9)

where ǫ is the probability that the distortion incurred by the reproduction exceeds d, V(d) is the

rate-dispersion function which equals the variance of the d-tilted information. For our coin flip

example,

V(d) = p(1− p) log2 1− p
p

(1.10)

Notice that in this example the rate-dispersion function does not depend on d, and if the coin is

fair, then V(d) = 0, which implies that in that case the rate-distortion function is approached not

at O
(

1√
k

)
speed but much faster (in fact, as 1

2k log k, as we show in Section 2.7).

1.5 Lossy joint source-channel coding

In Chapter 3, we consider the lossy joint source-channel coding (JSCC) setup depicted in Fig. 1.3.

The goal is to reproduce the source output under a distortion constraint as in Chapter 2, but the

coding task is complicated by the presence of a noisy channel between the data source and its

receiver. Now, not only one needs to partition the source space and choose a representative point

for each region carefully so as to minimize the incurred distortion (the source coding task), but

also to place message points in the channel input space intelligently so that after these points are

contaminated by the channel noise, they still can be distinguished reliably at the receiver end (the

channel coding task).

X Y ZS

Figure 1.3: Joint source-channel coding setup.

In the standard block coding setup, encoder input and decoder output become k-vectors Sk and

Zk, and the channel input and output become n-vectors Xn and Y n, and the JSCC coding rate is

given by k
n . For a large class of sources and channels, in the limit of large blocklength, the maximum

achievable JSCC rate compatible with vanishing excess distortion probability is characterized by the

ratio C
R(d) [11], where C is the channel capacity, i.e. the maximum asymptotically achievable channel
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coding rate. The striking observation made by Shannon is that the asymptotic fundamental limit can

be achieved by concatenating the optimum source and channel codes. This means that designing

these codes separately does not incur any loss of performance, provided that the blocklength is

allowed to grow without limit.

We will see in Chapter 3 that the situation is completely different at finite blocklengths, where

joint design can bring significant gains, both in terms of the rate achieved and implementation

complexity. This is one of those instances in which nonasymptotic information theory forces us to

unlearn the lessons instilled by traditional asymptotic thinking.

More specifically, consider the Gaussian approximation of R(n, ǫ), the maximum achievable cod-

ing rate at blocklength n and error probability ǫ, which is given by (1.2) for finite alphabet stationary

memoryless channels.

Concatenating the channel code in (1.2) and the source code in (1.9), we obtain the following

achievable rate region compatible with probability ǫ of exceeding d:

nC − kR(d) ≤ min
η+ζ≤ǫ

{√
nV Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
+O (logn) (1.11)

However in Section 3.5 we will see that the maximum number of source symbols transmissible using

a given channel blocklength n satisfies

nC − kR(d) =
√
nV + kV(d)Q−1 (ǫ) +O (logn) (1.12)

which in general is strictly better than (1.11). The intuition is that separated scheme produces

an error when either the channel realization is too noisy (small channel information density) or

the source realization is too atypical (large d-tilted information), whereas in the joint scheme, a

particularly good source realization may compensate for a particularly bad channel realization and

vice versa.

In addition to deriving new general achievability and converse bounds for JSCC and performing

their Gaussian approximation analysis, in Chapter 3 we revisit the dilemma of whether one should or

should not code when operating under delay constraints. Symbol-by-symbol (uncoded) transmission

is known to achieve the Shannon limit when the source and channel satisfy a certain probabilistic

matching condition [12]. In Section 3.8 we show that even when this condition is not satisfied,

symbol-by-symbol transmission, though asymptotically suboptimal, in some cases constitutes the

best known strategy in the non-asymptotic regime.
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1.6 Noisy lossy compression

Chapter 4 considers a lossy compression setup in which the encoder has access only to a noise-

corrupted versionX of a source S, and as before, we are interested in minimizing (in some stochastic

sense) the distortion d(S,Z) between the true source S and its rate-constrained representation Z (see

Fig. 1.4). This problem arises if the object to be compressed is the result of an uncoded transmission

over a noisy channel, or if it is observed data subject to errors inherent to the measurement system.

Some examples include speech in a noisy environment, or photographic images corrupted by noise

introduced by the image sensor and circuitry. Since we are concerned with preserving the original

information in the source rather than preserving the noise, the distortion measure is defined with

respect to the source.

XS

{1, . . . ,M}

Z

Figure 1.4: Noisy source coding setup.

What is intriguing about the noisy source coding problem is that, asymptotically, it is known

to be equivalent to the traditional noiseless rate-distortion problem with a modified distortion func-

tion, but nonasymptotically, there is a sizable gap between the two minimum achievable rates, as

we demonstrate in Chapter 4 by giving new nonasymptotic achievability and converse bounds to

the achievable noisy source coding rate and performing their Gaussian approximation analysis. In

particular, we show that the achievable noisy source coding rate of a discrete stationary memoryless

source over a discrete stationary memoryless channel under a separable distortion measure can be

approximated by (1.9) where the rate-distortion function R(d) is that of the asymptotically equiva-

lent noiseless rate-distortion function, and the rate-dispersion function V(d) is replaced by the noisy

rate-dispersion function Ṽ(d) that satisfies

Ṽ(d) > V(d) (1.13)

The gap between the two rate-dispersion functions, explicitly identified in Chapter 4, is due to the

stochastic variability of the channel from S to X , which nonasymptotically cannot be neglected.

That additional randomness introduced by the channel slows down the rate of approach to the

asymptotic fundamental limit.
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1.7 Channel coding under cost constraints

Chapter 5 studies the channel problem problem depicted in Fig. 1.1 where channel inputs have cost

associated to them. Such constraints arise for example due to limited transmit power. Despite the

obvious differences between lossy compression under distortion constraint and channel coding under

cost constraint, there are certain mathematical parallels between the two problems that permitted

us to apply an approach similar to that used in Chapter 2 to solve the former problem to characterize

the nonasymptotic fundamental limit in the latter. More precisely, in Chapter 5 we define the b-

tilted information in a given channel input x, ⋆X;Y (x, β), which parallels the notion of the d-tilted

information in lossy compression. We show that the maximum achievable channel coding rate under

a cost constraint can be bounded in terms of the distribution of that random variable.

1.8 Remarks

We conclude the introductory chapter with a few remarks about our general approach.

1.8.1 Nonasymptotic converse and achievability bounds

Since nonasymptotic fundamental limits cannot in general be computed exactly, nonasymptotic

information theory must rely on bounds. Although non-asymptotic bounds can be distilled from

classical proofs of coding theorems, these bounds usually leave much tightness to be desired in the

non-asymptotic regime [3, 4]. For example, observe the sizable gap between the tightest known

achievability and converse bounds in Fig 1.5. Because these bounds were derived with the asymp-

totics in mind, asymptotically they converge to the correct limit, but in the displayed region of

blocklengths they are frustratingly loose. For another example, recall that the classical achievability

scheme in JSCC uses separate source/channel coding, which is rather suboptimal non-asymptotically.

An accurate finite blocklength analysis therefore calls for novel upper and lower bounds that sand-

wich tightly the non-asymptotic fundamental limit. This thesis shows such bounds, which hold in

full generality, without any assumptions on the source alphabet, stationarity or memorylessness, for

each of the discussed lossy compression problems.

1.8.2 Average distortion vs. excess distortion probability

While the classical Shannon paper [11] as well as many subsequent installments in rate-distortion

theory focused on the average distortion between the source and its representation by the decoder,
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Figure 1.5: Known bounds to the nonasymptotic fundamental limit for the binary memoryless source
with bias p = 2

5 compressed at rate 1
2 under the constraint that the probability that the fraction of

erroneous bits exceeds d is no larger than ǫ = 10−4.
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the figure of merit in this thesis is the excess distortion [13–18], i.e. our fidelity criterion is the

probability of exceeding a certain distortion threshold. The excess distortion criterion is relevant

in applications where, if more than a given fraction of bits is erroneous, the entire packet must be

discarded. Moreover, for a given code, the excess distortion constraint is, in a way, more fundamental

than the average distortion constraint, because varying d over its entire range and evaluating the

probability of exceeding d gives full information about the distribution (and not just its mean) of the

distortion incurred at the decoder output. This is not overly crucial if the blocklength is allowed to

increase indefinitely, because due to the ergodic principle, most distortions incurred at the decoder

output will eventually be close to their average. However, at a given fixed blocklength, the spread

of those distortions around their average value is non-negligible, so focusing on just the average fails

to provide a complete description of system performance. Excess distortion is thus a natural way to

look at lossy compression problems at finite blocklengths.

1.8.3 Large deviations vs. central limit theorem

While the law of large numbers leads to asymptotic fundamental limits, the evaluation of the speed of

convergence to those asymptotic limits calls for more sophisticated tools. There are two complemen-

tary approaches to such finer asymptotic analysis: the large deviations analysis which leads to the

reliability function [7,13], and the Gaussian approximation analysis which leads to dispersion [3,6].

The reliability function approximation and the Gaussian approximation to the non-asymptotic fun-

damental limit are tight in different operational regimes. In the former, a rate which is strictly

suboptimal with respect to the asymptotic fundamental limit is fixed, and the reliability function

measures the exponential decay of the excess distortion probability to 0 as the blocklength increases.

The error exponent approximation is tight if the error probability a system can tolerate is extremely

small. However, as observed in [3] in the context of channel coding, already for probability of error

as low as 10−6 to 10−1, which is the operational regime for many high data rate applications, the

Gaussian approximation, which gives the optimal rate achievable at a given error probability as a

function of blocklength, is tight. Note that Marton’s converse bound in Fig. 1.5 is tight in terms of

the large deviations asymptotics but is very loose at finite blocklengths, even for the quite low excess

distortion probability of 10−4 in Fig. 1.5. This thesis follows the philosophy of [3] and performs the

Gaussian approximation analysis of the new bounds.

12



Chapter 2

Lossy data compression

2.1 Introduction

In this chapter we present new achievability and converse bounds to the minimum sustainable lossy

source coding rate as a function of blocklength and excess probability, valid for general sources

and general distortion measures, and, in the case of stationary memoryless sources with separable

distortion, their Gaussian approximation analysis. The material in this chapter was presented in

part in [19–22].

Section 2.2 presents the basic notation and properties of the d-tilted information. Section 2.3

introduces the definitions of the fundamental finite blocklengths limits. Section 2.4 reviews the few

existing finite blocklength achievability and converse bounds for lossy compression, as well as various

relevant asymptotic refinements of Shannon’s lossy source coding theorem. Section 2.5 shows the

new general upper and lower bounds to the minimum rate at a given blocklength. Section 2.6 studies

the asymptotic behavior of the bounds using Gaussian approximation analysis. The evaluation of

the new bounds and a numerical comparison to the Gaussian approximation is detailed for:

• stationary binary memoryless source (BMS) with bit error rate distortion1 (Section 2.7);

• stationary discrete memoryless source (DMS) with symbol error rate distortion (Section 2.8);

• stationary Gaussian memoryless source (GMS) with mean-square error distortion (Section 2.9).

1Although the results in Section 2.7 are a special case of those in Section 2.8, it is enlightening to specialize our
results to the simplest possible setting.
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2.2 Tilted information

The information density between realizations of two random variables with joint distribution PSPZ|S

is denoted by

ıS;Z(s; z) , log
dPZ|S=s
dPZ

(z) (2.1)

Further, for a discrete random variable S, the information in outcome s is denoted by

ıS(s) , log
1

PS(s)
(2.2)

WhenM = Sk, under appropriate conditions, the number of bits that it takes to represent s divided

by ıS(s) converges to 1 as k increases. Note that if S is discrete, then ıS;S(s; s) = ıS(s).

For given PS and distortion measure, denote

RS(d) , inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) (2.3)

DS(R) , inf
PZ|S :

I(S;Z)≤R

E [d(S,Z)] (2.4)

We impose the following basic restrictions on the source and the distortion measure.

(a) RS(d) is finite for some d, i.e. dmin <∞, where

dmin , inf {d : RS(d) <∞} (2.5)

(b) The infimum in (2.3) is achieved by a unique P ⋆Z|S such that E [d(S,Z⋆)] = d.

The uniqueness of the rate-distortion function achieving transition probability kernel in restric-

tion (b) is imposed merely for clarity of presentation (see Remark 2.9 in Section 2.6). Moreover, as

we will see in Appendix B.4, even the requirement that the infimum in (2.3) is actually achieved can

be relaxed.

The counterpart of (2.2) in lossy data compression, which roughly corresponds to the number of

bits one needs to spend to encode s within distortion d, is the following.

Definition 2.1 (d-tilted information). For d > dmin, the d-tilted information in s is defined as2

S(s, d) , log
1

E [exp {λ⋆d− λ⋆d(s, Z⋆)}] (2.6)

2Unless stated otherwise, all log’s and exp’s in the thesis are arbitrary common base.
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where the expectation is with respect to the unconditional distribution3 of Z⋆, and

λ⋆ , −R′
S(d) (2.7)

It can be shown that (b) guarantees differentiability of RS(d), thus (2.6) is well defined.

The following two theorems summarize crucial properties of d-tilted information.

Theorem 2.1. Fix d > dmin. For P ⋆Z-almost every z, it holds that

S(s, d) = ıS;Z⋆(s; z) + λ⋆d(s, z)− λ⋆d (2.8)

where λ⋆ is that in (2.7), and PSZ⋆ = PSPZ⋆|S. Moreover,

RS(d) = min
PZ|S

E [ıS;Z(S;Z) + λ⋆d(S,Z)]− λ⋆d (2.9)

= min
PZ|S

E [ıS;Z⋆(S;Z) + λ⋆d(S,Z)]− λ⋆d (2.10)

= E [S(S, d)] (2.11)

and for all z ∈ M̂

E [exp {λ⋆d− λ⋆d(S, z) + S(S, d)}] ≤ 1 (2.12)

with equality for P ⋆Z-almost every z.

If the source alphabetM is a finite set, for s ∈ M, denote the partial derivatives

ṘS(s, d) ,
∂

∂PS̄(s)
RS̄(d) |PS̄=PS (2.13)

Theorem 2.2. Assume that the source alphabet M is a finite set. Suppose that for all PS̄ in some

Euclidean neighborhood of PS, supp(PZ̄⋆) = supp(PZ⋆), where RS̄(d) = I(S̄; Z̄⋆). Then

∂

∂PS̄(s)
E [S̄(S, d)] |PS̄=PS =

∂

∂PS̄(s)
E [ıS̄(S)] |PS̄=PS (2.14)

= − log e, (2.15)

ṘS(s, d) = S(s, d)− log e, (2.16)

Var
[
ṘS(S, d)

]
= Var [S(S, d)] . (2.17)

3Henceforth, Z⋆ denotes the rate-distortion-achieving reproduction random variable at distortion d, i.e. PS →
PZ⋆|S → PZ⋆ where P ⋆

Z|S
achieves the infimum in (2.3).
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A measure-theoretic proof of (2.8) and (2.12) can be found in [23, Lemma 1.4]. The equality in

(2.10) is shown in [24]. The equality in (2.17) was first observed in [25]. For completeness, proofs of

Theorems 2.1 and 2.2 are included in Appendix B.1.

Remark 2.1. While Definition 2.1 does not cover the case d = dmin, for discrete random variables

with d(s, z) = 1 {s 6= z} it is natural to define 0-tilted information as

S(s, 0) , ıS(s) (2.18)

Example 2.1. For the BMS with bias p ≤ 1
2 and bit error rate distortion,

Sk(sk, d) = ıSk(sk)− kh(d) (2.19)

if 0 ≤ d < p, and 0 if d ≥ p.

Example 2.2. For the GMS with variance σ2 and mean-square error distortion,4

Sk(sk, d) =
k

2
log

σ2

d
+

( |sk|2
σ2
− k
)

log e

2
(2.20)

if 0 < d < σ2, and 0 if d ≥ σ2.

2.2.1 Generalized tilted information

For two random variables Z and Z̄ defined on the same space, denote the relative information by

ıZ‖Z̄(z) , log
dPZ
dPZ̄

(z) (2.21)

If Z is distributed according to PZ|S=s, we abbreviate the notation as

ıZ|S‖Z̄(s; z) , log
dPZ|S=s
dPZ̄

(z) (2.22)

in lieu of ıZ|S=s‖Z̄(z). The familiar information density in (2.1) between realizations of two random

variables with joint distribution PSPZ|S follows by particularizing (2.22) to {PZ|S , PZ}, where PS →

PZ|S → PZ .

4We denote the Euclidean norm by | · |, i.e. |sk|2 = s2
1
+ . . .+ s2

k
.
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For a given PZ̄ , s, d, λ, and the following particular choice of PZ|S = PZ⋆|S

dPZ̄⋆|S=s(z) ,
dPZ̄(z) exp (−λd(s, z))
E
[
exp

(
−λd(s, Z̄)

)] (2.23)

it holds that (for PZ̄-a.e. z)

JZ̄(s, λ) , log
1

E
[
exp

(
−λd(s, Z̄)

)] (2.24)

= ıZ̄⋆|S‖Z̄(s; z) + λd(s, z) (2.25)

where in (2.24), as in (2.6), the expectation is with respect to unconditional distribution of Z̄. We

refer to the function

JZ̄(s, λ)− λd (2.26)

as the generalized d-tilted information in s. The d-tilted information in s is obtained by particular-

izing the generalized d-tilted information to PZ̄ = PZ⋆ , λ = λ⋆:

S(s, d) = JZ⋆(s, λ⋆)− λ⋆d (2.27)

Generalized d-tilted information is convenient because it exhibits the same beautiful symmetries

as the regular d-tilted information (see (2.25)) while allowing the freedom in the choice of the output

distribution PZ̄ as well as λ, which leads to tighter non-asymptotic bounds.

Generalized d-tilted information is closely linked to the following optimization problem [26].

RS,Z̄(d) , min
PZ|S :

E[d(S;Z)]≤d

D(PZ|S‖PZ̄ |PS) (2.28)

Note that

RS(d) = min
PZ̄

RS,Z̄(d) (2.29)

As long as d > dmin|S,Z̄, where

dmin|S,Z̄ , inf
{
d : RS,Z̄(d) <∞

}
(2.30)

the minimum in (2.28) is always achieved [23] (unlike that in (2.3)) by PZ̄⋆|S defined in (2.23) with

λ = λ⋆
S,Z̄

, where

λ⋆S,Z̄ , −R′
S,Z̄(d) (2.31)
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and the function JZ̄(s, λ
⋆
S,Z̄

)−λ⋆
S,Z̄

d possesses properties analogous to those of the function S(s, d)

listed in (2.9)–(2.11). In particular (cf. (2.11))

RS,Z̄(d) = E

[
JZ̄(S, λ

⋆
S,Z̄)

]
− λ⋆S,Z̄d (2.32)

2.2.2 Tilted information and distortion d-balls

The distortion d-ball around s is denoted by

Bd(s) , {z ∈ M̂ : d(s, z) ≤ d} (2.33)

As the following result shows, generalized tilted information is closely related to the (uncondi-

tional) probability that Z̄ falls within distortion d from S.

Lemma 2.3. Fix a distribution PZ̄ on the output alphabet M̂. It holds that

sup
δ>0,λ>0

{
exp (−JZ̄(s, λ) + λd− λδ)P

[
d− δ < d(s; Z̄⋆) ≤ d|S = s

]}

≤ PZ̄(Bd(s)) (2.34)

≤ inf
λ>0

exp (−JZ̄(s, λ) + λd)P
[
d(s, Z̄⋆) ≤ d|S = s

]
(2.35)

where the conditional probability in the left side of (2.34) and the right side of (2.35) is with respect

to PZ̄⋆|S defined in (2.23).

Proof. To show (2.35), write

PZ̄(Bd(s)) = E
[
exp

(
−ıZ̄⋆|S=s‖Z̄(Z̄

⋆)
)
1
{
d(s, Z̄⋆) ≤ d

}
|S = s

]
(2.36)

≤ exp (−JZ̄(s, λ) + λd)P
[
d(s, Z̄⋆) ≤ d|S = s

]
(2.37)

where

• (2.36) applies the usual change of measure argument;

• (2.37) uses (2.25) and

1
{
d(s, Z̄⋆) ≤ d

}
≤ exp

(
λd− λd

(
s, Z̄⋆

))
(2.38)
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The lower bound in (2.34) is shown by similarly leveraging (2.25) as follows.

PZ̄(Bd(s)) = E
[
exp

(
−ıZ̄⋆|S=s‖Z̄(Z̄

⋆)
)
1
{
d(s, Z̄⋆) ≤ d

}
|S = s

]
(2.39)

≥ E
[
exp

(
−ıZ̄⋆|S=s‖Z(Z̄

⋆)
)
1
{
d− δ ≤ d(s, Z̄⋆) ≤ d

}
|S = s

]
(2.40)

≥ exp (−JZ̄(s, λ) + λd − λδ)P
[
d− δ ≤ d(s, Z̄⋆) ≤ d|S = s

]
(2.41)

If PZ̄ = PZ⋆ , we may weaken (2.35) by choosing λ = λ⋆ to conclude

PZ⋆(Bd(s)) ≤ exp (−S(s, d)) (2.42)

As we will see in Theorem 2.11, under certain regularity conditions equality in (2.42) can be closely

approached.

2.3 Operational definitions

In fixed-length lossy compression, the output of a general source with alphabet M and source

distribution PS is mapped to one of the M codewords from the reproduction alphabet M̂. A lossy

code is a (possibly randomized) pair of mappings f : M 7→ {1, . . . ,M} and c : {1, . . . ,M} 7→ M̂.

A distortion measure d : M× M̂ 7→ [0,+∞] is used to quantify the performance of a lossy code.

Given decoder c, the best encoder simply maps the source output to the closest (in the sense of

the distortion measure) codeword, i.e. f(s) = argminm d(s, c(m)). The average distortion over the

source statistics is a popular performance criterion. A stronger criterion is also used, namely, the

probability of exceeding a given distortion level (called excess-distortion probability). The following

definitions abide by the excess distortion criterion.

Definition 2.2. An (M,d, ǫ) code for {M, M̂, PS , d :M×M̂ 7→ [0,+∞]} is a code with |f| =M

such that

P [d (S, c(f(S))) > d] ≤ ǫ (2.43)

The minimum achievable code size at excess-distortion probability ǫ and distortion d is defined

by

M⋆(d, ǫ) , min {M : ∃(M,d, ǫ) code} (2.44)
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Note that the special case d = 0 and d(s, z) = 1 {s 6= z} corresponds to almost-lossless compres-

sion.

Definition 2.3. In the conventional fixed-to-fixed (or block) setting in which M and M̂ are the

k−fold Cartesian products of alphabets S and Ŝ, an (M,d, ǫ) code for {Sk, Ŝk, PSk , dk : Sk×Ŝk 7→

[0,+∞]} is called a (k,M, d, ǫ) code.

Fix ǫ, d and blocklength k. The minimum achievable code size and the finite blocklength rate-

distortion function (excess distortion) are defined by, respectively

M⋆(k, d, ǫ) , min {M : ∃(k,M, d, ǫ) code} (2.45)

R(k, d, ǫ) ,
1

k
logM⋆(k, d, ǫ) (2.46)

Alternatively, using an average distortion criterion, we employ the following notations.

Definition 2.4. An 〈M,d〉 code for {M, M̂, PS , d :M×M̂ 7→ [0,+∞]} is a code with |f| = M

such that E [d (S, c(f(S)))] ≤ d. The minimum achievable code size at average distortion d is defined

by

M⋆(d) , min {M : ∃〈M,d〉 code} (2.47)

Definition 2.5. If M and M̂ are the k−fold Cartesian products of alphabets S and Ŝ, an 〈M,d〉

code for {Sk, Ŝk, PSk , dk : Sk × Ŝk 7→ [0,+∞]} is called an 〈k,M, d〉 code.

Fix d and blocklength k. The minimum achievable code size and the finite blocklength rate-

distortion function (average distortion) are defined by, respectively

M⋆(k, d) , min {M : ∃〈k,M, d〉 code} (2.48)

R(k, d) ,
1

k
logM⋆(k, d) (2.49)

In the limit of long blocklengths, the minimum achievable rate is characterized by the rate-

distortion function [5, 11].

Definition 2.6. The rate-distortion function is defined as

R(d) , lim sup
k→∞

R(k, d) (2.50)

Fixing the rate rather than the distortion, we define the distortion-rate functions in a similar

manner:
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• D(k,R, ǫ): the minimum distortion threshold achievable at block length k, rate R and excess

probability ǫ.

• D(k,R): the minimum average distortion achievable at blocklength k and rate R.

• D(R): the minimum average distortion achievable in the limit of large blocklength at rate R.

In the simplest setting of a stationary memoryless source with separable distortion measure,

i.e. when PSk = PS × . . . × PS, d(s
k, zk) = 1

k

∑k
i=1 d(si, zi), we will write PS, PZ̄, RS(d), S(s, d),

JZ̄(s, λ) to denote single-letter distributions on S, Ŝ and the functions in (2.3), (2.28), (2.6), (2.26),

respectively, evaluated with those single-letter distributions and a single-letter distortion measure.

In the review of prior work in Section 2.4 we will use the following concepts related to variable-

length coding. A variable-length code is a pair of mappings f :M 7→ {0, 1}⋆ and c : {0, 1}⋆ 7→ M̂,

where {0, 1}⋆ is the set of all possibly empty binary strings. It is said to operate at distortion level d

if P [d(S, c(f(S))) ≤ d] = 1. For a given code (f, c) operating at distortion d, the length of the binary

codeword assigned to s ∈M is denoted by ℓd(s) = length of f(s).

2.4 Prior work

In this section, we summarize the main available bounds on the fixed-blocklength fundamental limits

of lossy compression and we review the main relevant asymptotic refinements to Shannon’s lossy

source coding theorem.

2.4.1 Achievability bounds

Returning to the general setup of Definition 2.2, the basic general achievability result can be distilled

[2] from Shannon’s coding theorem for memoryless sources:

Theorem 2.4 (Achievability [2, 11]). Fix PS, a positive integer M and d ≥ dmin. There exists an

(M,d, ǫ) code such that

ǫ ≤ inf
PZ|S

{
P [d (S,Z) > d] + inf

γ>0

{
P [ıS;Z (S;Z) > logM − γ] + e− exp(γ)

}}
(2.51)

Theorem 2.4 was obtained by independent random selection of the codewords. It is the most

general existing achievability result (i.e. existence result of a code with a guaranteed upper bound

on error probability). In particular, it allows us to deduce that for stationary memoryless sources
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with separable distortion measure, i.e. when PSk = PS × . . . × PS, d(s
k, zk) = 1

k

∑k
i=1 d(si, zi), it

holds that

lim sup
k→∞

R(k, d) ≤ RS(d) (2.52)

lim sup
k→∞

R(k, d, ǫ) ≤ RS(d) (2.53)

where RS(d) is defined in (2.3), and 0 < ǫ < 1.

For three particular setups of i.i.d. sources with separable distortion measure, we can cite the

achievability bounds of Goblick [27] (fixed-rate compression of a finite alphabet source), Pinkston [28]

(variable-rate compression of a finite-alphabet source) and Sakrison [29] (variable-rate compression

of a Gaussian source with mean-square error distortion).

The bounds of Goblick [27] and Pinkston [28] were obtained using random coding and a type

counting argument.

Theorem 2.5 (Achievability [27, Theorem 2.1]). For a finite alphabet i.i.d. source with single-

letter distribution PS and separable distortion measure, the minimum average distortion achievable

at blocklength k and rate R satisfies

D(k,R) ≤ min
PZ̄,λ>0

{
E
[
J ′
Z̄
(S, λ)

]
+ E

[
J ′
Z̄
(S, λ)

∣∣
λ=0

] [3 log k√
k

(
Tλ

V
3/2
λ

+
2T0

V0
3/2

)
+
Vλe

−
√

k

2V 2
λ

√
2π 4
√
k

+
2V0e

−
√

k

2V̄ 2
λ

√
2π 4
√
k

+ exp

(
−(kR− 1)F (k) exp

(
−k
[
E [JZ̄(S, λ)] − λE

[
J ′
Z̄
(S, λ)

]
+

1 + λ
4
√
k

]))]}
+

1
4
√
k

(2.54)

where (·)′ denotes differentiation with respect to λ, JZ̄ is defined by (2.25) with PZ̄ and λ, Vλ and V0

are the variances of J ′
Z̄
(S, λ) and J ′

Z̄
(S, λ)

∣∣
λ=0

, respectively, while Tλ and T0 are their third absolute

moments, and

F (k) =
1

(2πk)
1
2 |S|(|Ŝ|−1)

exp


−1

2
|S||Ŝ| − λ max

(s,z)∈S×Ŝ
d(s, z)−

∑

(s,z)∈S×Ŝ

1

PZ̄⋆|S(z|s)


 (2.55)

Note that

E
[
J ′
Z̄
(S, λ)

]
= E

[
d(S, Z̄⋆)

]
(2.56)

E
[
J ′
Z̄
(S, λ)

∣∣
λ=0

]
= E

[
d(S, Z̄)

]
(2.57)
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where PZ̄⋆|S is that in (2.23) and PZ̄|S = PZ̄.

Theorem 2.6 (Achievability [28, (6)]). For a finite alphabet i.i.d. source with single-letter distribu-

tion PS and separable distortion measure, there exists a variable-length code such that the distortion

between Sk and its reproduction almost surely does not exceed d, and

E
[
ℓ(Sk)

]
≤ min

PZ̄,λ>0

{
k
(
E [JZ̄(S, λ)] − λE

[
J ′
Z̄
(S, λ)

])
− logG(k)

}
+ |S| log(k + 1) + 1 (2.58)

where

G(k) =
exp

(
−αkλ

√
kmaxs∈S |J ′′

Z̄
(s, λ)| − 1

2α
2
k

)

√
2π
(
αk + λ

√
kmaxs∈S |J ′′

Z̄
(s, λ)|

)


1− 1

(
αk + λ

√
kmins∈S |J ′′

Z̄
(s, λ)|

)2


 (2.59)

αk = Q−1

(
1

2
− 33

4
√
k
max
s∈S

Ts√
Vs

)
(2.60)

and Vs and Ts are the variance and the third absolute moment of E
[
d(S, Z̄)|S = s

]
, respectively.

Sakrison’s achievability bound, stated next, relies heavily on the geometric symmetries of the

Gaussian setting.

Theorem 2.7 (Achievability [29]). Fix blocklength k, and let Sk be a Gaussian vector with indepen-

dent components of variance σ2. There exists a variable-length code achieving average mean-square

error d such that

E
[
ℓ(Sk)

]
≤ −k − 1

2
log

(
d

σ2
− 1

1.2k

)
+

1

2
log k + log 4π +

2

3
log e+

5 log e

12(k + 1)
(2.61)

2.4.2 Converse bounds

The basic converse used in conjunction with (2.51) to prove the rate-distortion fundamental limit

with average distortion is the following simple result, which follows immediately from the data

processing lemma for mutual information:

Theorem 2.8 (Converse [11]). Fix PS , integer M and d ≥ dmin. Any 〈M,d〉 code must satisfy

RS(d) ≤ logM (2.62)

where RS(d) is defined in (2.3).

Shannon [11] showed that in the case of stationary memoryless sources with separable distortion,
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RSk(d) = kRS(d). Using Theorem 2.8, it follows that for such sources

RS(d) ≤ R(k, d) (2.63)

for any blocklength k and any d > dmin, which together with (2.52) gives

R(d) = RS(d) (2.64)

The strong converse for lossy source coding [30] states that if the compression rate R is fixed

and R < RS(d), then ǫ→ 1 as k →∞, which together with (2.53) yields that for i.i.d. sources with

separable distortion and any 0 < ǫ < 1

lim sup
k→∞

R(k, d, ǫ) = RS(d) = R(d) (2.65)

More generally, the strong converse holds provided that the source is stationary ergodic and the

distortion measure is subadditive [31].

For prefix-free variable-length lossy compression, the key non-asymptotic converse was obtained

by Kontoyiannis [32] (see also [33] for a lossless compression counterpart).

Theorem 2.9 (Converse [32]). If a prefix-free variable-length code for PS operates at distortion level

d, then for any γ > 0

P [ℓd(S) ≤ S(S, d)− γ] ≤ 2−γ (2.66)

The following nonasymptotic converse can be distilled from Marton’s fixed-rate lossy compression

error exponent [13].

Theorem 2.10 (Converse [13]). Assume that dmax = maxs,z d(s, z) < +∞. Fix dmin < d < dmax

and an arbitrary (exp(R), d, ǫ) code.

• If

R < RS(d), (2.67)

then the excess-distortion probability is bounded away from zero:

ǫ ≥ DS(R)− d
dmax − d

(2.68)
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• If R satisfies

RS(d) < R < max
PS̄

RS̄(d), (2.69)

where the maximization is over the set of all probability distributions onM, then

ǫ ≥ sup
δ>0,PS̄

(
DS̄(R)− d
dmax − d

− PS̄(Gcδ)
)
exp

(
−D(S̄‖S)− δ

)
, (2.70)

where the supremization is over all probability distributions on M satisfying RS̄(d) > R, and

Gδ =
{
s ∈M : ıS̄‖S(s) ≤ D(S̄‖S) + δ

}
(2.71)

Proof. Inequality in (2.68) is that in [13, (7)]. To show (2.70), fix an arbitrary code (f, c) whose rate

satisfies (2.69), fix an auxiliary PS̄ satisfying RS̄(d) > R, and write

P [d(S, c(f(S)))) > d] ≥ P [d(S, c(f(S)))) > d, S ∈ Gδ] (2.72)

= E
[
exp

(
−ıS̄‖S(S̄)

)
1
{
d(S̄, c(f(S̄)))) > d, S̄ ∈ Gδ

}]
(2.73)

≥ P
[
d(S̄, c(f(S̄)))) > d, S̄ ∈ Gδ

]
exp

(
−D(S̄‖S)− δ

)
(2.74)

≥
(
P
[
d(S̄, c(f(S̄)))) > d

]
− PS̄(Gcδ)

)
exp

(
−D(S̄‖S)− δ

)
(2.75)

≥
(
DS̄(R)− d
dmax − d

− PS̄(Gcδ)
)
exp

(
−D(S̄‖S)− δ

)
(2.76)

where

• (2.73) is by the standard change of measure argument,

• (2.75) is by the union bound,

• (2.76) is due to (2.68).

It turns out that the converse in Theorem 2.10 results in rather loose lower bounds on R(k, d, ǫ)

unless k is very large, in which case the rate-distortion function already gives a tight lower bound.

Generalizations of the error exponent results in [13] (see also [34,35] for independent developments)

are found in [14–18].

25



2.4.3 Gaussian Asymptotic Approximation

The “lossy asymptotic equipartition property (AEP)” [36], which leads to strong achievability and

converse bounds for variable-rate quantization, is concerned with the almost sure asymptotic behav-

ior of the distortion d-balls. Second-order refinements of the “lossy AEP” were studied in [32,37,38].5

Theorem 2.11 (“Lossy AEP”). For memoryless sources with separable distortion measure satisfying

the regularity restrictions (i)–(iv) in Section 2.6,

log
1

PZk⋆(Bd(Sk))
=

k∑

i=1

S(Si, d) +
1

2
log k +O (log log k)

almost surely.

Remark 2.2. Note the different behavior of almost lossless data compression:

log
1

PZk⋆(B0(Sk))
= log

1

PSk(Sk)
=

k∑

i=1

ıS(Si) (2.77)

Kontoyiannis [32] pioneered the second-order refinement of the variable-length rate-distortion

function showing that for stationary memoryless sources with separable distortion measures the

stochastically optimum prefix-free description length at distortion level d satisfies

ℓ⋆d(S
k) =

k∑

i=1

S(Si, d) +O (log k) a.s. (2.78)

2.4.4 Asymptotics of redundancy

Considerable attention has been paid to the asymptotic behavior of the redundancy, i.e. the differ-

ence between the average distortion D(k,R) of the best k−dimensional quantizer and the distortion-

rate function D(R). For finite-alphabet i.i.d. sources, Pilc [40] strengthened the positive lossy source

coding theorem by showing that

D(k,R)−D(R) ≤ −∂D(R)

∂R

log k

2k
+ o

(
log k

k

)
(2.79)

Zhang, Zang and Wei [41] proved a converse to (2.79), thereby showing that for memoryless sources

with finite alphabet,

D(k,R)−D(R) = −∂D(R)

∂R

log k

2k
+ o

(
log k

k

)
(2.80)

5The result of Theorem 2.11 was pointed out in [32, Proposition 3] as a simple corollary to the analyses in [37,38].
See [39] for a generalization to α-mixing sources.
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Using a geometric approach akin to that of Sakrison [29], Wyner [42] showed that (2.79) also holds for

stationary Gaussian sources with mean-square error distortion, while Yang and Zhang [37] extended

(2.79) to abstract alphabets. Note that as the average overhead over the distortion-rate function is

dwarfed by its standard deviation, the analyses of [37,40–42] are bound to be overly optimistic since

they neglect the stochastic variability of the distortion.

2.5 New finite blocklength bounds

In this section we give achievability and converse results for any source and any distortion measure

according to the setup of Section 2.3. When we apply these results in Sections 2.6 - 2.9, the source

S becomes an k−tuple (S1, . . . , Sk).

2.5.1 Converse bounds

Our first result is a general converse bound, expressed in terms of d-tilted information.

Theorem 2.12 (Converse, d-tilted information). Assume the basic conditions (a)–(b) in Section

2.3 are met. Fix d > dmin. Any (M,d, ǫ) code must satisfy

ǫ ≥ sup
γ≥0
{P [S(S, d) ≥ logM + γ]− exp(−γ)} (2.81)

Proof. Let the encoder and decoder be the random transformations PX|S : M 7→ {1, . . . ,M} and

PZ|X : {1, . . . ,M} 7→ M̂. Let QX be equiprobable on {1, . . . ,M}, and let QZ denote the marginal
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of PZ|XQX . We have6, for any γ ≥ 0

P [S(S, d) ≥ logM + γ]

= P [S(S, d) ≥ logM + γ, d(S,Z) > d] + P [S(S, d) ≥ logM + γ, d(S,Z) ≤ d] (2.82)

≤ ǫ+
∑

s∈M
PS(s)

M∑

x=1

PX|S(x|s)
∑

z∈Bd(s)

PZ|X(z|x)1 {M ≤ exp (S(s, d)− γ)} (2.83)

≤ ǫ+ exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))

M∑

x=1

1

M

∑

z∈Bd(s)

PZ|X(z|x) (2.84)

= ǫ+ exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))QZ(Bd(s)) (2.85)

≤ ǫ+ exp (−γ)
∑

z∈M̂

QZ(z)
∑

s∈M
PS(s) exp (λ

⋆d− λ⋆d(s, z) + S(s, d)) (2.86)

≤ ǫ+ exp (−γ) (2.87)

where

• (2.84) follows by upper-bounding

PX|S(x|s)1 {M ≤ exp (S(s, d)− γ)} ≤
exp (−γ)

M
exp (S(s, d)) (2.88)

for every (s, x) ∈M× {1, . . . ,M},

• (2.86) uses (2.42) particularized to Z distributed according to QZ , and

• (2.87) is due to (2.12).

Remark 2.3. Theorem 2.12 gives a pleasing generalization of the almost-lossless data compression

converse bound [2], [43, Lemma 1.3.2]. In fact, skipping (2.86), the above proof applies to the case

d = 0 and d(s, z) = 1 {s 6= z}, which corresponds to almost-lossless data compression.

Remark 2.4. As explained in Appendix B.4, condition (b) can be dropped from the assumptions of

Theorem 2.12.

Our next converse result, which is tighter than the one in Theorem 2.12 in some cases, is based

on binary hypothesis testing. The optimal performance achievable among all randomized tests

6We write summations over alphabets for simplicity. All our results in Sections 2.5 and 2.6 hold for arbitrary
probability spaces.
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PW |S :M→ {0, 1} between probability distributions P and Q onM is denoted by (1 indicates that

the test chooses P ):7

βα(P,Q) = min
PW |S :

P[W=1]≥α

Q [W = 1] (2.89)

In fact, Q need not be a probability measure, it just needs to be σ-finite in order for the Neyman-

Pearson lemma and related results to hold.

Theorem 2.13 (Converse). 8 Let PS be the source distribution defined on the alphabet M. Any

(M,d, ǫ) code must satisfy

M ≥ sup
Q

inf
z∈M̂

β1−ǫ(PS , Q)

Q [d(S, z) ≤ d] (2.90)

where the supremum is over all distributions on M.

Proof. Let (PX|S , PZ|X) be an (M,d, ǫ) code. Fix a distribution QS on M, and observe that

W = 1 {d(S,Z) ≤ d} defines a (not necessarily optimal) hypothesis test between PS and QS with

P [W = 1] ≥ 1− ǫ. Thus,

β1−ǫ(PS , QS) ≤
∑

s∈M
QS(s)

M∑

m=1

PX|S(m|s)
∑

z∈M̂

PZ|X(z|m)1{d(s, z) ≤ d}

≤
M∑

m=1

∑

z∈M̂

PZ|X(z|m)
∑

s∈M
QS(s)1{d(s, z) ≤ d} (2.91)

≤
M∑

m=1

∑

z∈M̂

PZ|X(z|m) sup
z′∈M̂

Q [d(S, z′) ≤ d] (2.92)

= M sup
z∈M̂

Q [d(S, z) ≤ d] (2.93)

Suppose for a moment that S takes values on a finite alphabet, and let us further lower bound

(2.90) by taking Q to be the equiprobable distribution on M, Q = U . Consider the set Ω ⊂ M

that has total probability 1− ǫ and contains the most probable source outcomes, i.e. for any source

outcome s ∈ Ω, there is no element outside Ω having probability greater than PS(s). For any s ∈ Ω,

the optimum binary hypothesis test (with error probability ǫ) between PS and U must choose PS .

Thus the numerator of (2.90) evaluated with Q = U is proportional to the number of elements in

Ω, while the denominator is proportional to the number of elements in a distortion ball of radius

7Throughout, P , Q denote distributions, whereas P, Q are used for the corresponding probabilities of events on
the underlying probability space.

8Theorem 2.13 was suggested by Dr. Yury Polyanskiy.
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d. Therefore (2.90) evaluated with Q = U yields a lower bound to the minimum number of d-balls

required to cover Ω.

Remark 2.5. In general, the lower bound in Theorem 2.13 is not achievable due to overlaps between

the distortion d-balls that comprise the covering. One special case when it is in fact achievable

is almost lossless data compression on a countable alphabet M. To encompass that case, it is

convenient to relax the restriction in (2.89) that requires Q to be a probability measure and allow

it to be a σ-finite measure, so that βα(PS , Q) is no longer bounded by 1. Note that Theorem 2.13

would still hold. Letting U to be the counting measure on M (i.e. U assigns unit weight to each

letter), we have (Appendix B.2)

β1−ǫ(PS , U) ≤M⋆(0, ǫ) ≤ β1−ǫ(PS , U) + 1 (2.94)

The lower bound in (2.94) is satisfied with equality whenever β1−ǫ(PS , U) is achieved by a non-

randomized test.

The last result in this section is a lossy compression counterpart of the lossless variable length

compression bound in [9, Theorem 3], which, unlike the converse in [32] (Theorem 2.9), does not

impose the prefix condition on the encoded sequences.

Theorem 2.14 (Converse, variable-length lossy compression). For a nonnegative integer k, the

encoded length of any variable-length code operating at distortion d must satisfy9

P [ℓd(S) ≥ k] ≥ max
γ>0
{P [S(S, d) ≥ k + γ]− exp(−γ)} (2.95)

Proof. Let the encoder and decoder be the random transformations PX|S and PZ|X , where X takes

values in {1, 2, . . .}. Let QS be equiprobable on {1, . . . , exp(k)− 1}, and let QZ denote the marginal

of PZ|XQS .

9All log’s and exp’s involved in Theorem 2.14 are binary base.
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P [S(S, d) ≥ k + γ]

= P [S(S, d) ≥ k + γ,X > exp(k)− 1] + P [S(S, d) ≥ k + γ,X ≤ exp(k)− 1] (2.96)

≤ ǫ+
∑

s∈M
PS(s)

exp(k)−1∑

x=1

PX|S(x|s)
∑

z∈Bd(s)

PZ|X(z|x)1 {exp(k) ≤ exp (S(s, d)− γ)} (2.97)

≤ ǫ+ exp (−γ) (2.98)

where the proof of (2.98) repeats that of (2.87).

2.5.2 Achievability bounds

The following result gives an exact analysis of the excess probability of random coding, which holds

in full generality.

Theorem 2.15 (Exact performance of random coding). Denote by ǫd (c1, . . . , cM ) the probability

of exceeding distortion level d achieved by the optimum encoder with codebook (c1, . . . , cM ). Let

Z1, . . . , ZM be independent, distributed according to an arbitrary distribution PZ̄ on the reproduction

alphabet. Then

E [ǫd (Z1, . . . , ZM )] = E

[
(1− PZ̄(Bd(S)))M

]
(2.99)

Proof. Upon observing the source output s, the optimum encoder chooses arbitrarily among the

members of the set

arg min
i=1,...,M

d(s, ci)

The indicator function of the event that the distortion exceeds d is

1

{
min

i=1,...,M
d(s, ci) > d

}
=

M∏

i=1

1 {d(s, ci) > d} (2.100)
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Averaging over both the input S and the choice of codewords chosen independently of S, we get

E

[
M∏

i=1

1 {d(S,Zi) > d}
]
= E

[
E

[
M∏

i=1

1 {d(S,Zi) > d} |S
]]

(2.101)

= E

M∏

i=1

E [1 {d(S,Zi) > d} |S] (2.102)

= E

[(
P
[
d(S, Z̄) > d|S

])M]
(2.103)

where in (2.102) we have used the fact that Z1, . . . , ZM are independent even when conditioned on

S.

Invoking Shannon’s random coding argument, the following achievability result follows immedi-

ately from Theorem 2.15.

Theorem 2.16 (Achievability). There exists an (M,d, ǫ) code with

ǫ ≤ inf
PZ̄

E

[
(1− PZ̄(Bd(S)))M

]
(2.104)

where the infimization is over all random variables defined on M̂, independent of S.

The bound in Theorem 2.15, based on the exact performance of random coding, is a major

stepping stone in random coding achievability proofs for lossy source coding found in literature

(e.g. [11,27–29,32,37,38,41]), all of which loosen (2.104) using various tools with the goal to obtain

expressions that are easier to analyze.

Applying (1− p)M ≤ e−Mp to (2.104), one obtains the following more numerically stable bound.

Corollary 2.17 (Achievability). There exists an (M,d, ǫ) code with

ǫ ≤ inf
PZ̄

E

[
e−MPZ̄(Bd(S))

]
(2.105)

where the infimization is over all random variables defined on M̂, independent of S.

Shannon’s bound in Theorem 2.4 can be obtained from Theorem 2.16 by using the nonasymptotic

covering lemma:

Lemma 2.18 ( [44, Lemma 5]). Fix PZ|S and let PSZ̄ = PSPZ̄ where PS → PZ|S → PZ̄ . It holds

that

E

[(
P
[
d(S, Z̄) > d

])M] ≤ inf
γ>0

{
P [ıS;Z(S;Z) > log γ] + P [d(S,Z) > d] + e−

M
γ

}
(2.106)
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Proof. We give a derivation from [45]. Introducing an auxiliary parameter γ > 0 and observing the

inequality [45]

(1− p)M ≤ e−Mp (2.107)

≤ e−M
γ min {1, γp}+ |1− γp|+ (2.108)

we upper-bound the left side of (2.106) as

E

[
(1− PZ̄(Bd(S)))M

]
≤ e−M

γ E [min(1, γPZ̄(Bd(S)))] + E

[
|1− γPZ̄(Bd(S))|+

]
(2.109)

≤ e−M
γ + E

[
|1− γPZ̄(Bd(S))|+

]
(2.110)

= e−
M
γ + E

[
|1− γE [exp(−ıS;Z(S;Z))1 {d(S,Z) ≤ d} |S]|+

]
(2.111)

≤ e−M
γ + E

[
|1− γ exp(−ıS;Z(S;Z))1 {d(S,Z) ≤ d}|+

]
(2.112)

≤ e−M
γ + P [ıS;Z(S;Z) > log γ] + P [ıS;Z(S;Z) ≤ log γ, d(S,Z) > d] (2.113)

≤ e−M
γ + P [ıS;Z(S;Z) > log γ] + P [d(S,Z) > d] (2.114)

where

• (2.111) is by the usual change of measure argument;

• (2.112) is due to the convexity of | · |+;

• (2.113) is obtained by bounding

γ exp(−ıS;Z(s; z)) ≥





1 if ıS;Z(s; z) ≤ log γ

0 otherwise

(2.115)

Optimizing (2.114) over the choice of γ > 0 and PZ|S , we obtain the Shannon bound (2.51).

Relaxing (2.104) using (2.18), we obtain (2.51).

The following relaxation of (2.109) gives a tight achievability bound in terms of the generalized

d-tilted information (defined in (2.26)).
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Theorem 2.19 (Achievability, generalized d-tilted information). There exists an (M,d, ǫ) code with

ǫ ≤ inf
γ,β,δ,PZ̄

E

[
inf
λ>0

{
1 {JZ̄(S, λ)− λd > log γ − log β − λδ} +

∣∣1− βP
[
d− δ ≤ d(S, Z̄⋆) ≤ d|S

]∣∣+

+ e−
M
γ min(1, γ exp(−JZ̄(S, λ) + λd)

}]
(2.116)

where PZ̄⋆|S is the transition probability kernel defined in (2.23).

Proof. Fix an arbitrary probability distribution PZ̄ defined on the output alphabet M̂. The first

term in the right side of (2.109) is upper-bounded using (2.35) as

min {1, γPZ̄(Bd(s))} ≤ min {1, γ exp(−JZ̄(s, λ) + λd)} (2.117)

The second term in (2.109) is upper-bounded using (2.34) as

|1− γPZ̄(Bd(s))|+

≤
∣∣1− γ exp(−JZ̄(s, λ) + λd− λδ)P

[
d− δ ≤ d(S, Z̄⋆) ≤ d|S = s

]∣∣+ (2.118)

≤
∣∣1− βP

[
d− δ ≤ d(S, Z̄⋆) ≤ d|S = s

]∣∣+ + 1 {JZ̄(s, λ)− λd > log γ − log β} (2.119)

where (2.118) uses (2.34), and to obtain (2.119), we bounded

γ exp(−JZ̄(s, λ) + λd) ≥





β if JZ̄(s, λ) + λd ≤ log γ − log β − λδ

0 otherwise

(2.120)

Assembling (2.117) and (2.119), optimizing with respect to the choice of λ and taking the expectation

over S, we obtain (2.109).

In particular, relaxing the bound in (2.109) by fixing λ = λ⋆ and PZ̄ = PZ⋆ , where PZ⋆|S achieves

RS(d), we obtain the following bound.

Corollary 2.20 (Achievability, d-tilted information). There exists an (M,d, ǫ) code with

ǫ ≤ min
γ,β,δ

{
P [S(S, d) > log γ − log β − λ⋆δ]

+ E

[
|1− βP [d− δ ≤ d(S,Z⋆) ≤ d|S]|+

]
+ e−

M
γ E [min(1, γ exp(−S(S, d))]

}
(2.121)

The following result, which relies on a converse for channel coding to show an achievability result
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for source coding, is obtained leveraging the ideas in the proof of [46, Theorem 7.3] attributed to

Wolfowitz [47].

Theorem 2.21 (Achievability). There exists an (M,d, ǫ) code with

ǫ ≤ inf
PZ|S

{
P [d(S,Z) > d] + inf

γ>0

{
sup
z∈M̂

P [ıS;Z(S; z) ≥ logM − γ] + exp(−γ)
}}

(2.122)

Proof. For a given source PS , fix an arbitrary PZ|S and consider the following construction.

Codebook construction: Consider the Feinstein code [48] achieving maximal error probability ǫ̂ for

PS|Z , the backward channel for PSPZ|S . The codebook construction, which follows Feinstein’s ex-

haustive procedure [48] with the modification that the decoding sets are defined using the distortion

measure rather than the information density, is described as follows.

For the purposes of this proof, we denote for brevity

Bz = {s ∈ M : d(s, z) ≤ d} (2.123)

The first codeword c1 ∈ M̂ is chosen to satisfy

PS|Z=c1(Bc1) > 1− ǫ̂ (2.124)

After 1, . . . ,m− 1 codewords have been selected, cm ∈ M̂ is chosen so that

PS|Z=cm

(
Bcm\

m−1⋃

i=1

Bci

)
> 1− ǫ̂ (2.125)

The procedure of adding codewords stops once a codeword choice satisfying (2.125) becomes impos-

sible.

Channel encoder: The channel encoder is defined by

f̂(m) = cm, m = 1, . . . ,M (2.126)

Channel decoder: The channel decoder is defined by

ĝ(s) =





m s ∈ Bcm\
⋃m−1
i=1 Bci

arbitrary otherwise

(2.127)
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Channel code analysis: It follows from (2.125) and (2.127) that we constructed an (M, ǫ̂) code

(maximal error probability) for PS|Z .

Moreover, denoting

D =

M⋃

i=1

Bci (2.128)

where M is the total number of codewords, we conclude by the codebook construction that

PS|Z=z (Bz ∩Dc) ≤ 1− ǫ̂, ∀z ∈ M̂ (2.129)

because the left side of (2.129) is 0 for z ∈ {c1, . . . , cM} and ≤ 1 − ǫ̂ for z ∈ M̂\{c1, . . . , cM} since

otherwise we could have added z to the codebook.

Using (2.129) and the union bound, we conclude that for ∀z ∈ M̂

PS|Z=z(D) ≥ ǫ̂− PS|Z=z(B
c
z) (2.130)

Taking the expectation of (2.130) with respect to PZ , where PS → PZ|S → PZ , we conclude that

PS(D) ≥ ǫ̂− P [d(S,Z) > d] (2.131)

Source code: Define the source code (f, g) by

(f, g) = (ĝ, f̂) (2.132)

Source code analysis: The probability of excess distortion is given by

P [d(S, g(f(S))) > d] = P

[
d(S, f̂(ĝ(S))) > d

]
(2.133)

= P

[
d(S, f̂(ĝ(S))) > d, S ∈ Dc

]
(2.134)

≤ PS(Dc) (2.135)

≤ 1− ǫ̂+ P [d(S,Z) > d] (2.136)

≤ sup
z∈M̂

P [ıS;Z(S; z) ≥ logM − γ] + exp(−γ) + P [d(S,Z) > d] (2.137)

where (2.134) follows from (2.127), (2.136) uses (2.131), and (2.137) uses the Wolfowitz converse for

channel coding [49] [3, Theorem 9] to lower bound the maximal error probability ǫ̂.
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2.6 Gaussian approximation

2.6.1 Rate-dispersion function

In the spirit of [3], we introduce the following definition.

Definition 2.7. Fix d ≥ dmin. The rate-dispersion function (squared information units per source

output) is defined as

V(d) , lim
ǫ→0

lim sup
k→∞

k

(
R(k, d, ǫ)−R(d)

Q−1 (ǫ)

)2

(2.138)

= lim
ǫ→0

lim sup
k→∞

k (R(k, d, ǫ)−R(d))2
2 loge

1
ǫ

(2.139)

Fix d, 0 < ǫ < 1, η > 0, and suppose the target is to sustain the probability of exceeding

distortion d bounded by ǫ at rate R = (1+ η)R(d). As (1.9) implies, the required blocklength scales

linearly with rate dispersion:

k(d, η, ǫ) ≈ V(d)
R2(d)

(
Q−1 (ǫ)

η

)2

(2.140)

where note that only the first factor depends on the source, while the second depends only on the

design specifications.

2.6.2 Main result

In addition to the basic conditions (a)-(b) of Section 2.2, in the remainder of this section we impose

the following restrictions on the source and on the distortion measure.

(i) The source {Si} is stationary and memoryless, PSk = PS × . . .× PS.

(ii) The distortion measure is separable, d(sk, zk) = 1
k

∑k
i=1 d(si, zi).

(iii) The distortion level satisfies dmin < d < dmax, where dmin is defined in (2.5), and dmax =

inf
z∈M̂ E [d(S, z)], where the expectation is with respect to the unconditional distribution of S.

The excess-distortion probability satisfies 0 < ǫ < 1.

(iv) E
[
d9(S,Z⋆)

]
<∞ where the expectation is with respect to PS × PZ⋆ .10

The main result in this section is the following11.

10Since several reviewers surmised the 9 in the exponent was a typo, it seems fitting to stress that the finiteness of
the ninth moment of the random variable d(S, Z⋆) is indeed required in the proof of the achievability part of Theorem
2.22.

11Using an approach based on typical sequences, Ingber and Kochman [50] independently found the dispersion of
finite alphabet sources. The Gaussian i.i.d. source with mean-square error distortion was treated separately in [50].
The result of Theorem 2.22 is more general as it applies to sources with abstract alphabets.
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Theorem 2.22 (Gaussian approximation). Under restrictions (i)–(iv),

R(k, d, ǫ) = R(d) +

√
V(d)
k

Q−1 (ǫ) + θ

(
log k

k

)
(2.141)

R(d) = E [S(S, d)] (2.142)

V(d) = Var [S(S, d)] (2.143)

and the remainder term in (2.141) satisfies

−1

2

log k

k
+O

(
1

k

)
≤ θ

(
log k

k

)
(2.144)

≤ C0
log k

k
+

log log k

k
+O

(
1

k

)
(2.145)

where

C0 =
1

2
+

Var [J ′
Z⋆(S, λ⋆)]

E [|J ′′
Z⋆(S, λ⋆)|] log e

(2.146)

In (2.146), (·)′ denotes differentiation with respect to λ, JZ⋆(s, λ) is defined in (2.24), and λ⋆ =

−R′(d).

Remark 2.6. As highlighted in (2.142) (see also (2.11) in Section 2.3), the rate-distortion function

can be expressed as the expectation of the random variable whose variance we take in (2.143),

thereby drawing a pleasing parallel with the channel coding results in [3].

Remark 2.7. For almost lossless data compression, Theorem 2.22 still holds as long as the random

variable ıS(S) has finite third moment. Moreover, using (2.94) the upper bound in (2.145) can be

strengthened (Appendix B.3) to obtain for Var [ıS(S)] > 0

R(k, 0, ǫ) = H(S) +

√
Var [ıS(S)]

k
Q−1 (ǫ)− 1

2

log k

k
+O

(
1

k

)
(2.147)

which is consistent with the second-order refinement for almost lossless data compression developed

in [6, 9]. If Var [ıS(S)] = 0 as in the case of a non-redundant source, then

R(k, 0, ǫ) = H(S)− 1

k
log

1

1− ǫ + ok (2.148)

where

0 ≤ ok ≤
exp (−kH(S))

(1 − ǫ)k (2.149)

As we will see in Section 2.7, in contrast to the lossless case in (2.147), the remainder term in the
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lossy case in (2.141) can be strictly larger than − 1
2
log k
k appearing in (2.147) even when V(d) > 0.

Remark 2.8. As will become apparent in the proof of Theorem 2.22, if V(d) = 0, the lower bound

in (2.141) can be strengthened non-asymptotically:

R(k, d, ǫ) ≥ R(d)− 1

k
log

1

1− ǫ (2.150)

which aligns nicely with (2.148).

Remark 2.9. Let us consider what happens if we drop restriction (b) of Section 2.2 that R(d) is

achieved by the unique conditional distribution PZ⋆|S. If several PZ|S achieve R(d), writing S;Z(s, d)

for the d-tilted information corresponding to Z, Theorem 2.22 still holds with

V(d) =





maxVar [S;Z(S, d)] 0 < ǫ ≤ 1
2

minVar [S;Z(S, d)]
1
2 < ǫ < 1

(2.151)

where the optimization is performed over all PZ|S that achieve the rate-distortion function. Moreover,

as explained in Appendix B.4, Theorem 2.12 and the converse part of Theorem 2.22 do not even

require existence of a minimizing PZ⋆|S.

Remark 2.10. For finite alphabet sources satisfying the regularity conditions of Theorem 2.2, the

rate-dispersion function admits the following alternative representation [50] (cf. (2.17)):

V(d) = Var
[
ṘS(S, d)

]
(2.152)

where the partial derivatives ṘS(·, d) are defined in (2.13).

Let us consider three special cases where V(d) is constant as a function of d.

a) Zero dispersion. For a particular value of d, V(d) = 0 if and only if S(S, d) is deterministic

with probability 1. In particular, it follows from (2.152) that for finite alphabet sources V(d) = 0

if the source distribution PS maximizes RS(d) over all source distributions defined on the same

alphabet [50]. Moreover, Dembo and Kontoyiannis [51] showed that under mild conditions, the rate-

dispersion function can only vanish for at most finitely many distortion levels d unless the source is

equiprobable and the distortion matrix is symmetric with rows that are permutations of one another,

in which case V(d) = 0 for all d ∈ (dmin, dmax).
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b) Binary source with bit error rate distortion. Plugging k = 1 into (2.19), we observe that the

rate-dispersion function reduces to the varentropy [2] of the source,

V(d) = V(0) = Var [ıS(S)] (2.153)

c) Gaussian source with mean-square error distortion. Plugging k = 1 into (2.20), we see that

V(d) = 1

2
log2 e (2.154)

for all 0 < d < σ2. Similar to the BMS case, the rate dispersion is equal to the variance of log fS(S),

where fS(S) is the Gaussian probability density function.

2.6.3 Proof of main result

Before we proceed to proving Theorem 2.22, we state two auxiliary results. The first is an important

tool in the Gaussian approximation analysis of R(k, d, ǫ).

Theorem 2.23 (Berry-Esséen Cental Limit Theorem (CLT), e.g. [52, Ch. XVI.5 Theorem 2] ). Fix

a positive integer k. Let Wi, i = 1, . . . , k be independent. Then, for any real t

∣∣∣∣∣P
[

k∑

i=1

Wi > k

(
µk + t

√
Vk
k

)]
−Q(t)

∣∣∣∣∣ ≤
Bk√
k
, (2.155)

where

µk =
1

k

k∑

i=1

E [Wi] (2.156)

Vk =
1

k

k∑

i=1

Var [Wi] (2.157)

Tk =
1

k

k∑

i=1

E
[
|Wi − µi|3

]
(2.158)

Bk =
c0Tk

V
3/2
k

(2.159)

and 0.4097 ≤ c0 ≤ 0.5600 (0.4097 ≤ c0 < 0.4784 for identically distributed Wi).

The second auxiliary result, proven in Appendix B.5, is a nonasymptotic refinement of the lossy

AEP (Theorem 2.11) tailored to our purposes.
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Lemma 2.24. Under restrictions (i)–(iv), there exist constants k0, c,K > 0 such that for all k ≥ k0,

P

[
log

1

PZk⋆(Bd(Sk))
≤

k∑

i=1

S(Si, d) + C0 log k + c

]
≥ 1− K√

k
(2.160)

where C0 is given by (2.146).

We start with the converse part. Note that for the converse, restriction (iv) can be replaced by

the following weaker one:

(iv′) The random variable S(S, d) has finite absolute third moment.

To verify that (iv) implies (iv′), observe that by the concavity of the logarithm,

0 ≤ S(s, d) + λ⋆d ≤ λ⋆E [d(s,Z⋆)] (2.161)

so

E

[
|S(S, d) + λ⋆d|3

]
≤ λ⋆3E

[
d3(S,Z⋆)

]
(2.162)

Proof of the converse part of Theorem 2.22. First, observe that due to (i) and (ii), PZk⋆ = PZ⋆ ×

. . .× PZ⋆ , and the d-tilted information single-letterizes, that is, for a.e. sk,

Sk(sk, d) =
k∑

i=1

S(si, d) (2.163)

Consider the case V(d) > 0, so that Bk in (2.159) with Wi = S(Si, d) is finite by restriction (iv′).

Let γ = 1
2 log k in (2.81), and choose

logM = kR(d) +
√
nV (d)Q−1 (ǫk)− γ (2.164)

ǫk = ǫ+ exp(−γ) + Bk√
k

(2.165)

so that R = logM
k can be written as the right side of (2.141) with (2.144) satisfied. Substituting

(2.163) and (2.164) in (2.81), we conclude that for any (M,d, ǫ′) code it must hold that

ǫ′ ≥ P

[
k∑

i=1

S(Si, d) ≥ kR(d) +
√
nV (d)Q−1 (ǫk)

]
− exp(−γ) (2.166)

The proof for V(d) > 0 is complete upon noting that the right side of (2.166) is lower bounded by ǫ

by the Berry-Esséen inequality (2.155) in view of (2.165).
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If V(d) = 0, it follows that S(S, d) = R(d) almost surely. Choosing γ = log 1
1−ǫ and logM =

kR(d)− γ in (2.81) it is obvious that ǫ′ ≥ ǫ.

Proof of the achievability part of Theorem 2.22. The proof consists of the asymptotic analysis of the

bound in Corollary 2.17 using Lemma 2.24.12 Denote

Gk = logM −
k∑

i=1

S(si, d)− C0 log k − c (2.167)

where constants c and C were defined in Lemma 2.24. Letting S = Sk in (2.105) and weakening

the right side of (2.105) by choosing PZ̄ = PZk⋆ = PZ⋆ × . . .× PZ⋆ , we conclude that there exists a

(k,M, d, ǫ′) code with

ǫ′ ≤ E

[
e−MP⋆

Zk (Bd(S
k))
]

(2.168)

≤ E

[
e− exp(Gk)

]
+

K√
k

(2.169)

= E

[
e− exp(Gk)1

{
Gk < log

loge k

2

}]
+ E

[
e− exp(Gk)1

{
Gk ≥ log

loge k

2

}]
+

K√
k

(2.170)

≤ P

[
Gk < log

loge k

2

]
+

1√
k
P

[
Gk ≥ log

loge k

2

]
+

K√
k

(2.171)

where (2.169) holds for k ≥ k0 by Lemma 2.24, and (2.171) follows by upper bounding e− exp(Gk) by

1 and 1√
k
respectively. We need to show that (2.171) is upper bounded by ǫ for some R = logM

k that

can be written as (2.141) with the remainder satisfying (2.145). Considering first the case V(d) > 0,

let

logM = kR(d) +
√
kV(d)Q−1 (ǫk) + C0 log k + log

loge k

2
+ c (2.172)

ǫk = ǫ− Bk +K + 1√
k

(2.173)

where Bk is given by (2.159) and is finite by restriction (iv′). Substituting (2.172) into (2.171) and

applying the Berry-Esséen inequality (2.155) to the first term in (2.171), we conclude that ǫ′ ≤ ǫ for

all k such that ǫk > 0.

It remains to tackle the case V(d) = 0, which implies S(S, d) = R(d) almost surely. Let

logM = kR(d) + C0 log k + c+ log loge
1

ǫ− K√
k

(2.174)

12Note that Theorem 2.19 also leads to the same asymptotic expansion.
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Substituting M into (2.169) we obtain immediately that ǫ′ ≤ ǫ, as desired.

2.6.4 Distortion-dispersion function

One can also consider the related problem of finding the minimum excess distortion D(k,R, ǫ)

achievable at blocklength k, rate R and excess-distortion probability ǫ. We define the distortion-

dispersion function at rate R by

W(R) , lim
ǫ→0

lim sup
k→∞

k (D(k,R, ǫ)−D(R))2

2 loge
1
ǫ

(2.175)

For a fixed k and ǫ, the functions R(k, ·, ǫ) and D(k, ·, ǫ) are functional inverses of each other.

Consequently, the rate-dispersion and the distortion-dispersion functions also define each other.

Under mild conditions, it is easy to find one from the other:

Theorem 2.25. (Distortion dispersion) If R(d) is twice differentiable, R′(d) 6= 0 and V (d) is

differentiable in some interval (d, d̄] ⊆ (dmin, dmax] then for any rate R such that R = R(d) for some

d ∈ (d, d̄) the distortion-dispersion function is given by

W(R) = (D′(R))2V(D(R)) (2.176)

and

D(k,R, ǫ) = D(R) +

√
W(R)

k
Q−1 (ǫ)−D′(R)θ

(
log k

k

)
(2.177)

where θ(·) satisfies (2.144), (2.145).

Proof. Appendix B.6.

Remark 2.11. Substituting (2.152) into (2.176), it follows that for finite alphabet sources (satisfying

the regularity conditions of Theorem 2.2 as well as those of Theorem 2.25) the distortion-dispersion

function can be represented as

W(R) = Var
[
ḊS(S, R)

]
(2.178)

where

ḊS(s, R) ,
∂

∂PS̄(s)
DS̄(R) |PS̄=PS

(2.179)

In parallel to (2.140), suppose that the goal is to compress at rate R while exceeding distortion

d = (1 + η)D(R) with probability not higher than ǫ. As (2.177) implies, the required blocklength
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scales linearly with the distortion-dispersion function:

k(R, η, ǫ) ≈ W(R)

D2(R)

(
Q−1 (ǫ)

η

)2

(2.180)

The distortion-dispersion function assumes a particularly simple form for the Gaussian memory-

less source with mean-square error distortion, in which case for any 0 < d < σ2

D(R) = σ2 exp(−2R) (2.181)

W(R)

D2(R)
= 2 (2.182)

k(R, η, ǫ) ≈ 2

(
Q−1 (ǫ)

η

)2

(2.183)

so in the Gaussian case, the required blocklength is essentially independent of the target distortion.

2.7 Binary memoryless source

This section particularizes the nonasymptotic bounds in Section 2.5 and the asymptotic analysis in

Section 2.6 to the stationary binary memoryless source with bit error rate distortion measure, i.e.

d(sk, zk) = 1
k

∑k
i=1 1 {si 6= zi}. For convenience, we denote

〈
k

ℓ

〉
=

ℓ∑

j=0

(
k

j

)
(2.184)

with the convention
〈
k
ℓ

〉
= 0 if ℓ < 0 and

〈
k
ℓ

〉
=
〈
k
k

〉
if ℓ > k.

2.7.1 Equiprobable BMS (EBMS)

The following results pertain to the i.i.d. binary equiprobable source and hold for 0 ≤ d < 1
2 ,

0 < ǫ < 1.

Particularizing (2.19) to the equiprobable case, one observes that for all binary k−strings sk

Sk(sk, d) = k log 2− kh(d) = kR(d) (2.185)

Then, Theorem 2.12 reduces to (2.150). Theorem 2.13 leads to the following stronger converse result.
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Theorem 2.26 (Converse, EBMS). Any (k,M, d, ǫ) code must satisfy:

ǫ ≥ 1−M2−k
〈

k

⌊kd⌋

〉
(2.186)

Proof. Invoking Theorem 2.13 with the k−dimensional source distribution PSk playing the role of

PS therein, we have

M ≥ sup
Q

inf
zk∈{0,1}k

β1−ǫ(PSk , Q)

Q [d(Sk, zk) ≤ d] (2.187)

≥ inf
zk∈{0,1}k

β1−ǫ(PSk , PSk)

P [d(Sk, zk) ≤ d] (2.188)

=
1− ǫ

P [d(Sk,0) ≤ d] (2.189)

=
1− ǫ

2−k
〈

k
⌊kd⌋

〉 (2.190)

where (2.188) is obtained by choosing Q = PSk .

Theorem 2.27 (Exact performance of random coding, EBMS). The minimum averaged probability

that bit error rate exceeds d achieved by random coding with i.i.d. M codewords is given by

min
PZ

E [ǫd (Z1, . . . , ZM )] =

(
1− 2−k

〈
k

⌊kd⌋

〉)M
(2.191)

attained by PZ equiprobable on {0, 1}k. In the left side of (2.191), Z1, . . . , ZM are i.i.d. with common

distribution PZ .

Proof. For all M ≥ 1, (1− x)M is a convex function of x on 0 ≤ x < 1, so the right side of (2.99) is

lower bounded by Jensen’s inequality, for an arbitrary PZk

E

[(
1− PZk(Bd(S

k))
)M] ≥

(
1− E

[
PZk(Bd(S

k))
])M

(2.192)

Equality in (2.192) is attained by Zk equiprobable on {0, 1}k, because then

PZk(Bd(S
k)) = 2−k

〈
k

⌊kd⌋

〉
a.s. (2.193)

Theorem 2.27 leads to an achievability bound since there must exist an (M,d,E [ǫd (Z1, . . . , ZM )])

code.
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Corollary 2.28 (Achievability, EBMS). There exists a (k,M, d, ǫ) code such that

ǫ ≤
(
1− 2−k

〈
k

⌊kd⌋

〉)M
(2.194)

As mentioned in Section 2.6 after Theorem 2.22, the EBMS with bit error rate distortion has

zero rate-dispersion function for all d. The asymptotic analysis of the bounds in (2.194) and (2.186)

allows for the following more accurate characterization of R(k, d, ǫ).

Theorem 2.29 (Gaussian approximation, EBMS). The minimum achievable rate at blocklength k

satisfies

R(k, d, ǫ) = log 2− h(d) + 1

2

log k

k
+O

(
1

k

)
(2.195)

if 0 < d < 1
2 , and

R(k, 0, ǫ) = log 2− 1

k
log

1

1− ǫ + ok (2.196)

where 0 ≤ ok ≤ 2−k

(1−ǫ)k .

Proof. Appendix B.7.

A numerical comparison of the achievability bound (2.51) evaluated with stationary memoryless

PZk|Sk , the new bounds in (2.194) and (2.186) as well as the approximation in (2.195) neglecting the

O
(
1
k

)
term is presented in Fig. 2.1. Note that Marton’s converse (Theorem 2.10) is not applicable

to the EBMS because the region in (2.69) is empty. The achievability bound in (2.51), while

asymptotically optimal, is quite loose in the displayed region of blocklengths. The converse bound

in (2.186) and the achievability bound in (2.194) tightly sandwich the finite blocklength fundamental

limit. Furthermore, the approximation in (2.195) is quite accurate, although somewhat optimistic,

for all but very small blocklengths.

2.7.2 Non-equiprobable BMS

The results in this subsection focus on the i.i.d. binary memoryless source with P [S = 1] = p < 1
2

and apply for 0 ≤ d < p, 0 < ǫ < 1. The following converse result is a simple calculation of the

bound in Theorem 2.12 using (2.19).
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Theorem 2.30 (Converse, BMS). For any (k,M, d, ǫ) code, it holds that

ǫ ≥ sup
γ≥0
{P [gk(W ) ≥ logM + γ]− exp (−γ)} (2.197)

gk(W ) =W log
1

p
+ (k −W ) log

1

1− p − kh(d) (2.198)

where W is binomial with success probability p and k degrees of freedom.

An application of Theorem 2.13 to the specific case of non-equiprobable BMS yields the following

converse bound:

Theorem 2.31 (Converse, BMS). Any (k,M, d, ǫ) code must satisfy

M ≥

〈
k
r⋆

〉
+ α

(
k

r⋆+1

)
〈

k
⌊kd⌋

〉 (2.199)

where we have denoted the integer

r⋆ = max



r :

r∑

j=0

(
k

j

)
pj(1− p)k−j ≤ 1− ǫ



 (2.200)

and α ∈ [0, 1) is the solution to

r⋆∑

j=0

(
k

j

)
pj(1− p)k−j + αpr

⋆+1(1− p)k−r⋆−1

(
k

r⋆ + 1

)
= 1− ǫ (2.201)

Proof. In Theorem 2.13, the k−dimensional source distribution PSk plays the role of PS , and we

make the possibly suboptimal choice Q = U , the equiprobable distribution on M = {0, 1}k. The

optimal randomized test to decide between PSk and U is given by

PW |Sk(1|sk) =





0, |sk| > r⋆ + 1

1, |sk| ≤ r⋆

α, |sk| = r⋆ + 1

(2.202)

where |sk| denotes the Hamming weight of sk, and α is such that
∑
sk∈M P (sk)PW |S(1|sk) = 1− ǫ,
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so

β1−ǫ(PSk , U) = min
P

W |Sk :
∑

sk∈M P
Sk (s

k)P
W |Sk (1|sk)≥1−ǫ

2−k
∑

sk∈M
PW |Sk(1|sk)

= 2−k
[〈

k

r⋆

〉
+ α

(
k

r⋆ + 1

)]
(2.203)

The result is now immediate from (2.90).

An application of Theorem 2.16 to the non-equiprobable BMS yields the following achievability

bound:

Theorem 2.32 (Achievability, BMS). There exists a (k,M, d, ǫ) code with

ǫ ≤
k∑

j=0

(
k

j

)
pj(1− p)k−j

[
1−

k∑

t=0

Lk(j, t)q
t(1− q)k−t

]M
(2.204)

where

q =
p− d
1− 2d

(2.205)

and

Lk(j, t) =

(
j

t0

)(
k − j
t− t0

)
(2.206)

with t0 =
⌈
t+j−kd

2

⌉+
if t− kd ≤ j ≤ t+ kd, and Lk(j, t) = 0 otherwise.

Proof. We compute an upper bound to (2.104) for the specific case of the BMS. Let PZ̄k = PZ ×

. . . × PZ, where PZ(1) = q. Note that PZ is the marginal of the joint distribution that achieves

the rate-distortion function (e.g. [53]). The number of binary strings of Hamming weight t that lie

within Hamming distance kd from a given string of Hamming weight j is

j∑

i=t0

(
j

i

)(
k − j
t− i

)
≥
(
j

t0

)(
k − j
t− t0

)
(2.207)

as long as t− kd ≤ j ≤ t+ kd and is 0 otherwise. It follows that if sk has Hamming weight j,

PZ̄k

(
Bd(s

k)
)
≥

k∑

t=0

Lk(j, t)q
t(1− q)k−t (2.208)

Relaxing (2.104) using (2.208), (2.204) follows.

The following bound shows that good constant composition codes exist.
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Theorem 2.33 (Achievability, BMS). There exists a (k,M, d, ǫ) constant composition code with

ǫ ≤
k∑

j=0

(
k

j

)
pj(1 − p)k−j

[
1−

(
k

⌈kq⌉

)−1

Lk(j, ⌈kq⌉)
]M

(2.209)

where q and Lk(·, ·) are defined in (2.205) and (2.206) respectively.

Proof. The proof is along the lines of the proof of Theorem 2.32, except that now we let PZ̄k be

equiprobable on the set of binary strings of Hamming weight ⌈qk⌉.

The following asymptotic analysis of R(k, d, ǫ) strengthens Theorem 2.22.

Theorem 2.34 (Gaussian approximation, BMS). The minimum achievable rate at blocklength k

satisfies (2.141) where

R(d) = h(p)− h(d) (2.210)

V(d) = Var [ıS(S)] = p(1− p) log2 1− p
p

(2.211)

and the remainder term in (2.141) satisfies

O

(
1

k

)
≤ θ

(
log k

k

)
(2.212)

≤ 1

2

log k

k
+

log log k

k
+O

(
1

k

)
(2.213)

if 0 < d < p, and

θ

(
log k

k

)
= −1

2

log k

k
+O

(
1

k

)
(2.214)

if d = 0.

Proof. The case d = 0 follows immediately from (2.147). For 0 < d < p, the dispersion (2.211) is

easily obtained plugging k = 1 into (2.19). The tightened upper bound for the remainder (2.213)

follows via the asymptotic analysis of Theorem 2.33 shown in Appendix B.8. We proceed to show

the converse part, which yields a better log k
k term than Theorem 2.22.

According to the definition of r⋆ in (2.200),

P

[
k∑

i=1

Si > r

]
≥ ǫ (2.215)

for any r ≤ r⋆, where {Si} are binary i.i.d. with PSi(1) = p. In particular, due to (2.155), (2.215)
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holds for

r = np+
√
kp(1− p)Q−1

(
ǫ+

Bk√
k

)
(2.216)

= np+
√
kp(1− p)Q−1 (ǫ) +O (1) (2.217)

where (2.217) follows because in the present case Bk = 6 1−2p+2p2√
p(1−p)

, which does not depend on k.

Using (2.199), we have

M ≥

〈
k
⌊r⌋

〉

〈
k

⌊kd⌋

〉 (2.218)

Taking logarithms of both sides of (2.218), we have

logM ≥ log

〈
k

⌊r⌋

〉
− log

〈
k

⌊kd⌋

〉
(2.219)

= kh

(
p+

1√
k

√
p(1− p)Q−1 (ǫ)

)
− kh(d) +O (1) (2.220)

= kh(p)− kh(d) +
√
k
√
p(1− p)h′(p)Q−1 (ǫ) +O (1)

where (2.220) is due to (B.147) in Appendix B.7. The desired bound (2.213) follows since h′(p) =

log 1−p
p .

Figures 2.2 and 2.3 present a numerical comparison of Shannon’s achievability bound (2.51),

the new bounds in (2.204), (2.199) and (2.197) as well as the Gaussian approximation in (2.141) in

which we have neglected θ
(

log k
k

)
. The achievability bound (2.51) is very loose and so is Marton’s

converse which is essentially indistinguishable from R(d). The new finite blocklength bounds (2.204)

and (2.199) are fairly tight unless the blocklength is very small. In Fig. 2.3 obtained with a more

stringent ǫ, the approximation of Theorem 2.34 is essentially halfway between the converse and

achievability bounds.

2.8 Discrete memoryless source

This section particularizes the bounds in Section 2.5 to stationary memoryless sources with countable

alphabet S where |S| = m (possibly ∞) and symbol error rate distortion measure, i.e. d(sk, zk) =

1
k

∑k
i=1 1 {si 6= zi}. For convenience, we denote the number of strings within Hamming distance ℓ
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from a given string by

Sℓ =

ℓ∑

j=0

(
k

j

)
(m− 1)j (2.221)

2.8.1 Equiprobable DMS (EDMS)

In this subsection we fix 0 ≤ d < 1− 1
m , 0 < ǫ < 1 and assume that all source letters are equiprobable,

in which case the rate-distortion function is given by [54]

R(d) = logm− h(d)− d log(m− 1) (2.222)

As in the equiprobable binary case, Theorem 2.12 reduces to (2.150). A stronger converse bound

is obtained using Theorem 2.13 in a manner analogous to that of Theorem 2.26.

Theorem 2.35 (Converse, EDMS). Any (k,M, d, ǫ) code must satisfy:

ǫ ≥ 1−Mm−kS⌊kd⌋ (2.223)

The following result is a straightforward generalization of Theorem 2.27 to the non-binary case.

Theorem 2.36 (Exact performance of random coding, EDMS). The minimal averaged probability

that symbol error rate exceeds d achieved by random coding with M codewords is

min
PZ

E [ǫd (Z1, . . . , ZM )] =
(
1−m−kS⌊kd⌋

)M
(2.224)

attained by PZ equiprobable on Sk. In the left side of (2.224), Z1, . . . , ZM are independent distributed

according to PZ .

Theorem 2.36 leads to the following achievability bound.

Theorem 2.37 (Achievability, EDMS). There exists a (k,M, d, ǫ) code such that

ǫ ≤
(
1− S⌊kd⌋m

−k)M (2.225)

The asymptotic analysis of the bounds in (2.225) and (2.223) yields the following tight approxi-

mation.

Theorem 2.38 (Gaussian approximation, EDMS). The minimum achievable rate at blocklength k

54



satisfies

R(k, d, ǫ) = R(d) +
1

2

log k

k
+O

(
1

k

)
(2.226)

if 0 < d < 1− 1
m , and

R(k, 0, ǫ) = logm− 1

k
log

1

1− ǫ + ok (2.227)

where 0 ≤ ok ≤ m−k

(1−ǫ)k .

Proof. Appendix B.9.

2.8.2 Nonequiprobable DMS

Assume without loss of generality that the source letters are labeled by S = {1, 2, . . .} so that

PS(1) ≥ PS(2) ≥ . . . (2.228)

Assume further that 0 ≤ d < 1− PS(1), 0 < ǫ < 1.

Recall that the rate-distortion function is achieved by [54]

PZ⋆(b) =





PS(b)−η
1−d−η b ≤MS(η)

0 otherwise

(2.229)

PS|Z⋆(a|b) =





1− d a = b, a ≤MS(η)

η a 6= b, a ≤MS(η)

PS(a) a > MS(η)

(2.230)

where MS(η) is the number of masses with probability strictly larger than η:

MS(η) = max

{
s ∈M : ıS(s) < log

1

η

}
(2.231)

and 0 ≤ η ≤ 1 is the solution to

d = P

[
ıS(S) ≥ log

1

η

]
+ (MS(η)− 1)η (2.232)
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The rate-distortion function can be expressed as [54]

R(d) = E

[
ıS(S)1

{
ıS(S) < log

1

η

}]
− (MS(η)− 1)η log

1

η
− (1 − d) log 1

1− d (2.233)

Note that if the source alphabet is finite and 0 ≤ d < (m − 1)PS(m), then MS(η) = m, η = d
m−1 ,

and (2.229), (2.230) and (2.233) can be simplified. In particular, the rate-distortion function on that

region is given by

R(d) = H(S)− h(d)− d log(m− 1) (2.234)

which generalizes (2.222).

The first result of this section is a particularization of the bound in Theorem 2.12 to the DMS

case.

Theorem 2.39 (Converse, DMS). For any (k,M, d, ǫ) code, it holds that

ǫ ≥ sup
γ≥0

{
P

[
k∑

i=1

S(Si, d) ≥ logM + γ

]
− exp {−γ}

}
(2.235)

where

S(a, d) = (1− d) log(1 − d) + d log η +min

{
ıS(a), log

1

η

}
(2.236)

and η is defined in (2.232).

Proof. Case d = 0 is obvious. For 0 < d < 1− PS(1), differentiating (2.233) with respect to d yields

λ⋆ = log
1− d
η

(2.237)

Plugging (2.230) and λ⋆ into (2.8), one obtains (2.236).

We now assume that the source alphabet is finite, m <∞ and adopt the notation of [55]:

• type of the string: j = (j1, . . . , jm), j1 + . . .+ jm = k

• probability of a given string of type j: pj = PS(1)
j1 . . . PS(m)jm

• type ordering: i � j if and only if pi ≥ pj

• type 1 denotes [k, 0, . . . , 0]

• previous and next types: j− 1 and j+ 1, respectively
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• multinomial coefficient:

(
k

j

)
=

k!

j1! . . . jm!

The next converse result is a particularization of Theorem 2.13.

Theorem 2.40 (Converse, DMS). Any (k,M, d, ǫ) code must satisfy

M ≥

j⋆∑

i=1

(
k

i

)
+ α

(
k

j⋆ + 1

)

S⌊kd⌋
(2.238)

where

j⋆ = max

{
j :

j∑

i=1

(
k

i

)
pi ≤ 1− ǫ

}
(2.239)

and α ∈ [0, 1) is the solution to

j⋆∑

i=1

(
k

i

)
pi + α

(
k

j⋆ + 1

)
pj

⋆+1 = 1− ǫ (2.240)

Proof. Consider a binary hypothesis test between the k−dimensional source distribution PSk and

U , the equiprobable distribution on Sk. From Theorem 2.13,

M ≥ mk β1−ǫ(PSk , U)

S⌊kd⌋
(2.241)

The calculation of β1−ǫ(PSk , U) is analogous to the BMS case.

The following result guarantees existence of a good code with all codewords of type t⋆ =

([kPZ⋆(1)], . . . , [kPZ⋆(MS(η)], 0, . . . , 0) where [·] denotes rounding off to a neighboring integer so

that
∑MS(η)

b=1 [nPZ⋆(b)] = k holds.

Theorem 2.41 (Achievability, DMS). There exists a (k,M, d, ǫ) fixed composition code with code-

words of type t⋆ and

ǫ ≤
∑

j

(
k

j

)
pj

(
1−

(
k

t⋆

)−1

Lk(j, t
⋆)

)M
(2.242)

Lk(j, t
⋆) =

m∏

a=1

(
ja
ta

)
(2.243)
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where j = [j1, . . . , jm] ranges over all k-types, and ja-types ta = (ta,1, . . . , ta,MS(η)) are given by

ta,b =
[
PS|Z⋆(a|b)t⋆b + δ(a, b)k

]
(2.244)

where

δ(a, b) =
∆a

MS(η)
+





1
MS(η)2

∑m
i=MS(η)+1 ∆i a = b, a ≤MS(η)

−1
MS(η)2(MS(η)−1)

∑m
i=MS(η)+1 ∆i a 6= b, a ≤MS(η)

0 a > MS(η)

(2.245)

k∆a = ja − kPS(a), a = 1, . . . ,m (2.246)

In (2.244), a = 1, . . . ,m, b = 1, . . . ,MS(η) and [·] denotes rounding off to a neighboring nonneg-

ative integer so that

MS(η)∑

b=1

tb,b ≥ k(1− d) (2.247)

MS(η)∑

b=1

ta,b = ja (2.248)

m∑

a=1

ta,b = t⋆b (2.249)

and among all possible choices the one that results in the largest value for (2.243) is adopted. If no

such choice exists, Lk(j, t
⋆) = 0.

Proof. We compute an upper bound to (2.104) for the specific case of the DMS. Let PZ̄k be equiprob-

able on the set of m−ary strings of type t⋆. To compute the number of strings of type t⋆ that are

within distortion d from a given string sk of type j, observe that by fixing sk we have divided an

k-string into m bins, the a-th bin corresponding to the letter a and having size ja. If ta,b is the

number of the letters b in a sequence zk of type t⋆ that fall into a-th bin, the strings sk and zk are

within Hamming distance kd from each other as long as (2.247) is satisfied. Therefore, the number

of strings of type t⋆ that are within Hamming distance kd from a given string of type j is bounded

by
∑ m∏

a=1

(
ja
ta

)
≥ Lk(j, t⋆) (2.250)

where the summation in the left side is over all collections of ja-types ta = (ta,1, . . . , ta,MS(η)),

a = 1, . . .m that satisfy (2.247)-(2.249), and inequality (2.250) is obtained by lower bounding the
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sum by the term with ta,b given by (2.244). It follows that if sk has type j,

PZk

(
Bd(s

k)
)
≥
(
k

t⋆

)−1

Lk(j, t
⋆) (2.251)

Relaxing (2.104) using (2.251), (2.242) follows.

Remark 2.12. As k increases, the bound in (2.250) becomes increasingly tight. This is best un-

derstood by checking that all strings with ka,b given by (2.244) lie at a Hamming distance of ap-

proximately kd from some fixed string of type j, and recalling [41] that most of the volume of

an k−dimensional ball is concentrated near its surface (a similar phenomenon occurs in Euclidean

spaces as well), so that the largest contribution to the sum on the left side of (2.250) comes from

the strings satisfying (2.244).

The following second-order analysis makes use of Theorem 2.22 and, to strengthen the bounds

for the remainder term, of Theorems 2.40 and 2.41.

Theorem 2.42 (Gaussian approximation, DMS). The minimum achievable rate at blocklength k,

R(k, d, ǫ), satisfies (2.141) where R(d) is given by (2.233), and V(d) can be characterized paramet-

rically:

V(d) = Var

[
min

{
ıS(S), log

1

η

}]
(2.252)

where η depends on d through (2.232), (2.231). Moreover, (2.145) can be replaced by:

θ

(
log k

k

)
≤ (m− 1)(MS(η)− 1)

2

log k

k
+

log log k

k
+O

(
1

k

)
(2.253)

If 0 ≤ d < (m− 1)PS(m), (2.252) reduces to

V(d) = Var [ıS(S)] (2.254)

and if d > 0, (2.144) can be strengthened to

O

(
1

k

)
≤ θ

(
log k

k

)
(2.255)

while if d = 0,

θ

(
log k

k

)
= −1

2

log k

k
+O

(
1

k

)
(2.256)
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Proof. Using the expression for d-tilted information (2.236), we observe that

Var [S(S, d)] = Var

[
min

{
ıS(S), log

1

η

}]
(2.257)

and (2.252) follows. The case d = 0 is verified using (2.147). Theorem 2.41 leads to (2.253), as we

show in Appendix B.10.

When 0 < d < (m − 1)PS(m), not only (2.233) and (2.252) reduce to (2.234) and (2.254)

respectively, but a tighter converse for the log k
k term (2.255) can be shown. Recall the asymptotics

of S⌊kd⌋ in (B.176) (Appendix B.9). Furthermore, it can be shown [55] that

j∑

i=1

(
k

i

)
=

C√
k
exp

{
kH

(
j

k

)}
(2.258)

for some constant C. Armed with (2.258) and (B.176), we are ready to proceed to the second-order

analysis of (2.238). From the definition of j⋆ in (2.239),

P

[
1

k

k∑

i=1

ıS(Si) > H(S) +

m∑

a=1

∆aıS(a)

]
≥ ǫ (2.259)

for any ∆ with
∑m

a=1 ∆a = 0 satisfying k(p +∆) � j⋆, where p = [PS(1), . . . , PS(m)] (we slightly

abused notation here as k(p+∆) is not always precisely an k-type; naturally, the definition of the

type ordering � extends to such cases). Noting that E [ıS(Si)] = H(S) and Var [ıS(Si)] = Var [ıS(S)],

we conclude from the Berry-Esséen CLT (2.155) that (2.259) holds for

m∑

a=1

∆aıS(a) =

√
Var [ıS(S)]

k
Q−1

(
ǫ− Bk√

k

)
(2.260)

where Bk is given by (2.159). Taking logarithms of both sides of (2.238), we have

logM ≥ log




j⋆∑

i=1

(
k

i

)
+ α

(
k

j⋆

)
− logS⌊kd⌋ (2.261)

≥ log

j⋆∑

i=1

(
k

i

)
− log S⌊kd⌋ (2.262)

≥ kH(p+∆)− kh(d)− kd log(m− 1) +O(1) (2.263)

= kH(p) + k
m∑

a=1

∆aıS(a)− kh(d)− kd log(m− 1) +O(1) (2.264)

where we used (B.176) and (2.258) to obtain (2.263), and (2.264) is obtained by applying a Taylor
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series expansion to H(p+∆). The desired result in (2.255) follows by substituting (2.260) in (2.264),

applying a Taylor series expansion to Q−1
(
ǫ− Bk√

k

)
in the vicinity of ǫ and noting that Bk is a finite

constant.

The rate-dispersion function and the blocklength (2.140) required to sustain R = 1.1R(d) are

plotted in Fig. 2.4 for a quaternary source with distribution [ 13 ,
1
4 ,

1
4 ,

1
6 ]. Note that according to

(2.140), the blocklength required to approach 1.1R(d) with a given probability of excess distortion

grows rapidly as d→ dmax.

2.9 Gaussian memoryless source

This section applies Theorems 2.12, 2.13 and 2.16 to the i.i.d. Gaussian source with mean-square

error distortion, d(sk, zk) = 1
k

∑k
i=1(si−zi)2, and refines the second-order analysis in Theorem 2.22.

Throughout this section, it is assumed that Si ∼ N (0, σ2), 0 < d < σ2 and 0 < ǫ < 1.

The particularization of Theorem 2.12 to the GMS using (2.20) yields the following result.

Theorem 2.43 (Converse, GMS). Any (k,M, d, ǫ) code must satisfy

ǫ ≥ sup
γ≥0
{P [gk(W ) ≥ logM + γ]− exp(−γ)} (2.265)

gk(W ) =
k

2
log

σ2

d
+
W − k

2
log e (2.266)

where W ∼ χk2 (i.e. chi-squared distributed with k degrees of freedom).

The following result can be obtained by an application of Theorem 2.13 to the GMS.

Theorem 2.44 (Converse, GMS). Any (k,M, d, ǫ) code must satisfy

M ≥
(
σ√
d
rk(ǫ)

)k
(2.267)

where rk(ǫ) is the solution to

P
[
W < k r2k(ǫ)

]
= 1− ǫ, (2.268)

and W ∼ χ2
k.

Proof. Inequality (2.267) simply states that the minimum number of k-dimensional balls of radius
√
kd required to cover an k-dimensional ball of radius

√
kσrk(ǫ) cannot be smaller than the ratio of
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their volumes. Since

W =
1

σ2

k∑

i=1

S2
i (2.269)

is χ2
k-distributed, the left side of (2.268) is the probability that the source produces a sequence that

falls inside B, the k-dimensional ball of radius
√
kσrk(ǫ) with center at 0. But as follows from the

spherical symmetry of the Gaussian distribution, B has the smallest volume among all sets in Rk

having probability 1− ǫ. Since any (k,M, d, ǫ)-code is a covering of a set that has total probability

of at least 1− ǫ, the result follows.

Note that the proof of Theorem 2.44 can be formulated in the hypothesis testing language of

Theorem 2.13 by choosing Q to be the Lebesgue measure on Rk.

The following achievability result can be regarded as the rate-distortion counterpart to Shannon’s

geometric analysis of optimal coding for the Gaussian channel [10].

Theorem 2.45 (Achievability, GMS). There exists a (k,M, d, ǫ) code with

ǫ ≤ k
∫ ∞

0

[1− ρ(k, x)]M fχ2
k
(kx) dx (2.270)

where fχ2
k
(·) is the χ2

k probability density function, and

ρ(k, x) =
Γ
(
k
2 + 1

)
√
πkΓ

(
k−1
2 + 1

)
(
1−

(
1 + x− 2 d

σ2

)2

4
(
1− d

σ2

)
x

) k−1
2

(2.271)

if a2 ≤ x ≤ b2, where

a =

√
1− d

σ2
−
√

d

σ2
(2.272)

b =

√
1− d

σ2
+

√
d

σ2
(2.273)

and ρ(k, x) = 0 otherwise.

Proof. We compute an upper bound to (2.104) for the specific case of the GMS. Let PZk be the

uniform distribution on the surface of the k-dimensional sphere with center at 0 and radius

r0 =
√
kσ

√
1− d

σ2
(2.274)

This choice corresponds to an asymptotically-optimal positioning of representation points in the limit

of large k, see Fig. 2.5(a), [29, 42]. Indeed, for large k, most source sequences will be concentrated

63



within a thin shell near the surface of the sphere of radius
√
kσ. The center of the sphere of radius

√
kd must be at distance r0 from the origin in order to cover the largest area of the surface of the

sphere of radius
√
kσ.

We proceed to lower-bound PZk(Bd(s
k)), sk ∈ Rk. Observe that PZk(Bd(s

k)) = 0 if sk is either

too close or too far from the origin, that is, if |sk| <
√
kσa or |sk| >

√
kσb, where | · | denotes

the Euclidean norm. To treat the more interesting case
√
kσa ≤ |sk| ≤

√
kσb, it is convenient to

introduce the following notation.

• Sk(r) = kπ
k
2

Γ( k
2+1)

rk−1: surface area of an k-dimensional sphere of radius r;

• Sk(r, θ): surface area of an k-dimensional polar cap of radius r and polar angle θ.

Similar to [29, 42], from Fig. 2.5(b),

Sk(r, θ) ≥
π

k−1
2

Γ
(
k−1
2 + 1

) (r sin θ)k−1 (2.275)

where the right side of (2.275) is the area of a (k − 1)-dimensional disc of radius r sin θ. So if
√
kσa ≤ |sk| = r ≤

√
kσb,

PZk

(
Bd(s

k)
)
=
Sk(|sk|, θ)
Sk(|sk|)

(2.276)

≥ Γ
(
k
2 + 1

)
√
πkΓ

(
k−1
2 + 1

) (sin θ)k−1
(2.277)

where θ is the angle in Fig. 2.5(b); by the law of cosines

cos θ =
r2 + r20 − kd

2rr0
(2.278)

Finally, by Theorem 2.16, there exists a (k,M, d, ǫ) code with

ǫ ≤ E

[(
1− PZk(Bd(S

k))
)M]

(2.279)

= E

[(
1− PZk(Bd(S

k))
)M |

√
kσa ≤ |Sk| ≤

√
kσb

]

+ P

[
|Sk| <

√
kσa

]
+ P

[
|Sk| >

√
kσa

]
(2.280)

Since |Sk|2
σ2 is χ2

k-distributed, one obtains (2.270) by plugging sin2 θ = 1 − cos2 θ into (2.277) and

substituting the latter in (2.280).

Essentially Theorem 2.45 evaluates the performance of Shannon’s random code with all codewords
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Figure 2.5: Optimum positioning of the representation sphere (a) and the geometry of the excess-
distortion probability calculation (b).
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lying on the surface of a sphere contained inside the sphere of radius
√
kσ. The following result allows

us to bound the performance of a code whose codewords lie inside a ball of radius slightly larger

than
√
kσ.

Theorem 2.46 (Rogers [56] - Verger-Gaugry [57]). If r > 1 and k ≥ 2, an k−dimensional sphere

of radius r can be covered by ⌊M(r)⌋ spheres of radius 1, where

M(r) =





e (k loge k + k loge loge k + 5k) rk r ≥ k

k (k loge k + k loge loge k + 5k) rk k
loge k

≤ r < k

74 loge 7/7

4

√
2π

k
√
k
[
(k−1) loge rk+(k−1) loge loge k+

1
2 loge k+loge

π
√

2k√
πk−2

]

r
(
1− 2

loge k

)(
1− 2√

πk

)
log2

e k
rk 2 < r < k

loge k

√
2π

√
k
[
(k−1) loge rk+(k−1) loge loge k+

1
2 loge k+loge

π
√

2k√
πk−2

]

r
(
1− 2

loge k

)(
1− 2√

πk

) rk 1 < r ≤ 2

(2.281)

The first two cases in (2.281) are encompassed by the classical result of Rogers [56] that appears

not to have been improved since 1963, while the last two are due to the recent improvement by

Verger-Gaugry [57]. An immediate corollary to Theorem 2.46 is the following:

Theorem 2.47 (Achievability, GMS). For k ≥ 2, there exists a (k,M, d, ǫ) code such that

M ≤M

(
σ√
d
rk(ǫ)

)
(2.282)

where rk(ǫ) is the solution to (2.268).

Proof. Theorem 2.46 implies that there exists a code with no more than M

(
σ√
d
rk(ǫ)

)
codewords

such that all source sequences that fall inside B, the k-dimensional ball of radius
√
kσrk(ǫ) with

center at 0, are reproduced within distortion d. The excess-distortion probability is therefore given

by the probability that the source produces a sequence that falls outside B.

Note that Theorem 2.47 studies the number of balls of radius
√
kd to cover B that is provably

achievable, while the converse in Theorem 2.44 lower bounds the minimum number of balls of radius
√
kd required to cover B by the ratio of their volumes.

Theorem 2.48 (Gaussian approximation, GMS). The minimum achievable rate at blocklength k

satisfies

R(k, d, ǫ) =
1

2
log

σ2

d
+

√
1

2k
Q−1 (ǫ) log e+ θ

(
log k

k

)
(2.283)
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where the remainder term satisfies

O

(
1

k

)
≤ θ

(
log k

k

)
(2.284)

≤ 1

2

log k

k
+

log log k

k
+O

(
1

k

)
(2.285)

Proof. We start with the converse part, i.e. (2.284).

Since in Theorem 2.44 W = 1
σ2

∑k
i=1 S

2
i , Si ∼ N (0, σ2), we apply the Berry-Esséen CLT (The-

orem 2.23) to 1
σ2S

2
i . Each 1

σ2S
2
i has mean, second and third central moments equal to 1, 2 and 8,

respectively. Let

r2 = 1 +

√
2

k
Q−1

(
ǫ+

2c0
√
2√

k

)
(2.286)

= 1 +

√
2

k
Q−1 (ǫ) +O

(
1

k

)
(2.287)

where c0 is that in (2.159). Then by the Berry-Esséen inequality (2.155)

P
[
W > kr̄2

]
≥ ǫ (2.288)

and therefore rk(ǫ) that achieves the equality in (2.268) must satisfy rk(ǫ) ≥ r. Weakening (2.267)

by plugging r instead of rk(ǫ) and taking logarithms of both sides therein, one obtains:

logM ≥ k

2
log

σ2r2

d
(2.289)

=
k

2
log

σ2

d
+

√
k

2
Q−1 (ǫ) log e+O (1) (2.290)

where (2.290) is a Taylor approximation of the right side of (2.289).

The achievability part (2.285) is proven in Appendix B.11 using Theorem 2.45. Theorem 2.47

leads to the correct rate-dispersion term but a weaker remainder term.

Figures 2.6 and 2.7 present a numerical comparison of Shannon’s achievability bound (2.51) and

the new bounds in (2.270), (2.282), (2.267) and (2.265) as well as the Gaussian approximation in

(2.283) in which we took θ
(

log k
k

)
= 1

2
log k
k . The achievability bound in (2.282) is tighter than the

one in (2.270) at shorter blocklengths. Unsurprisingly, the converse bound in (2.267) is quite a bit

tighter than the one in (2.265).
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2.10 Conclusion

To estimate the minimum rate required to sustain a given fidelity at a given blocklength, we have

shown new achievability and converse bounds, which apply in full generality and which are tighter

than existing bounds. The tightness of these bounds for stationary memoryless sources allowed us to

obtain a compact closed-form expression that approximates the excess rate over the rate-distortion

function incurred in the nonasymptotic regime (Theorem 2.22). For those sources and unless the

blocklength is small, the rate-dispersion function (along with the rate-distortion function) serves to

give tight approximations to the fundamental fidelity-rate tradeoff in the non-asymptotic regime.

The major results and insights are highlighted below.

1) A general new converse bound (Theorem 2.12) leverages the concept of d-tilted information

(Definition 2.1), a random variable which corresponds (in a sense that can be formalized, see

Section 2.6 and [32]) to the number of bits required to represent a given source outcome within

distortion d and whose role in lossy compression is on a par with that of information (in (2.2))

in lossless compression.

2) A tight achievability result (Theorem 2.121) in terms of generalized d-tilted information under-

lines the importance of d-tilted information in the nonasymptotic regime.

3) Since E [d(S,Z)] =
∫∞
0 P [d(S,Z) > ξ] dξ, bounds for average distortion can be obtained by

integrating our bounds on excess distortion. Note, however, that the code that minimizes

P [d(S,Z) > ξ] depends on ξ. Since the distortion cdf of any single code does not majorize

the cdfs of all possible codes, the converse bound on the average distortion obtained through this

approach, although asymptotically tight, may be loose at short blocklengths. Likewise, regarding

achievability bounds (e.g. (2.104)), the optimization over channel and source random codes, PX

and PZ , must be performed after the integration, so that the choice of code does not depend on

the distortion threshold ξ.

4) For stationary memoryless sources, we have shown a concise closed-form approximation to the

nonasymptotic fidelity-rate tradeoff in terms of the mean and the variance of the d-tilted infor-

mation (Theorem 2.22). As evidenced by our numerical results, that expression approximates

well the excess rate over the rate-distortion function incurred in the nonasymptotic regime.
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Chapter 3

Lossy joint source-channel coding

3.1 Introduction

In this chapter we study the nonasymptotic fundamental limits of lossy JSCC. After summarizing

basic definitions and notation in Section 3.2, we proceed to show the new converse and achievability

bounds to the maximum achievable coding rate in Sections 3.3 and 3.4, respectively. A Gaussian

approximation analysis of the new bounds is presented in Section 3.5. The evaluation of the bounds

and the approximation is performed for two important special cases:

• the transmission of a binary memoryless source (BMS) over a binary symmetric channel (BSC)

with bit error rate distortion (Section 3.6);

• the transmission of a Gaussian memoryless source (GMS) with mean-square error distortion

over an AWGN channel with a total power constraint (Section 3.7).

Section 3.8 identifies the dispersion on symbol-by-symbol transmission and performs a numerical

comparison of symbol-by-symbol transmission to our block coding bounds. The material in this

chapter was presented in part in [58–60].

Prior research relating to finite blocklength analysis of JSCC includes the work of Csiszár [61,

62] who demonstrated that the error exponent of joint source-channel coding outperforms that of

separate source-channel coding. For discrete source-channel pairs with average distortion criterion,

Pilc’s achievability bound [40,63] applies. For the transmission of a Gaussian source over a discrete

channel under the average mean square error constraint, Wyner’s achievability bound [42,64] applies.

Non-asymptotic achievability and converse bounds for a graph-theoretic model of JSCC have been
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obtained by Csiszár [65]. Most recently, Tauste Campo et al. [66] showed a number of finite-

blocklength random-coding bounds applicable to the almost-lossless JSCC setup, while Wang et

al. [67] found the dispersion of JSCC for sources and channels with finite alphabets, independently

and simultaneously with our work.

3.2 Definitions

A lossy source-channel code is a pair of (possibly randomized) mappings f :M 7→ X and g : Y 7→ M̂.

A distortion measure d :M×M̂ 7→ [0,+∞] is used to quantify the performance of the lossy code. A

cost function c : X 7→ [0,+∞] may be imposed on the channel inputs. The channel is used without

feedback.

Definition 3.1. The pair (f, g) is a (d, ǫ, β) lossy source-channel code for {M, X , Y, M̂, PS , d, PY |X , b}

if P [d (S, g(Y )) > d] ≤ ǫ and either E [b(X)] ≤ β (average cost constraint) or b(X) ≤ β a.s. (max-

imal cost constraint), where f(S) = X. In the absence of an input cost constraint we simplify the

terminology and refer to the code as (d, ǫ) lossy source-channel code.

The special case d = 0 and d(s, z) = 1 {s 6= z} corresponds to almost-lossless compression. If,

in addition, PS is equiprobable on an alphabet of cardinality |M| = |M̂| = M , a (0, ǫ, β) code in

Definition 3.1 corresponds to an (M, ǫ, β) channel code (i.e. a code with M codewords and average

error probability ǫ and cost β). On the other hand, if PY |X is an identity mapping on an alphabet

of cardinality M without cost constraints, a (d, ǫ) code in Definition 3.1 corresponds to an (M,d, ǫ)

lossy compression code (in Definition 2.2).

As our bounds in Sections 3.3 and 3.4 do not foist a Cartesian structure on the underlying

alphabets, we state them in the one-shot paradigm of Definition 3.1. When we apply those bounds

to the block coding setting, transmitted objects indeed become vectors, and the following definition

comes into play.

Definition 3.2. In the conventional fixed-to-fixed (or block) setting in which X and Y are the

n−fold Cartesian products of alphabets A and B, while M and M̂ are the k−fold Cartesian prod-

ucts of alphabets S and Ŝ, and dk : Sk × Ŝk 7→ [0,+∞], cn : An 7→ [0,+∞], a (d, ǫ, β) code for

{Sk, An, Bn, Ŝk, PSk , dk, PY n|Xn , cn} is called a (k, n, d, ǫ, β) code (or a (k, n, d, ǫ) code if there

is no cost constraint).

Definition 3.3. Fix ǫ, d, β and the channel blocklength n. The maximum achievable source block-
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length and coding rate (source symbols per channel use) are defined by, respectively

k⋆(n, d, ǫ, β) , sup {k : ∃(k, n, d, ǫ, β) code} (3.1)

R(n, d, ǫ, β) ,
1

n
k⋆(n, d, ǫ, β) (3.2)

Alternatively, fix ǫ, β, source blocklength k and channel blocklength n. The minimum achievable

excess distortion is defined by

D(k, n, ǫ, β) , inf {d : ∃(k, n, d, ǫ, β) code} (3.3)

Denote, for a given PY |X and a cost function b : X 7→ [0,+∞],

C(β) , sup
PX :

E[b(X)]≤β

I(X ;Y ) (3.4)

In addition to the basic restrictions (a)–(b) in Section 2.2 on the source and the distortion measure,

we assume that

(c) The supremum in (3.4) is achieved by a unique PX⋆ such that E [b(X⋆)] = β.

The function (recall notation (2.22))

ıY |X‖Ȳ (x; y) = log
dPY |X=x

dPȲ
(y) (3.5)

defined with an arbitrary PȲ , which need not be generated by any input distribution, will play a

major role in our development. If PX⋆ → PY |X → PY ⋆ we abbreviate the notation as

ı⋆X;Y (x; y) , ıY |X‖Y ⋆(x; y) (3.6)

The dispersion, which serves to quantify the penalty on the rate of the best JSCC code induced

by the finite blocklength, is defined as follows.

Definition 3.4. Fix β and d ≥ dmin. The rate-dispersion function of joint source-channel coding

(source samples squared per channel use) is defined as

V(d, β) , lim
ǫ→0

lim sup
n→∞

n
(
C(β)
R(d) −R(n, d, ǫ, β)

)2

2 loge
1
ǫ

(3.7)
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where C(β) and R(d) are the channel capacity-cost and source rate-distortion functions, respectively.1

The distortion-dispersion function of joint source-channel coding is defined as

W(R, β) , lim
ǫ→0

lim sup
n→∞

n
(
D
(
C(β)
R

)
−D(nR, n, ǫ, β)

)2

2 loge
1
ǫ

(3.8)

where D(·) is the distortion-rate function of the source.

If there is no cost constraint, we will simplify notation by dropping β from (3.1), (3.2), (3.3),

(3.4), (3.7) and (3.8).

So as not to clutter notation, in Sections 3.3 and 3.4 we assume that there are no cost con-

straints. However, all results in those sections generalize to the case of a maximal cost constraint

by considering X whose distribution is supported on the subset of allowable channel inputs:

F(β) , {x ∈ X : b(x) ≤ β} (3.9)

rather than the entire channel input alphabet X .

3.3 Converses

3.3.1 Converses via d-tilted information

Our first result is a general converse bound.

Theorem 3.1 (Converse). The existence of a (d, ǫ) code for PS, d and PY |X requires that

ǫ ≥ inf
PX|S

sup
γ>0

{
sup
PȲ

P
[
S(S, d)− ıY |X‖Ȳ (X ;Y ) ≥ γ

]
− exp (−γ)

}
(3.10)

≥ sup
γ>0

{
sup
PȲ

E

[
inf
x∈X

P
[
S(S, d)− ıY |X‖Ȳ (x;Y ) ≥ γ | S

]]
− exp (−γ)

}
(3.11)

where in (3.10), S−X−Y , and the conditional probability in (3.11) is with respect to Y distributed

according to PY |X=x (independent of S).

Proof. Fix γ and the (d, ǫ) code (PX|S , PZ|Y ). Fix an arbitrary probability measure PȲ on Y. Let

PȲ → PZ|Y → PZ̄ . Recalling notation (2.33), we can write the probability in the right side of (3.10)

1While for memoryless sources and channels, R(d) = RS(d) and C(β) = C(β) given by (2.3) and (3.4) evaluated
with single-letter distributions, it is important to distinguish between the operational definitions and the extremal
mutual information quantities, since the core results in this thesis allow for memory.
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as

P
[
S(S, d)− ıY |X‖Ȳ (X ;Y ) ≥ γ

]

= P
[
S(S, d)− ıY |X‖Ȳ (X ;Y ) ≥ γ, d(S;Z) > d

]
+ P

[
S(S, d)− ıY |X‖Ȳ (X ;Y ) ≥ γ, d(S;Z) ≤ d

]

(3.12)

≤ ǫ+
∑

s∈M
PS(s)

∑

x∈X
PX|S(x|s)

∑

y∈Y

∑

z∈Bd(s)

PZ|Y (z|y)PY |X(y|x)

· 1
{
PY |X(y|x) ≤ PȲ (y) exp (S(s, d) − γ)

}
(3.13)

≤ ǫ+ exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))

∑

y∈Y
PȲ (y)

∑

z∈Bd(s)

PZ|Y (z|y)
∑

x∈X
PX|S(x|s)

= ǫ+ exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))

∑

y∈Y
PȲ (y)

∑

z∈Bd(s)

PZ|Y (z|y) (3.14)

= ǫ+ exp (−γ)
∑

s∈M
PS(s) exp (S(s, d))PZ̄(Bd(s)) (3.15)

≤ ǫ+ exp (−γ)
∑

z∈M̂

PZ̄(z)
∑

s∈M
PS(s) exp (S(s, d) + λ⋆d− λ⋆d(s, z)) (3.16)

≤ ǫ+ exp (−γ) (3.17)

where (3.17) is due to (2.12). Optimizing over γ > 0 and PȲ , we get the best possible bound for a

given encoder PX|S . To obtain a code-independent converse, we simply choose PX|S that gives the

weakest bound, and (3.10) follows. To show (3.11), we weaken (3.10) as

ǫ ≥ sup
γ>0

{
sup
PȲ

inf
PX|S

P
[
S(S, d)− ıY |X‖Ȳ (X ;Y ) ≥ γ

]
− exp (−γ)

}
(3.18)

and observe that for any PȲ ,

inf
PX|S

P
[
S(S, d) − ıY |X‖Ȳ (X ;Y ) ≥ γ

]

=
∑

s∈M
PS(s) inf

PX|S=s

∑

x∈X
PX|S(x|s)

∑

y∈Y
PY |X(y|x)1

{
S(s, d)− ıY |X‖Ȳ (x; y) ≥ γ

}
(3.19)

=
∑

s∈M
PS(s) inf

x∈X

∑

y∈Y
PY |X(y|x)1

{
S(s, d)− ıY |X‖Ȳ (x; y) ≥ γ

}
(3.20)

= E

[
inf
x∈X

P
[
S(S, d)− ıY |X‖Ȳ (x;Y ) ≥ γ | S

]]
(3.21)
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An immediate corollary to Theorem 3.1 is the following result.

Theorem 3.2 (Converse). Assume that there exists a distribution PȲ such that the distribution of

ıY |X‖Ȳ (x;Y ) (according to PY |X=x) does not depend on the choice of x ∈ X . If a (d, ǫ) code for PS ,

d and PY |X exists, then

ǫ ≥ sup
γ>0

{
P
[
S(S, d)− ıY |X‖Ȳ (x;Y ) ≥ γ

]
− exp (−γ)

}
(3.22)

for an arbitrary x ∈ X . The probability measure P in (3.22) is generated by PSPY |X=x.

Proof. Under the assumption, the conditional probability in the right side of (3.11) is the same

regardless of the choice of x ∈ X .

Remark 3.1. Our converse for lossy source coding in Theorem 2.12 can be viewed as a particular

case of the result in Theorem 3.2. Indeed, if X = Y = {1, . . . ,M} and PY |X(m|m) = 1, PY (1) =

. . . = PY (M) = 1
M , then (3.22) becomes

ǫ ≥ sup
γ>0
{P [S(S, d) ≥ logM + γ]− exp (−γ)} (3.23)

which is precisely (2.81).

Remark 3.2. Theorems 3.1 and 3.2 still hold in the case d = 0 and d(x, y) = 1 {x 6= y}, which

corresponds to almost-lossless data compression. Indeed, recalling (2.18), it is easy to see that

the proof of Theorem 3.1 applies, skipping the now unnecessary step (3.16), and, therefore, (3.10)

reduces to

ǫ ≥ inf
PX|S

sup
γ>0

{
sup
PȲ

P
[
ıS(S)− ıY |X‖Ȳ (X ;Y ) ≥ γ

]
− exp (−γ)

}
(3.24)

The next result follows from Theorem 3.1. When we apply Corollary 3.3 in Section 3.5 to find

the dispersion of JSCC, we will let T be the number of channel input types, and we will let Yt be

generated by the type of the channel input block. If T = 1, the bound in (3.25) reduces to (3.11).

Corollary 3.3 (Converse). The existence of a (d, ǫ) code for PS , d and PY |X requires that

ǫ ≥ max
γ>0,T

{
sup

Ȳ1,...,ȲT

E

[
sup
t

inf
x∈X

P
[
S(S, d)− ıY |X‖Ȳt

(x;Y ) ≥ γ | S
]]
− T exp (−γ)

}
(3.25)

where T is a positive integer, and Ȳ1, . . . , ȲT are defined on Y.
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Proof. We weaken (3.11) by letting PȲ to be the following convex combination of distributions:

PȲ (y) =
1

T

T∑

t=1

PȲt
(y) (3.26)

For an arbitrary t, applying

PȲ (y) ≥
1

T
PȲt

(y) (3.27)

to lower bound the probability in (3.11), we obtain (3.25).

Remark 3.3. As we will see in Chapter 5, a more careful choice of the weights in the convex combi-

nation (3.26) leads to a tighter bound.

3.3.2 Converses via hypothesis testing and list decoding

To show a joint source-channel converse in [62], Csiszár used a list decoder, which outputs a list of L

elements drawn fromM. While traditionally list decoding has only been considered in the context

of finite alphabet sources, we generalize the setting to sources with abstract alphabets. In our setup,

the encoder is the random transformation PX|S , and the decoder is defined as follows.

Definition 3.5 (List decoder). Let L be a positive real number, and let QS be a measure on M.

An (L,QS) list decoder is a random transformation PS̃|Y , where S̃ takes values on QS-measurable

sets with QS-measure not exceeding L:

QS

(
S̃
)
≤ L (3.28)

Even though we keep the standard “list” terminology, the decoder output need not be a finite or

countably infinite set. The error probability with this type of list decoding is the probability that

the source outcome S does not belong to the decoder output list for Y :

1−
∑

x∈X

∑

y∈Y

∑

s̃∈M(L)

∑

s∈s̃
PS̃|Y (s̃|y)PY |X(y|x)PX|S(x|s)PS(s) (3.29)

whereM(L) is the set of all QS-measurable subsets ofM with QS-measure not exceeding L.

Definition 3.6 (List code). An (ǫ, L,QS) list code is a pair of random transformations (PX|S , PS̃|Y )

such that (3.28) holds and the list error probability (3.29) does not exceed ǫ.

Of course, letting QS = US , where US is the counting measure onM, we recover the conventional

list decoder definition where the smallest scalar that satisfies (3.28) is an integer. The almost-lossless
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JSCC setting (d = 0) in Definition 3.1 corresponds to L = 1, QS = US . If the source is analog (has

a continuous distribution), it is reasonable to let QS be the Lebesgue measure.

Any converse for list decoding implies a converse for conventional decoding. To see why, observe

that any (d, ǫ) lossy code can be converted to a list code with list error probability not exceeding ǫ

by feeding the lossy decoder output to a function that outputs the set of all source outcomes within

distortion d from the output z ∈ M̂ of the original lossy decoder. In this sense, the set of all (d, ǫ)

lossy codes is included in the set of all list codes with list error probability ≤ ǫ and list size

L = max
z∈M̂

QS ({s : d(s, z) ≤ d}) (3.30)

Recalling notation (2.89), we generalize the hypothesis testing converse for channel coding [3,

Theorem 27] to joint source-channel coding with list decoding as follows.

Theorem 3.4 (Converse). Fix PS and PY |X , and let QS be a σ-finite measure. The existence of

an (ǫ, L,QS) list code requires that

inf
PX|S

sup
PȲ

β1−ǫ(PSPX|SPY |X , QSPX|SPȲ ) ≤ L (3.31)

where the supremum is over all probability measures PȲ defined on the channel output alphabet Y.

Proof. Fix QS, the encoder PX|S , and an auxiliary σ-finite conditional measure QY |XS . Con-

sider the (not necessarily optimal) test for deciding between PSXY = PSPX|SPY |X and QSXY =

QSPX|SQY |XS which chooses PSXY if S belongs to the decoder output list. Note that this is a

hypothetical test, which has access to both the source outcome and the decoder output.

According to P, the probability measure generated by PSXY , the probability that the test chooses

PSXY is given by

P

[
S ∈ S̃

]
≥ 1− ǫ (3.32)

Since Q

[
S ∈ S̃

]
is the measure of the event that the test chooses PSXY when QSXY is true, and

the optimal test cannot perform worse than the possibly suboptimal one that we selected, it follows

that

β1−ǫ(PSPX|SPY |X , QSPX|SQY |XS) ≤ Q

[
S ∈ S̃

]
(3.33)

Now, fix an arbitrary probability measure PȲ on Y. Choosing QY |XS = PȲ , the inequality in (3.33)
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can be weakened as follows.

Q

[
S ∈ S̃

]
=
∑

y∈Y
PȲ (y)

∑

s̃∈M(L)

PS̃|Y (s̃|y)
∑

s∈s̃
QS(s)

∑

x∈X
PX|S(x|s) (3.34)

=
∑

y∈Y
PȲ (y)

∑

s̃∈M(L)

PS̃|Y (s̃|y)
∑

s∈s̃
QS(s) (3.35)

≤
∑

y∈Y
PȲ (y)

∑

s̃∈M(L)

PS̃|Y (s̃|y)L (3.36)

= L (3.37)

Optimizing the bound over PȲ and choosing PX|S that yields the weakest bound in order to obtain

a code-independent converse, (3.31) follows.

Remark 3.4. Similar to how Wolfowitz’s converse for channel coding can be obtained from the meta-

converse for channel coding [3], the converse for almost-lossless joint source-channel coding in (3.24)

can be obtained by appropriately weakening (3.31) with L = 1. Indeed, invoking [3]

βα(P,Q) ≥ 1

γ

(
α− P

[
dP

dQ
> γ

])
(3.38)

and letting QS = US in (3.31), where US is the counting measure onM, we have

1 ≥ inf
PX|S

sup
PȲ

β1−ǫ(PSPX|SPY |X , USPX|SPȲ ) (3.39)

≥ inf
PX|S

sup
PȲ

sup
γ>0

1

γ

(
1− ǫ− P

[
ıY |X‖Ȳ (X ;Y )−ıS(S)> log γ

])
(3.40)

which upon rearranging yields (3.24).

In general, computing the infimum in (3.31) is challenging. However, if the channel is symmetric

(in a sense formalized in the next result), β1−ǫ(PSPX|SPY |X , USPX|SPȲ ) is independent of PX|S .

Theorem 3.5 (Converse). Fix a probability measure PȲ . Assume that the distribution of ıY |X‖Ȳ (x;Y )

does not depend on x ∈ X under either PY |X=x or PȲ . Then, the existence of an (ǫ, L,QS) list code

requires that

β1−ǫ(PSPY |X=x, QSPȲ ) ≤ L (3.41)

where x ∈ X is arbitrary.

Proof. The Neyman-Pearson lemma (e.g. [68]) implies that the outcome of the optimum binary

hypothesis test between P and Q only depends on the observation through dP
dQ . In particular, the
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optimum binary hypothesis test W ⋆ for deciding between PSPX|SPY |X and QSPX|SPȲ satisfies

W ⋆ − (S, ıY |X‖Ȳ (X ;Y ))− (S,X, Y ) (3.42)

For all s ∈ M, x ∈ X , we have

P [W ⋆ = 1|S = s,X = x] = E [P [W ⋆ = 1|X = x, S = s, Y ]] (3.43)

= E
[
P
[
W ⋆ = 1|S = s, ıY |X‖Ȳ (X ;Y ) = ıY |X‖Ȳ (x;Y )

]]
(3.44)

=
∑

y∈Y
PY |X(y|x)PW⋆|S, ıY |X‖Ȳ (X;Y )(1|s, ıY |X‖Ȳ (x; y)) (3.45)

= P [W ⋆ = 1|S = s] (3.46)

and

Q [W ⋆ = 1|S = s,X = x] = Q [W ⋆ = 1|S = s] (3.47)

where

• (3.44) is due to (3.42),

• (3.45) uses the Markov property S −X − Y ,

• (3.46) follows from the symmetry assumption on the distribution of ıY |X‖Ȳ (x, Y ),

• (3.47) is obtained similarly to (3.45).

Since (3.46), (3.47) imply that the optimal test achieves the same performance (that is, the same

P [W ⋆ = 1] and Q [W ⋆ = 1]) regardless of PX|S , we choose PX|S = 1X(x) for some x ∈ X in the left

side of (3.31) to obtain (3.41).

Remark 3.5. In the case of finite channel input and output alphabets, the channel symmetry as-

sumption of Theorem 3.5 holds, in particular, if the rows of the channel transition probability matrix

are permutations of each other, and PȲ n is the equiprobable distribution on the (n-dimensional)

channel output alphabet, which, coincidentally, is also the capacity-achieving output distribution.

For Gaussian channels with equal power constraint, which corresponds to requiring the channel in-

puts to lie on the power sphere, any spherically-symmetric PȲ n satisfies the assumption of Theorem

3.5.
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3.4 Achievability

Given a source code (f
(M)
s , g

(M)
s ) of size M , and a channel code (f

(M)
c , g

(M)
c ) of size M , we may con-

catenate them to obtain the following sub-class of the source-channel codes introduced in Definition

3.1:

Definition 3.7. An (M,d, ǫ) source-channel code is a (d, ǫ) source-channel code such that the en-

coder and decoder mappings satisfy

f = f(M)
c ◦ f(M)

s (3.48)

g = g(M)
c ◦ g(M)

s (3.49)

where

f(M)
s :M 7→ {1, . . . ,M} (3.50)

f(M)
c : {1, . . . ,M} 7→ X (3.51)

g(M)
c : Y 7→ {1, . . . ,M} (3.52)

g(M)
s : {1, . . . ,M} 7→ M̂ (3.53)

(see Fig. 3.1).

PY |X

|

X Y ZS

P [d (S,Z) > d] ≤ ǫ

∈ {1, . . . ,M}
n

∈ {1, . . . ,M}
nf

(M)
s f

(M)
c g

(M)
c

g
(M)
s

verse

Figure 3.1: An (M,d, ǫ) joint source-channel code.

Note that an (M,d, ǫ) code is an (M + 1, d, ǫ) code.

The conventional separate source-channel coding paradigm corresponds to the special case of

Definition 3.7 in which the source code (f
(M)
s , g

(M)
s ) is chosen without knowledge of PY |X and the

channel code (f
(M)
c , g

(M)
c ) is chosen without knowledge of PS and the distortion measure d. A pair

of source and channel codes is separation-optimal if the source code is chosen so as to minimize the

distortion (average or excess) when there is no channel, whereas the channel code is chosen so as to
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minimize the worst-case (over source distributions) average error probability:

max
PU

P

[
U 6= g(M)

c (Y )
]

(3.54)

where X = f
(M)
c (U) and U takes values on {1, . . . ,M}. If both the source and the channel code

are chosen separation-optimally for their given sizes, the separation principle guarantees that under

certain quite general conditions (which encompass the memoryless setting, see [69]) the asymptotic

fundamental limit of joint source-channel coding is achievable. In the finite blocklength regime,

however, such SSCC construction is, in general, only suboptimal. Within the SSCC paradigm, we

can obtain an achievability result by further optimizing with respect to the choice of M :

Theorem 3.6 (Achievability, SSCC). Fix PY |X , d and PS . Denote by ǫ⋆(M) the minimum achiev-

able worst-case average error probability among all transmission codes of size M , and the minimum

achievable probability of exceeding distortion d with a source code of size M by ǫ⋆(M,d).

Then, there exists a (d, ǫ) source-channel code with

ǫ ≤ min
M
{ǫ⋆(M) + ǫ⋆(M,d)} (3.55)

Bounds on ǫ⋆(M) have been obtained recently in [3],2 while those on ǫ⋆(M,d) are covered in

Chapter 2. Definition 3.7 does not rule out choosing the source code based on the knowledge of

PY |X or the channel code based on the knowledge of PS , d and d. One of the interesting conclusions

in the present chapter is that the optimal dispersion of JSCC is achievable within the class of

(M,d, ǫ) source-channel codes introduced in Definition 3.7. However, the dispersion achieved by the

conventional SSCC approach is in fact suboptimal.

To shed light on the reason behind the suboptimality of SSCC at finite blocklength despite its

asymptotic optimality, we recall the reason SSCC achieves the asymptotic fundamental limit. The

output of the optimum source encoder is, for large k, approximately equiprobable over a set of

roughly exp (kR(d)) distinct messages, which allows the encoder to represent most of the source

outcomes within distortion d. From the channel coding theorem we know that there exists a channel

code that is capable of distinguishing, with high probability, M = exp (kR(d)) < exp (nC) messages

when equipped with the maximum likelihood decoder. Therefore, a simple concatenation of the

2As the maximal (over source outputs) error probability cannot be lower than the worst-case error probability,
the maximal error probability achievability bounds of [3] apply to upper-bound ǫ⋆(M). Moreover, most channel
random coding bounds on average error probability, in particular, the random coding union (RCU) bound of [3],
although stated assuming equiprobable source, are oblivious to the distribution of the source and thus upper-bound
the worst-case average error probability ǫ⋆(M) as well.
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source code and the channel code achieves vanishing probability of distortion exceeding d, for any

d > D
(
nC
k

)
. However, at finite n, the output of the optimum source encoder need not be nearly

equiprobable, so there is no reason to expect that a separated scheme employing a maximum-

likelihood channel decoder, which does not exploit unequal message probabilities, would achieve

near-optimal non-asymptotic performance. Indeed, in the non-asymptotic regime the gain afforded

by taking into account the residual encoded source redundancy at the channel decoder is appreciable.

The following achievability result, obtained using independent random source codes and random

channel codes within the paradigm of Definition 3.7, capitalizes on this intuition.

Theorem 3.7 (Achievability). There exists a (d, ǫ) source-channel code with

ǫ ≤ inf
PX ,PZ ,PW |S

{
E

[
exp

(
− |ıX;Y (X ;Y )− logW |+

)]
+ E

[
(1− PZ(Bd(S)))W

]}
(3.56)

where the expectations are with respect to PSPXPY |XPZPW |S defined onM×X ×Y×M̂×N, where

N is the set of natural numbers.

Proof. Fix a positive integer M . Fix a positive integer-valued random variable W that depends

on other random variables only through S and that satisfies W ≤ M . We will construct a code

with separate encoders for source and channel and separate decoders for source and channel as in

Definition 3.7. We will perform a random coding analysis by choosing random independent source

and channel codes which will lead to the conclusion that there exists an (M,d, ǫ) code with error

probability ǫ guaranteed in (3.56) with W ≤M . Observing that increasing M can only tighten the

bound in (3.56) in which W is restricted to not exceed M , we will let M → ∞ and conclude, by

invoking the bounded convergence theorem, that the support of W in (3.56) need not be bounded.

Source Encoder. Given an ordered list of representation points zM = (z1, . . . , zM ) ∈ M̂M , and

having observed the source outcome s, the (probabilistic) source encoder generates W from PW |S=s

and selects the lowest index m ∈ {1, . . . ,W} such that s is within distance d of zm. If no such index

can be found, the source encoder outputs a pre-selected arbitrary index, e.g. M . Therefore,

f(M)
s (s) =





min{m,W} d(s, zm) ≤ d < min
i=1,...,m−1

d(s, zi)

M d < mini=1,...,W d(s, zi)

(3.57)

In a good (M,d, ǫ) JSCC code, M would be chosen so large that with overwhelming probability, a

source outcome would be encoded successfully within distortion d. It might seem counterproductive

to let the source encoder in (3.57) give up before reaching the end of the list of representation points,
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but in fact, such behavior helps the channel decoder by skewing the distribution of f
(M)
s (S).

Channel Encoder. Given a codebook (x1, . . . , xM ) ∈ XM , the channel encoder outputs xm if m

is the output of the source encoder:

f(M)
c (m) = xm (3.58)

Channel Decoder. Define the random variable U ∈ {1, . . . ,M + 1} which is a function of S, W

and zM only:

U =





f
(M)
s (S) d(S, gs(fs(S)) ≤ d

M + 1 otherwise

(3.59)

Having observed y ∈ Y, the channel decoder chooses arbitrarily among the members of the set3:

g(M)
c (y) = m ∈ arg max

j∈{1,...M}
PU|ZM (j|zM )PY |X(y|xj) (3.60)

A MAP decoder would multiply PY |X(y|xj) by PX(xj). While that decoder would be too hard to

analyze, the product in (3.60) is a good approximation because PU|ZM (j|zM ) and PX(xj) are related

by

PX(xj) =
∑

m : xm=xj

PU|ZM (m|zM ) + PU|ZM (M + 1|zM)1 {j =M} (3.61)

so the decoder in (3.60) differs from a MAP decoder only when either several xm are identical, or

there is no representation point among the first W points within distortion d of the source, both

unusual events.

Source Decoder. The source decoder outputs zm if m is the output of the channel decoder:

g(M)
s (m) = zm (3.62)

Error Probability Analysis. We now proceed to analyze the performance of the code described

above. If there were no source encoding error, a channel decoding error can occur if and only if

∃j 6= m : PU|ZM (j|zM )PY |X(Y |xj) ≥ PU|ZM (m|zM )PY |X(Y |xm) (3.63)

Let the channel codebook (X1, . . . , XM ) be drawn i.i.d. from PX , and independent of the source

3The elegant decoder in (3.60), which leads to the simplification of our achievability bound in [59] with the tighter
version in Theorem 3.7, was suggested by Dr. Oliver Kosut.
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codebook (Z1, . . . , ZM ), which is drawn i.i.d. from PZ . Denote by ǫ(xM , zM ) the excess-distortion

probability attained with the source codebook zM and the channel codebook xM . Conditioned on

the event {d(S, gs(fs(S)) ≤ d} = {U ≤W} = {U 6=M + 1} (no failure at the source encoder), the

probability of excess distortion is upper bounded by the probability that the channel decoder does

not choose f
(M)
s (S), so

ǫ(xM , zM ) ≤
M∑

m=1

PU|ZM (m|zm)P


 ⋃

j 6=m

{
PU|ZM (j|zM )PY |X(Y |xj)
PU|ZM (m|zM )PY |X(Y |xm)

≥ 1

}
| X = xm




+ PU|ZM (U > W |zM ) (3.64)

We now average (3.64) over the source and channel codebooks. Averaging the m-th term of the sum

in (3.64) with respect to the channel codebook yields

PU|ZM (m|zm)P


 ⋃

j 6=m

{
PU|ZM (j|zM )PY |X(Y |Xj)

PU|ZM (m|zM )PY |X(Y |Xm)
≥ 1

}
 (3.65)

where Y,X1, . . . , XM are distributed according to

PY X1...Xm(y, x1, . . . , xM ) = PY |Xm
(y|xm)

∏

j 6=m
PX(xj) (3.66)

Letting X̄ be an independent copy of X and applying the union bound to the probability in

(3.65), we have that for any given (m, zM ),

P


 ⋃

j 6=m

{
PU|ZM (j|zM )PY |X(Y |Xj)

PU|ZM (m|zM )PY |X(Y |Xm)
≥ 1

}


≤ E

[
min

{
1,

M∑

j=1

P

[
PU|ZM (j|zM )PY |X(Y |X̄)

PU|ZM (m|zM )PY |X(Y |X)
≥ 1 | X,Y

]}]
(3.67)

≤ E


min



1,

M∑

j=1

PU|ZM (j|zM )

PU|ZM (m|zM )

E
[
PY |X(Y |X̄)|Y

]

PY |X(Y |X)






 (3.68)

= E


min



1,

M∑

j=1

PU|ZM (j|zM )

PU|ZM (m|zM )

PY (Y )

PY |X(Y |X)






 (3.69)

= E

[
min

{
1,

P
[
U ≤W | ZM = zM

]

PU|ZM (m|zM )

PY (Y )

PY |X(Y |X)

}]
(3.70)

= E

[
min

{
1,

1

PU|ZM ,1{U≤W}(m|zM , 1)
PY (Y )

PY |X(Y |X)

}]
(3.71)
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where (3.68) is due to 1{a ≥ 1} ≤ a.

Applying (3.71) to (3.64) and averaging with respect to the source codebook, we may write

E
[
ǫ(XM , ZM )

]
≤ E [min {1, G}] + P [U > W ] (3.72)

where for brevity we denoted the random variable

G =
1

PU|ZM ,1{U≤W}(U |ZM , 1)
PY (Y )

PY |X(Y |X)
(3.73)

The expectation in the right side of (3.72) is with respect to PZMPU|ZMPW |UZMPXPY |X . It is equal

to

E [min {1, G}] = E
[
E
[
min {1, G} | X,Y, ZM , 1 {U ≤W}

]]

≤ E
[
min

{
1,E

[
G | X,Y, ZM , 1 {U ≤W}

}]]
(3.74)

= E

[
min

{
1,W

PY (Y )

PY |X(Y |X)

}]
(3.75)

= E

[
exp

(
− |ıX;Y (X ;Y )− logW |+

)]
(3.76)

where

• (3.74) applies Jensen’s inequality to the concave function min{1, a};

• (3.75) uses PU|X,Y,ZM ,1{U≤W} = PU|ZM ,1{U≤W};

• (3.76) is due to min{1, a} = exp
(
−
∣∣log 1

a

∣∣+
)
, where a is nonnegative.

To evaluate the probability in the right side of (3.72), note that conditioned on S = s, W = w, U

is distributed as:

PU|S,W (m|s, w) =





ρ(s)(1− ρ(s))m−1 m = 1, 2, . . . , w

(1− ρ(s))w m =M + 1

(3.77)

where we denoted for brevity

ρ(s) = PZ(Bd(s)) (3.78)

Therefore,

P [U > W ] = E [P [U > W |S,W ]] (3.79)

= E

[
(1− ρ(S))W

]
(3.80)
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Applying (3.76) and (3.80) to (3.72) and invoking Shannon’s random coding argument, (3.56) follows.

Remark 3.6. As we saw in the proof of Theorem 3.7, if we restrict W to take values on {1, . . . ,M},

then the bound on the error probability ǫ in (3.56) is achieved in the class of (M,d, ǫ) codes. The

code size M that leads to tight achievability bounds following from Theorem 3.7 is in general much

larger than the size that achieves the minimum in (3.55). In that case,M is chosen so that logM lies

between kR(d) and nC so as to minimize the sum of source and channel decoding error probabilities

without the benefit of a channel decoder that exploits residual source redundancy. In contrast,

Theorem 3.8 is obtained with an approximate MAP decoder that allows a larger choice for logM ,

even beyond nC. Still we can achieve a good (d, ǫ) tradeoff because the channel code employs

unequal error protection: those codewords with higher probabilities are more reliably decoded.

Remark 3.7. Had we used the ML channel decoder in lieu of (3.60) in the proof of Theorem 3.7, we

would conclude that a (d, ǫ) code exists with

ǫ ≤ inf
PX ,PZ ,M

{
E

[
exp

(
− |ıX;Y (X ;Y )− log(M − 1)|+

)]
+ E

[
(1− PZ(Bd(S)))M

]}
(3.81)

which corresponds to the SSCC bound in (3.55) with the worst-case average channel error probability

ǫ⋆(M) upper bounded using a relaxation of the random coding union (RCU) bound of [3] using

Markov’s inequality and the source error probability ǫ⋆(M,d) upper bounded using the random

coding achievability bound in Theorem 2.16.

Remark 3.8. Weakening (3.56) by letting W = M , we obtain a slightly looser version of (3.81) in

which M − 1 in the exponent is replaced by M . To get a generally tighter bound than that afforded

by SSCC, a more intelligent choice of W is needed, as detailed next in Theorem 3.8.

Theorem 3.8 (Achievability). There exists a (d, ǫ) source-channel code with

ǫ ≤ inf
PX ,PZ ,γ>0

{
E

[
exp

(
−
∣∣∣∣ıX;Y (X ;Y )− log

γ

PZ(Bd(S))

∣∣∣∣
+
)]

+ e1−γ
}

(3.82)

where the expectation is with respect to PSPXPY |XPZ defined on M×X × Y × M̂.

Proof. We fix an arbitrary γ > 0 and choose

W =

⌊
γ

ρ (S)

⌋
(3.83)
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where ρ(·) is defined in (3.78). Observing that

(1 − ρ(s))⌊
γ

ρ(s)⌋ ≤ (1− ρ(s))
γ

ρ(s)−1 (3.84)

≤ e−ρ(s)(
γ

ρ(s)−1) (3.85)

≤ e1−γ (3.86)

we obtain (3.82) by weakening (3.56) using (3.83) and (3.86).

In the case of almost-lossless JSCC, the bound in Theorem 3.8 can be sharpened as shown

recently by Tauste Campo et al. [66]:

Theorem 3.9 (Achievability, almost-lossless JSCC [66]). There exists a (0, ǫ) code with

ǫ ≤ inf
PX

E
[
exp

(
−|ıX;Y (X ;Y )− ıS(S)|+

)]
(3.87)

where the expectation is with respect to PSPXPY |X defined on M×X × Y.

3.5 Gaussian Approximation

In addition to the basic conditions (a)-(c) of Sections 2.2 and 3.2 and to the standard stationarity

and memorylessness assumptions on the source spelled out in (i)–(iv) in Section 2.6.2, we assume

the following.

(v) The channel is stationary and memoryless, PY n|Xn = PY|X × . . .× PY|X. If the channel has an

input cost function then it satisfies bn(x
n) = 1

n

∑n
i=1 b(xi).

Theorem 3.10 (Gaussian approximation). Under restrictions (i)–(v), the parameters of the optimal

(k, n, d, ǫ) code satisfy

nC(β)− kR(d) =
√
nV (β) + kV(d)Q−1 (ǫ) + θ (n) (3.88)

where

1. V(d) is the source dispersion given by

V(d) = Var [S(S, d)] (3.89)
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2. V (β) is the channel dispersion given by:

a) If A and B are finite,

V (β) = Var
[
ı⋆X,Y(X

⋆;Y⋆)
]

(3.90)

ı⋆X,Y(x; y) , log
dPY|X=x
dPY⋆

(y) (3.91)

where X⋆, Y⋆ are the capacity-achieving input and output random variables.

b) If the channel is Gaussian with either equal or maximal power constraint,

V =
1

2

(
1− 1

(1 + P )
2

)
log2 e (3.92)

where P is the signal-to-noise ratio.

3. The remainder term θ(n) satisfies:

(a) If A and B are finite, the channel has no cost constraints and V > 0,

−c logn+O (1) ≤ θ (n) (3.93)

≤ C0 logn+ log log n+O (1) (3.94)

where

c = |A| − 1

2
(3.95)

and C0 is the constant specified in (2.146).

(b) If A and B are finite and V = 0, (3.94) still holds, while (3.93) is replaced with

lim inf
n→∞

θ (n)√
n
≥ 0 (3.96)

(c) If the channel is such that the (conditional) distribution of ı⋆X;Y(x;Y) does not depend on

x ∈ A (no cost constraint), then c = 1
2 .

4

(d) If the channel is Gaussian with equal or maximal power constraint, (3.94) still holds, and

(3.93) holds with c = 1
2 .

4 As we show in Chapter 5, the symmetricity condition is actually superfluous.
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(e) In the almost-lossless case, R(d) = H(S), and provided that the third absolute moment of

ıS(S) is finite, (3.88) and (3.93) still hold, while (3.94) strengthens to

θ (n) ≤ O (1) (3.97)

Proof. In this chapter we limit the proof to the case of no cost constraints (unless the channel is

Gaussian). The validity of Theorem 3.10 for the DMC with cost will be shown in Chapter 5.

• Appendices C.1.1 and C.1.2 show the converses in (3.93) and (3.96) for cases V > 0 and V = 0,

respectively, using Corollary 3.3.

• Appendix C.1.3 shows the converse for the symmetric channel (3c) using Theorem 3.2.

• Appendix C.1.4 shows the converse for the Gaussian channel (3d) using Theorem 3.2.

• Appendix C.2.1 shows the achievability result for almost lossless coding (3e) using Theorem

3.9.

• Appendix C.2.2 shows the achievability result in (3.94) for the DMC using Theorem 3.8.

• Appendix C.2.3 shows the achievability result for the Gaussian channel (3d) using Theorem

3.8.

Remark 3.9. If the channel and the data compression codes are designed separately, we can invoke

the channel coding [3] and lossy compression results in (1.2) and (1.9) to show that (cf. (1.11))

nC(β)− kR(d) ≤ min
η+ζ≤ǫ

{√
nV (β)Q−1 (η) +

√
kV(d)Q−1 (ζ)

}
+O (logn) (3.98)

Comparing (3.98) to (3.88), observe that if either the channel or the source (or both) have zero

dispersion, the joint source-channel coding dispersion can be achieved by separate coding. In that

special case, either the d-tilted information or the channel information density are so close to being

deterministic that there is no need to account for the true distributions of these random variables,

as a good joint source-channel code would do.
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The Gaussian approximations of JSCC and SSCC in (3.88) and (3.98), respectively, admit the

following heuristic interpretation when n is large (and thus, so is k): since the source is stationary and

memoryless, the normalized d-tilted information J = 1
n Sk

(
Sk, d

)
becomes approximately Gaussian

with mean k
nR(d) and variance k

n
V(d)
n . Likewise, the conditional normalized channel information

density I = 1
n ı
⋆
Xn;Y n(xn;Y n⋆) is, for large k, n, approximately Gaussian with mean C(β) and

variance V (β)
n for all xn ∈ An typical according to the capacity-achieving distribution. Since a good

encoder chooses such inputs for (almost) all source realizations, and the source and the channel

are independent, the random variable I − J is approximately Gaussian with mean C(β) − k
nR(d)

and variance 1
n

(
k
nV(d) + V (β)

)
, and (3.88) reflects the intuition that under JSCC, the source is

reconstructed successfully within distortion d if and only if the channel information density exceeds

the source d-tilted information, that is, {I > J}. In contrast, in SSCC, the source is reconstructed

successfully with high probability if (I, J) falls in the intersection of half-planes {I > r} ∩ {J < r}

for some r = logM
n , which is the capacity of the noiseless link between the source and the channel

code block that can be chosen so as to maximize the probability of that intersection, as reflected

in (3.98). Since in JSCC the successful transmission event is strictly larger than in SSCC, i.e.

{I > r} ∩ {J < r} ⊂ {I > J}, separate source/channel code design incurs a performance loss. It is

worth pointing out that {I > J} leads to successful reconstruction even within the paradigm of the

codes in Definition 3.7 because, as explained in Remark 3.6, unlike the SSCC case, it is not necessary

that logM
n lie between I and J for successful reconstruction.

Remark 3.10. Using Theorem 3.10, it can be shown that

R(n, d, ǫ, β) =
C(β)

R(d)
−
√

V(d, β)

n
Q−1 (ǫ)− 1

R(d)

θ(n)

n
(3.99)

where the rate-dispersion function of JSCC is found as (recall Definition 3.4)

V(d, β) =
1

R2(d)

(
V (β) +

C(β)

R(d)
V(d)

)
(3.100)

Remark 3.11. Under regularity conditions similar to those in Theorem 2.25, it can be shown that

D(nR, n, ǫ, β) = D

(
C(β)

R

)
+

√
W(R, β)

n
Q−1 (ǫ)− ∂

∂R
D

(
C(β)

R

)
θ(n)

n
(3.101)
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where the distortion-dispersion function of JSCC is given by

W(R, β) =

(
∂

∂R
D

(
C(β)

R

))2(
V (β) +RV

(
C(β)

R

))
(3.102)

Remark 3.12. Fix d, ǫ, and suppose the goal is to sustain the probability of exceeding distortion

d bounded by ǫ at a given fraction 1 − η of the asymptotic limit, i.e. at rate R = (1 − η)C(β)
R(d) . If

η ≪ 1, (3.99) implies that the required channel blocklength scales as:

n(d, η, ǫ, β) ≈ 1

C2(β)

(
V (β) +

C(β)

R(d)
V(d)

)(
Q−1 (ǫ)

η

)2

(3.103)

or, equivalently, the required source blocklength scales as:

k(d, η, ǫ, β) ≈ 1

R2(d)

(
V(d) + R(d)

C(β)
V (β)

)(
Q−1 (ǫ)

η

)2

(3.104)

Remark 3.13. If the basic conditions (b) and/or (c) fail so that there are several distributions PZ⋆|S

and/or several PX⋆ that achieve the rate-distortion function and the capacity, respectively, then, for

ǫ < 1
2 ,

V(d) ≤ minVZ⋆;X⋆(d) (3.105)

W(R) ≤ minWZ⋆;X⋆(R) (3.106)

where the minimum is taken over the rate-distortion and capacity-achieving distributions PZ⋆|S and

PX⋆ , and VZ⋆;X⋆(d) (resp. WZ⋆;X⋆(R)) denotes (3.100) (resp. (3.102)) computed with PZ⋆|S and PX⋆ .

The reason for possibly lower achievable dispersion in this case is that we have the freedom to map

the unlikely source realizations leading to high probability of failure to those codewords resulting in

the maximum variance so as to increase the probability that the channel output escapes the decoding

failure region.

Remark 3.14. The dispersion of the Gaussian channel is given by (3.92), regardless of whether an

equal or a maximal power constraint is imposed. An equal power constraint corresponds to the

subset of allowable channel inputs being the power sphere:

F (P ) =

{
xn ∈ Rn :

|xn|2
σ2
N

= nP

}
(3.107)

where σ2
N is the noise power. In a maximal power constraint, (3.107) is relaxed replacing ‘=’ with
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‘≤’.

Specifying the nature of the power constraint in the subscript, we remark that the bounds for

the maximal constraint can be obtained from the bounds for the equal power constraint via the

following relation

k⋆eq(n, d, ǫ) ≤ k⋆max(n, d, ǫ) ≤ k⋆eq(n+ 1, d, ǫ) (3.108)

where the right-most inequality is due to the following idea dating back to Shannon: a (k, n, d, ǫ)

code with a maximal power constraint can be converted to a (k, n + 1, d, ǫ) code with an equal

power constraint by appending an (n+1)-th coordinate to each codeword to equalize its total power

to nσ2
NP . From (3.108) it is immediate that the channel dispersions for maximal or equal power

constraints must be the same.

3.6 Lossy transmission of a BMS over a BSC

In this section we particularize the bounds in Sections 3.3, 3.4 and the approximation in Section 3.5

to the transmission of a BMS with bias p over a BSC with crossover probability δ. The target bit

error rate satisfies d ≤ p.

The rate-distortion function of the source and the channel capacity are given by, respectively,

R(d) = h(p)− h(d) (3.109)

C = 1− h(δ) (3.110)

The source and the channel dispersions are given by (see [3] and (2.211)):

V(d) = p(1− p) log2 1− p
p

(3.111)

V = δ(1− δ) log2 1− δ
δ

(3.112)

where note that (3.111) does not depend on d. The rate-dispersion function in (3.100) together with

the blocklength (3.103) required to achieve 90% of the asymptotic limit are plotted in Fig. 3.2. The

rate-dispersion function vanishes as δ → 1
2 or as (δ, p)→

(
0, 12

)
. The required blocklength increases

fast as δ → 1
2 , a consequence of the fact that the asymptotic limit is very small in that case.

Throughout this section, w(aℓ) denotes the Hamming weight of the binary ℓ-vector aℓ, and T ℓα

denotes a binomial random variable with parameters ℓ and α, independent of all other random
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, JSCC

(a)

(b)

Figure 3.2: The rate-dispersion function (a) in (3.100) and the channel blocklength (b) in (3.103)
required to sustain R = 0.9 C

R(d) and excess-distortion probability 10−4 for the transmission of a

BMS over a BSC with d = 0.11 as functions of (δ, p).

94



variables.

For convenience, we define the discrete random variable Uα,β by

Uα,β =
(
T kα − kp

)
log

1− p
p

+
(
T nβ − nδ

)
log

1− δ
δ

(3.113)

In particular, substituting α = p and β = δ in (3.113), we observe that the terms in the right side of

(3.113) are zero-mean random variables whose variances are equal to kV(d) and nV , respectively.

Furthermore, recall from Chapter 2 that the binomial sum is denoted by

〈
k

ℓ

〉
=

ℓ∑

i=0

(
k

i

)
(3.114)

A straightforward particularization of the d-tilted information converse in Theorem 3.2 leads to

the following result.

Theorem 3.11 (Converse, BMS-BSC). Any (k, n, d, ǫ) code for transmission of a BMS with bias p

over a BSC with bias δ must satisfy

ǫ ≥ sup
γ≥0

{
P [Up,δ ≥ nC − kR(d) + γ]− exp (−γ)

}
(3.115)

Proof. Let PȲ n = PY n⋆ , which is the equiprobable distribution on {0, 1}n. An easy exercise reveals

that

Sk(sk, d) = ıSk(sk)− kh(d) (3.116)

ıSk(sk) = kh(p) +
(
w(sk)− kp

)
log

1− p
p

(3.117)

ı⋆Xn;Y n(xn; yn) = n (log 2− h(δ))− (w(yn − xn)− nδ) log 1− δ
δ

(3.118)

Since w(Y n − xn) is distributed as T nδ regardless of xn ∈ {0, 1}n, and w(Sk) is distributed as T kp ,

the condition in Theorem 3.2 is satisfied, and (3.22) becomes (3.115).

The hypothesis-testing converse in Theorem 3.4 particularizes to the following result:

Theorem 3.12 (Converse, BMS-BSC). Any (k, n, d, ǫ) code for transmission of a BMS with bias p
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over a BSC with bias δ must satisfy

P

[
U 1

2 ,
1
2
< r
]
+ λP

[
U 1

2 ,
1
2
= r
]
≤
〈

k

⌊kd⌋

〉
2−k (3.119)

where 0 ≤ λ < 1 and scalar r are uniquely defined by

P [Up,δ < r] + λP [Up,δ = r] = 1− ǫ (3.120)

Proof. As in the proof of Theorem 3.11, we let PȲ n be the equiprobable distribution on {0, 1}n,

PȲ n = PY n⋆ . Since under PY n|Xn=xn , w (Y n − xn) is distributed as T nδ , and under PY n⋆ , w (Y n − xn)

is distributed as T n1
2

, irrespective of the choice of xn ∈ An, the distribution of the information density

in (3.118) does not depend on the choice of xn under either measure, so Theorem 3.5 can be applied.

Further, we choose QSk to be the equiprobable distribution on {0, 1}k and observe that under PSk ,

the random variable w(Sk) in (3.117) has the same distribution as T kp , while under QSk it has the

same distribution as T k1
2

. Therefore, the log-likelihood ratio for testing between PSkPY n|Xn=xn and

QSkPY n⋆ has the same distribution as (‘∼’ denotes equality in distribution)

log
PSk(Sk)PY n|Xn=xn(Y n)

QSk(Sk)PY n⋆(Y n)
= ı⋆Xn;Y n(xn;Y n)− ıSk(Sk) + k log 2 (3.121)

∼ n log 2− nh(δ)− kh(p)−





Up,δ under PSkPY n|Xn=xn

U 1
2 ,

1
2

under QSkPY n⋆

(3.122)

so β1−ǫ(PSkPY n|Xn=xn , QSkPY n⋆) is equal to the left side of (3.119). Finally, matching the size

of the list to the fidelity of reproduction using (3.30), we find that L is equal to the right side of

(3.119).

If the source is equiprobable, the bound in Theorem 3.12 becomes particularly simple, as the

following result details.

Theorem 3.13 (Converse, EBMS-BSC). For p = 1
2 , if there exists a (k, n, d, ǫ) joint source-channel

code, then

λ

(
n

r⋆ + 1

)
+
〈 n
r⋆

〉
≤
〈

k

⌊kd⌋

〉
2n−k (3.123)
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where

r⋆ = max

{
r :

r∑

t=0

(
n

t

)
δt(1− δ)n−t ≤ 1− ǫ

}
(3.124)

and λ ∈ [0, 1) is the solution to

r⋆∑

j=0

(
n

t

)
δt(1− δ)n−t + λδr

⋆+1(1 − δ)n−r⋆−1

(
n

r⋆ + 1

)
= 1− ǫ (3.125)

The achievability result in Theorem 3.8 is particularized as follows.

Theorem 3.14 (Achievability, BMS-BSC). There exists a (k, n, d, ǫ) joint source-channel code with

ǫ ≤ inf
γ>0

{
E

[
exp

(
− |U − log γ|+

)]
+ e1−γ

}
(3.126)

where

U = nC − (T nδ − nδ) log
1− δ
δ
− log

1

ρ(T kp )
(3.127)

and ρ : {0, 1, . . . , k} 7→ [0, 1] is defined as

ρ(T ) =

k∑

t=0

L(T, t)qt(1− q)k−t (3.128)

with

L(T, t) =





(
T
t0

)(
k−T
t−t0

)
t− kd ≤ T ≤ t+ kd

0 otherwise

(3.129)

t0 =

⌈
t+ T − kd

2

⌉+
(3.130)

q =
p− d
1− 2d

(3.131)

Proof. We weaken the infima over PXn and PZk in (3.82) by choosing them to be the product

distributions generated by the capacity-achieving channel input distribution and the rate-distortion

function-achieving reproduction distribution, respectively, i.e. PXn is equiprobable on {0, 1}n, and
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PZk = PZ⋆ × . . .× PZ⋆ , where PZ⋆(1) = q. As shown in (2.208),

PZk

(
Bd(s

k)
)
≥ ρ(w(sk)) (3.132)

On the other hand, |Y n −Xn|0 is distributed as T nδ , so (3.126) follows by substituting (3.118) and

(3.132) into (3.82).

In the special case of the BMS-BSC, Theorem 3.10 can be strengthened as follows.

Theorem 3.15 (Gaussian approximation, BMS-BSC). The parameters of the optimal (k, n, d, ǫ)

code satisfy (3.88) where R(d), C, V(d), V are given by (3.109), (3.110), (3.111), (3.112), respec-

tively, and the remainder term in (3.88) satisfies

O (1) ≤ θ (n) (3.133)

≤ 1

2
logn+ log logn+O (1) (3.134)

if 0 < d < p, and

−1

2
logn+O (1) ≤ θ (n) (3.135)

≤ O (1) (3.136)

if d = 0.

Proof. An asymptotic analysis of the converse bound in Theorem 3.12 akin to that found in the

proof of Theorem 2.34 leads to (3.133) and (3.135). An asymptotic analysis of the achievability

bound in Theorem 3.14 similar to the one found in Appendix B.8 leads to (3.134). Finally, (3.136)

is the same as (3.97).

The bounds and the Gaussian approximation (in which we take θ (n) = 0) are plotted in Fig. 3.3

(d = 0), Fig. 3.4 (fair binary source, d > 0) and Fig. 3.5 (biased binary source, d > 0). A source of

fair coin flips has zero dispersion, and as anticipated in Remark 3.9, JSSC does not afford much gain

in the finite blocklength regime (Fig. 3.4). Moreover, in that case the JSCC achievability bound in

Theorem 3.8 is worse than the SSCC achievability bound. However, the more general achievability

bound in Theorem 3.7 with the choice W =M , as detailed in Remark 3.8, nearly coincides with the

SSCC curve in Fig. 3.4, providing an improvement over Theorem 3.8. The situation is different if

the source is biased, with JSCC showing significant gain over SSCC (Figures 3.3 and 3.5).
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Figure 3.3: Rate-blocklength tradeoff for the transmission of a BMS with bias p = 0.11 over a BSC
with crossover probability δ = p = 0.11 and d = 0, ǫ = 10−2.
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3.7 Transmission of a GMS over an AWGN channel

In this section we analyze the setup where the Gaussian memoryless source Si ∼ N (0, σ2
S) is trans-

mitted over an AWGN channel, which, upon receiving an input xn, outputs Y n = xn +Nn, where

Nn ∼ N (0, σ2
NI). The encoder/decoder must satisfy two constraints, the fidelity constraint and the

cost constraint:

• the MSE distortion exceeds 0 ≤ d ≤ σ2
S with probability no greater than 0 < ǫ < 1;

• each channel codeword satisfies the equal power constraint in (3.107).5

The rate-distortion function and the capacity-cost function are given by

R(d) =
1

2
log

(
σ2
S

d

)
(3.137)

C(P ) =
1

2
log (1 + P ) (3.138)

The source dispersion is given by (2.154):

V(d) = 1

2
log2 e (3.139)

while the channel dispersion is given by (3.92) [3].

In the rest of the section, W ℓ
λ denotes a noncentral chi-square distributed random variable with ℓ

degrees of freedom and non-centrality parameter λ, independent of all other random variables, and

fW ℓ
λ
denotes its probability density function.

A straightforward particularization of the d-tilted information converse in Theorem 3.2 leads to

the following result.

Theorem 3.16 (Converse, GMS-AWGN). If there exists a (k, n, d, ǫ) code, then

ǫ ≥ sup
γ≥0

{
P [U ≥ nC(P )− kR(d) + γ]− exp (−γ)

}
(3.140)

where

U =
log e

2

(
W k

0 − k
)
+

log e

2

(
P

1 + P
Wn

n
P
− n

)
(3.141)

5See Remark 3.14 in Section 3.5 for a discussion of the close relation between an equal and a maximal power
constraint.

102



Observe that the terms to the left of the ‘≥’ sign inside the probability in (3.140) are zero-mean

random variables whose variances are equal to kV(d) and nV , respectively.

Proof. The spherically-symmetric PȲ n = PY n⋆ = PY⋆ × . . . × PY⋆ , where Y⋆ ∼ N (0, σ2
N(1 + P )) is

the capacity-achieving output distribution, satisfies the symmetry assumption of Theorem 3.2. More

precisely, it is not hard to show (see [3, (205)]) that for all xn ∈ F(α), ı⋆Xn;Y n(xn;Y n) has the same

distribution under PY n⋆|Xn=xn as

n

2
log (1 + P )− log e

2

(
P

1 + P
Wn

n
P
− n

)
(3.142)

The d-tilted information in sk is given by

Sk(sk, d) =
k

2
log

σ2
S

d
+

( |sk|2
σ2
S

− k
)

log e

2
(3.143)

Plugging (3.142) and (3.143) into (3.22), (3.140) follows.

The hypothesis testing converse in Theorem 3.5 is particularized as follows.

Theorem 3.17 (Converse, GMS-AWGN).

k

∫ ∞

0

rk−1P

[
PWn

n(1+ 1
P )

+ k
d

σ2
r2 ≤ nτ

]
dr ≤ 1 (3.144)

where τ is the solution to

P

[
P

1 + P
Wn

n
P
+W k

0 ≤ nτ
]
= 1− ǫ (3.145)

Proof. As in the proof of Theorem 3.16, we let Ȳ n ∼ Y n⋆ ∼ N (0, σ2
N(1 + P )I). Under PY n|Xn=xn ,

the distribution of ı⋆Xn;Y n(xn;Y n⋆) is that of (3.142), while under PY n⋆ , it has the same distribution

as (cf. [3, (204)])

n

2
log(1 + P )− log e

2

(
PWn

n(1+ 1
P )
− n

)
(3.146)

Since the distribution of ı⋆Xn;Y n(xn;Y n⋆) does not depend on the choice of xn ∈ Rn according to

either measure, Theorem 3.5 applies. Further, choosing QSk to be the Lebesgue measure on Rk, i.e.

dQSk = dsk, observe that

log fSk(sk) = log
dPSk(sk)

dsk
= −k

2
log
(
2πσ2

S

)
− log e

2σ2
S

|sk|2 (3.147)
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Now, (3.144) and (3.145) are obtained by integrating

1

{
log fSk(sk) + ı⋆Xn;Y n(xn; yn) >

n

2
log(1 + P ) +

n

2
log e− k

2
log(2πσ2

S)−
log e

2
nτ

}
(3.148)

with respect to dskdPY n⋆(yn) and dPSk(sk)dPY n|Xn=xn(yn), respectively.

The bound in Theorem 3.8 can be computed as follows.

Theorem 3.18 (Achievability, GMS-AWGN). There exists a (k, n, d, ǫ) code such that

ǫ ≤ inf
γ>0

{
E

[
exp

{
− |U − log γ|+

}]
+ e1−γ

}
(3.149)

where

U = nC(P )− log e

2

(
P

1 + P
Wn

n
P
− n

)
− log

F

ρ(W k
0 )

(3.150)

F = max
n∈N,t∈R+

fWn
nP

(t)

fWn
0

(
t

1+P

) <∞ (3.151)

and ρ : R+ 7→ [0, 1] is defined by

ρ(t) =
Γ
(
k
2 + 1

)
√
πkΓ

(
k−1
2 + 1

)
(
1− L

(√
t

k

)) k−1
2

(3.152)

where

L(r) =





0 r <
√

d
σ2
S

−
√
1− d

σ2
S

1
∣∣∣r −

√
1− d

σ2
S

∣∣∣ >
√

d
σ2
S(

1+r2−2 d

σ2
S

)2

4

(
1− d

σ2
S

)
r2

otherwise

(3.153)

Proof. We compute an upper bound to (3.82) for the specific case of the transmission of a GMS

over an AWGN channel. First, we weaken the infimum over PZk in (3.82) by choosing PZk to be

the uniform distribution on the surface of the k-dimensional sphere with center at 0 and radius

r0 =
√
kσ
√

1− d
σ2
S

. We showed in the proof of Theorem 2.45 (see also [29, 42]) that

PZk

(
Bd(s

k)
)
≥ ρ

(
|sk|2

)
(3.154)

which takes care of the source random variable in (3.82).
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We proceed to analyze the channel random variable ıXn;Y n(Xn;Y n). Observe that since Xn

lies on the power sphere and the noise is spherically symmetric, |Y n|2 = |Xn +Nn|2 has the same

distribution as |xn0 + Nn|2, where xn0 is an arbitrary point on the surface of the power sphere.

Letting xn0 = σN
√
P (1, 1, . . . , 1), we see that 1

σN
|xn0 + Nn|2 =

∑n
i=1

(
1
σ2
N

Ni +
√
P
)2

has the non-

central chi-squared distribution with n degrees of freedom and noncentrality parameter nP . To

simplify calculations, we express the information density as

ıXn;Y n(xn0 ; y
n) = ı⋆Xn;Y n(xn0 ; y

n)− log
dPY n

dPY n⋆

(yn) (3.155)

where Y n⋆ ∼ N (0, σ2
N(1+P )I). The distribution of ı⋆Xn;Y n(xn0 ;Y

n) is the same as (3.142). Further,

due to the spherical symmetry of both PY n and PY n⋆ , as discussed above, we have (recall that ‘∼’

denotes equality in distribution)

dPY n

dPY n⋆

(Y n) ∼ fWn
nP

(Wn
nP )

fWn
0

(
Wn

nP

1+P

) (3.156)

which is bounded uniformly in n as observed in [3, (425), (435)], thus (3.151) is finite, and (3.149)

follows.

The following result strengthens Theorem 3.10 in the special case of the GMS-AWGN.

Theorem 3.19 (Gaussian approximation, GMS-AWGN). The parameters of the optimal (k, n, d, ǫ)

code satisfy (3.88) where R(d), C, V(d), V are given by (3.137), (3.138), (3.139), (3.92), respectively,

and the remainder term in (3.88) satisfies

O (1) ≤ θ (n) (3.157)

≤ 1

2
logn+ log logn+O (1) (3.158)

Proof. An asymptotic analysis of the converse bound in Theorem 3.17 similar to that found in

the proof of Theorem 2.48 leads to (3.157). An asymptotic analysis of the achievability bound in

Theorem 3.18 similar to that given in Appendix B.11 leads to (3.158).

Numerical evaluation of the bounds reveals that JSCC noticeably outperforms SSCC in the

displayed region of blocklengths (Fig. 3.6).
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3.8 To code or not to code

Our goal in this section is to compare the excess distortion performance of the optimal code of rate 1

at channel blocklength n with that of the optimal symbol-by-symbol code, evaluated after n channel

uses, leveraging the bounds in Sections 3.3 and 3.4 and the approximation in Section 3.5. We show

certain examples in which symbol-by-symbol coding is, in fact, either optimal or very close to being

optimal. A general conclusion drawn from this section is that even when no coding is asymptotically

suboptimal it can be a very attractive choice for short blocklengths.

3.8.1 Performance of symbol-by-symbol source-channel codes

Definition 3.8. An (n, d, ǫ, α) symbol-by-symbol code is an (n, n, d, ǫ, α) code (f, g) (according to

Definition 3.2) that satisfies

f(sn) = (f1(s1), . . . , f1(sn)) (3.159)

g(yn) = (g1(y1), . . . , g1(yn)) (3.160)

for some pair of functions f1 : S 7→ A and g1 : B 7→ Ŝ.

The minimum excess distortion achievable with symbol-by-symbol codes at channel blocklength n,

excess probability ǫ and cost α is defined by

D1(n, ǫ, α) = inf {d : ∃(n, d, ǫ, α) symbol-by-symbol code} . (3.161)

Definition 3.9. The distortion-dispersion function of symbol-by-symbol joint source-channel coding

is defined as

W1(α) = lim
ǫ→0

lim sup
n→∞

n (D (C(α)) −D1(n, ǫ, α))
2

2 loge
1
ǫ

(3.162)

where D(·) is the distortion-rate function of the source.

As before, if there is no channel input-cost constraint (bn(xn) = 0 for all xn ∈ An), we will

simplify the notation and write D1(n, ǫ) for D1(n, ǫ, α) and W1 for W1(α).

In addition to restrictions stationarity and memorylessness assumptions (i)–(v) in Sections 2.2

and Section 3.5, we assume that the channel and the source are probabilistically matched in the

following sense (cf. [12]).
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(vi) There exist α, PX⋆|S and PZ⋆|Y such that PX⋆ and PZ⋆|S generated by the joint distribution

PSPX⋆|SPY|XPZ⋆|Y achieve the capacity-cost function C(α) and the distortion-rate function

D (C(α)), respectively.

Condition (vi) ensures that symbol-by-symbol transmission attains the minimum average (over

source realizations) distortion achievable among all codes of any blocklength. The following re-

sults pertain to the full distribution of the distortion incurred at the receiver output and not just

its mean.

Theorem 3.20 (Achievability, symbol-by-symbol code). Under restrictions (i)-(vi), if

P

[
n∑

i=1

d(Si, Z
⋆
i ) > nd

]
≤ ǫ (3.163)

where PZn⋆|Sn = PZ⋆|S × . . . × PZ⋆|S, and PZ⋆|S achieves D (C(α)), then there exists an (n, d, ǫ, α)

symbol-by-symbol code (average cost constraint).

Proof. If (vi) holds, then there exist a symbol-by-symbol encoder and decoder such that the condi-

tional distribution of the output of the decoder given the source outcome coincides with distribution

PZ⋆|S, so the excess-distortion probability of this symbol-by-symbol code is given by the left side of

(3.163).

Theorem 3.21 (Converse, symbol-by-symbol code). Under restriction (v) and separable distortion

measure, the parameters of any (n, d, ǫ, α) symbol-by-symbol code (average cost constraint) must

satisfy

ǫ ≥ inf
PZ|S :

I(S;Z)≤C(α)

P

[
n∑

i=1

d(Si, Zi) > nd

]
(3.164)

where PZn|Sn = PZ|S × . . .× PZ|S.

Proof. The excess-distortion probability at blocklength n, distortion d and cost α achievable among

all single-letter codes
(
PX|S, PZ|Y

)
must satisfy

ǫ ≥ inf
PX|S,PZ|Y :
S−X−Y−Z
E[b(X)]≤α

P [dn(S
n, Zn) > d] (3.165)

≥ inf
PX|S,PZ|Y :

E[b(X)]≤α
I(S;Z)≤I(X;Y)

P [dn(S
n, Zn) > d] (3.166)

where (3.166) holds since S−X−Y− Z implies I(S;Z) ≤ I(X;Y) by the data processing inequality.
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The right side of (3.166) is lower bounded by the right side of (3.164) because I(X;Y) ≤ C(α) holds

for all PX with E [b(X)] ≤ α, and the distortion measure is separable.

Theorem 3.22 (Gaussian approximation, optimal symbol-by-symbol code). Assume E
[
d3 (S,Z⋆)

]
<

∞. Under restrictions (i)-(vi),

D1(n, ǫ, α) = D (C(α)) +

√
W1(α)

n
Q−1 (ǫ) +

θ1(n)

n
(3.167)

W1(α) = Var [d(S,Z⋆)] (3.168)

where

θ1(n) ≤ O (1) (3.169)

Moreover, if there is no power constraint,

θ1(n) ≥
D′(R)

R2
θ(n) (3.170)

W1 = W(1) (3.171)

where θ(n) is that in Theorem 3.10.

If Var [d (S,Z⋆)] > 0 and S, Ŝ are finite, then

θ1(n) ≥ O (1) (3.172)

Proof. Since the third absolute moment of d(Si, Z
⋆
i ) is finite, the achievability part of the result,

namely, (3.167) with the remainder satisfying (3.169), follows by a straightforward application of the

Berry-Esséen bound to (3.163), provided that Var [d(Si, Z
⋆
i )] > 0. If Var [d(Si, Z

⋆
i )] = 0, it follows

trivially from (3.163).

To show the converse in (3.170), observe that since the set of all (n, n, d, ǫ) codes includes all

(n, d, ǫ) symbol-by-symbol codes, we have D(n, n, ǫ) ≤ D1(n, ǫ). Since Q
−1 (ǫ) is positive or negative

depending on whether ǫ < 1
2 or ǫ > 1

2 , using (3.102) we conclude that we must necessarily have

(3.171), which is, in fact, a consequence of conditions (b) in Section 2.2 and (c) in Section 3.2 and

(vi). Now, (3.170) is simply the converse part of (3.101).

The proof of the refined converse in (3.172) is relegated to Appendix C.3.

In the absence of a cost constraint, Theorem 3.22 shows that if the source and the channel are
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probabilistically matched in the sense of [12], then not only does symbol-by-symbol transmission

achieve the minimum average distortion, but also the dispersion of JSCC (see (3.171)). In other

words, not only do such symbol-by-symbol codes attain the minimum average distortion but also

the variance of distortions at the decoder’s output is the minimum achievable among all codes

operating at that average distortion. In contrast, if there is an average cost constraint, the symbol-

by-symbol codes considered in Theorem 3.22 probably do not attain the minimum excess distortion

achievable among all blocklength-n codes, not even asymptotically. Indeed, as observed in [4], for the

transmission of an equiprobable source over an AWGN channel under the average power constraint

and the average block error probability performance criterion, the strong converse does not hold and

the second-order term is of order n− 1
3 , not n− 1

2 , as in (3.167).

Two conspicuous examples that satisfy the probabilistic matching condition (vi), so that symbol-

by-symbol coding is optimal in terms of average distortion, are the transmission of a binary equiprob-

able source over a binary-symmetric channel provided the desired bit error rate is equal to the

crossover probability of the channel [70, Sec.11.8], [46, Problem 7.16], and the transmission of a

Gaussian source over an additive white Gaussian noise channel under the mean-square error distor-

tion criterion, provided that the tolerable source signal-to-noise ratio attainable by an estimator is

equal to the signal-to-noise ratio at the output of the channel [71]. We dissect these two examples

next. After that, we will discuss two additional examples where uncoded transmission is optimal.

3.8.2 Uncoded transmission of a BMS over a BSC

In the setup of Section 3.6, if the binary source is unbiased
(
p = 1

2

)
, then C = 1 − h(δ), R(d) =

1−h(d), and D(C) = δ. If the encoder and the decoder are both identity mappings (uncoded trans-

mission), the resulting joint distribution satisfies condition (vi). As is well known, regardless of the

blocklength, the uncoded symbol-by-symbol scheme achieves the minimum bit error rate (averaged

over source and channel). Here, we are interested instead in examining the excess distortion prob-

ability criterion. For example, consider an application where, if the fraction of erroneously received

bits exceeds a certain threshold, then the entire output packet is useless.

Using (3.102) and (3.168), it is easy to verify that

W(1) = W1 = δ(1− δ) (3.173)

that is, uncoded transmission is optimal in terms of dispersion, as anticipated in (3.171). Moreover,

uncoded transmission attains the minimum bit error rate threshold D(n, n, ǫ) achievable among all
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codes operating at blocklength n, regardless of the allowed ǫ, as the following result demonstrates.
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Figure 3.7: Distortion-blocklength tradeoff for the transmission of a fair BMS over a BSC with
crossover probability δ = 0.11 and R = 1, ǫ = 10−2.

Theorem 3.23 (BMS-BSC, symbol-by-symbol code). Consider the the symbol-by-symbol scheme

which is uncoded if p ≥ δ and whose decoder always outputs the all-zero vector if p < δ. It achieves,

at blocklength n and excess distortion probability ǫ, regardless of 0 ≤ p ≤ 1
2 , δ ≤ 1

2 ,

D1(n, ǫ) =min



d :

⌊nd⌋∑

t=0

(
n

t

)
min{p, δ}t(1−min{p, δ})n−t ≥ 1− ǫ



 (3.174)

Moreover, if the source is equiprobable
(
p = 1

2

)
,

D1(n, ǫ) = D(n, n, ǫ) (3.175)
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Proof. Direct calculation yields (3.174). To show (3.175), let us compare d⋆ = D1(n, ǫ) with the

conditions imposed on d by Theorem 3.13. Comparing (3.174) to (3.124), we see that either

(a) equality in (3.174) is achieved, r⋆ = nd⋆, λ = 0, and (plugging k = n into (3.123))

〈 n

nd⋆

〉
≤
〈

n

⌊nd⌋

〉
(3.176)

thereby implying that d ≥ d⋆, or

(b) r⋆ = nd⋆ − 1, λ > 0, and (3.123) becomes

λ

(
n

nd⋆

)
+

〈
n

nd⋆ − 1

〉
≤
〈

n

⌊nd⌋

〉
(3.177)

which also implies d ≥ d⋆. To see this, note that d < d⋆ would imply ⌊nd⌋ ≤ nd⋆−1 since nd⋆ is

an integer, which in turn would require (according to (3.177)) that λ ≤ 0, which is impossible.

For the transmission of the fair binary source over a BSC, Fig. 3.7 shows the distortion achieved

by the uncoded scheme, the separated scheme and the JSCC scheme of Theorem 3.14 versus n for a

fixed excess-distortion probability ǫ = 0.01. The no coding / converse curve in Fig. 3.7 depicts one

of those singular cases where the non-asymptotic fundamental limit can be computed precisely. As

evidenced by this curve, the fundamental limits need not be monotonic with blocklength.

Figure 3.8(a) shows the rate achieved by separate coding when d > δ is fixed, and the excess-

distortion probability ǫ, shown in Fig. 3.8(b), is set to be the one achieved by uncoded transmission,

namely, (3.174). Figure 3.8(a) highlights the fact that at short blocklengths (say n ≤ 100) separate

source/channel coding is vastly suboptimal. As the blocklength increases, the performance of the

separated scheme approaches that of the no-coding scheme, but according to Theorem 3.23 it can

never outperform it. Had we allowed the excess distortion probability to vanish sufficiently slowly,

the JSCC curve would have approached the Shannon limit as n→∞. However, in Figure 3.8(a), the

exponential decay in ǫ is such that there is indeed an asymptotic rate penalty as predicted in [62].

For the biased binary source with p = 2
5 and BSC with crossover probability 0.11, Figure 3.9

plots the maximum distortion achieved with probability 0.99 by the uncoded scheme, which in this

case is asymptotically suboptimal. Nevertheless, uncoded transmission performs remarkably well

in the displayed range of blocklengths, achieving the converse almost exactly at blocklengths less

114



than 100, and outperforming the JSCC achievability result in Theorem 3.14 at blocklengths as long

as 700. This example substantiates that even in the absence of a probabilistic match between the

source and the channel, symbol-by-symbol transmission, though asymptotically suboptimal, might

outperform SSCC and even our random JSCC achievability bound in the finite blocklength regime.

3.8.3 Symbol-by-symbol coding for lossy transmission of a GMS over an

AWGN channel

In the setup of Section 3.7, using (3.137) and (3.138), we find that

D(C(P )) =
σ2
S

1 + P
(3.178)

The next result characterizes the distribution of the distortion incurred by the symbol-by-symbol

scheme that attains the minimum average distortion.

Theorem 3.24 (GMS-AWGN, symbol-by-symbol code). The following symbol-by-symbol transmis-

sion scheme in which the encoder and the decoder are the amplifiers:

f1(s) = as, a2 =
Pσ2

N

σ2
S

(3.179)

g1(y) = by, b =
aσ2

S

a2σ2
S + σ2

N

(3.180)

is an (n, d, ǫ, P ) symbol-by-symbol code (with average cost constraint) such that

P [Wn
0 D(C(P )) > nd] = ǫ (3.181)

where Wn
0 is chi-square distributed with n degrees of freedom.

Note that (3.181) is a particularization of (3.163). Using (3.181), we find that

W1(P ) = 2
σ4
S

(1 + P )2
(3.182)

On the other hand, using (3.102), we compute

W(1, P ) = 2
σ4
S

(1 + P )2

(
2− 1

(1 + P )2

)
(3.183)

>W1(P ) (3.184)
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The difference between (3.184) and (3.171) is due to the fact that the optimal symbol-by-symbol code

in Theorem 3.24 obeys an average power constraint, rather than the more stringent maximal power

constraint of Theorem 3.10, so it is not surprising that for the practically interesting case ǫ < 1
2 the

symbol-by-symbol code can outperform the best code obeying the maximal power constraint. Indeed,

in the range of blocklenghts displayed in Figure 3.10, the symbol-by-symbol code even outperforms

the converse for codes operating under a maximal power constraint.
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3.8.4 Uncoded transmission of a discrete memoryless source (DMS) over

a discrete erasure channel (DEC) under erasure distortion measure

For a discrete source equiprobable on S, the single-letter erasure distortion measure is defined as

the following mapping d : S × {S, e} 7→ [0,∞]:6

d(s, z) =





0 z = s

log |S| z = e

∞ otherwise

(3.185)

For any 0 ≤ d ≤ log |S|, the rate-distortion function is achieved by

PZ⋆|S=s(z) =





1− d
log |S| z = s

d
log |S| z = e

(3.186)

The rate-distortion function and the d-tilted information are given by, respectively,

R(d) = log |S| − d (3.187)

S(S, d) = log |S| − d (3.188)

The channel that is matched to the equiprobable DMS with the erasure distortion measure is the

DEC, whose single-letter transition probability kernel PY|X : A 7→ {A, e} is

PY|X=x(y) =





1− δ y = x

δ y = e

(3.189)

and whose capacity is given by C = log |A| − δ, achieved by equiprobable PX⋆ . If S = A, we find

that D(C) = δ log |S|, and

W1 = δ (1− δ) log2 |S| (3.190)

6The distortion measure in (3.185) is a scaled version of the erasure distortion measure found in literature, e.g. [7].
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3.8.5 Symbol-by-symbol transmission of a DMS over a DEC under loga-

rithmic loss

Let the source alphabet S be finite, and let the reproduction alphabet Ŝ be the set of all probability

distributions on S. The single-letter logarithmic loss distortion measure d : S × Ŝ 7→ R+ is defined

by [72, 73]

d(s, PZ) = ıZ(s) (3.191)

Curiously, for any 0 ≤ d ≤ H(S), the rate-distortion function and the d-tilted information are

given respectively by

R(d) = H(S)− d (3.192)

S(s, d) = ıS(s)− d (3.193)

which coincides with (3.192) and (3.193) if the source is not equiprobable. In fact, the rate-distortion

function is achieved by,

PP⋆
Z
|S=s(PZ) =





d
H(S) PZ = PS

1− d
H(S) PZ = 1S(s)

(3.194)

and the channel that is matched to the equiprobable source under logarithmic loss is exactly the

DEC in (3.189). Of course, unlike Section 3.8.4, the decoder we need is a simple one-to-one function

that outputs PS if the channel output is e, and 1S(y) otherwise, where y 6= e is the output of the

DEC. Finally, it is easy to verify that the distortion-dispersion function of symbol-by-symbol coding

under logarithmic loss is the same as that under erasure distortion and is given by (3.190).

3.9 Conclusion

In this chapter we gave a non-asymptotic analysis of joint source-channel coding including several

achievability and converse bounds, which hold in wide generality and are tight enough to determine

the dispersion of joint source-channel coding for the transmission of an abstract memoryless source

over either a DMC or a Gaussian channel, under an arbitrary fidelity measure. We also investigated

the penalty incurred by separate source-channel coding using both the source-channel dispersion

and the particularization of our new bounds to (i) the binary source and the binary symmetric

channel with bit error rate fidelity criterion and (ii) the Gaussian source and Gaussian channel

under mean-square error distortion. Finally, we showed cases where symbol-by-symbol (uncoded)
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transmission beats any other known scheme in the finite blocklength regime even when the source-

channel matching condition is not satisfied.

The approach taken in this chapter to analyze the non-asymptotic fundamental limits of lossy

joint source-channel coding is two-fold. Our new achievability and converse bounds apply to ab-

stract sources and channels and allow for memory, while the asymptotic analysis of the new bounds

leading to the dispersion of JSCC is focused on the most basic scenario of transmitting a stationary

memoryless source over a stationary memoryless channel.

The major results and conclusions are the following.

1) Leveraging the concept of d-tilted information (Definition 2.1), a general new converse bound

(Theorem 3.1) generalizes the source coding bound in Theorem 2.12 to the joint source-channel

coding setup.

2) The converse result in Theorem 3.4 capitalizes on two simple observations, namely, that any

(d, ǫ) lossy code can be converted to a list code with list error probability ǫ, and that a binary

hypothesis test between PSXY and an auxiliary distribution on the same space can be constructed

by choosing PSXY when there is no list error. We have generalized the conventional notion of

list, to allow the decoder to output a possibly uncountable set of source realizations.

3) As evidenced by our numerical results, the converse result in Theorem 3.5, which applies to those

channels satisfying a certain symmetry condition and which is a consequence of the hypothesis

testing converse in Theorem 3.4, can outperform the d-tilted information converse in Corollary

3.3. Nevertheless, it is Corollary 3.3 that lends itself to analysis more easily and that leads to

the JSCC dispersion for the general DMC.

4) Our random-coding-based achievability bound (Theorem 3.7) provides insights into the degree

of separation between the source and the channel codes required for optimal performance in the

finite blocklength regime. More precisely, it reveals that the dispersion of JSCC can be achieved

in the class of (M,d, ǫ) JSCC codes (Definition 3.7). As in separate source/channel coding, in

(M,d, ǫ) coding the inner channel coding block is connected to the outer source coding block by a

noiseless link of capacity logM , but unlike SSCC, the channel (resp. source) code can be chosen

based on the knowledge of the source (resp. channel). The conventional SSCC in which the

source code is chosen without knowledge of the channel and the channel code is chosen without

knowledge of the source, although known to achieve the asymptotic fundamental limit of joint

source-channel coding under certain quite weak conditions, is in general suboptimal in the finite
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blocklength regime.

5) For the transmission of a stationary memoryless source over a stationary memoryless channel,

the Gaussian approximation in Theorem 3.10 (neglecting the remainder θ(n)) provides a simple

estimate of the maximal non-asymptotically achievable joint source-channel coding rate. Ap-

pealingly, the dispersion of joint source-channel coding decomposes into two terms, the channel

dispersion and the source dispersion. Thus, only two channel attributes, the capacity and dis-

persion, and two source attributes, the rate-distortion and rate-dispersion functions, are required

to compute the Gaussian approximation to the maximal JSCC rate.

6) In those curious cases where the source and the channel are probabilistically matched so that

symbol-by-symbol coding attains the minimum possible average distortion, Theorem 3.22 ensures

that it also attains the dispersion of joint source-channel coding, that is, symbol-by-symbol

coding results in the minimum variance of distortions among all codes operating at that average

distortion.

7) Even in the absence of a probabilistic match between the source and the channel, symbol-

by-symbol transmission, though asymptotically suboptimal, might outperform separate source-

channel coding and joint source-channel random coding in the finite blocklength regime.
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Chapter 4

Noisy lossy source coding

4.1 Introduction

The noisy source coding setting where the encoder has access only to a noise-corrupted version X

of a source S, while the distortion is measured with respect to the true source (see Fig. 1.4), was

first discussed by Dobrushin and Tsybakov [74], who showed that when the goal is to minimize

the average distortion, the noisy source coding problem is asymptotically equivalent to a particular

noiseless source coding problem. More precisely, for stationary memoryless sources observed through

a stationary memoryless channel under a separable distortion measure, the noisy rate-distortion

function is given by

R(d) = min
PZ|X :

E[d(S,Z)]≤d
S−X−Z

I(X;Z) (4.1)

= min
PZ|X :

E[d̄(X,Z)]≤d

I(X;Z) (4.2)

where

d̄(a, b) = E [d(S, b)|X = a] (4.3)

i.e. in the limit of infinite blocklengths, the problem is equivalent to the classical lossy source

coding problem where the distortion measure is the conditional average of the original distortion

measure given the noisy observation of the source. Berger [53, p.79] used the modified distortion

measure (4.3) to streamline the proof of (4.2). Witsenhausen [75] explored the strength of distortion

measures defined through conditional expectations such as in (4.3) to treat various so-called indirect
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rate distortion problems.

Sakrison [76] showed that if both the source and its noise-corrupted version take values in a

separable Hilbert space and the fidelity criterion is mean squared error, then asymptotically, an

optimal code can be constructed by first creating a minimum mean-square estimate of the source

outcome based on its noisy observation, and then quantizing this estimate as if it were noise-free.

Wolf and Ziv [77] showed that Sakrison’s result holds even nonasymptotically, namely, that the

minimum average distortion achievable in one-shot noisy compression of the object S can be written

as

D⋆(M) = E
[
|S − E [S|X ] |2

]
+ inf

f,c
E
[
|c(f(X))− E [S|X ] |2

]
(4.4)

where the infimum is over all encoders f : X 7→ {1, . . . ,M} and all decoders c : {1, . . . ,M} 7→ M̂,

and X and M̂ are the alphabets of the channel output and the decoder output, respectively. It is

important to note that (4.4) is a direct consequence of the choice of the mean squared error distortion

and does not hold in general. For vector quantization of a Gaussian signal corrupted by an additive

independent Gaussian noise under weighted squared error distortion measure, Ayanoglu [78] found

explicit expressions for the optimum quantizer values and the optimum quantization rule. Wolf

and Ziv’s result was extended to waveform vector quantization under weighted quadratic distortion

measures and to autoregressive vector quantization under the Itakura-Saito distortion measure by

Ephraim and Gray [79], as well as to a model in which the encoder and decoder have access to the

history of their past inputs and outputs, allowing exploitation of inter-block dependence, by Fisher,

Gibson and Koo [80]. Thus, the cascade of the optimal estimator followed by the optimal quantizer

achieves the minimum average distortion in those settings as well.

Under the logarithmic loss distortion measure [73], the noisy source coding problem reduces to

the information bottleneck problem [81].

In this chapter, we give new nonasymptotic achievability and converse bounds for the noisy

source coding problem, which generalize the noiseless source coding bounds in Chapter 2. We

observe that at finite blocklenghs, the noisy coding problem is in general not equivalent to the

noiseless coding problem with the modified distortion measure in (4.3). Essentially, the reason is

that taking the expectation in (4.3) dismisses the randomness introduced by the noisy channel in

Fig. 1.4, which nonasymptotically cannot be neglected. That additional randomness slows down the

rate of approach to the asymptotic fundamental limit in the noisy source coding problem compared

to the asymptotically equivalent noiseless problem. Specifically, we show that for noisy source coding

of a discrete stationary memoryless source over a discrete stationary memoryless channel under a
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separable distortion measure, V(d) in (1.9) is replaced by the noisy rate-dispersion function Ṽ(d),

which can be expressed as

Ṽ(d) = V(d) + λ⋆2Var
[
E
[
d(S,Z⋆)− d̄(X,Z⋆)|S,X

]]
(4.5)

where λ⋆ = −R′(d), and Z⋆ denotes the reproduction random variable that achieves the rate-

distortion function (4.2).

The rest of the chapter is organized as follows. After introducing the basic definitions in Section

4.2, we proceed to show new general nonasymptotic converse and achievability bounds in Sections

4.3 and 4.4, respectively, along with their asymptotic analysis in Section 4.5. Finally, the example

of a binary source observed through an erasure channel is considered in Section 4.6.

Parts of this chapter are presented in [19, 82].

4.2 Definitions

Consider the setup in Fig. 1.4 where we are given the distribution PS on the alphabetM and the

transition probability kernel PX|S : M → X . We are also given the distortion measure d : M×

M̂ 7→ [0,+∞], where M̂ is the representation alphabet. An (M,d, ǫ) code is a pair of mappings

PU|X : X 7→ {1, . . . ,M} and PZ|U : {1, . . . ,M} 7→ M̂ such that P [d(S,Z) > d] ≤ ǫ.

Define

RS,X(d) , inf
PZ|X :

E[d̄(X,Z)]≤d

I(X ;Z) (4.6)

where d̄ : X × M̂ 7→ [0,+∞] is given by

d̄(x, z) , E [d(S, z)|X = x] (4.7)

and, as in Section 2.2, assume that the infimum is achieved by some PZ⋆|X such that the constraint

is satisfied with equality. Noting that this assumption guarantees differentiability of RS,X(d), denote

λ⋆ = −R′
S,X(d) (4.8)

Furthermore, define, for an arbitrary PZ|X

d̄Z(s|x) , E [d(S,Z)|X = x, S = s] (4.9)
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where the expectation is with respect PZ|XS = PZ|X .

Definition 4.1 (noisy d-tilted information). For d > dmin, the noisy d-tilted information in s ∈M

given observation x ∈ X is defined as

̃S,X(s, x, d) , D(PZ⋆|X=x‖PZ⋆) + λ⋆d̄Z⋆(s|x) − λ⋆d (4.10)

where PZ⋆|X achieves the infimum in (4.6).

As we will see, the intuitive meaning of the noisy d-tilted information is the number of bits

required to represent s within distortion d given observation x.

For the asymptotically equivalent noiseless source coding problem, we know that almost surely

(Theorem 2.1)

X(x, d) = ıX;Z⋆(x;Z⋆) + λ⋆d̄(x, Z⋆)− λ⋆d (4.11)

= D(PZ⋆|X=x‖PZ⋆) + λ⋆E
[
d̄(x, Z⋆)|X = x

]
− λ⋆d (4.12)

where X(x, d) is the d̄-tilted information in x ∈ X (defined in (2.6)). Therefore

̃S,X(s, x, d) = X(x, d) + λ⋆d̄Z⋆(s|x)− λ⋆E
[
d̄Z⋆(S|x)|X = x

]
(4.13)

Trivially

RS,X(d) = E [̃S,X(S,X, d)] (4.14)

= E [X(X, d)] (4.15)

For a given distribution PZ̄ on M̂ and λ > 0 define the transition probability kernel (cf. (2.23))

dPZ̄⋆|X=x(z) =
dPZ̄(z) exp

(
−λd̄(x, z)

)

E
[
exp

(
−λd̄(x, Z̄)

)] (4.16)

and define the function

J̃Z̄(s, x, λ) , D(PZ̄⋆|X=x‖PZ̄) + λd̄Z̄⋆(s|x) (4.17)

= JZ̄(x, λ) + λd̄Z̄⋆(s|x) − λE
[
d̄Z̄⋆(S|x)|X = x

]
(4.18)
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where JZ̄(x, λ) is defined in (2.24). Similar to (2.26), we refer to the function

J̃Z̄(s, x, λ)− λd (4.19)

the generalized noisy d-tilted information.

4.3 Converse bounds

Theorem 4.1 (Converse). Any (M,d, ǫ) code must satisfy

ǫ ≥ inf
PZ|X

sup
γ≥0,PX̄|Z̄

{
P

[
ıX̄|Z̄‖X(X ;Z) + sup

λ≥0
λ(d(S,Z)− d) ≥ logM + γ

]
− exp(−γ)

}
(4.20)

where (recall notation (2.22))

ıX̄|Z̄‖X(x; z) , log
dPX̄|Z̄=z

dPX
(x) (4.21)

Proof. Let the encoder and decoder be the random transformations PU|X and PZ|U , where U takes

values in {1, . . . ,M}. Recall notation (2.33):

Bd(s) ,
{
z ∈ M̂ : d(s, z) ≤ d

}
(4.22)
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We have, for any γ ≥ 0

P

[
ıX̄|Z̄‖X(X ;Z) + sup

λ≥0
λ(d(S,Z)− d) ≥ logM + γ

]

= P

[
ıX̄|Z̄‖X(X ;Z) + sup

λ≥0
λ(d(S,Z)− d) ≥ logM + γ, d(S,Z) > d

]

+ P

[
ıX̄|Z̄‖X(X ;Z) + sup

λ≥0
λ(d(S,Z)− d) ≥ logM + γ, d(S,Z) ≤ d

]
(4.23)

= P [d(S,Z) > d] + P
[
ıX̄|Z̄‖X(X ;Z) ≥ logM + γ, d(S,Z) ≤ d

]
(4.24)

≤ ǫ+ P
[
ıX̄|Z̄‖X(X ;Z) ≥ logM + γ

]
(4.25)

≤ ǫ+
exp(−γ)
M

E
[
exp

(
ıX̄|Z̄‖X(X ;Z)

)]
(4.26)

≤ ǫ+
exp(−γ)
M

M∑

u=1

∑

z∈M̂

PZ|U (z|u)
∑

x∈X
PX(x) exp

(
ıX̄|Z̄‖X(x; z)

)
(4.27)

= ǫ+
exp(−γ)
M

M∑

u=1

∑

z∈M̂

PZ|U (z|u)
∑

x∈X
PX̄|Z̄(x|z) (4.28)

= ǫ+ exp (−γ) (4.29)

where

• (4.23) is by direct solution for the supremum;

• (4.26) is by Markov’s inequality;

• (4.27) follows by upper-bounding

PU|X(u|x) ≤ 1 (4.30)

for every (x, u) ∈ M× {1, . . . ,M}.

Finally, (4.20) follows by choosing γ and PX̄|Z̄ that give the tightest bound and PZ|X that gives the

weakest in order to obtain a code-independent converse.

In our asymptotic analysis, we will use the following bound with suboptimal choices of λ and

PX̄|Z̄ .

Corollary 4.2. Any (M,d, ǫ) code must satisfy

ǫ ≥ sup
γ≥0,PX̄|Z̄

{
E

[
inf
z∈M̂

P

[
ıX̄|Z̄‖X(X ; z) + sup

λ≥0
λ(d(S, z)− d) ≥ logM + γ|X

]]
− exp(−γ)

}
(4.31)
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Proof. We weaken (4.20) using

inf
PZ|X

P

[
ıX̄|Z̄‖X(X ;Z) + sup

λ≥0
λ(d(S,Z)− d) ≥ logM + γ

]

= E

[
inf
PZ|X

P

[
ıX̄|Z̄‖X(X ;Z) + sup

λ≥0
λ(d(S,Z)− d) ≥ logM + γ|X

]]
(4.32)

= E

[
inf
z∈M̂

P

[
ıX̄|Z̄‖X(X ; z) + sup

λ≥0
λ(d(S, z)− d) ≥ logM + γ|X

]]
(4.33)

where we used S −X − Z.

Remark 4.1. If supp(PZ⋆) = M̂ and PX|S is the identity mapping so that d(S, z) = d̄(X, z) almost

surely, for every z, then Corollary 4.2 reduces to the noiseless converse in Theorem 2.12 by using

(4.11) after weakening (4.31) with PX̄|Z̄ = PX̄|Z⋆ and λ = λ⋆.

4.4 Achievability bounds

Theorem 4.3 (Achievability). There exists an (M,d, ǫ) code with

ǫ ≤ inf
PZ

∫ 1

0

E
[
PM

[
π(X, Z̄) > t|X

]]
dt (4.34)

where PXZ̄ = PXPZ , and

π(x, z) = P [d(S, z) > d|X = x] (4.35)

Proof. The proof appeals to a random coding argument. Given M codewords (c1, . . . , cM ), the

encoder f and decoder c achieving minimum excess distortion probability attainable with the given

codebook operate as follows. Having observed x ∈ X , the optimum encoder chooses

i⋆ ∈ argmin
i
π(x, ci) (4.36)

with ties broken arbitrarily, so f(x) = i⋆ and the decoder simply outputs ci⋆ , so c(f(x)) = ci⋆ .
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The excess distortion probability achieved by the scheme is given by

P [d(S, c(f(X))) > d] = E [π(X, c(f(X)))] (4.37)

=

∫ 1

0

P [π(X, c(f(X))) > t] dt (4.38)

=

∫ 1

0

E [P [π(X, c(f(X))) > t|X ]] dt (4.39)

Now, we notice that

1 {π(x, c(f(x))) > t} = 1

{
min

i∈1,...,M
π(x, ci) > t

}
(4.40)

=

M∏

i=1

1 {π(x, ci) > t} (4.41)

and we average (4.39) with respect to the codewords Z1, . . . , ZM drawn i.i.d. from PZ , independently

of any other random variable, so that PXZ1...ZM = PX × PZ × . . .× PZ , to obtain

∫ 1

0

E

[
M∏

i=1

P [π(X,ZM ) > t|X ]

]
dt =

∫ 1

0

E
[
PM

[
π(X, Z̄) > t|X

]]
dt (4.42)

Since there must exist a codebook achieving the excess distortion probability below or equal to the

average over codebooks, (4.34) follows.

Remark 4.2. Notice that we have actually shown that the right-hand side of (4.34) gives the exact

minimum excess distortion probability of random coding, averaged over codebooks drawn i.i.d. from

PZ .

Remark 4.3. In the noiseless case, S = X , for all t ∈ [0, 1),

π(x, z) = 1 {d(x, z) > d} (4.43)

and the bound in Theorem 4.3 reduces to the noiseless random coding bound in Theorem 2.16.

The bound in (4.34) can be weakened to obtain the following result, which generalizes Shannon’s

bound for noiseless lossy compression (see e.g. Theorem 2.4).

Corollary 4.4. There exists an (M,d, ǫ) code with

ǫ ≤ inf
γ≥0, PZ|X

{
P [d(S,Z) > d] + P [ıX;Z(X ;Z) > logM − γ] + e− exp(γ)

}
(4.44)
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where PSXZ = PSPX|SPZ|X .

Proof. Fix γ ≥ 0 and transition probability kernel PZ|X . Let PX → PZ|X → PZ (i.e. PZ is the

marginal of PXPZ|X), and let PXZ̄ = PXPZ . We use the nonasymptotic covering lemma [44, Lemma

5] (also derived in (2.114)) to establish

E
[
PM

[
π(X, Z̄) > t|X

]]
≤ P [π(X,Z) > t] + P [ıX;Z(X ;Z) > logM − γ] + e− exp(γ) (4.45)

Applying (4.45) to (4.42) and noticing that

∫ 1

0

P [π(X,Z) > t] dt = E [π(X,Z)] (4.46)

= P [d(S,Z) > d] (4.47)

we obtain (4.44).

The following weakening of Theorem 4.3 is tighter than that in Corollary 4.4. It uses the gener-

alized d-tilted information and is amenable to an accurate second-order analysis. See Theorem 2.19

for a noiseless lossy compression counterpart.

Theorem 4.5 (Achievability, generalized d-tilted information). Suppose that PZ|X is such that

almost surely

d(S,Z) = d̄Z(S|X) (4.48)

Then there exists an (M,d, ǫ) code with

ǫ ≤ inf
γ,β,δ,PZ̄

{
E

[
inf
λ>0

{
P
[
D(PZ|X=x‖PZ̄) + λd̄Z(S|x)− λ(d− δ) > log γ − log β|X

]

+ P
[
d̄Z(S|X) > d|X

]

+
∣∣1− βP

[
d− δ ≤ d̄Z(S|X) ≤ d|X

]∣∣+ |
}]

+ e−
M
γ

}
(4.49)
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Proof. The bound in (4.34) implies that for an arbitrary PZ , there exists an (M,d, ǫ) code with

ǫ ≤
∫ 1

0

E
[
PM

[
π(X, Z̄) > t|X

]]
dt

≤ e−
M
γ E

[
min

{
1, γ

∫ 1

0

P
[
π
(
X, Z̄

)
≤ t|X

]
dt

}]
+

∫ 1

0

E

[∣∣1− γP
[
π(X, Z̄) ≤ t|X

]
dt
∣∣+
]

(4.50)

≤ e−
M
γ +

∫ 1

0

E

[∣∣1− γP
[
π(X, Z̄) ≤ t|X

]
dt
∣∣+
]

(4.51)

where to obtain (4.50) we applied [45]

(1− p)M ≤ e−Mp ≤ e−M
γ min(1, γp) + |1− γp|+ (4.52)

The first term in the right side of (4.50) is upper bounded using the following chain of inequalities.

∫ 1

0

∣∣1− γP
[
π(X, Z̄) ≤ t|X = x

]∣∣+

≤
∫ 1

0

∣∣1− γE
[
exp

(
−ıZ|X‖Z̄(x;Z)

)
1 {π(x, Z) ≤ t} |X = x

]∣∣+ (4.53)

≤
∫ 1

0

∣∣1− γ1 {π(x) ≤ t}E
[
exp

(
−ıZ|X‖Z̄(x;Z)

)]∣∣+ (4.54)

= π(x) + (1− π(x))
∣∣1− γE

[
exp

(
−ıZ|X‖Z̄(x;Z)

)]∣∣+ (4.55)

≤ π(x) + (1− π(x))
∣∣1− γ exp

(
−D(PZ|X=x‖PZ̄)

)∣∣+ (4.56)

≤ π(x) +
∣∣1− γ exp

(
−D(PZ|X=x‖PZ̄)

)
P
[
d̄Z(S|x) ≤ d

]∣∣+ (4.57)

≤ π(x) +
∣∣1− γ exp

(
−D(PZ|X=x‖PZ̄)

)
P
[
d− δ ≤ d̄Z(S|x) ≤ d

]∣∣+ (4.58)

≤ π(x) +
∣∣1− γE [exp (−g(S, x)− λδ)]P

[
d− δ ≤ d̄Z(S|x) ≤ d

]∣∣+ (4.59)

≤ π(x) + P [g(S, x) > log γ − log β − λδ] +
∣∣1− βP

[
d− δ ≤ d̄Z(S|x) ≤ d

]∣∣+ (4.60)

where

• in (4.54) we denoted

π(x) , P
[
d̄Z(S|x) > d

]
(4.61)

where the probability is evaluated with respect to PS|X=x, and observed using (4.48) that

almost surely

π(X,Z) = π(X) (4.62)
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• (4.56) is by Jensen’s inequality;

• in (4.56), we denoted

g(s, x) = D(PZ|X=x‖PZ̄) + λd̄Z(S|x) − λd (4.63)

• to obtain (4.60), we bounded

γ exp(−g(S, x)) ≥





β if g(S, x) ≤ log γ − log β − λδ

0 otherwise

(4.64)

Taking the expectation of (4.60) and recalling (4.50), (4.49) follows.

4.5 Asymptotic analysis

In this section, we pass from the single shot setup of Sections 4.3 and 4.4 to a block setting by letting

the alphabets be Cartesian products M = Sk, X = Ak, M̂ = Ŝk, and we study the second order

asymptotics in k ofM⋆(k, d, ǫ), the minimum achievable number of representation points compatible

with the excess distortion constraint P
[
d(Sk, Zk) > d

]
≤ ǫ. We make the following assumptions.

(i) PSkXk = PSPX|S × . . .× PSPX|S and

d(sk, zk) =
1

k

k∑

i=1

d(si, zi) (4.65)

(ii) The alphabets S, A, Ŝ are finite sets.

(iii) The distortion level satisfies dmin < d < dmax, where

dmin = inf {d : RS,X(d) <∞} (4.66)

and dmax = inf
z∈Ŝ E [d(S, z)], where the expectation is with respect to the unconditional dis-

tribution of S.

(iv) The function RX,Z⋆(d) in (2.28) is twice continuously differentiable in a neighborhood of PX.

The following result is obtained via a technical second order analysis of Corollary 4.2 and Theorem

4.5.
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Theorem 4.6 (Gaussian approximation). For 0 < ǫ < 1,

logM⋆(k, d, ǫ) = kR(d) +

√
kṼ(d)Q−1 (ǫ) +O (log k) (4.67)

Ṽ(d) = Var [̃S;X(S,X, d)] (4.68)

Remark 4.4. The rate-dispersion function of the asymptotically equivalent noiseless problem is given

by (see (2.143))

V(d) = Var [X(X, d)] (4.69)

where X(X, d) is defined in (4.11). To verify that the decomposition (4.5) indeed holds, which implies

that Ṽ(d) > V(d) unless there is no noise, write

Ṽ(d) = Var
[
X(X, d) + λ⋆d̄Z⋆(S|X)− λ⋆E

[
d̄Z⋆(S|X)|X

]]
(4.70)

= Var [X(X, d)] + λ⋆2Var
[
d̄Z⋆(S|X) − E

[
d̄Z⋆(S|X)|X

]]

+ 2λ⋆Cov
(
X(X, d), d̄Z⋆(S|X)− E

[
d̄Z⋆(S|X)|X

])
(4.71)

where the covariance is zero:

E
[
(X(X, d)− R(d))

(
d̄Z⋆(S|X)− E

[
d̄Z⋆(S|X)|X

])]

= E
[
(X(X, d)− R(d))E

[
d̄Z⋆(S|X) − E

[
d̄Z⋆(S|X)|X

]]]
(4.72)

= 0 (4.73)

4.6 Erased fair coin flips

Let Sk ∈ {0, 1}k be the output of the binary equiprobable source, Xk be the output of the binary

erasure channel with erasure rate δ driven by Sk. The compressor only observes Xk, and the goal

is to minimize the bit error rate with respect to Sk. For d = δ
2 , codes with rate approaching the

rate-distortion function were constructed in [83]. For δ
2 ≤ d ≤ 1

2 , the rate-distortion function is

given by

R(d) = (1− δ)
(
log 2− h

(
d− δ

2

1− δ

))
(4.74)
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Throughout the section, we assume δ
2 < d < 1

2 and 0 < ǫ < 1. We call this problem the binary

erased source (BES) problem.

The rate-distortion function in (4.74) is achieved by PZ⋆(0) = PZ⋆(1) = 1
2 and

PX|Z⋆(a|b) =





1− d− δ
2 b = a

d− δ
2 b 6= a 6=?

δ a =?

(4.75)

where a ∈ {0, 1, ?} and b ∈ {0, 1}, so

̃S,X(S,X, b, d) = ıX;Z⋆(X; b) + λ⋆d(S, b)− λ⋆d (4.76)

= − λ⋆d+





log 2
1+exp(−λ⋆) w.p. 1− δ

λ⋆ w.p. δ
2

0 w.p. δ
2

(4.77)

The rate-dispersion function is given by the variance of (4.77):

Ṽ(d) = δ(1− δ) log2 cosh
(

λ⋆

2 log e

)
+
δ

4
λ⋆2 (4.78)

λ⋆ = −R′(d) = log
1− δ

2 − d
d− δ

2

(4.79)

The rate-dispersion function in (4.78) and the blocklength required to sustain a given excess

distortion are plotted in Fig. 4.1. Note that as d approaches δ
2 , the rate-dispersion function grows

without limit. This is to be expected, because for d = δ
2 , even in the hypothetical case where the

decoder knows Xk, the number of erroneously represented bits is binomially distributed with mean

k δ2 , so no code can achieve probability of distortion exceeding d = δ
2 lower than 1

2 . Therefore, the

validity of (4.67) for ǫ < 1
2 requires Ṽ (δ/2) =∞.

The following converse strengthens Corollary 4.2 by exploiting the symmetry of the erased coin

flips setting.

Theorem 4.7 (Converse, BES). Any (k,M, d, ǫ) code must satisfy

ǫ ≥
k∑

j=0

(
k

j

)
δj(1− δ)k−j

j∑

i=0

2−j
(
j

i

)[
1−M2−(k−j)

〈
k − j
⌊kd− i⌋

〉]+
(4.80)
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Figure 4.1: Rate-dispersion function (bits) of the fair binary source observed through an erasure
channel with erasure rate δ = 0.1.
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Proof. Fix a (k,M, d, ǫ) code. Even if the decompressor knows erasure locations, the probability

that j erased bits are at Hamming distance ℓ from their representation is

P
[
j d(Sj , Zj) = ℓ | Xj = (? . . .?)

]
= 2−j

(
j

ℓ

)
(4.81)

because given Xj = (? . . .?), Si’s are i.i.d. binary independent of Y j .

The probability that k−j nonerased bits lie within Hamming distance ℓ from their representation

can be upper bounded using Theorem 2.26:

P
[
(k − j)d(Sk−j , Y k−j) ≤ ℓ | Xk−j = Sk−j

]
≤ M2−k+j

〈
k − j
ℓ

〉
(4.82)

Since the errors in the erased symbols are independent of the errors in the nonerased ones,

P
[
d(Sk, Zk) ≤ d

]

=
k∑

j=0

P[j erasures in Sk]

j∑

i=0

P
[
j d(Sj , Zj) = i|Xj =? . . .?

]

· P
[
(k − j)d(Sk−j , Zk−j) ≤ nd− i|Xk−j = Sk−j

]

≤
k∑

j=0

(
k

j

)
δj(1− δ)k−j

j∑

i=0

2−j
(
j

i

)
min

{
1, M2−(k−j)

〈
k − j
⌊nd− i⌋

〉}
(4.83)

The following achievability bound is a particularization of Theorem 4.3.

Theorem 4.8 (Achievability, BES). There exists a (k,M, d, ǫ) code such that

ǫ ≤
k∑

j=0

(
k

j

)
δj(1 − δ)k−j

j∑

i=0

2−j
(
j

i

)(
1− 2−(k−j)

〈
k − j
⌊nd− i⌋

〉)M
(4.84)

Proof. Consider the ensemble of codes with M codewords drawn i.i.d. from the equiprobable dis-

tribution on {0, 1}k. As discussed in the proof of Theorem 4.7, the distortion in the erased symbols

does not depend on the codebook and is given by (4.81). The probability that the Hamming distance

between the nonerased symbols and their representation exceeds ℓ, averaged over the code ensemble

is found as in Theorem 2.28:

P
[
(k − j)d(Sk−j ,C(f(Xk−j))) > ℓ|Sk−j = Xk−j] =

(
1− 2−(k−j)

〈
k − j
ℓ

〉)M
(4.85)

135



where C(m), m = 1, . . . ,M are i.i.d on {0, 1}k−j. Averaging over the erasure channel, we have

P
[
d(Sk,C(f(Xk)))) > d

]

=

k∑

j=0

P[j erasures in Sk]

j∑

i=0

P
[
j d(Sj ,C(f(Xj))) = i|Xj =? . . .?

]

· P
[
(k − j)d(Sk−j ,C(f(Xk−j))) > nd− i|Xk−j = Sk−j

]

=

k∑

j=0

(
k

j

)
δj(1− δ)k−j

j∑

i=0

2−j
(
j

i

)(
1− 2−(k−j)

〈
k − j
⌊nd− i⌋

〉)M
(4.86)

Since there must exist at least one code whose excess-distortion probability is no larger than the

average over the ensemble, there exists a code satisfying (4.84).

Theorem 4.9 (Gaussian approximation, BES). The minimum achievable rate at blocklength k

satisfies

logM⋆(k, d, ǫ) = kR(d) +

√
kṼ(d)Q−1 (ǫ) + θ(k) (4.87)

where R(d) and Ṽ(d) are given by (4.74) and (4.78), respectively, and the remainder term satisfies

O (1) ≤ θ (k) ≤ 1

2
log k + log log k +O (1) (4.88)

Proof. Appendix D.3.

4.7 Erased fair coin flips: asymptotically equivalent problem

According to (4.7), the distortion measure of the asymptotically equivalent noiseless problem is given

by

d̄(1, 1) = d̄(0, 0) = 0 (4.89)

d̄(1, 0) = d̄(0, 1) = 1 (4.90)

d̄(?, 1) = d̄(?, 0) =
1

2
(4.91)
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The d-tilted information is given by taking the expectation of (4.77) with respect to S:

X(X, d) = − λ⋆d+





log 2
1+exp(−λ⋆) w.p. 1− δ

λ⋆

2 w.p. δ

(4.92)

Its variance is equal to

V(d) = δ(1− δ) log2 cosh
(

λ⋆

2 log e

)
(4.93)

= Ṽ(d)− δ

4
λ⋆2 (4.94)

Tight achievability and converse bounds for the ternary source with binary representation alphabet

and the distortion measure in (4.89)–(4.91) are obtained as follows.

Theorem 4.10 (Converse, asymptotically equivalent BES). Any (k,M, d, ǫ) code must satisfy

ǫ ≥
⌊2kd⌋∑

j=0

(
k

j

)
δj(1− δ)k−j

[
1−M2−(k−j)

〈
k − j

⌊kd− 1
2 j⌋

〉]+
(4.95)

Proof. Fix a (k,M, d, ǫ) code. While j erased bits contribute 1
2
j
k to the total distortion regardless

of the code, the probability that k − j nonerased bits lie within Hamming distance ℓ from their

representation can be upper bounded using Theorem 2.26:

P
[
(k − j)d̄(Xk−j , Zk−j) ≤ ℓ | no erasures in Xk−j] ≤ M2−k+j

〈
k − j
ℓ

〉
(4.96)

We have

P
[
d̄(Xk, Zk) ≤ d

]

=

⌊2kd⌋∑

j=0

P[j erasures in Xk]P

[
(k − j)d̄(Xk−j , Zk−j) ≤ kd− 1

2
j| no erasures in Xk−j

]
(4.97)

≤
⌊2kd⌋∑

j=0

(
k

j

)
δj(1− δ)k−j min

{
1, M2−(k−j)

〈
k − j

⌊kd− 1
2j⌋

〉}
(4.98)

Theorem 4.11 (Achievability, asymptotically equivalent BES). There exists a (k,M, d, ǫ) code such
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that

ǫ ≤
k∑

j=0

(
k

j

)
δj(1 − δ)k−j

(
1− 2−(k−j)

〈
k − j

⌊kd− 1
2j⌋

〉)M
(4.99)

Proof. Consider the ensemble of codes with M codewords drawn i.i.d. from the equiprobable distri-

bution on {0, 1}k. Every erased symbol contributes 1
2k to the total distortion. The probability that

the Hamming distance between the nonerased symbols and their representation exceeds ℓ, averaged

over the code ensemble is found as in Theorem 2.28:

P
[
(k − j)d̄(Xk−j ,C(f(Xk−j))) > ℓ| no erasures in Xk−j] =

(
1− 2−(k−j)

〈
k − j
ℓ

〉)M
(4.100)

where C(m), m = 1, . . . ,M are i.i.d on {0, 1}k−j. Averaging over the erasure channel, we have

P
[
d(Sk,C(f(Xk)))) > d

]

=

k∑

j=0

P[j erasures in Xk]P

[
(k − j)d(Sk−j ,C(f(Xk−j))) > kd− 1

2
j| no erasures in Xk−j

]
(4.101)

=

k∑

j=0

(
k

j

)
δj(1− δ)k−j

(
1− 2−(k−j)

〈
k − j

⌊kd− 1
2j⌋

〉)M
(4.102)

Since there must exist at least one code whose excess-distortion probability is no larger than the

average over the ensemble, there exists a code satisfying (4.99).

The bounds in Theorems 4.7 and 4.8 and the approximation in Theorem 4.6 (with the remainder

term equal to 0 and log k
2k - these choices are justified by (4.88)), as well as the bounds in Theorems

4.10 and 4.11 for the asymptotically equivalent problem together with their Gaussian approximation,

are plotted in Fig. 4.2. We note the following.

• The achievability and converse bounds are extremely tight, even at short blocklenghts, as

evidenced by Fig. 4.3 where we magnified the short blocklength region;

• The dispersion for both problems is small enough that the third-order term matters.

• Despite the fact that the asymptotically achievable rate in the two problems is the same, there

is a very noticeable difference between their nonasymptotically achievable rates in the displayed

region of blocklengths. For example, at blocklength 1000, the penalty over the rate-distortion

function is 9% for erased coin flips and only 4% for the asymptotically equivalent problem.
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Figure 4.2: Rate-blocklength tradeoff for the fair binary source observed through an erasure channel,
as well as that for the asymptotically equivalent problem, with δ = 0.1, d = 0.1, ǫ = 0.1.
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Chapter 5

Channels with cost constraints

5.1 Introduction

This chapter is concerned with the maximum channel coding rate achievable at average error prob-

ability ǫ > 0 where the cost of each codeword is constrained. The material in this chapter was

presented in part in [84].

The capacity-cost function C(β) of a channel specifies the maximum achievable channel coding

rate compatible with vanishing error probability and with codeword cost not exceeding β in the limit

of large blocklengths. We consider stationary memoryless channels with separable cost function, i.e.

(i) PY n|Xn = PY|X × . . .× PY|X, with PY|X : A → B ;

(ii) bn(x
n) = 1

n

∑n
i=1 b(xi) where b : A → [0,∞] .

In this case,

C(β) = sup
E[b(X)]≤β

I(X;Y) (5.1)

A channel is said to satisfy the strong converse if ǫ → 1 as n → ∞ for any code operating at a

rate above the capacity. For memoryless channels without cost constraints, the strong converse was

first shown by Wolfowitz: [49] treats the discrete memoryless channel (DMC), while [85] generalizes

the result to memoryless channels whose input alphabet is finite while the output alphabet is the

real line. Arimoto [86] showed a new converse bound stated in terms of Gallager’s random coding

exponent, which also leads to the strong converse for the DMC. Kemperman [87] showed that the

strong converse holds for a DMC with feedback. For a particular discrete channel with finite memory,

the strong converse was shown by Wolfowitz [88] and independently by Feinstein [89], a result soon
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generalized to a more general stationary discrete channel with finite memory [90]. In a more general

setting not requiring the assumption of stationarity or finite memory, Verdú and Han [91] showed

a necessary and sufficient condition for a channel without cost constraints to satisfy the strong

converse. In the special case of finite-input channels, that necessary and sufficient condition boils

down to the capacity being equal to the limit of maximal normalized mutual informations. In turn,

that condition is implied by the information stability of the channel [92], a condition which in general

is not easy to verify.

As far as channel coding with input cost constraints, a general necessary and sufficient condition

for a channel with cost constraints to satisfy the strong converse was shown by Han [43, Theorem

3.7.1]. The strong converse for DMC with separable cost was shown by Csiszár and Körner [46,

Theorem 6.11] and by Han [43, Theorem 3.7.2]. Regarding analog channels, the strong converse has

only been studied in the context of additive Gaussian noise channels with the cost function being

the power of the channel input block, bn(x
n) = 1

n |xn|2. In the most basic case of the memoryless

additive white Gaussian noise (AWGN) channel, the strong converse was shown by Shannon [10]

(contemporaneously with Wolfowitz’s finite alphabet strong converse). Yoshihara [93] proved the

strong converse for the time-continuous channel with additive Gaussian noise having an arbitrary

spectrum and also gave a simple proof of Shannon’s strong converse result. Under the requirement

that the power of each message converges stochastically to a given constant β, the strong converse

for the AWGN channel with feedback was shown by Wolfowitz [94]. Note that in all those analyses

of the power-constrained AWGN channel the cost constraint is meant on a per-codeword basis. In

fact, as was observed by Polyanskiy [4, Theorem 77] in the context of the AWGN channel, the strong

converse ceases to hold if the cost constraint is averaged over the codebook.

For a survey on existing results in joint source-channel coding see Section 3.1.

As we mentioned in Section 1.2, channel dispersion quantifies the backoff from capacity, un-

escapable at finite blocklengths due to the random nature of the channel coming into play, as op-

posed to the asymptotic representation of the channel as a deterministic bit pipe of a given capacity.

Polyanskiy et al. [3] found the dispersion of the DMC without cost constraints as well as that of

the AWGN channel with a power constraint. Hayashi [95, Theorem 3] showed the dispersion of the

DMC with and without cost constraints (with the loose estimate of o (
√
n) for the third order term).

For constant composition codes over the DMC, Polyanskiy [4, Sec. 3.4.6] found the dispersion of

constant composition codes over the DMC invoking the κβ bound [3, Theorem 25] to prove the

achievability part, while Moulin [96] refined the third order term in the expansion of the maximum

achievable code rate, under regularity conditions.
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In this chapter, we show a new non-asymptotic converse bound for general channels with input

cost constraints in terms of a random variable we refer to as the b-tilted information density, which

parallels the notion of d-tilted information for lossy compression in Section 2.2. Not only does

the new bound lead to a general strong converse result but it is also tight enough to find the

channel dispersion-cost function and the third order term equal to 1
2 log n when coupled with the

corresponding achievability bound. More specifically, we show that for the DMC, M⋆(n, ǫ, β), the

maximum achievable code size at blocklength n, error probability ǫ and cost β, is given by, under

mild regularity assumptions,

logM⋆(n, ǫ, β) = nC(β) −
√
nV (β)Q−1 (ǫ) +

1

2
logn+O (1) (5.2)

where V (β) is the dispersion-cost function, and Q−1 (·) is the inverse of the Gaussian complementary

cdf, thereby refining Hayashi’s result [95] and providing a matching converse to the result of Moulin

[96]. We observe that the capacity-cost and the dispersion-cost functions are given by the mean and

the variance of the b-tilted information density. This novel interpretation juxtaposes nicely with the

corresponding results in Chapter 2 (d-tilted information in rate-distortion theory).

Section 5.2 introduces the b-tilted information density. Section 5.3 states the new non-asymptotic

converse bound which holds for a general channel with cost constraints, without making any assump-

tions on the channel (e.g. alphabets, stationarity, memorylessness). An asymptotic analysis of the

converse and achievability bounds, including the proof of the strong converse and the expression for

the channel dispersion-cost function, is presented in Section 5.4. Section 5.5 generalizes the results

in Sections 5.3 and 5.4 to the lossy joint source-channel coding setup.

5.2 b-tilted information density

In this section, we introduce the concept of b-tilted information density and several relevant prop-

erties.

Fix the transition probability kernel PY |X : X → Y and the cost function b : X 7→ [0,∞]. In

the application of this single-shot approach in Section 5.4, X , Y, PY |X and b will become An, Bn,
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PY n|Xn in (i) and bn in (ii), respectively. As in (3.4), denote: 1

C(β) = sup
PX :

E[b(X)]≤β

I(X ;Y ) (5.3)

λ⋆ = C′(β) (5.4)

Further, recalling notation (2.22), define the function

Y |X‖Ȳ (x; y, β) , ıY |X‖Ȳ (x; y)− λ⋆ (b(x)− β) (5.5)

As before, if PX → PY |X → PY , instead of writing Y |X‖Y in the subscripts we write X ;Y .

The special case of (5.5) with PȲ = PY ⋆ , where PY ⋆ is the unique output distribution that

achieves the supremum in (5.3), defines b-tilted information density:

Definition 5.1 (b-tilted information density). The b-tilted information density between x ∈ X and

y ∈ Y is

⋆X;Y (x; y, β) , ı⋆X;Y (x; y)− λ⋆ (b(x)− β) (5.6)

where, as in (3.6), we abbreviated

ı⋆X;Y (x; y) , ıY |X‖Y ⋆(x; y) (5.7)

Since PY ⋆ is unique even if there are several (or none) input distributions PX⋆ that achieve

supremum in (5.3), there is no ambiguity in Definition 5.1. If there are no cost constraints (i.e.

b(x) = 0 ∀x ∈ X ), then C′(β) = 0 regardless of β, and

⋆X;Y (x; y, β) = ı⋆X;Y (x; y) (5.8)

The counterpart of the b-tilted information density in rate-distortion theory is the d-tilted informa-

tion in Section 2.2.

1The difference in notation in (5.1) and (5.3) is intentional. While C(β) in (5.1) has the operational interpretation
of being the capacity-cost function of the stationary memoryless channel with single-letter transition probability kernel
PY|X, C(β) simply denotes the optimum of the maximization problem in the right side of (5.3); its operational meaning
does not, at this point, concern us.
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Denote

βmin = inf
x∈X

b(x) (5.9)

βmax = sup {β ≥ 0: C(β) < C(∞)} (5.10)

A nontrivial generalization of the well-known properties of information density in the case of no

cost constraints, the following result highlights the importance of b-tilted information density in the

optimization problem (5.3). It will be of key significance in the asymptotic analysis in Section 5.4.

Theorem 5.1. Fix βmin < β < βmax. Assume that PX⋆ achieving (5.3) is such that

E [b(X⋆)] = β (5.11)

Let PX → PY |X → PY , PX⋆ → PY |X → PY ⋆It holds that

C(β) = sup
PX

E [X;Y (X ;Y, β)] (5.12)

= sup
PX

E
[
⋆X;Y (X ;Y, β)

]
(5.13)

= E
[
⋆X;Y (X

⋆;Y ⋆, β)
]

(5.14)

= E
[
⋆X;Y (X

⋆;Y ⋆, β)|X⋆
]

(5.15)

where (5.15) holds PX⋆-a.s.

Proof. Appendix E.1.

Throughout Chapter 5, we assume that the assumptions of Theorem 5.1 hold.

Corollary 5.2.

Var
[
⋆X;Y (X

⋆;Y ⋆, β)
]
= E

[
Var

[
⋆X;Y (X

⋆;Y ⋆, β)|X⋆
]]

(5.16)

= E
[
Var

[
ı⋆X;Y (X

⋆;Y ⋆)|X⋆
]]

(5.17)

Proof. Appendix E.2.

Example 5.1. For n uses of a memoryless AWGN channel with unit noise power and total power

not exceeding nP , C(P ) = n
2 log(1 + P ), and the output distribution that achieves (5.3) is Y n⋆ ∼
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N (0, (1 + P ) I). Therefore

⋆Xn;Y n(xn; yn, P ) =
n

2
log (1 + P )− log e

2
|yn − xn|2 + log e

2(1 + P )

(
|yn|2 − |xn|2 + nP

)
(5.18)

It is easy to check that under PY n|Xn=xn , the distribution of ⋆Xn;Y n(xn;Y n, P ) is the same as that

of (by ‘∼’ we mean equality in distribution)

⋆Xn;Y n(xn;Y n, P ) ∼ n

2
log (1 + P )− P log e

2(1 + P )

[
Wn

n |xn|2
P2

− n− |x
n|2
P 2

]
(5.19)

where W ℓ
λ denotes a non central chi-square distributed random variable with ℓ degrees of freedom

and non-centrality parameter λ. The mean of (5.19) is n
2 log (1 + P ), in accordance with (5.15),

while its variance is 1
2

(nP 2+2|xn|2)
(1+P )2 log2 e which becomes nV (P ) after averaging with respect to Xn⋆

distributed according to PXn⋆ ∼ N (0, P I), as we will see in Section 5.4.3 (cf. [3]).

Example 5.2. Consider the memoryless binary symmetric channel (BSC) with crossover probability

δ and Hamming per-symbol cost, b(x) = x. The capacity-cost function is given by

C(β) =





h(β ⋆ δ)− h(δ) β ≤ 1
2

1− h(δ) β > 1
2

(5.20)

where β ⋆ δ = (1 − β)δ + β(1 − δ). The capacity-cost function is achieved by PX⋆(1) = min
{
β, 12

}
,

and C′(β) = (1− 2δ) log 1−β⋆δ
β⋆δ for β ≤ 1

2 , and

⋆X;Y(X
⋆;Y⋆, β) = h(β ⋆ δ)− h(δ) +





δ log 1−δ
δ

β⋆δ
1−β⋆δ w.p. (1− δ)(1 − β)

−(1− δ) log 1−δ
δ

β⋆δ
1−β⋆δ w.p. δ(1− β)

δ log 1−δ
δ

1−β⋆δ
β⋆δ w.p. (1− δ)β

−(1− δ) log 1−δ
δ

1−β⋆δ
β⋆δ w.p. δβ

(5.21)

The capacity-cost function (the mean of ⋆X;Y(X
⋆;Y⋆, β)) and the dispersion-cost function (the vari-

ance of ⋆X;Y(X
⋆;Y⋆, β)) are plotted in Fig. 5.1.
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Figure 5.1: Capacity-cost function (a) and the dispersion-cost function (b) for BSC with crossover
probability δ where the normalized Hamming weight of codewords is constrained not to exceed β.

5.3 New converse bound

Converse and achievability bounds give necessary and sufficient conditions, respectively, on (M, ǫ, β)

in order for a code to exist with M codewords and average error probability not exceeding ǫ and β,

respectively. Such codes (allowing stochastic encoders and decoders) are rigorously defined next.

Definition 5.2 ((M, ǫ, β) code). An (M, ǫ, β) code for {PY |X , b} is a pair of random transformations

PX|S (encoder) and PZ|Y (decoder) such that P [S 6= Z] ≤ ǫ, where the probability is evaluated with S

equiprobable on an alphabet of cardinality M , S−X−Y −Z, and the codewords satisfy the maximal

cost constraint (a.s.)

b(X) ≤ β (5.22)

The non-asymptotic quantity of principal interest isM⋆(ǫ, β), the maximum code size achievable

at error probability ǫ and cost β. Blocklength will enter into the picture later when we consider

(M,d, ǫ) codes for {PY n|Xn , bn}, where PY n|Xn : An 7→ Bn and bn : An 7→ [0,∞]. We will call such

codes (n,M, d, ǫ) codes, and denote the corresponding non-asymptotically achievable maximum code

size by M⋆(n, ǫ, β). For now, though, blocklength n is immaterial, as the converse and achievability

bounds do not call for any Cartesian product structure of the channel input and output alphabets.

Accordingly, forgoing n, just as we did in Chapters 2–4, we state the converse for a generic pair

{PY |X , b}, rather than the less general {PY n|Xn , bn}.
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Theorem 5.3 (Converse). The existence of an (M, ǫ, β) code for {PY |X , b} requires that

ǫ ≥ inf
X

max
γ>0

{
sup
Ȳ

P
[
Y |X‖Ȳ (X ;Y, β) ≤ logM − γ

]
− exp(−γ)

}
(5.23)

≥ max
γ>0

{
sup
Ȳ

inf
x∈X

P
[
Y |X‖Ȳ (x;Y, β) ≤ logM − γ|X = x

]
− exp(−γ)

}
(5.24)

Proof. Fix an (M, ǫ) code {PX|S , PZ|Y }, γ > 0, and an auxiliary probability distribution PȲ on Y.

Since b(X) ≤ β, we have

P
[
Y |X‖Ȳ (X ;Y, β) ≤ logM − γ

]

≤ P
[
ıY |X‖Ȳ (X ;Y )− λ⋆(b(X)− β) ≤ logM − γ

]
(5.25)

≤ P
[
ıY |X‖Ȳ (X ;Y ) ≤ logM − γ

]
(5.26)

= P
[
ıY |X‖Ȳ (X ;Y ) ≤ logM − γ, Z 6= S

]
+ P

[
ıY |X‖Ȳ (X ;Y ) ≤ logM − γ, Z = S

]
(5.27)

≤ P [Z 6= S] +
1

M

M∑

m=1

∑

x∈X
PX|S(x|m)

∑

y∈Y
PY |X(y|x)PZ|Y (m|y)1

{
PY |X(y|x) ≤ PȲ (y)M exp (−γ)

}

(5.28)

≤ ǫ+ exp(−γ)
∑

y∈Y
PȲ (y)

M∑

m=1

PZ|Y (m|y)
∑

x∈X
PX|S(x|m) (5.29)

≤ ǫ+ exp (−γ) (5.30)

Optimizing over γ > 0 and the distribution of the auxiliary random variable Ȳ , we obtain the best

possible bound for a given PX , which is generated by the encoder PX|S . Choosing PX that gives

the weakest bound to remove the dependence on the code, (5.23) follows.

To show (5.24), we weaken (5.23) by moving infX inside supȲ , and write

inf
X

P
[
Y |X‖Ȳ (X ;Y, β) ≤ logM − γ

]
= inf

X

∑

x∈X
PX(x)P

[
Y |X‖Ȳ (x;Y, β) ≤ logM − γ|X = x

]
(5.31)

= inf
x∈X

P
[
Y |X‖Ȳ (x;Y, β) ≤ logM − γ|X = x

]
(5.32)

Remark 5.1. At short blocklengths, it is possible to get a better bound by giving more freedom in

(5.5) not restricting λ⋆ to be (5.4).
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Achievability bounds for channels with cost constraints can be obtained from the random coding

bounds in [3, 58] by restricting the distribution from which the codewords are drawn to satisfy

b(X) ≤ β a.s. In particular, for the DMC, we may choose PXn to be equiprobable on the set of

codewords of type which is closest to the input distribution PX⋆ that achieves the capacity-cost

function. As we will see in Section 5.4.3, owing to (5.17), such constant composition codes achieve

the dispersion of channel coding under input cost constraints.

5.4 Asymptotic analysis

In this section, we reintroduce the blocklength n into the non-asymptotic converse of Section 5.3,

i.e. let X and Y therein turn into Xn and Y n, and perform its analysis, asymptotic in n.

5.4.1 Assumptions

The following basic assumptions hold throughout Section 5.4.

(i) The channel is stationary and memoryless, PY n|Xn = PY|X × . . .× PY|X.

(ii) The cost function is separable, bn(x
n) = 1

n

∑n
i=1 b(xi), where b : A 7→ [0,∞].

(iii) The codewords are constrained to satisfy the maximal power constraint (5.22).

(iv) supx∈A Var
[
⋆X;Y(x;Y, β)|X = x

]
= Vmax <∞.

Under these assumptions, the capacity-cost function C(β) = C(β) is given by (5.1). Observe that

in view of assumption (i), as long as PȲ n is a product distribution, PȲ n = PȲ × . . .× PȲ,

Y n|Xn‖Ȳ n(xn; yn, β) =

n∑

i=1

Y|X‖Ȳ(xi; yi, β) (5.33)

5.4.2 Strong converse

We show that if transmission occurs at a rate greater than the capacity-cost function, the error

probability must converge to 1, regardless of the specifics of the code. Toward this end, we fix some

α > 0, we choose logM ≥ nC(β) + 2nα, and we weaken the bound (5.24) in Theorem 5.3 by fixing

γ = nα and PȲ n = PY⋆ × . . . × PY⋆ , where Y⋆ is the output distribution that achieves C(β), to
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obtain

ǫ ≥ inf
xn∈An

P

[
n∑

i=1

⋆X;Y(xi;Yi, β) ≤ nC(β) + nα

]
− exp(−nα) (5.34)

≥ inf
xn∈An

P

[
n∑

i=1

⋆X;Y(xi;Yi, β) ≤
n∑

i=1

c(xi) + nα

]
− exp(−nα) (5.35)

where for notational convenience we have abbreviated c(x) = E

[
⋆X;Y(x;Y, β)|X = x

]
, and (5.35)

employs (5.13).

To show that the right side of (5.35) converges to 1, we invoke the following law of large numbers

for non-identically distributed random variables.

Theorem 5.4 (e.g. [97]). Suppose that Wi are uncorrelated and
∑∞

i=1 Var
[
Wi

bi

]
< ∞ for some

strictly positive sequence (bn) increasing to +∞. Then,

1

bn

(
n∑

i=1

Wi − E

[
n∑

i=1

Wi

])
→ 0 in L2 (5.36)

Let Wi = ⋆X;Y(xi;Yi, β) and bi = i. Since (recall (iv))

∞∑

i=1

Var

[
1

i
⋆X;Y(xi;Yi, β)|Xi = xi

]
≤ Vmax

∞∑

i=1

1

i2
(5.37)

<∞ (5.38)

by virtue of Theorem 5.4 the right side of (5.35) converges to 1, so any channel satisfying (i)–(iv)

also satisfies the strong converse.

As noted in [4, Theorem 77] in the context of the AWGN channel, the strong converse does

not hold if the power constraint is averaged over the codebook, i.e. if, in lieu of (5.22), the cost

requirement is

1

M

M∑

m=1

E [b(X)|S = m] ≤ β (5.39)

To see why, fix a code of rate C(β) < R < C(2β) none of whose codewords costs more than 2β

and whose error probability vanishes as n increases, ǫ → 0. Since R < C(2β), such a code exists.

Now, replace half of the codewords with the all-zero codeword (assuming b(0) = 0) while leaving the

decision regions of the remaining codewords untouched. The average cost of the new code satisfies

(5.39), its rate is greater than the capacity-cost function, R > C(β), yet its average error probability
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does not exceed ǫ+ 1
2 → 1

2 .

5.4.3 Dispersion

First, we give the operational definition of the dispersion-cost function of any channel.

Definition 5.3 (Dispersion-cost function). The channel dispersion-cost function, measured in squared

information units per channel use, is defined by

V (β) = lim
ǫ→0

lim sup
n→∞

1

n

(nC(β) − logM⋆(n, ǫ, β))
2

2 loge
1
ǫ

(5.40)

An explicit expression for the dispersion-cost function of a memoryless channel is given in the

next result.

Theorem 5.5. In addition to assumptions (i)–(iv), assume that the capacity-achieving input dis-

tribution PX⋆ is unique and that the channel has finite input and output alphabets.

logM⋆(n, ǫ, β) = nC(β) −
√
nV (β)Q−1 (ǫ) + θ(n) (5.41)

C(β) = E
[
⋆X;Y(X

⋆;Y⋆, β)
]

(5.42)

V (β) = Var
[
⋆X;Y(X

⋆;Y⋆, β)
]

(5.43)

where PX⋆Y⋆ = PX⋆PY|X, and the remainder term θ(n) satisfies:

a) If V (β) > 0,

−1

2
(|supp (PX⋆)| − 1) logn+O (1) ≤ θ(n) (5.44)

≤ 1

2
logn+O (1) (5.45)

b) If V (β) = 0, (5.44) holds, and (5.45) is replaced by

θ(n) ≤ O
(
n

1
3

)
(5.46)

Proof. Converse. Full details are given in Appendix E.3. The main steps of the refined asymptotic

analysis of the bound in Theorem 5.3 are as follows. First, building on the ideas of [98, 99], we

weaken the bound in (5.24) by a careful choice of a non-product auxiliary distribution PȲ n . Second,
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using Theorem 5.1 and the technical tools developed in Appendix A.3, we show that the minimum

in the right side of (5.24) is lower bounded by ǫ for the choice of M in (5.41).

Achievability. Full details are given in Appendix E.4, which provides an asymptotic analysis of

the Dependence Testing bound of [3] in which the random codewords are of type closest to PX⋆ ,

rather than drawn from the product distribution PX× . . .×PX, as in achievability proofs for channel

coding without cost constraints. We use Corollary 5.2 to establish that such constant composition

codes achieve the dispersion-cost function.

Remark 5.2. According to a recent result of Moulin [96], the achievability bound on the remainder

term in (5.45) can be tightened to match the converse bound in (5.45), thereby establishing that

θ(n) =
1

2
logn+O (1) (5.47)

provided that the following regularity assumptions hold:

• The random variable ı⋆X;Y(X
⋆;Y⋆) is of nonlattice type;

• supp(PX⋆) = A;

• Cov
[
ı⋆X;Y(X

⋆;Y⋆), ı⋆X;Y(X̄
⋆;Y⋆)

]
< Var

[
ı⋆X;Y(X

⋆;Y⋆)
]
where

PX̄⋆X⋆Y⋆(x̄, x, y) = 1
PY⋆ (y)

PX⋆(x̄)PY|X(y|x̄)PY|X(y|x)PX⋆(x).

Remark 5.3. Theorem 5.5 applies to channels with abstract alphabets provided that a certain sym-

metricity assumption is satisfied. More precisely, for all x ∈ A such that b(x) = β, (5.41) with

C(β) = D(PY|X=x‖PY⋆) (5.48)

V (β) = Var
[
ı⋆X;Y(x;Y)|X = x

]
(5.49)

and the remainder satisfying

− fn +O (1) ≤ θ(n) ≤ 1

2
logn+O (1) (5.50)

where fn = o (
√
n) in specified in (d) below, holds for those channels and cost functions that in

addition to (i)–(iii), meet the following criteria.

(a) The cost function b : A → [0,∞] is such that for all γ ∈ [β,∞), b−1(γ) is nonempty. In

particular, this condition is satisfied if the channel input alphabet A is a metric space, and b is

continuous and unbounded with b(0) = 0.
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(b) The distribution of ı⋆Xn;Y n(xn;Y n), where PY n⋆ = PY⋆× . . .×PY⋆ does not depend on the choice

of xn ∈ F , where F = {xn ∈ An : b(xn) = β}.

(c) For all x in the projection of F onto A,

E

[∣∣⋆X;Y(X;Y, β) − C(β)
∣∣3 |X = x

]
<∞ (5.51)

(d) There exists a distribution PXn supported on F such that ıY n‖Y n⋆(Y n), where PXn → PY n|Xn →

PY n , is almost surely upper-bounded by fn = o (
√
n).

The proof is explained in Appendix E.5.

Remark 5.4. Theorem 5 with the remainder in (5.50) (with fn = O (1)) also holds for the AWGN

channel with maximal signal-to-noise ratio P , offering a novel interpretation of the expression

V (P ) =
1

2

(
1− 1

(1 + P )
2

)
log2 e (5.52)

found in [3], as the variance of the b-tilted information density. Note that the AWGN channel

satisfies the conditions of Remark 5.3 with PXn uniform on the power sphere and fn = O (1).

Remark 5.5. If the capacity-achieving distribution is not unique,

V (β) =





minVar
[
⋆X;Y(X

⋆;Y⋆, β)
]

0 < ǫ ≤ 1
2

maxVar
[
⋆X;Y(X

⋆;Y⋆, β)
]

1
2 < ǫ < 1

(5.53)

where the optimization is performed over all PX⋆ that achieve C(β).

The converse bound in Theorem 5.3, the matching achievability bound in [3, Theorem 17], and the

Gaussian approximation in Theorem 5.5 in which the remainder is approximated by θ(n) ≈ 1
2 logn

are plotted in Figures 5.2, 5.3, 5.4, 5.5 for the BSC with Hamming cost discussed in Example 5.2.

As evidenced by the plots, although the minimum over the channel inputs in (5.24) may be difficult

to analyze, it is not difficult to compute (in polynomial time), at least for the DMC.

5.5 Joint source-channel coding

In this section we state the counterparts of Theorems 5.3 and 5.5 in the lossy joint source-channel

coding setting. Proofs of the results in this section are obtained by fusing the proofs in Sections 5.3

and 5.4 and those in Chapter 3.
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Figure 5.2: Rate-blocklength tradeoff for BSC with crossover probability δ = 0.11 where the nor-
malized Hamming weight of codewords is constrained not to exceed β = 0.25 and the tolerated error
probability is ǫ = 10−4.
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Figure 5.3: Rate-blocklength tradeoff for BSC with crossover probability δ = 0.11 where the nor-
malized Hamming weight of codewords is constrained not to exceed β = 0.25 and the tolerated error
probability is ǫ = 10−2.
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Figure 5.5: Rate-blocklength tradeoff for BSC with crossover probability δ = 0.11 where the nor-
malized Hamming weight of codewords is constrained not to exceed β = 0.4 and the tolerated error
probability is ǫ = 10−2.
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As discussed in 1.5, in the joint source-channel coding problem setup the source is no longer

equiprobable on an alphabet of cardinality M , as in Definition 5.2, but is rather arbitrarily dis-

tributed on an abstract alphabet M. Further, instead of reproducing the transmitted S under a

probability of error criterion, we might be interested in approximating S within a certain distortion,

so that a decoding failure occurs if the distortion between the source and its reproduction exceeds a

given distortion level d, i.e. if d(S,Z) > d. A (d, ǫ, β) code is a code for a fixed source-channel pair

such that the probability of exceeding distortion d is no larger than ǫ and no channel codeword costs

more than β. A (d, ǫ, β) code in a block coding setting, when a source block of length k is mapped

to a channel block of length n, is called a (k, n, d, ǫ, β) code. The counterpart of the b-tilted infor-

mation density in lossy compression is the d-tilted information, S(s, d), which, in a certain sense,

quantifies the number of bits required to reproduce the source outcome s ∈ M within distortion d.

For rigorous definitions and further details we refer the reader back to Chapter 3.

Theorem 5.6 (Converse). The existence of a (d, ǫ, β) code for S and PY |X requires that

ǫ ≥ inf
PX|S

max
γ>0

{
sup
Ȳ

P
[
S(S, d)− Y |X‖Ȳ (X ;Y, β) ≥ γ

]
− exp (−γ)

}
(5.54)

≥ max
γ>0

{
sup
Ȳ

E

[
inf
x∈X

P
[
S(S, d)− Y |X‖Ȳ (x;Y, β) ≥ γ | S

]]
− exp (−γ)

}
(5.55)

where the probabilities in (5.54) and (5.55) are with respect to PSPX|SPY |X and PY |X=x, respectively.

Under the usual memorylessness assumptions, applying Theorem 5.4 to the bound in (5.55), it

is easy to show that the strong converse holds for lossy joint source-channel coding over channels

with input cost constraints. A more refined analysis leads to the following result.

Theorem 5.7 (Gaussian approximation). Assume the channel has finite input and output alphabets.

Under restrictions (i)–(iv) of Section 2.6.2 and (ii)–(iv) of Section 5.4.1, the parameters of the

optimal (k, n, d, ǫ) code satisfy

nC(β)− kR(d) =
√
nV (β) + kV(d)Q−1 (ǫ) + θ (n) (5.56)

where V(d) = Var [S(S, d)], V (β) is given in (5.43), and the remainder θ (n) satisfies, if V (β) > 0,

−1

2
logn+O

(√
logn

)
≤ θ(n) (5.57)

≤ θ̄(n) +
(
1

2
|supp(PX⋆)| − 1

)
logn (5.58)
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where θ̄(n) denotes the upper bound on θ(n) given in Theorem 3.10. If V (β) = 0, the upper bound

on θ(n) stays the same, and the lower one becomes (5.46).

5.6 Conclusion

We introduced the concept of b-tilted information density (Definition 5.1), a random variable whose

distribution plays the key role in the analysis of optimal channel coding under input cost constraints.

We showed a new converse bound (Theorem 5.3), which gives a lower bound on the average error

probability in terms of the cdf of the b-tilted information density. The properties of b-tilted informa-

tion density listed in Theorem 5.1 play a key role in the asymptotic analysis of the bound in Theorem

5.3 in Section 5.4, which does not only lead to the strong converse and the dispersion-cost function

when coupled with the corresponding achievability bound, but it also proves that the third order

term in the asymptotic expansion (5.2) is upper bounded (in the most common case of V (β) > 0)

by 1
2 logn+O (1). In addition, we showed in Section 5.5 that the results of Chapter 3 generalize to

coding over channels with cost constraints and also tightened the estimate of the third order term

in Chapter 3. As propounded in [98, 99], the gateway to refined analysis of the third order term is

an apt choice of a non-product distribution PȲ n in the bounds in Theorems 5.3 and 5.6.
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Chapter 6

Open problems

This concluding chapter provides a survey of open problems in the subject of finite blocklength lossy

compression and identifies possible future research directions.

6.1 Lossy compression of sources with memory

As most real world sources, such as text, images, video and audio, are not memoryless, finite

blocklength analysis of lossy compression for sources with memory has evident practical importance.

While the core results of this thesis, namely, new tight achievability and converse bounds to the

minimum achievable source coding rate as a function of blocklength and tolerable distortion, allow for

memory, analysis and numerical computation of those bounds has been performed only in the most

basic setting of lossy compression of a stationary memoryless source. It would be both analytically

insightful and practically relevant to derive an analytical approximation to the minimum achievable

finite blocklength coding rate of Markov sources similar in flavor to the Gaussian approximation in

(1.9).

In the related scenarios of lossless data compression of a Markov source and data transmission

over a binary symmetric channel in which the crossover probability evolves as a binary symmetric

Markov chain, such approximations have been derived in [100] and [101], respectively. In rate-

distortion theory, however, such a pursuit meets unique challenges, as even for the simplest model

of a source with memory, namely, a binary symmetric Markov source with bit error rate distortion,

the asymptotic fundamental limit is not known for all distortion allowances, let alone its finite

blocklength refinements.

What is known in rate-distortion theory for sources with memory is sketched next. The coding
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theorem for ergodic discrete-alphabet sources with memory [7] shows that he rate-distortion function,

which gives the minimum asymptotically achievable rate, is expressed as a limit of a sequence of

solutions of a certain convex optimization problem parameterized by blocklength k:

R(d) = lim sup
k→∞

inf
P

Zk|Sk :

E[d(Sk,Zk)]≤d

1

k
I(Sk;Zk) (6.1)

For general (nonergodic and/or nonstationary) sources, a formula for the rate-distortion function

in terms of lim sup in probability of information rate was given by Han [43] and by Steinberg and

Verdú [102].

In general the lim sup in (6.1) is difficult to evaluate. In the simple case of a binary symmetric

Markov source with bit error rate distortion, namely, a source with PSk =
∏k
i=1 PSk|Sk−1 , where

PSk|Sk−1
(sk|sk−1) =





p sk 6= sk−1

1− p sk = sk−1

(6.2)

a partial answer is provided by Gray [103] who showed that

R(d) ≥ h(p)− h(d) (6.3)

with equality in the following small distortion region,

0 ≤ d ≤ 1

2

(
1−

(
p

1− p

)2
)

(6.4)

For higher distortions, upper and lower bounds allowing to compute the rate-distortion function

in this case with desired accuracy have been recently shown in [104]. Gray [105] showed a lower

bound to the rate-distortion function of finite-state finite-alphabet Markov sources with a balanced

distortion measure and identified conditions under which it coincides with its corresponding upper

bound.

For variable-length lossy compression of sources with memory, Kontoyiannis [32] presented upper

and lower bounds to the minimum achievable encoded length as a function of a given source realiza-

tion and required fidelity of reproduction, which eventually hold with probability 1 for a sufficiently

large blocklength k. A major weakness of these bounds is that they have exponential computational

complexity.
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Notably, all the papers [32,103–105] implicitly use the representation of the rate-distortion func-

tion via the d-tilted information (see Theorem 2.1) to obtain their results.

6.2 Average distortion achievable at finite blocklengths

For reasons explained in Section 1.8, the fidelity criterion this thesis heeds is the probability of

exceeding a given distortion. As evidenced by the simplicity of our bounds, not only excess distortion

is the most basic and natural way to look at lossy compression problems at finite blocklengths, it

also accounts for stochastic variability of the source in the finite blocklength regime in a way looking

just at the average distortion does not. Indeed, the redundancy result [41] in (2.80) asserts that the

minimum average distortion as a function of blocklength k approaches the distortion-rate function

as O
(

log k
k

)
, while our result in (2.177) states that the minimum excess distortion approaches the

distortion-rate function as O
(

1√
k

)
, dwarfing the overhead of O

(
log k
k

)
measured in terms of average

distortion.

Nevertheless, it would be enlightening to complement our finite blocklength results on excess

distortion with those on average distortion, and, in particular, to contrast the approximation in

(2.80) with corresponding finite blocklength bounds. Most of the existing bounds in vector quan-

tization [106] are asymptotic. The most well-known is that for fixed analog vector dimension, a

signal-to-noise-ratio achieved by fine quantization grows 6 dB for every increase of one bit [107–109];

furthermore, uniform quantization is suboptimal by at most 1.53 dB [110, 111], and scalar quanti-

zation of Gaussian sources suffers a penalty of 4.35 dB. Some progress in bounding the minimum

average distortion achievable by a vector quantizer of a fixed dimension has recently been announced

in [112], where a number of finite blocklength bounds on average distortion are shown.

As mentioned in Section 2.10, since the minimum achievable average distortion can be written

as

D(k,R) = inf
f,c : |f|≤exp(kR)

∫ ∞

0

P
[
d(Sk, c(f(Sk))) > ξ

]
dξ (6.5)

finite blocklength bounds on average distortion can be obtained by integrating our bounds on excess

distortion over all distortion thresholds. However, while one might expect an achievability bound

obtained by an integration of the random coding bound in (2.16) (making the choice of the code,

i.e. PZ̄ , after the integration) to be reasonably tight, the same unfortunately cannot be said about

integrating excess-distortion converse bounds. The reason is that in this way we compute a lower
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bound to ∫ ∞

0

inf
f,c : |f|≤exp(kR)

P
[
d(Sk, c(f(Sk))) > ξ

]
dξ (6.6)

while in reality the choice of code cannot be matched to all distortion thresholds ξ. This difficulty

cannot be circumvented with our d-tilted information bound in Theorem 2.12 because it essentially

has optimization over all codes built in; however the converse bound in Theorem 4.20 does not, thus

one can expect to obtain a tighter average distortion bound from it by performing the optimization

over the code (i.e. PZ|X) after the integration.

The integrated bounds, the approximation [42] in (2.80), together with the performance of a

sample of quantization schemes, are plotted in Figures 6.1 and 6.2, for the case of the Gaussian

source under mean squared error distortion.
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Figure 6.1: Comparison of various quantization schemes for GMS in terms of average SNR
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]
. R = 1 bit/source sample.

Even more ground is left untouched in the realm of lossy joint source-channel coding under the

average distortion constraint. Indeed, while the redundancy result [41] in (2.80) suggests that a

similar beautiful expansion should hold in the joint source-channel coding setting, to date not even
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a redundancy result of order O
(

log k
k

)
has been shown. Pilc’s achievability bound [40, 63] is based

on a separated scheme and leads to a redundancy result of order O

(√
log k
k

)
. This estimate can be

tightened using our random coding joint achievability scheme in Theorem 3.8.

6.3 Nonasymptotic network information theory

Using nonasymptotic covering (Lemma 2.18) and packing lemmas, achievability bounds for several

multiuser information theory problems have been shown in [44]. Unfortunately, as we saw in Chapter

2, in the single-user case the nonasymptotic covering lemma leads to Shannon’s bound (Theorem

2.4) which is rather loose for blocklengths of order 1000. Thus more refined bounding techniques

(perhaps in the spirit of Theorem 2.19) are required to develop nonasymptotic achievability bounds

for multiuser information theory that are tight.

New non-asymptotic achievability bounds for three side-information problems, namely, the Wyner-

Ahlswede-Körner problem of almost-lossless source coding with rate-limited side-information, the

Wyner-Ziv [121] problem of lossy source coding with side-information at the decoder and the Gelfand-

Pinsker problem of channel coding with noncausal state information available at the encoder have

recently been proposed by Watanabe et al. [122].

A clever technique to show one-shot achievability bounds in network information theory has

been recently developed by Yassaee et. al. [123]. It involves a stochastic decoder which draws a

message randomly from a posterior probability distribution induced by the code and an application of

Jensen’s inequality to bound the expectations of jointly convex functions of several random variables

that result from the error probability analysis of that decoder. The technique leads to a number

of novel achievability bounds for the multiuser settings of Gelfand-Pinsker, Berger-Tung, Heegard-

Berger/Kaspi, broadcast channel, multiple description coding and joint source-channel coding over

a MAC.

To judge the tightness of the nonasymptotic achievability bounds in [44, 122, 123], matching

converse results are needed. The progress in this direction has however been more modest. Indeed,

in e.g. the Wyner-Ziv setting not even a general strong converse result has been shown. Most

previous work in that direction is focused on obtaining bounds to the reliability function using type

counting arguments, which only apply to finite alphabet sources. Arutyunyan and Marutyan [124]

appear to be the first who studied error exponents for the Wyner-Ziv problem, however, neither

their upper nor lower bounds have been proven rigorously. Jayaraman and Berger [125] also studied

error exponents for the Wyner-Ziv problem, although they restricted their attention to just one of
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the possible error events, namely, the binning error.

The defining feature of the approach for proving nonasymptotic converses adopted in this thesis

is that it, quite unexpectedly, relies on the properties of the extremal mutual information problem

(which represents the asymptotic fundamental limit) to show a nonasymptotic converse. It would

be interesting to see if this approach can be generalized to yield yet undiscovered converses in

multiterminal information theory. In this direction, we have already shown that it succeeds for

the lossy source coding problem with side information at both compressor and decompressor [22].

General converses for such considerably more challenging multiterminal source coding scenarios as

the Wyner-Ziv and the Ahlswede-Körner settings should also be within our reach.

It is known that in compression of a memoryless Gaussian source under the mean-square error

distortion when the decompressor has access to the AWGN-corrupted outputs of the source, asymp-

totically, there is no benefit of making this side information also available at the compressor. It

would be interesting to see whether any benefit transpires at finite blocklengths.

6.4 Other problems in nonasymptotic information theory

Another open problem is finite-blocklength analysis of successive refinement [126], which consists

of first approximating data using only a few bits of information, then iteratively improving the

approximation as more and more bits are supplied. It is known that in a few instances, such as

finite-alphabet sources with symbol error rate distortion and Gaussian sources with mean-square

distortion, the requirement of successive refinement entails no penalty in rate. Is that true also in

terms of the dispersion-distortion function? Or is it one of those instances where, as in separate vs.

joint source-channel coding, the penalty materializes at finite blocklength?

For difference-distortion measures and in the region of rates for which the Shannon lower bound

is tight, it would be interesting to see whether we can leverage non-asymptotic results in lossless

compression to provide non-asymptotic results for lossy compression.

For those channel coding settings with cost constraints where, in lieu of the achievable rate,

the figure of merit is the achievable rate per unit cost, an elegant expression for the fundamental

limit provided that the number of degrees of freedom is allowed to grow indefinitely was found

in [127]. What happens if the number of degrees of freedom is bounded is an open question. Can

the nonasymptotic fundamental limit be expressed in terms of the ratio
⋆X;Y (X,b)

b(X) , where ⋆X;Y (x, b)

and b(x) are the b-tilted information (see Chapter 5) and the cost in x, respectively?

Systematic codes are those where each codeword contains the uncoded information source string
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plus a string of parity-check symbols. Shamai et al. [128] characterized the asymptotically achiev-

able average distortion and found the necessary and sufficient conditions under which systematic

transmission does not incur loss of optimality. It would be enlightening to quantify the penalty of

systematic communication in the finite blocklength regime.
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Appendix A

Tools

This appendix lists instrumental auxiliary results.

A.1 Properties of relative entropy

Lemma A.1 ( [129]). Let 0 ≤ α ≤ 1, and let PX̄ and PX⋆ be two distributions on the same

probability space. Then,

lim
α→0

1

α
D(αPX̄ + (1 − α)PX⋆‖PX⋆) = 0 (A.1)

as long as the relative entropy in (A.1) is finite.

Lemma A.2 ( [24]). Let g : X 7→ [−∞,+∞] and let X̄ be a random variable on X such that

E
[
exp

(
g(X̄)

)]
<∞. Then,

E [g(X)]−D(X‖X̄) ≤ logE
[
exp

(
g(X̄)

)]
(A.2)

with equality if and only if X has distribution PX⋆ such that

ıX⋆‖X̄(x) = g(x)− logE
[
exp

(
g(X̄)

)]
(A.3)
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Proof. If the left side of (A.2) is not −∞, we can write

E [g(X)]−D(X‖X̄) = E
[
g(X)− ıX‖X⋆(X)− ıX⋆‖X̄(X)

]
(A.4)

= logE
[
exp

(
g(X̄)

)]
−D(X‖X⋆) (A.5)

which is maximized by letting PX = PX⋆ .

Lemma A.3 (Pinsker’s inequality and its reverse). For two random variables X and X̄ defined on

the same finite alphabet A

1

2
|PX − PX̄ |2 log e ≤ D(X‖X̄) (A.6)

≤ log e

mina∈A PX̄(a)
|PX − PX̄ |2 (A.7)

where | · | denotes the Euclidean distance.

In fact, a stronger inequality than (A.6) in which | · | is the total variation distance also holds for

random variables defined on the same abstract space. A proof of (A.6) can be found in e.g. [130,

Lemma 11.6.1]. The proof of (A.7), also provided below, is given in e.g. [131, Lemma 6.3].

Proof of (A.7).

D(X‖X̄) ≤
∑

a∈A
PX(b)

(
PX(b)

PX̄(b)
− 1

)
log e (A.8)

=
∑

b∈B

1

PX̄(b)
(PX(b)− PX̄(b))

2
log e (A.9)

≤ log e

minb∈B PX̄(b)
|PX − PX̄ |2 (A.10)

A.2 Properties of sums of independent random variables

Lemma A.4. Let zero-mean random variables Wi, i = 1, 2, . . . be independent, and

0 < Vmin ≤ Vk ≤ Vmax (A.11)

Tk ≤ Tmax (A.12)
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where Vk, Tk are defined in (2.157) and (2.158). Denote

Bmax =
c0Tmax

V
3
2

min

(A.13)

1. For arbitrary b > 0 and all

τ > τ0 , 2Bmax

√
2πVmax + b (A.14)

k ≥ 1

2Vmin

τ2

log τ − log τ0
(A.15)

where c0 > 0 is the constant in Theorem 2.23, it holds that

P

[
0 ≤

k∑

i=1

Wi < τ

]
≥ b√

k
(A.16)

P

[
k∑

i=1

Wi < τ

]
≥ 1

2
+

b√
k

(A.17)

Inequality (A.17) would still hold if (A.14) is relaxed replacing 2c0 by c0.

2. For arbitrary b > Bmax and

k ≥ e 1
2π (b−Bmax)

2

(A.18)

it holds that

P

[
k∑

i=1

Wi >
√
Vmaxk log k

]
≤ b√

k
(A.19)

3. For arbitrary τ > 0 and all k ≥ 1, it holds that

P

[
k∑

i=1

Wi > kτ

]
≤ Vmax

kτ2
(A.20)

Instead of both (A.11) and (A.12), just Vk ≤ Vmax is required.

4. [3, Lemma 47]. For τ > 0

E

[
exp

{
−

k∑

i=1

Wi

}
1

{
k∑

i=1

Wi > log τ

}]
≤ 2

(
log 2√
2πVk

+
2Bk√
k

)
1

τ
√
k

(A.21)

where Bk is the Berry-Essen ratio (2.159).
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Proof of Lemma A.4.1. By the Berry-Esséen Theorem 2.23

P

[
0 ≤

k∑

i=1

Wi < τ

]
≥ 1√

2π

∫ τ√
kVk

0

e−
u2

2 du− 2c0Tk

V
3
2

k

1√
k

(A.22)

≥
(

τ√
2πVk

e
− τ2

2kVk − 2c0Tk

V
3
2

k

)
1√
k

(A.23)

≥
(

τ√
2πVmax

e
− τ2

2kVmin − 2c0Tmax

V
3
2

min

)
1√
k

(A.24)

≥ b√
k

(A.25)

where (A.24) holds as long as (A.14) and (A.15) are satisfied. Inequality (A.17) follows replacing 0

in the lower integration limit in (A.22) by −∞ and 2c0 by c0 in (A.22).

Proof of Lemma A.4.2. The Berry-Esséen inequality (2.155) implies

P

[
k∑

i=1

Wi >
√
Vmaxk loge k

]
≤ Bmax√

k
+Q

(√
loge k

)
(A.26)

<

(
Bmax +

1√
2π log k

)
1√
k

(A.27)

where to get (A.27), we used

Q(t) <
1√
2πt

e−
t2

2 (A.28)

Proof of Lemma A.4.3. By Chebyshev’s inequality

P

[
k∑

i=1

Wi > kτ

]
≤ P



(

k∑

i=1

Wi

)2

> (kτ)2


 (A.29)

<
Vmax

kτ2
(A.30)

Due to the Berry-Esséen theorem 2.23, properties of the Q-function play important role in an-

alyzing the tails of distributions of sums of independent random variables. We list a few relevant

properties next.
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Lemma A.5. 1. For x ≥ 0, ξ ≥ 0

Q(x+ ξ) ≥ Q(x)− ξ√
2π
e−

x2

2 (A.31)

2. For arbitrary x and ξ,

Q(x+ ξ) ≥ Q(x)− |ξ|
+

√
2π

(A.32)

3. Fix ξ ≥ 0. Then, for all x ≥ − 1
2ξ ,

Q (x (1 + xξ)) ≥ Q (x)− 8ξ√
2πe

(A.33)

Proof of Lemmas A.5.1 and A.5.2. Q(x) is convex for x ≥ 0, and Q′(x) = − 1√
2π
e−

x2

2 , so (A.31)

and (A.32) follow.

Proof of Lemma A.5.3. If x ≥ 0, we use (A.31) to obtain

Q (x)−Q (x (1 + ξx)) ≤ ξx2√
2π
e−

x2

2 (A.34)

≤ ξ e−1

√
2

π
(A.35)

where (A.35) holds because the maximum of (A.34) is attained at x2 = 2.

If − 1
2ξ ≤ x ≤ 0, we use Q(x) = 1−Q(−x) to obtain

Q (x) −Q (x (1 + ξx)) = Q (|x| (1− ξ|x|))−Q (|x|) (A.36)

≤ ξx2√
2π
e−

x2(1−ξ|x|)2
2 (A.37)

≤ ξx2√
2π
e−

x2

8 (A.38)

≤ 8ξ√
2πe

(A.39)

where (A.38) is due to (1− ξ|x|)2 ≥ 1
4 in |x| ≤ 1

2ξ , and (A.39) holds because the maximum of (A.38)

is attained at x2 = 8.
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A.3 Minimization of the cdf of a sum of independent random

variables

Let D be a metric space with metric d : D2 7→ R+. Define the random variable Z on D. Let

Wi, i = 1, . . . , n be independent conditioned on Z. Denote

µn(z) =
1

n

n∑

i=1

E [Wi|Z = z] (A.40)

Vn(z) =
1

n

n∑

i=1

Var [Wi|Z = z] (A.41)

Tn(z) =
1

n

n∑

i=1

E
[
|Wi − E [Wi] |3|Z = z

]
(A.42)

Let ℓ1, ℓ2, ℓ3, L1, F1, F2, Vmin and Tmax be positive constants. We assume that there exist

z⋆ ∈ D and sequences µ⋆n, V
⋆
n such that for all z ∈ D,

µ⋆n − µn(z) ≥ ℓ1d2 (z, z⋆)−
ℓ2√
n
d (z, z⋆)− ℓ3

n
(A.43)

µ⋆n − µn(z⋆) ≤
L1

n
(A.44)

|Vn(z)− V ⋆n | ≤ F1d (z, z
⋆) +

F2√
n

(A.45)

Vmin ≤ Vn(z) (A.46)

Tn(z) ≤ Tmax (A.47)

Theorem A.6. In the setup described above, under assumptions (A.43)–(A.47), for any A > 0,

there exists a K ≥ 0 such that, for all |∆| ≤ δn (where δn is specified below) and all sufficiently large

n:

1. If δn = A√
n
,

min
z∈D

P

[
n∑

i=1

Wi ≤ n (µ⋆n −∆) |Z = z

]
≥ Q

(
∆

√
n

V ⋆n

)
− K√

n
(A.48)

2. For δn = A
√

log n
n ,

min
z∈D

P

[
n∑

i=1

Wi ≤ n (µ⋆n −∆) |Z = z

]
≥ Q

(
∆

√
n

V ⋆n

)
−K

√
logn

n
(A.49)
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3. Fix 0 ≤ β ≤ 1
6 . If in (A.45), V ⋆n = 0 (which implies that Vmin = 0 in (A.46)), then there exists

K ≥ 0 such that for all ∆ > A

n
1
2
+β

, where A > 0 is arbitrary

min
z∈D

P

[
n∑

i=1

Wi ≤ n (µ⋆n +∆) |Z = z

]
≥ 1− K

A
3
2

1

n
1
4− 3

2β
(A.50)

4. If the following tighter version of (A.43) and (A.45) holds:

µ⋆n − µn(z) ≥ ℓ1d2 (z, z⋆)−
ℓ3
n

(A.51)

|Vn(z)− V ⋆n | ≤ F1d (z, z
⋆) +

F2

n
(A.52)

and δn = 2ℓ1T
1
3
maxV

5
2

minF
−2
1 , then

min
z∈D

P

[
n∑

i=1

Wi ≤ n (µ⋆n −∆) |Z = z

]
≥ Q

(
∆

√
n

V ⋆n

)
− K√

n
(A.53)

5. If in lieu of (A.43)–(A.45), only the following weaker conditions hold:

µ⋆n − µn(z) ≥ 0 (A.54)

µ⋆n − µn(z⋆) ≤ o (1) (A.55)

|Vn(z⋆)− V ⋆n | ≤ o (1) (A.56)

no other z satisfies (A.55), and δn = o(1), then

min
z∈D

P

[
n∑

i=1

Wi ≤ n (µ⋆n −∆) |Z = z

]
≥ Q

(
∆

√
n

V ⋆n

)
−√n o (δn) (A.57)

In order to prove Theorem A.6, we first show three auxiliary lemmas. The first two deal with

approximate optimization of functions.

If f and g approximate each other, and the minimum of f is approximately attained at x, then

g is also approximately minimized at x, as the following lemma formalizes.
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Lemma A.7. Fix η > 0, ξ > 0. Let D be an arbitrary set, and let f : D 7→ R and g : D 7→ R be

such that

sup
x∈D
|f(x)− g(x)| ≤ η (A.58)

Further, assume that f and g attain their minima. Then,

g(x) ≤ min
y∈D

g(y) + ξ + 2η (A.59)

as long as x satisfies

f(x) ≤ min
y∈D

f(y) + ξ (A.60)

(see Fig. A.1).

x

f

g

η

η

ξ

Figure A.1: An example where (A.59) holds with equality.

Proof of Lemma A.7. Let x⋆ ∈ D be such that g(x⋆) = miny∈D g(y). Using (A.58) and (A.60), write

g(x) ≤ min
y∈D

f(y) + g(x)− f(x) + ξ (A.61)

≤ min
y∈D

f(y) + η + ξ (A.62)

≤ f(x⋆) + η + ξ (A.63)

= g(x⋆)− g(x⋆) + f(x⋆) + η + ξ (A.64)

≤ g(x⋆) + 2η + ξ (A.65)

The following lemma is reminiscent of [3, Lemma 64].
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Lemma A.8. Let D be a compact metric space, and let d : D2 → R+ be a metric. Fix f : D 7→ R

and g : D 7→ R. Let

D⋆ =
{
x ∈ D : f(x) = max

y∈D
f(y)

}
(A.66)

Suppose that for some constants ℓ > 0, L > 0, we have, for all (x, x⋆) ∈ D ×D⋆,

f(x⋆)− f(x) ≥ ℓd2(x, x⋆) (A.67)

|g(x⋆)− g(x)| ≤ Ld(x, x⋆) (A.68)

Then, for any positive scalars ϕ, ψ,

max
x∈D
{ϕf(x)± ψg(x)} ≤ ϕf(x⋆)± ψg(x⋆) + L2ψ2

4ℓϕ
(A.69)

Moreover, if, instead of (A.67), f satisfies

f(x⋆)− f(x) ≥ ℓd(x, x⋆) (A.70)

then, for any positive scalars ψ, ϕ such that

Lψ ≤ ℓϕ (A.71)

we have

max
x∈D
{ϕf(x)± ψg(x)} = ϕf(x⋆)± ψg(x⋆) (A.72)

Proof of Lemma A.8. Let x0 achieve the maximum on the left side of (A.69). Using (A.67) and

(A.68), we have, for all x⋆ ∈ D⋆,

0 ≤ ϕ (f(x0)− f(x⋆))± ψ (g(x0)− g(x⋆)) (A.73)

≤ −ℓϕd2(x0, x⋆) + Lψd(x0, x
⋆) (A.74)

≤ L2ψ2

4ℓϕ
(A.75)

where (A.75) follows because the maximum of (A.74) is achieved at d(x0, x
⋆) = Lψ

2ℓϕ .
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To show (A.72), observe using (A.70) and (A.68) that

0 ≤ ϕ (f(x0)− f(x⋆))± ψ (g(x0)− g(x⋆)) (A.76)

≤ (−ℓϕ+ Lψ) d(x0, x
⋆) (A.77)

≤ 0 (A.78)

where (A.78) follows from (A.71).

The following lemma deals with behavior of the Q-function.

We are now equipped to prove Theorem A.6.

Proof of Theorem A.6. To show (A.53), denote for brevity ζ = d (z, z⋆) and write

P

[
n∑

i=1

Wi > n (µ⋆n +∆) |Z = z

]

≤ P

[
n∑

i=1

Wi > n

(
µn(z) + ℓ1ζ

2 − ℓ2√
n
ζ − ℓ3

n
+

A

n
1
2+β

)
|Z = z

]
(A.79)

≤ 1

n

F1ζ +
F2√
n(

ℓ1ζ2 − ℓ2√
n
ζ − ℓ3

n + A

n
1
2
+β

)2 (A.80)

≤ K

A
3
2

1

n
1
4− 3

2β
(A.81)

where

• (A.79) uses (A.43) and the assumption on the range of ∆;

• (A.80) is due to Chebyshev’s inequality;

• (A.81) is by a straightforward algebraic exercise revealing that ζ that maximizes the left side

of (A.81) is proportional to A
1
2

n
1
4
+ 1

2
β
.

We proceed to show (A.48), (A.49), (A.50) and (A.57).

Denote

gn(z) = P

[
n∑

i=1

Wi ≤ n(µ⋆n −∆)|Z = z

]
(A.82)
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Using (A.46) and (A.47), observe

c0Tn(z)

V
3
2
n (z)

≤ B =
c0Tmax

V
3
2

min

<∞ (A.83)

Therefore the Berry-Esséen bound yields:

∣∣gn(z)−Q
(√
nνn(z)

)∣∣ ≤ B√
n

(A.84)

where

νn(z) =
µn(z)− µ⋆n +∆√

Vn(z)
(A.85)

Denote

ν⋆n =
∆√
V ⋆n

(A.86)

Since

gn(z) = Q(
√
nν⋆n) +

[
gn(z)−Q

(√
nνn(z)

)]
+
[
Q
(√
nνn(z)

)
−Q(

√
nν⋆n)

]
(A.87)

≥ Q(
√
nν⋆n)−

B√
n
+
[
Q
(√
nνn(z)

)
−Q(

√
nν⋆n)

]
(A.88)

so to show (A.48) and (A.50), it suffices to show that

Q(
√
nν⋆n)−min

z∈D
Q
(√
nνn(z)

)
≤ q√

n
(A.89)

for some q ≥ 0. Since Q is monotonically decreasing, to achieve the minimum in (A.89) we need to

maximize
√
nνn(z).

To show (A.57), we just need
√
no (δn) in the right side of (A.89), which is immediate from

(A.32) and [3, Lemma 63], which implies

max
z∈D

νn(z) = ν⋆n + o (δn) (A.90)

To show (A.49), replacing q with q
√
logn in the right side of (A.89) would suffice. We proceed

to show (A.48), (A.49) and (A.50).
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As will be proven shortly, for appropriately chosen a, b, c > 0 we can write

ν⋆n −
aδn√
n
≤ max

z∈D
νn(z) (A.91)

≤ ν⋆n + bν⋆2n +
cδn√
n

(A.92)

for n large enough. If the stricter conditions of Theorem A.6. 3 hold, δn√
n
in (A.91) and (A.92) can

be replaced by δn
n . Further, if

∆ ≥ −
√
Vmin

2b
= −A (A.93)

then ν⋆n ≥ − 1
2b , and Lemma A.5.3 applies with x ← √nν⋆n and ξ ← b√

n
therein. So, using (A.91),

(A.92), the fact that Q(·) is monotonically decreasing and Lemma A.5.3, we conclude that there

exists q > 0 such that

Q
(√
nν⋆n

)
−min
z∈D

Q
(√
nνn(z)

)

≤ Q
(√
nν⋆n

)
−Q

(√
nν⋆n +

√
nbν⋆2n + cδn

)
(A.94)

≤ Q
(√
nν⋆n

)
−Q

(√
nν⋆n +

√
nbν⋆2n

)
+

c√
2π
δn (A.95)

≤ q√
n
+

c√
2π
δn (A.96)

where

• (A.95) is due to (A.31);

• (A.96) holds by Lemma A.5.3 as long as ν⋆n ≥ − 1
2b .

Under the stricter conditions of Theorem A.6. 3, δn in (A.96) is replaced by δn√
n
. Thus, (A.96)

establishes (A.48), (A.49) and (A.50).

It remains to prove (A.91) and (A.92). Observe that for a, b > 0

∣∣∣∣
1√
a
− 1√

b

∣∣∣∣ ≤
|a− b|

2min {a, b} 3
2

(A.97)

so, using (A.45) and (A.46), we conclude

∣∣∣∣∣
1√
Vn(z)

− 1√
V ⋆n

∣∣∣∣∣ ≤ F
′
1d(z, z

⋆) +
F ′
2√
n

(A.98)
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where

F ′
1 =

1

2
V

− 3
2

minF1 (A.99)

F ′
2 =

1

2
V

− 3
2

minF2 (A.100)

Using (A.44) and (A.98), we lower-bound maxz∈D νn(z) as

max
z∈D

νn(z) ≥ νn(z⋆) (A.101)

≥ ν⋆n −
aδn√
n

(A.102)

To upper-bound maxz∈D νn(z), denote for convenience

fn(z) =
µn(z)− µ⋆n√

Vn(z)
(A.103)

gn(z) =
1√
Vn(z)

(A.104)

and note, using (A.43), (A.44), (A.46), (A.47) and (by Hölder’s inequality)

Vn(z) ≤ T
2
3
max (A.105)

that

fn(z
⋆)− fn(z) =

µn(z
⋆)− µ⋆n√
Vn(z⋆)

− µn(z)− µ⋆n√
Vn(z)

(A.106)

≥ ℓ′1d2(z, z⋆)−
ℓ′2√
n
d(z, z⋆)− ℓ′3

n
(A.107)

where

ℓ′1 = T
− 1

3
maxℓ1 (A.108)

ℓ′2 = V
− 1

2

min ℓ2 (A.109)

ℓ′3 = V
− 1

2

min (L1 + ℓ3) (A.110)

Let z0 achieve the maximum maxz∈D νn(z), i.e.

max
z∈D

νn(z) = fn(z0) + ∆gn(z0) (A.111)
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Using (A.98) and (A.107), we have,

0 ≤ (fn(z0)− fn(z⋆)) + ∆ (gn(z0)− gn(z⋆)) (A.112)

≤ −ℓ′1d2(z0, z⋆) +
(
ℓ′2√
n
+ |∆|F ′

1

)
d(z0, z

⋆) +
2F ′

2|∆|√
n

+
ℓ′3
n

(A.113)

≤ 1

4ℓ′1

(
ℓ′2√
n
+ |∆|F ′

1

)2

+
2F ′

2|∆|√
n

+
ℓ′3
n

(A.114)

where (A.114) follows because the maximum of its left side is achieved at d(z0, z
⋆) = 1

2ℓ′1

(
ℓ′2√
n
+ |∆|F ′

1

)
.

Using (A.43), (A.46), (A.98), we upper-bound

νn(z
⋆) ≤ ν⋆n +

F ′
2|∆|√
n

+
ℓ3

nVmin
+
ℓ3F

′
2

n
3
2

(A.115)

Applying (A.114) and (A.115) to upper-bound maxz∈D νn(z), we have established (A.92) in which

b =
F ′2
1 T

2
3
max

4ℓ′1
(A.116)

where we used (A.45) and (A.105) to upper-bound ∆2 = ν⋆2n V
⋆
n , thereby completing the proof.
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Appendix B

Lossy data compression: proofs

B.1 Properties of d-tilted information

Proof of Theorem 2.1. Although (2.10) holds under more general conditions, this proof of (2.10)

requires that PZ⋆|S is such that PZ|SPS ≪ PZ⋆|SPS . The proof follows the treatment in [24].

Equality in (2.9) is a standard result in convex optimization (Lagrange duality). By the assump-

tion, the minimum in the right side of (2.9) is attained by PZ⋆|S , therefore RS(d) is equal to the

right side of (2.11).

To show (2.10), fix 0 ≤ α ≤ 1. Denote

PS → PZ̄|S → PZ̄ (B.1)

PẐ|S = αPZ̄|S + (1− α)PZ⋆|S (B.2)

PS → PẐ|S → PẐ = αPZ̄ + (1− α)PZ⋆ (B.3)

and write

α
(
E
[
ıS;Z⋆(S; Z̄) + λ⋆d(S, Z̄)

]
− E [ıS;Z⋆(S;Z⋆) + λ⋆d(S,Z⋆)]

)
+D(PSẐ‖PSZ⋆)−D(PẐ‖PZ⋆)

= αE
[
ıS;Z⋆(S; Z̄)

]
− αD(PZ⋆|S‖PZ⋆ |PS) +D(PSẐ‖PSZ⋆)−D(PẐ‖PZ⋆)

+ λ⋆αE
[
d(S, Z̄)

]
− λ⋆αE [d(S,Z⋆)] (B.4)

= D(PẐ|S‖PẐ |PS)−D(PZ⋆|S‖PZ⋆ |PS) + λ⋆αE
[
d(S, Z̄)

]
− λ⋆αE [d(S,Z⋆)] (B.5)

= E

[
ıS;Ẑ(S; Ẑ) + λ⋆d(S, Ẑ)

]
− E [ıS;Z⋆(S;Z⋆) + λ⋆d(S,Z⋆)] (B.6)

≥ 0 (B.7)
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where (B.7) holds because Z⋆ achieves the minimum in the right side of (2.9). Since the left side

of (B.4) is nonnegative, D(PẐ‖PZ⋆) <∞, and Lemma A.1 implies that D(PSẐ‖PSZ⋆) = o (α) and

D(PẐ|S‖PẐ |PS) = o (α). Thus, supposing that

E
[
ıS;Z⋆(S; Z̄) + λ⋆d(S, Z̄)

]
< E [ıS;Z⋆(S;Z⋆) + λ⋆d(S,Z⋆)] (B.8)

would lead to a contradiction, since then the left side of (B.4) would be negative for a sufficiently

small α. We thus infer that (2.10) holds.

Let us show that if Z⋆ achieves RS(d), then it must necessarily satisfy (2.8).

Consider the function

F (PZ|S , PZ̄) = D(PZ|S‖PZ̄ |PS) + λ⋆E [d(S,Z)]− λ⋆d (B.9)

= I(S;Z) +D(Z‖Z̄) + λ⋆E [d(S,Z)]− λ⋆d (B.10)

≥ I(S,Z) + λ⋆E [d(S,Z)]− λ⋆d (B.11)

Since equality in (B.11) holds if and only if PZ = PZ̄ , RS(d) can be expressed as

RS(d) = min
PZ̄

min
PZ|S

F (PZ|S , PZ̄) (B.12)

≤ min
PZ̄

F (PZ⋆|S, PZ̄) (B.13)

= F (PZ⋆|S , PZ⋆) (B.14)

= RS(d) (B.15)

where (B.15) holds by the assumption. Therefore, equality holds in (B.13).

We now show (2.8), which would also automatically show (2.11). Fix 0 ≤ α ≤ 1.

For an arbitrary PZ̄ , define the conditional distribution PZ̄⋆|S through (2.23), for λ = λ⋆. Al-

though for a fixed PZ̄ we can always define PZ̄⋆|S via (2.23), in general we cannot claim that

PZ̄⋆ = PZ̄ , where PS → PZ̄⋆|S → PZ̄⋆ , unless PZ̄ is such that for PZ̄ -a.s. z,

E [exp (JZ̄(S, λ
⋆)− λ⋆d(S, z))] = 1 (B.16)

where the function JZ̄(s, λ
⋆) is defined in (2.24). Lemma A.2 implies that PZ̄⋆|S achieves equality

in

D(PZ|S=s‖PZ̄) + λ⋆E [d(s, Z)|S = s] ≥ JZ̄(s, λ⋆) (B.17)
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Applying (B.17) to solve for the inner minimizer in (B.12), we have

RS(d) = min
PZ̄

F (PZ̄⋆|S , PZ̄) (B.18)

= F (PZ⋆|S, PZ⋆) (B.19)

where (B.19) is the same as (B.14). Since the relation (B.17) holds for all pairs (PZ̄⋆|S , PZ̄) in the

right side of (B.18), and we know by the assumption that the minimum in (B.18) is actually achieved

as indicated in (B.19), the pair (PZ⋆|S, PZ⋆) that achieves the rate-distortion function must satisfy

(2.8), which is a particularization of (2.23).

Since PS → PZ⋆|S → PZ⋆ , equality in (B.16) particularized to PZ⋆ holds for PZ⋆ -a.s. z, which is

equivalent to equality in (2.12). To show (2.12) for all z, write, using (2.8) and (2.11)

RS(d) = E [JZ⋆(S, λ⋆)]− λ⋆d (B.20)

≤ min
PZ|S

F (PZ|S , PZ̄) (B.21)

= E [JZ̄(S, λ
⋆)]− λ⋆d (B.22)

For an arbitrary z̄ ∈ M̂ and 0 ≤ α ≤ 1, let

PZ̄ = (1 − α)PZ⋆ + αδz̄ (B.23)

for which (2.24) becomes

JZ̄(s, λ
⋆) = − log [(1− α) exp (−JZ⋆(s, λ⋆)) + α exp (−λ⋆d(s, z̄))] (B.24)

Substituting (B.24) in (B.22), we obtain

0 ≥ E [JZ⋆(S, λ⋆)− JZ̄(S, λ⋆)] (B.25)

= E [log [1− α+ α exp (JZ⋆(S, λ⋆)− λ⋆d(S, z̄))]] (B.26)

Since 1
α log(1 + αx) ≤ x log e for all x ≥ −1, by the bounded convergence convergence theorem, the

derivative of the right side of (B.26) with respect to α evaluated at α = 0 is

E [−1 + exp (JZ⋆(S, λ⋆)− λ⋆d(S, z̄))] log e ≤ 0 (B.27)
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where the inequality holds because otherwise (B.25) would be violated for sufficiently small α. This

concludes the proof of (2.12).

Proof of Theorem 2.2. Since by the assumption (2.8) particularized to PS̄ holds for PZ⋆ -almost every

z, we may write

E [S̄(S, d)] = E
[
ıS̄;Z̄⋆(S;Z⋆)

]
− R′

S̄(d)E [d(S,Z⋆)− d] (B.28)

= E
[
ıS̄;Z̄⋆(S;Z⋆)

]
(B.29)

Therefore, for a ∈M (in nats)

∂

∂PS̄(a)
E [S̄(S, d)]

∣∣∣∣
PS̄=PS

=
∂

∂PS̄(a)
E
[
logPS̄|Z̄⋆(S;Z⋆)

]∣∣∣∣
PS̄=PS

− ∂

∂PS̄(a)
E [logPS̄(S)]

∣∣∣∣
PS̄=PS

(B.30)

=
∂

∂PS̄(a)
E

[
PS̄|Z̄⋆(S;Z⋆)

PS|Z⋆(S;Z⋆)

]∣∣∣∣
PS̄=PS

− E

[
1

PS(S)

∂

∂PS̄(a)
PS̄(S)

]∣∣∣∣
PS̄=PS

(B.31)

=
∂

∂PS̄(a)
1

∣∣∣∣
PS̄=PS

− 1 (B.32)

= − 1 (B.33)

This proves (2.15). To show (2.16), we invoke (2.15) to write

ṘS(a) =
∂

∂PS̄(a)
E
[
S̄(S̄, d)

]∣∣∣∣
PS̄=PS

(B.34)

= S(a, d) +
∂

∂PS̄(a)
E [S̄(S, d)]

∣∣∣∣
PS̄=PS

(B.35)

= S(a, d)− log e (B.36)

Finally, (2.17) is an immediate corollary to (2.16).

B.2 Hypothesis testing and almost lossless data compression

To show (2.94), without loss of generality, assume that the letters of the alphabet M are labeled

1, 2, . . . in order of decreasing probabilities:

PS(1) ≥ PS(2) ≥ . . . (B.37)

185



Observe that

M⋆(0, ǫ) = min {m ≥ 1 : P [S ≤ m] ≥ 1− ǫ} , (B.38)

and the optimal randomized test to decide between PS and U is given by

PW |S(1|a) =





1, a < M⋆(0, ǫ)

α, a =M⋆(0, ǫ)

0, a > M⋆(0, ǫ)

(B.39)

for a = 1, 2, . . .. It follows that

β1−ǫ(PS , U) =M⋆(0, ǫ)− 1 + α (B.40)

where α ∈ (0, 1] is the solution to

P [S ≤M⋆(0, ǫ)− 1] + αPS(M
⋆(0, ǫ)) = 1− ǫ, (B.41)

hence (2.94).

B.3 Gaussian approximation analysis of almost lossless data

compression

In this appendix we strenghten the remainder term in Theorem 2.22 for d = 0 (cf. (2.147)). Taking

the logarithm of (2.94), we have

log β1−ǫ(PS , U) ≤ logM⋆(0, ǫ) (B.42)

≤ log (β1−ǫ(PS , U) + 1) (B.43)

= log β1−ǫ(PS , U) + log

(
1 +

1

β1−ǫ(PS , U)

)
(B.44)

≤ log β1−ǫ(PS , U) +
1

β1−ǫ(PS , U)
log e (B.45)

where in (B.45) we used log(1 + x) ≤ x log e, x > −1.

Let PSk = PS × . . . × PS be the source distribution, and let Uk to be the counting measure on

Sk. Examining the proof of Lemma 58 of [3] on the asymptotic behavior of β1−ǫ(P,Q) it is not hard
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to see that it extends naturally to σ-finite Q’s; thus if Var [ıS(S)] > 0,

log β1−ǫ(PSk , Uk) = kH(S) +
√
kVar [ıS(S)]Q

−1 (ǫ)− 1

2
log k +O (1) (B.46)

and if Var [ıS(S)] = 0,

log β1−ǫ(PSk , Uk) = kH(S)− log
1

1− ǫ (B.47)

Letting PSk and Uk play the roles of PS and U in (B.42) and (B.45) and invoking (B.46) and (B.47),

we obtain (2.147) and (2.148), respectively.

B.4 Generalization of Theorems 2.12 and 2.22

We show that even if the rate-distortion function is not achieved by any output distribution, the

definition of d-tilted information can be extended appropriately, so that Theorem 2.12 and the

converse part of Theorem 2.22 still hold.

We use the following general representation of the rate-distortion function due to Csiszár [23].

Theorem B.1 (Alternative representation of RS(d) [23]). If the basic restriction (a) of Section 2.2

holds and in addition,

(A) The distortion measure is such that there exists a finite set E ⊂ M̂ such that

E

[
min
z∈E

d(S, z)

]
<∞ (B.48)

then for each d > dmin, it holds that

RS(d) = max
J(s), λ

{E [J(S)]− λd} (B.49)

where the maximization is over J(s) ≥ 0 and λ ≥ 0 satisfying the constraint

E [exp {J(S)− λd(S, z)}] ≤ 1 ∀z ∈ M̂ (B.50)

Let (J⋆(s), λ⋆) achieve the maximum in (B.49) for some d > dmin, and define the d-tilted

information in s by

S(s, d) , J⋆(s)− λ⋆d (B.51)
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Note that (2.12), the only property of d-tilted information we used in the proof of Theorem 2.12,

still holds due to (B.50), thus Theorem 2.12 remains true.

The proof of the converse part of Theorem 2.22 generalizes immediately upon making the fol-

lowing two observations. First, (2.142) is still valid due to (B.49). Second, d-tilted information in

(B.51) still single-letterizes for memoryless sources:

Lemma B.2. Under restrictions (i) and (ii) in Section 2.6.2, (2.163) holds.

Proof. Let (J⋆(s), λ⋆) attain the maximum in (B.49) for the single-letter distribution PS. It suffices

to check that
(∑k

i=1 J
⋆(si), kλ

⋆
)
attains the maximum in (B.49) for PSk = PS × . . .× PS.

As desired,

E

[
k∑

i=1

J⋆(Si)

]
− kλ⋆d = kRS(d) = RSk(d) (B.52)

and we just need to verify the constraints in (B.50) are satisfied:

E

[
exp

{
k∑

i=1

J⋆(Si)− λ⋆
k∑

i=1

d(Si, z)

}]
=

k∏

i=1

E [exp {J⋆(Si)− λ⋆d(Si, z)}] (B.53)

≤ 1 ∀zk ∈ Ŝk (B.54)

B.5 Proof of Lemma 2.24

Before we prove Lemma 2.24, let us present some background results we will use. For j = 1, 2, . . .,

denote, for an arbitrary PZ̄

d̄Z̄,j(s, λ) =
E
[
dj(s, Z̄) exp

(
−λd(s, Z̄)

)]

E
[
exp

(
−λd(s, Z̄)

)] (B.55)

= E
[
dj(s, Z̄⋆)

]
(B.56)

where PZ̄|S = PZ̄ , and PZ̄⋆|S is defined in (2.23). Observe that

d̄Z̄,j(s, 0) = E
[
dj(s, Z̄)

]
(B.57)

Denoting by (·)′ differentiation with respect to λ > 0, we state the following properties that are

obtained by direct computation and whose proofs can be found in [37].
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A.
(
E

[
JZ̄(S, λ

⋆
S,Z̄

)
])′

= d where λ⋆
S,Z̄

= −R′
S,Z̄

(d).

B. E
[
J ′′
Z̄
(S, λ)

]
< 0 for all λ > 0 if E

[
d̄Z,2(S, 0)

]
<∞.

C. J ′
Z̄
(s, λ) = d̄Z̄,1(s, λ).

D. J ′′
Z̄
(s, λ) =

[
d̄2
Z̄,1

(s, λ)− d̄Z̄,2(s, λ)
]
(log e)

−1 ≤ 0

if d̄Z̄,1(s, 0) <∞.

E. d̄′
Z̄,j

(s, λ) ≤ 0 if d̄Z̄,j(s, 0) <∞.

F. dmin|S,Z̄ = E [αZ̄(S)], where αZ̄(s) = ess inf d(s, Z).

Remark B.1. By Properties A and B,

E
[
Z̄(S, λ

⋆
S,Z)

]
− λ⋆S,Zd = sup

λ>0
{E [JZ̄(S, λ)]− λd} (B.58)

Remark B.2. Properties C and D imply that

0 ≤ J ′
Z̄(s, λ) ≤ d̄Z̄,1(s, 0) (B.59)

Therefore, as long as E
[
d̄Z̄,1(S, 0)

]
< ∞, the differentiation in Property A can be brought inside

the expectation invoking the dominated convergence theorem. Keeping this in mind while taking

the expectation of the equation in Property C with λ = λ⋆
S,Z̄

with respect to PS , we confirm that

E
[
d̄Z,1(S, λ

⋆
S,Z)

]
= d (B.60)

which is also a consequence of (B.56) and the assumption that the constraint in (2.28) is satisfied

with equality when the minimum is achieved.

Remark B.3. By virtue of Properties D and E we have

−d̄Z̄,2(s, 0) ≤ J ′′
Z̄(s, λ) log e ≤ 0 (B.61)

Remark B.4. Using (B.60), derivatives of RS,Z̄(d) are conveniently expressed via E

[
d̄Z̄,j(s, λ

⋆
S,Z̄

)
]
;

in particular, at any

dmin|S,Z̄ < d ≤ dmax|S,Z̄ = E
[
d̄Z̄,1(S, 0))

]
(B.62)
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we have

R′′
S,Z̄(d) = −

1(
E

[
d̄Z̄,1(S, λ

⋆
S,Z̄

)
])′ (B.63)

=
log e

E

[
d̄Z̄,2(S, λ

⋆
S,Z̄

)
]
− E

[
d̄2
Z̄,1

(S, λ⋆
S,Z̄

)
] (B.64)

> 0 (B.65)

where (B.64) holds by Property D and the dominated convergence theorem due to (B.61) as long as

E
[
d̄Z̄,2(S, 0)

]
<∞, and (B.65) is by Property B.

The proof of Lemma 2.24 consists of Gaussian approximation analysis of the bound (2.34) in

Lemma 2.3. First, we weaken (2.34) by choosing PZ̄ , δ and λ in the following manner. Fix τ > 0,

and let δ = τ
k , PZ̄ = PZk⋆ = PZ⋆ × . . .×PZ⋆ , where Z⋆ achieves RS(d), and choose λ = kλ⋆

S̄,Z⋆ , where

PS̄ is the measure on S generated by the empirical distribution of sk ∈ Sk:

PS̄(a) =
1

k

k∑

i=1

1{si = a} (B.66)

Since the distortion measure is separable, for any λ > 0 we have

JZk⋆(sk, λk) =

k∑

i=1

JZ⋆(si, λ) (B.67)

so by Lemma 2.3, for all

d > dmin|S̄k,Zk⋆ (B.68)

it holds that

PZk⋆(Bd(s
k)) ≥ exp

(
−

k∑

i=1

JZ⋆(si, λ(s
k)) + λ(sk)kd− λ(sk)τ

)

· P
[
kd− τ <

k∑

i=1

d(si, Z̄
⋆
i ) ≤ kd|S̄k = sk

]
(B.69)

where we denoted

λ(sk) = −R′
S̄;Z⋆(d) (B.70)

(λ(sk) depends on sk through the distribution of S̄ in (B.66)), and PZ̄k⋆ = PZ̄⋆ × . . .× PZ̄⋆ , where

PZ̄⋆|S̄ achieves RS̄;Z⋆(d). The probability appearing in the right side of (B.69) can be lower bounded
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by the following lemma.

Lemma B.3. Assume that restrictions (i)-(iv) in Section 2.6.2 hold. Then, there exist δ0, k0 > 0

such that for all δ ≤ δ0, k ≥ k0, there exist a set Fk ⊆ Sk and constants τ, C1,K1 > 0 such that

P
[
Sk /∈ Fk

]
≤ K1√

k
(B.71)

and for all sk ∈ Fk,

P

[
kd− τ <

k∑

i=1

d(si, Z̄
⋆
i ) ≤ kd|S̄k = sk

]
≥ C1√

k
(B.72)

∣∣λ(sk)− λ⋆
∣∣ < δ (B.73)

where λ⋆ = −R′
S(d), and λ(s

k) is defined in (B.70).

Proof. The reasoning is similar the proof of [37, (4.6)]. Fix

0 < ∆ <
1

3
min

{
d− dmin|S,Z⋆ , dmax|S,Z⋆ − d

}
(B.74)

(the right side of (B.74) is guaranteed to be positive by restriction (iii) in Section 2.6.2) and denote

λ = −R′
S,Z⋆

(
d+

3∆

2

)
(B.75)

λ̄ = −R′
S,Z⋆

(
d− 3∆

2

)
(B.76)

µ′′ = E [|J ′′
Z⋆(S, λ⋆)|] (B.77)

δ =
3∆

2
sup

|θ|< 3∆
2

R′′
S,Z⋆(d+ θ) (B.78)

V (sk) =
1

k

k∑

i=1

sup
|θ|<δ

|J ′′
Z⋆(si, λ

⋆ + θ)| log e (B.79)

V (sk) =
1

k

k∑

i=1

inf
|θ|<δ

|J ′′
Z⋆(si, λ

⋆ + θ)| log e (B.80)
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Next we construct Fk as the set of all sk that satisfy all of the following conditions:

1

k

k∑

i=1

αZ⋆(si) < dmin|S,Z⋆ +∆ (B.81)

1

k

k∑

i=1

d̄Z⋆,1(si, 0) > dmax|S,Z⋆ −∆ (B.82)

1

k

k∑

i=1

d̄Z⋆,1(si, λ) > d+∆ (B.83)

1

k

k∑

i=1

d̄Z⋆,1(si, λ̄) < d−∆ (B.84)

1

k

k∑

i=1

d̄Z⋆,3(si, 0) ≤ E
[
d̄Z⋆,3(S, 0)

]
+∆ (B.85)

V (sk) ≥ µ′′

2
log e (B.86)

V (sk) ≤ 3µ′′

2
log e (B.87)

Let us first show that (B.73) holds with δ given by (B.78) for all sk satisfying the conditions (B.81)–

(B.84). From (B.83) and (B.84),

1

k

k∑

i=1

d̄Z⋆,1(si, λ̄) < d <
1

k

k∑

i=1

d̄Z⋆,1(si, λ) (B.88)

On the other hand, from (B.60) we have

d =
1

k

k∑

i=1

d̄Z⋆,1(si, λ(s
k)) (B.89)

Therefore, since the right side of (B.89) is decreasing (Property B),

λ < λ(sk) < λ̄ (B.90)

Finally, an application Taylor’s theorem to (B.75) and (B.76) using λ⋆ = λ⋆S,Z⋆ expands (B.90) as

− 3∆

2
R′′

S,Z⋆(d̄) + λ⋆ < λ(sk) < λ⋆ +
3∆

2
R′′

S,Z⋆(d) (B.91)

for some d̄ ∈ [d, d+ 3∆
2 ], d ∈ [d, d− 3∆

2 ]. Note that (B.74), (B.81) and (B.82) ensure that

dmin|S,Z⋆ + 2∆ < d < dmax|S,Z⋆ − 2∆ (B.92)
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so the derivatives in (B.91) exist and are positive by Remark B.4. Therefore (B.73) holds with δ

given by (B.78).

We are now ready to show that as long as ∆ (and, therefore, δ) is small enough, there exists

a K1 ≥ 0 such that (B.71) holds. Hölder’s inequality and assumption (iv) in Section 2.6.2 imply

that the third moments of the random variables involved in conditions (B.83)–(B.85) are finite. By

the Berry-Esséen inequality, the probability of violating these conditions is O
(

1√
k

)
. To bound the

probability of violating conditions (B.86) and (B.87), observe that since J ′′
Z⋆(S, λ) is dominated by

integrable functions due to (B.61), we have by Fatou’s lemma and continuity of J ′′
Z⋆(s, ·)

µ′′ ≤ lim inf
δ↓0

E

[
inf
|θ|≤δ

|J ′′
Z⋆(S, λ⋆ + θ)|

]
(B.93)

≤ lim sup
δ↓0

E

[
sup
|θ|≤δ

|J ′′
Z⋆(S, λ⋆ + θ)|

]
(B.94)

≤ µ′′ (B.95)

Therefore, if δ is small enough,

3µ′′

4
log e ≤ E

[
V (Sk)

]
≤ E

[
V (Sk)

]
≤ 5µ′′

4
log e (B.96)

The third absolute moments of V (Sk) and V (Sk) are finite by Hölder’s inequality, (B.61) and

assumption (iv) in Section 2.6.2. Thus, the probability of violating conditions (B.86) and (B.87) is

also O
(

1√
k

)
. Now, (B.71) follows via the union bound.

To complete the proof of Lemma B.3, it remains to show (B.72). Toward this end, observe,

recalling Properties D and E that the corresponding moments in the Berry-Esséen theorem are

193



given by

µ(sk) =
1

k

k∑

i=1

E
[
d(si, Z̄

⋆)|S̄ = si
]

(B.97)

=
1

k

k∑

i=1

d̄Z⋆,1(si, λ(s
k)) (B.98)

= d (B.99)

V (sk) =
1

k

k∑

i=1

[
d̄Z⋆,2(si, λ(s

k))− d̄2Z⋆,1(si, λ(s
k))
]

(B.100)

= − 1

k

k∑

i=1

J ′′
Z⋆(si, λ(s

k)) log e (B.101)

T (sk) =
1

k

k∑

i=1

E

[∣∣d(si, Z̄⋆)− E
[
d(si, Z̄

⋆) | S̄ = si
]∣∣3 | S̄ = si

]

≤ 8

k

k∑

i=1

E

[∣∣d(si, Z̄⋆)
∣∣3 | S̄ = si

]
(B.102)

=
8

k

∑
d̄Z⋆,3(si, λ(s

k)) (B.103)

≤ 8

k

∑
d̄Z⋆,3(si, 0) (B.104)

As long as sk ∈ Fk,

µ′′

2
log e ≤ V (sk) ≤ 3µ′′

2
log e (B.105)

T (sk) ≤ 8E
[
d̄Z⋆,3(S, 0)

]
+ 8∆ (B.106)

where (B.105) is due to (B.73), (B.86) and (B.87), and (B.106) is due to (B.85). Therefore, Lemma

A.4.1 applies to Wi = d(si, Z̄
⋆
i )− d, which concludes the proof of (B.72).

To upper-bound
∑k
i=1 JZ⋆(si, λ(s

k)) appearing in (B.69), we invoke the following result.

Lemma B.4. Assume that restrictions (i)-(iv) in Section 2.6.2 hold. There exist constants k0,K2 >

0 such that for k ≥ k0,

P

[
k∑

i=1

(
JZ⋆(Si, λ(S

k))− λ(Sk)d
)
≤

k∑

i=1

S(Si, d) + C2 log k

]
> 1− K2√

k
(B.107)
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where λ(sk) is defined in (B.70), and

C2 =
Var [J ′

Z⋆(S, λ⋆)]

E [|J ′′
Z⋆(S, λ⋆)|] log e

(B.108)

Proof. Using (B.73), we have for all xk ∈ Fk,

k∑

i=1

[
JZ⋆(si, λ(s

k))− JZ⋆(si, λ
⋆)− λ(sk)d+ λ⋆d

]

= sup
|θ|<δ

k∑

i=1

[JZ⋆(si, λ
⋆ + θ)− JZ⋆(si, λ

⋆)− θd] (B.109)

= sup
|θ|<δ

{
θ

k∑

i=1

(J ′
Z⋆(si, λ

⋆)− d) + θ2

2

k∑

i=1

J ′′
Z⋆(si, λ

⋆ + ξk)

}
(B.110)

≤ sup
|θ|<δ

{
θΣ′(sk)− θ2

2
Σ′′(sk)

}
(B.111)

≤
(
Σ′(sk)

)2

2Σ′′(sk)
(B.112)

where

• (B.109) is due to (B.58);

• (B.110) holds for some |ξk| ≤ δ by Taylor’s theorem;

• in (B.111) we denoted

Σ′(sk) =
k∑

i=1

(J ′
Z⋆(si, λ

⋆)− d) (B.113)

Σ′′(sk) = −
k∑

i=1

inf
|θ′|<δ

|J ′′
Z⋆(si, λ

⋆ + θ′)| (B.114)

and used Property D;

• in (B.112) we maximized the quadratic equation in (B.111) with respect to θ.

Note that the reasoning leading to (B.112) is due to [38, proof of Theorem 3]. We now proceed to

upper-bound the ratio in the right side of (B.112). Since E
[
d̄Z⋆,1(S, 0)

]
<∞ by assumption (iv) in

Section 2.6.2, the differentiation in Property A can be brought inside the expectation by (B.59) and
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the dominated convergence theorem, so

E

[
1

k
Σ′(Sk)

]
= E [J ′

Z⋆(S, λ⋆)]− d (B.115)

= 0 (B.116)

Denote

V ′ = Var [J ′
Z⋆(S, λ⋆)] (B.117)

T ′ = E

[
|J ′

Z⋆(S, λ⋆)− E [J ′
Z⋆(S, λ⋆)]|3

]
(B.118)

If V ′ = 0, there is nothing to prove as that means S′(Sk) = 0 a.s. Otherwise, since (B.59) with

Hölder’s inequality and assumption (iv) in Section 2.6.2 guarantee that T ′ is finite, Lemma A.4.2

implies that there exists K ′
2 such that for all k large enough

P

[(
Σ′(Sk)

)2
> V ′k loge k

]
≤K

′
2√
k

(B.119)

To treat Σ′′(Sk), observe that Σ′′(sk) = kV (sk) (log e)
−1

(see (B.80)), so as before, the variance

V ′′ and the third absolute moment T ′′ of Wi = inf |θ|≤δ |J ′′
Z⋆(Si, λ

⋆ + θ)| are finite, and E [Wi] ≥ 3µ′′

4

by (B.96), where µ′′ > 0 is defined in (B.77). If V ′′ = 0, we have Wi >
µ′′

2 log e almost surely.

Otherwise, applying Lemma A.4.3 we conclude that there exists K ′′
2 such that

P

[
Σ′′(Sk) < k

µ′′

2

]
≤ P

[
E
[
Σ′′(Sk)

]
− Σ′′(Sk) > k

µ′′

4

]
(B.120)

≤ K ′′
2

k
(B.121)

Finally, denoting

g(sk) =

k∑

i=1

JZ⋆(si, λ(s
k))−

k∑

i=1

JZ⋆(si, λ
⋆)−

(
λ(sk)− λ⋆

)
kd (B.122)

and letting Gk be the set of sk ∈ Sk satisfying both

(
Σ′(sk)

)2 ≤ V ′k loge k (B.123)

Σ′′(sk) ≥ kµ
′′

2
(B.124)

196



we see from (B.71), (B.119), (B.121) applying elementary probability rules that

P
[
g(Sk) > C2 log k

]
= P

[
g(Sk) > C2 log k, g(S

k) ≤
(
Σ′(Sk)

)2

2Σ′′(Sk)

]

+ P

[
g(Sk) > C2 log k, g(S

k) >

(
Σ′(Sk)

)2

2Σ′′(Sk)

]
(B.125)

≤ P

[(
Σ′(Sk)

)2

2Σ′′(Sk)
> C2 log k

]
+
K1√
k

(B.126)

= P

[(
Σ′(Sk)

)2

2Σ′′(Sk)
> C2 log k, S

k ∈ Gk
]

+ P

[(
Σ′(Sk)

)2

2Σ′′(Sk)
> C2 log k, S

k /∈ Gk
]
+
K1√
k

(B.127)

< 0 +
K ′

2√
k
+
K ′′

2

k
+
K1√
k

(B.128)

We conclude that (B.107) holds for k ≥ k0 with K2 = K1 +K ′
2 +K ′′

2 .

To apply Lemmas B.3 and B.4 to (B.69), note that (B.68) (and hence (B.69)) holds for sk ∈ Fk
due to (B.92). Weakening (B.69) using Lemmas B.3 and B.4 and the union bound we conclude that

Lemma 2.24 holds with

C0 =
1

2
+ C2 (B.129)

K = K1 +K2 (B.130)

c = (λ⋆ + δ)τ − logC1 (B.131)

B.6 Proof of Theorem 2.25

In this appendix, we show that (2.177) follows from (2.141). Fix a point (d∞, R∞) on the rate-

distortion curve such that d∞ ∈ (d, d̄). Let dk = D(k,R∞, ǫ), and let α be the acute angle between

the tangent to the R(d) curve at d = dk and the d axis (see Fig. B.1). We are interested in the

difference dk − d∞. Since [31]

lim
k→∞

D(k,R, ǫ) = D(R), (B.132)

there exists a δ > 0 such that for large enough k,

dk ∈ Bδ(d∞) = [d∞ − δ, d∞ + δ] ⊂ (d, d̄) (B.133)
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For such dk,

|dk − d∞| ≤
∣∣∣∣
R(dk)−R∞

tanαk

∣∣∣∣ (B.134)

≤
∣∣∣∣
R(k, dk, ǫ)−R(dk)
mind∈Bδ(d∞)R′(d)

∣∣∣∣ (B.135)

= O

(
1√
k

)
(B.136)

where

• (B.134) is by convexity of R(d);

• (B.135) follows by substituting R(k, dk, ǫ) = R∞ and tanαk = |R′(dk)|;

• (B.136) follows by Theorem 2.22. Note that we are allowed to plug dk into (2.141) because

the remainder in (2.141) can be uniformly bounded over all d from the compact set Bδ(d∞)

(just swap Bk in (2.165) for the maximum of Bk’s over Bδ(d∞), and similarly swap c, j, Bk in

(2.172) and (2.173) for the corresponding maxima); thus (2.141) holds not only for a fixed d

but also for any sequence dk ∈ Bδ(d∞).

It remains to refine (B.136) to show (2.177). Write

V(dk) = V(d∞) +O

(
1√
k

)
(B.137)

R(dk) = R(d∞) +R′(d∞)(dk − d∞) +O

(
1

k

)
(B.138)

= R(dk) +

√
V(dk)
k

Q−1 (ǫ) +R′(d∞)(dk − d∞) + θ

(
log k

k

)
(B.139)

= R(dk) +

√
V(d∞)

k
Q−1 (ǫ) +R′(d∞)(dk − d∞) + θ

(
log k

k

)
(B.140)

where

• (B.137) and (B.138) follow by Taylor’s theorem and (B.136) using finiteness of V ′(d) and R′′(d)

for all d ∈ Bδ(d∞);

• (B.139) expands R∞ = R(k, dk, ǫ) using (2.141);

• (B.140) invokes (B.137).

Rearranging (B.140), we obtain the desired approximation (2.177) for the difference dk − d∞.
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R(d)

R(k, d, ǫ)

d∞ dk

R∞

αk

Figure B.1: Estimating dk − d∞ from R(k, d, ǫ)−R(d).

B.7 Proof of Theorem 2.29

From the Stirling approximation, it follows that (e.g. [7])

√
k

8k(k − j) exp
{
kh

(
j

k

)}
≤
(
k

j

)
(B.141)

≤
√

k

2πj(k − j) exp
{
kh

(
j

k

)}
(B.142)

In view of the inequality [3, (586)]

(
k

j − i

)
≤
(
k

j

)(
j

k − j

)i
(B.143)

we can write [3, (599)-(601)]

(
k

j

)
≤
〈
k

j

〉
(B.144)

≤
(
k

j

) ∞∑

j=0

(
j

k − j

)i
(B.145)

=

(
k

j

)
k − j
k − 2j

(B.146)
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where (B.146) holds as long as the series converges, i.e. as long as 2k < k. Furthermore, combining

(B.144) and (B.146) with Stirling’s approximation (B.141) and (B.142), we conclude that for any

0 < α < 1
2 ,

log

〈
k

⌊kα⌋

〉
= kh (α)− 1

2
log k +O (1) (B.147)

Taking logarithms in (2.186) and letting logM = kR for any R ≥ R(k, d, ǫ), we obtain

log(1− ǫ) ≤ k(R− log 2) + log

〈
k

⌊kd⌋

〉
(B.148)

≤ k(R− log 2 + h(d))− 1

2
log k +O (1) (B.149)

Since (B.149) holds for any R ≥ R(k, d, ǫ), we conclude that

R(k, d, ǫ) ≥ R(d) + 1

2

log k

k
+O

(
1

k

)
(B.150)

Similarly, Corollary 2.28 implies that there exists an (exp(kR), d, ǫ) code with

log ǫ ≤ exp (kR) log


1−

〈
k

⌊kd⌋

〉

2k


 (B.151)

≤ − exp (kR)

〈
k

⌊kd⌋

〉

2k
log e (B.152)

where we used log(1 + x) ≤ x log e, x > −1. Taking the logarithm of the negative of both sides in

(B.152), we have

log log
1

ǫ
≥ k(R− log 2) + log

〈
k

⌊kd⌋

〉
+ log log e (B.153)

= k(R− log 2 + h(d))− 1

2
log k +O (1) , (B.154)

where (B.154) follows from (B.147). Therefore,

R(k, d, ǫ) ≤ R(d) + 1

2

log k

k
+O

(
1

k

)
(B.155)

The case d = 0 follows directly from (2.148). Alternatively, it can be easily checked by substituting
〈
k
0

〉
= 1 in the analysis above.
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B.8 Gaussian approximation of the bound in Theorem 2.33

By analyzing the asymptotic behavior of (2.209), we prove that

R(k, d, ǫ) ≤ h(p)− h(d) +
√
V(d)
k

Q−1 (ǫ) +
1

2

log k

k
+

log log k

k
+O

(
1

k

)
(B.156)

where V(d) is as in (2.211), thereby showing that a constant composition code that attains the

rate-dispersion function exists. Letting M = exp (kR) and using (1 − x)M ≤ e−Mx in (2.209), we

can guarantee existence of a (k,M, d, ǫ′) code with

ǫ′ ≤
k∑

j=0

(
k

j

)
pj(1− p)k−je−(

k
⌈kq⌉)

−1
Lk(j,⌈kq⌉) exp(kR) (B.157)

In what follows we will show that one can choose an R satisfying the right side of (B.156) so that

the right side of (B.157) is upper bounded by ǫ when k is large enough. Letting j = np + k∆,

t = ⌈kq⌉, t0 = ⌈ ⌈kq⌉+j−kd2 ⌉+ and using Stirling’s formula (B.141), it is an algebraic exercise to show

that there exist positive constants δ and C such that for all ∆ ∈ [−δ, δ],

(
k

t

)−1(
j

t0

)(
k − j
t− t0

)
=

(
k

j

)−1(
t

t0

)(
k − t
j − t0

)
(B.158)

≥ C√
k
exp {kg(∆)} (B.159)

where

g(∆) = h(p+∆)− qh
(
d− ∆

2q

)
− (1− q)h

(
d+

∆

2(1− q)

)

It follows that (
k

⌈kq⌉

)−1

Lk(np+ k∆, ⌈kq⌉) ≥ C√
k
exp {−kg(∆)} (B.160)

whenever Lk(j, ⌈kq⌉) is nonzero, that is, whenever ⌈kq⌉ − kd ≤ j ≤ ⌈kq⌉ + kd, and g(∆) = 0

otherwise.

Applying a Taylor series expansion in the vicinity of ∆ = 0 to g(∆), we get

g(∆) = h(p)− h(d) + h′(p)∆ +O
(
∆2
)

(B.161)

Since g(∆) is continuously differentiable with g′(0) = h′(p) > 0, there exist constants b, b̄ > 0 such
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that g(∆) is monotonically increasing on (−b, b̄) and (B.159) holds. Let

bk =

√
p(1− p)

k
Q−1 (ǫk) (B.162)

ǫk = ǫ− 2Bk√
k
−
√
V(d)
2πk

1

b̄
e−k

b̄2

2V(d) − 1√
k

(B.163)

Bk = 6
1− 2p+ 2p2√

p(1− p)
(B.164)

R = g(bk) +
1

2

log k

k
+

1

k
log

(
loge k

2C

)
(B.165)

Using (B.161) and applying a Taylor series expansion to Q−1 (·), it is easy to see that R in (B.165)

can be rewritten as the right side of (B.156). Splitting the sum in (B.157) into three sums and upper

bounding each of them separately, we have

k∑

j=0

(
k

j

)
pj(1 − p)k−je−(

k
⌈kq⌉)

−1
Lk(j,⌈kq⌉) exp(kR)

=

⌊np−kb⌋∑

j=0

+

⌊kp+kbk⌋∑

j=⌊np−kb⌋+1

+

k∑

j=⌊kp+kbk⌋+1

(B.166)

≤ P

[
k∑

i=1

Si ≤ np− kb
]
+

⌊kp+kbk⌋∑

j=⌊np−kb⌋+1

(
k

j

)
pj(1− p)k−je− C√

k
exp{kR−kg( j

k−p)}

+ P

[
k∑

i=1

Si ≥ np+ kbk

]
(B.167)

≤ Bk√
k
+

√
V(d)
2πk

1

b̄
e−k

b̄2

2V(d) +
1√
k
+ ǫk +

Bk√
k

(B.168)

= ǫ (B.169)

where {Si} are i.i.d. Bernoulli random variables with bias p. The first and third probabilities in

the right side of (B.167) are bounded using the Berry-Esséen bound (2.155) and (A.28), while the

second probability is bounded using the monotonicity of g(∆) in (−b, bk] for large enough k, in which

case the minimum difference between R and g(∆) in (−b, bk) is 1
2k log k +

1
k log

(
loge k
2C

)
.

B.9 Proof of Theorem 2.38

In order to study the asymptotics of (2.223) and (2.225), we need to analyze the asymptotic behavior

of S⌊kd⌋ which can be carried out similarly to the binary case. Recalling the inequality (B.143), we
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have

Sj =

j∑

i=0

(
k

i

)
(m− 1)i (B.170)

≤
(
k

j

) j∑

i=0

(
j

k − j

)i
(m− 1)j−i (B.171)

≤
(
k

j

)
(m− 1)j

∞∑

i=0

(
j

(k − j)(m− 1)

)i
(B.172)

=

(
k

j

)
(m− 1)j

k − j
k − j m

m−1

(B.173)

where (B.173) holds as long as the series converges, i.e. as long as j
k <

m−1
m . Using

Sj ≥
(
k

j

)
(m− 1)j (B.174)

and applying Stirling’s approximation (B.141) and (B.142), we have for 0 < d < m−1
m

logS⌊kd⌋ = log

(
k

⌊kd⌋

)
+ kd log(m− 1) +O(1) (B.175)

= kh(d) + kd log(m− 1)− 1

2
log k +O(1) (B.176)

Taking logarithms in (2.223) and letting logM = kR for any R ≥ R(k, d, ǫ), we obtain

log(1− ǫ) ≤ k(R− logm) + logS⌊kd⌋ (B.177)

≤ k(R− logm+ h(d) + d log(m− 1))− 1

2
log k +O (1) (B.178)

Since (B.178) holds for any R ≥ R(k, d, ǫ), we conclude that

R(k, d, ǫ) ≥ R(d) + 1

2k
log k +O

(
1

k

)
(B.179)

Similarly, Theorem 2.37 implies that there exists an (exp(kR), d, ǫ) code with

log ǫ ≤ exp (kR) log

(
1− S⌊kd⌋

mk

)
(B.180)

≤ − exp (kR)
S⌊kd⌋
mk

log e (B.181)

where we used log(1 + x) ≤ x log e, x > −1. Taking the logarithm of the negative of both sides of
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(B.181), we have

log log
1

ǫ
≥ k(R− logm) + logS⌊kd⌋ + log log e (B.182)

= k(R− logm+ h(d))− 1

2
log k +O (1) , (B.183)

where (B.183) follows from (B.176). Therefore,

R(k, d, ǫ) ≤ R(d) + 1

2k
log k +O

(
1

k

)
(B.184)

The case d = 0 follows directly from (2.148), or can be obtained by observing that S0 = 1 in the

analysis above.

B.10 Gaussian approximation of the bound in Theorem 2.41

Using Theorem 2.41, we show that

R(k, d, ǫ) ≤ R(d) +
√
V(d)
k

Q−1 (ǫ) +
(m− 1)(MS(η) − 1)

2

log k

k
+

log log k

k
+O

(
1

k

)
(B.185)

where MS(η) is defined in (2.231), and V(d) is as in (2.252). Similar to the binary case, we express

Lk(j, t
⋆) in terms of the rate-distortion function. Observe that whenever Lk(j, t

⋆) is nonzero,

(
k

t⋆

)−1

Lk(j, t
⋆) =

(
k

t⋆

)−1 m∏

a=1

(
ja
ta

)
(B.186)

=

(
k

j

)−1MS(η)∏

a=1

(
t⋆b
jb

)
(B.187)

where jb = (t1,b, . . . , tm,b). It can be shown [55] that for k large enough, there exist positive constants

C1, C2 such that

(
k

j

)
≤ C1k

−m−1
2 exp k

{
H(S) +

m∑

a=1

∆a log
1

PS(a)
+O

(
|∆|2

)
}

(B.188)

(
t⋆b
jb

)
≥ C2k

−m−1
2 expk

{
P ⋆Z (b)H (S|Z⋆ = b) +

m∑

a=1

δ(a, b) log
1

P ⋆
S|Z(a|b)

+O
(
|∆|2

)
}

(B.189)

204



hold for small enough |∆|, where ∆ = (∆1, . . . ,∆m). A simple calculation using
∑m

a=1 ∆a = 0

reveals that

m∑

a=1

MS(η)∑

b=1

δ(a, b) log
1

P ⋆
S|Z(a|b)

=

MS(η)∑

a=1

∆a log
1

η
+

m∑

a=MS(η)+1

∆a log
1

PS(a)
(B.192)

so invoking (B.188) and (B.189) one can write

(
k

j

)−1MS(η)∏

a=1

(
t⋆b
jb

)
≥ Ck−

(m−1)(MS(η)−1)

2 exp {−kg(∆)} (B.193)

where C is a constant, and g(∆) is a twice differentiable function that satisfies

g(∆) = R(d) +

m∑

a=1

∆av(a) +O
(
|∆|2

)
(B.194)

v(a) = min

{
ıS(a), log

1

η

}
(B.195)

Similar to the BMS case, g(∆) is monotonic in
∑m
a=1 ∆av(a) ∈ (−b, b̄) for some constants b, b̄ > 0

independent of k. Let

bk =

√
V(d)
k

Q−1 (ǫ) (B.196)

ǫk = ǫ− 2Bk√
k
− 1√

k
−
√
V(d)
2πk

1

b̄
e−k

b̄2

2V(d) (B.197)

R = max
∆:∑m

a=1 ∆av(a)∈(−b,bk]
g(∆) +

(m− 1)(MS(η)− 1)

2

log k

k
+

1

k
log

(
loge k

2C

)
(B.198)

where Bk is the finite constant defined in (2.159). Using (B.194) and applying a Taylor series

expansion to Q−1 (·), it is easy to see that R in (B.198) can be rewritten as the right side of (B.185).
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Further, we use kR = logM and (1− x)M ≤ e−Mx to weaken the right side of (2.242) to obtain

∑

∆

(
k

k(p+∆)

)
pk(p+∆)e−(

k
t⋆)

−1
Lk(k(p+∆),t⋆) exp(kR)

=
∑

∆:∑m
a=1 ∆av(a)≤−b

+
∑

∆:∑m
a=1 ∆av(a)∈(−b,bk)

+
∑

∆:∑m
a=1 ∆av(a)≥bk

(B.199)

≤ P




k∑

j=1

v(Sj) ≤ E [v(S)]− b




+ sup
∆:∑m

a=1 ∆av(a)∈(−b,bk)

e−Ck
− (m−1)(MS(η)−1)

2 exp k{R−g(∆)}

+ P




k∑

j=1

v(Sj) ≥ E [v(S)] + bk


 (B.200)

≤ Bk√
k
+

√
V(d)
2πk

1

b̄
e−k

b̄2

2V(d) +
1√
k
+ ǫk +

Bk√
k

(B.201)

where PSj (a) = PS(a). The first and third probabilities in (B.199) are bounded using the Berry-

Esséen bound (2.155) and (A.28). The middle probability is bounded by observing that the difference

between R and g(∆) in
∑m
a=1 ∆av(a) ∈ (−b, bk) is at least (m−1)(MS(η)−1)

2
log k
k + 1

k log
(

loge k
2C

)
.

B.11 Gaussian approximation of the bound in Theorem 2.45

Using Theorem 2.45, we show that R(k, d, ǫ) does not exceed the right-hand side of (2.283) with the

remainder satisfying (2.285). Since the excess-distortion probability in (2.270) depends on σ2 only

through the ratio d
σ2 , for simplicity we let σ2 = 1. Using inequality (1− x)M ≤ e−Mx, the right side

of (2.270) can be upper bounded by

∫ ∞

0

e−ρ(k,x) exp(kR)fχ2
k
(kx) k dx, (B.202)

From Stirling’s approximation for the Gamma function

Γ (x) =

√
2π

x

(x
e

)x(
1 +O

(
1

x

))
(B.203)

it follows that

Γ
(
k
2 + 1

)
√
πkΓ

(
k−1
2 + 1

) =
1√
2πk

(
1 +O

(
1

k

))
, (B.204)
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which is clearly lower bounded by 1
2
√
πk

when k is large enough. This implies that for all a2 ≤ x ≤ b2

and all k large enough

ρ(k, z) ≥ 1

2
√
πk

exp
{
(k − 1) log (1− g(x)) 1

2

}
(B.205)

where

g(x) =
(1 + x− 2d)

2

4 (1− d) z (B.206)

It is easy to check that g(x) attains its global minimum at x = [1 − 2d]+ and is monotonically

increasing for x > [1− 2d]+. Let

bk =

√
2

k
Q−1 (ǫk) (B.207)

ǫk = ǫ− c04
√
2 + 1√
k

− 1

4d
√
πk
e−2d2k (B.208)

R = −1

2
log (1− g(1 + bk)) +

1

2

log k

k
+

1

k
log
(√
π loge k

)
(B.209)

where c0 is that in (2.159). Using a Taylor series expansion, it is not hard to check that R in (B.209)

can be written as the right side of (2.283). So, the theorem will be proven if we show that with R

in (B.209), (B.202) is upper bounded by ǫ for k sufficiently large.

Toward this end, we split the integral in (B.202) into three integrals and upper bound each

separately: ∫ ∞

0

=

∫ [1−2d]+

0

+

∫ 1+bk

[1−2d]+
+

∫ ∞

1+bk

(B.210)

The first and the third integrals can be upper bounded using the Berry-Esséen inequality (2.155)

and (A.28):

∫ [1−2d]+

0

≤ P

[
k∑

i=1

S2
i < k(1− 2d)

]
(B.211)

≤ Bk√
k
+

1

4d
√
πk
e−2d2k (B.212)

∫ ∞

1+bk

≤ P

[
k∑

i=1

S2
i > k(1 + bk)

]
(B.213)

≤ ǫk +
Bk√
k

(B.214)
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Finally, the second integral is upper bounded by 1√
k
because by the monotonicity of g(z),

e−ρ(k,x) exp(kR) ≤ e−
1

2
√

πk
exp{ 1

2 log k+log(
√
π loge k)} (B.215)

=
1√
k

(B.216)

for all [1− 2d]+ ≤ x ≤ 1 + bk.
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Appendix C

Lossy joint source-channel coding:

proofs

C.1 Proof of the converse part of Theorem 3.10

Note that for the converse, restriction (iv) in Section 2.6.2 can be replaced by the following weaker

one:

(iv′) The random variable S(S, d) has finite absolute third moment.

To verify that (iv) implies (iv′), observe that by the concavity of the logarithm,

0 ≤ S(s, d) + λ⋆d ≤ λ⋆E [d(s,Z⋆)] (C.1)

so

E

[
|S(S, d) + λ⋆d|3

]
≤ λ⋆3E

[
d3(S,Z⋆)

]
(C.2)

We now proceed to prove the converse by showing first that we can eliminate all rates exceeding

k

n
≥ C

R(d)− 3τ
(C.3)

for any 0 < τ < R(d)
3 . More precisely, we show that the excess-distortion probability of any code

having such rate converges to 1 as n→∞, and therefore for any ǫ < 1, there is an n0 such that for

all n ≥ n0, no (k, n, d, ǫ) code can exist for k, n satisfying (C.3).
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We weaken (3.11) by fixing γ = kτ and choosing a particular channel output distribution, namely,

PȲ n = PY n⋆ = PY⋆×. . .×PY⋆ . Due to restrictions (i) and (ii) in Section 2.6.2, PZk⋆ = PZ⋆×. . .×PZ⋆ ,

and the d-tilted information single-letterizes, that is, for a.e. sk,

Sk(sk, d) =

k∑

i=1

S(si, d) (C.4)

Theorem 3.1 implies that error probability ǫ′ of every (k, n, d, ǫ′) code must be lower bounded by

E


 min
xn∈An

P




k∑

i=1

S(Si, d)−
n∑

j=1

ı⋆X;Y(xi;Yi) ≥ kτ | Sk



− exp (−kτ)

≥ min
xn∈An

P




n∑

j=1

ı⋆X;Y(xi;Yi) ≤ nC + kτ


P

[
k∑

i=1

S(Si, d) ≥ nC + 2kτ

]
− exp (−kτ) (C.5)

≥ min
xn∈An

P




n∑

j=1

ı⋆X;Y(xi;Yi) ≤ nC + nτ ′


P

[
k∑

i=1

S(Si, d) ≥ kR(d)− kτ
]
− exp (−kτ) (C.6)

where in (C.6), we used (C.3) and τ ′ = Cτ
R(d)−3τ > 0. Recalling (2.11) and the well-known

D(PY|X=x‖PY⋆) ≤ C (C.7)

with equality for PX⋆ -a.e. x, we conclude using the law of large numbers that (C.6) tends to 1 as

k, n→∞.

We proceed to show that for all large enough k, n, if there is a sequence of (k, n, d, ǫ′) codes such

that

−3kτ ≤ nC − kR(d) (C.8)

≤
√
nV + kV(d)Q−1 (ǫ) + θ (n) (C.9)

then ǫ′ ≥ ǫ.

Note that in general the bound in Theorem 3.1 with the choice of PȲ n as above does not lead to

the correct channel dispersion term. We first consider the general case, in which we apply Corollary

3.3, and then we show the symmetric case, in which we apply Theorem 3.2.

Given a finite set A, we say that xn ∈ An has type PX if the number of times each letter a ∈ A

is encountered in xn is nPX(a). In Corollary 3.3, we weaken the supremum over W by letting

W map Xn to its type, W = type(Xn). Note that the total number of types satisfies (e.g. [46])

210



T ≤ (n+1)|A|−1. We weaken the supremum over Ȳ n in (3.25) by fixing PȲ n|W=PX
= PY × . . .×PY,

where PX → PY|X → PY, i.e. PY is the output distribution induced by the type PX. In this way,

Corollary 3.3 implies that the error probability of any (k, n, d, ǫ′) code must be lower bounded by

ǫ′ ≥ E

[
min
xn∈An

P

[
k∑

i=1

S(Si, d)−
n∑

i=1

ıX;Y(xi;Yi) ≥ γ | Sk
]]
− (n+ 1)|A|−1 exp (−γ) (C.10)

Choose

γ =

(
|A| − 1

2

)
log(n+ 1) (C.11)

We need to solve the minimization in (C.10) only in the following typical set of source sequences:

Tk,n =

{
sk ∈ Sk :

∣∣∣∣∣
k∑

i=1

S(si, d)− nC
∣∣∣∣∣ ≤ n∆̄− γ

}
(C.12)

Observe that

P
[
Sk /∈ Tk,n

]
= P

[∣∣∣∣∣
k∑

i=1

S(Si, d)− nC
∣∣∣∣∣ > n∆̄− γ

]
(C.13)

≤ P

[∣∣∣∣∣
k∑

i=1

S(Si, d)− kR(d)
∣∣∣∣∣+ |nC − kR(d)|+ γ > n∆̄

]
(C.14)

≤ P

[∣∣∣∣∣
k∑

i=1

S(Si, d)− kR(d)
∣∣∣∣∣ > k

∆̄R(d)

2C

]
(C.15)

≤ 4C2

R2(d)∆̄2

V(d)
k

(C.16)

where

• (C.15) follows by lower bounding

n∆̄− γ − |nC − kR(d)| ≥ n∆̄− γ − 3kτ (C.17)

≥ n
3∆̄

4
− 3kτ (C.18)

≥ k
3∆̄

4C
(R(d)− 3τ)− 3kτ (C.19)

≥ k
∆̄R(d)

2C
(C.20)

where

– (C.17) holds for large enough n due to (C.8) and (C.9);
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– (C.18) holds for large enough n by the choice of γ in (C.11);

– (C.19) lower bounds n using (C.8);

– (C.20) holds for a small enough τ > 0.

• (C.16) is by Chebyshev’s inequality.

We perform the minimization on the right side of (E.30) separately for type(xn) ∈ P⋆δ and

type(xn) ∈ P\P⋆δ , where

P⋆δ = {PX ∈ P : |PX − PX⋆ | ≤ δ} (C.21)

We now show that ǫ′ ≥ ǫ for holds for arbitrary ǫ < 1 and n large enough as long as ∆̄ ≤ a
2 if

the minimization is restricted to types in type(xn) ∈ P\P⋆δ , where δ > 0 is arbitrary, and

a = C − max
PX∈P\P⋆

δ

I(PX) > 0 (C.22)

Define the following functions P 7→ R+:

µ(PX) = E [ıX;Y(X;Y)] (C.23)

V (PX) = E [Var [ıX;Y(X;Y) | X]] (C.24)

T (PX) = E

[
|ıX;Y(X;Y)− E [ıX;Y(X;Y)|X]|3

]
(C.25)

where PX 7→ PY|X 7→ PY.

By Chebyshev’s inequality, for all xn whose type belongs to P\P⋆δ and all sk ∈ Tk,n

P

[
k∑

i=1

S(si, d)−
n∑

i=1

ıX;Y(xi;Yi) < γ|Sk = sk

]
≤ P

[
n∑

i=1

ıX;Y(xi;Yi) > n(C − ∆̄)

]
(C.26)

= P

[
n∑

i=1

ıX;Y(xi;Yi)− nµ(PX) > n(C − I(PX))− n∆̄
]

(C.27)

≤ P

[
n∑

i=1

ıX;Y(xi;Yi)− nµ(PX) >
na

2

]
(C.28)

≤ 4V

na2
(C.29)
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where in (C.28) we used

∆ ≤ 1

2
a < a ≤ C − I(PX) (C.30)

and (C.29) is by Lemma A.4.3, where

V = max
PX∈P

V (PX) (C.31)

Note that V <∞ because V (PX) is continuous on the compact set P and therefore achieves its

maximum, so

E

[
min

type(xn)∈P\P⋆
δ

P

[
k∑

i=1

S(si, d)−
n∑

i=1

ıX;Y(xi;Yi) ≥ γ|Sk
]]

≥ E

[
min

type(xn)∈P\P⋆
δ

P

[
k∑

i=1

S(si, d)−
n∑

i=1

ıX;Y(xi;Yi) ≥ γ|Sk
]
1
{
Sk ∈ Tk,n

}
]

(C.32)

>

(
1− 4V

na2

)
PSk(Tk,n) (C.33)

≥ 1− 4V

na2
− 16C2

R2(d)a2
V(d)
k

(C.34)

We conclude that the excess-distortion probability approaches 1 arbitrarily closely if the mini-

mization is restricted to types in P\P⋆δ .

To perform the minimization on the right side of (E.30) over P⋆δ , we will invoke Theorem A.6

with D = P⋆δ , the distance being the usual Euclidean distance between |A|-vectors, and

Wi = ıX;Y(xi;Yi) (C.35)

z = PX = type(xn) (C.36)

Denote by P
X̂
the minimum Euclidean distance approximation of PX in the set of n-types, that

is,

P
X̂
= arg min

P∈P :
P is an n-type

|PX − P | (C.37)

and denote P
X̂
7→ PY|X 7→ P

Ŷ
. The accuracy of approximation in (C.37) is controlled by the following

inequality.
∣∣PX − PX̂

∣∣ ≤
√
|A| (|A| − 1)

n
(C.38)
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With the choice in (C.35) and (C.36) the functions (A.40)–(A.42) are particularized to the following

mappings P 7→ R+:

µn(PX) = µ
(
P
X̂

)
(C.39)

Vn(PX) = V
(
P
X̂

)
(C.40)

Tn(PX) = T
(
P
X̂

)
(C.41)

where P
X̂
→ PY|X → P

Ŷ
and the functions µ(·), V (·), T (·) are defined in (C.23)–(C.25).

Assuming without loss of generality that all outputs in B are accessible (which implies that

PY⋆(y) > 0 for all y ∈ B), we choose δ > 0 so that

min
PX∈P⋆

δ

min
y∈B

PY(y) = pmin > 0 (C.42)

2 min
PX∈P⋆

δ

V (PX) ≥ V (C.43)

Let us check that the assumptions of Theorem A.6.3 are satisfied with µ⋆n, V
⋆
n being

µ⋆n = C (C.44)

V ⋆n = V (C.45)

It is easy to verify directly that the functions µ(·), V (·), T (·) are continuous (and therefore

bounded) on P and infinitely differentiable on P⋆δ . Therefore, assumptions (A.46) and (A.47) of

Theorem A.6 are met.

To verify that (A.51) holds, write

C − µ
(
P
X̂

)
= C − µ (PX) + µ (PX)− µ

(
P
X̂

)
(C.46)

≥ C − µ (PX)−
ℓ3
n

(C.47)

≥ ℓ1|v|2 −
ℓ3
n

(C.48)

where ℓ1 and ℓ3 are positive constants,

v = PX − PX⋆ , (C.49)

and:
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• (C.47) uses (C.38) and continuous differentiability of µ(·) on the compact P⋆δ ;

• (C.48) uses

µ(PX) ≤ C − ℓ′1|v|2 (C.50)

Although (C.50) was shown in [3, (497)–(505)] by an explicit computation of the Hessian

matrix of µ(PX), here we provide a simpler proof using Pinsker’s inequality. Viewing PX as a

vector and PY|X as a matrix, write

PX = PX⋆ + v0 + v⊥ (C.51)

where v0 and v⊥ are projections of v onto KerPY|X and (KerPY|X)
⊥ respectively, where

KerPY|X =
{
v ∈ R|A| : vTPY|X = 0

}
(C.52)

We consider two cases v⊥ = 0 and v⊥ 6= 0 separately. Condition v⊥ = 0 implies PX → PY|X →

PY⋆ , which combined with PX 6= PX⋆ and (C.7) means that the complement of F = supp(PX⋆)

is nonempty and

a , C −max
x/∈F

D(PY|X=x‖PY⋆) (C.53)

is positive. Therefore

µ(PX) = D(PY|X‖PY⋆ |PX) (C.54)

≤ CPX (F ) + PX (F
c) (C − a) (C.55)

≤ C − (λ+min(P
2
F ))

1/2a|v| (C.56)

≤ C − 1

4
(λ+min(P

2
F ))

1/2a|v|2 (C.57)

where (C.55) uses (C.7), PF is the orthogonal projection matrix onto F c and λ+min(·) is the

minimum nonzero eigenvalue of the indicated positive semidefinite matrix, and (C.57) holds

because the Euclidean distance between two distributions is bounded by 2.
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If v⊥ 6= 0, write

µ(PX) = D(PY|X‖PY⋆ |PX)−D(PY‖PY⋆) (C.58)

≤ D(PY|X‖PY⋆ |PX)−
1

2
|PY − PY⋆ |2 log e (C.59)

≤ C − 1

2
|PY − PY⋆ |2 log e (C.60)

where (C.59) is by Pinsker’s inequality (given in (A.6)), and (C.60) is by (C.7). To conclude

the proof of (C.50), we lower bound the second term in (C.60) as follows.

|PY − PY⋆ |2 =
∣∣∣(PX − PX⋆)

T
PY|X

∣∣∣
2

(C.61)

=
∣∣vT⊥PY|X

∣∣2 (C.62)

≥ λmin(PY|X)|v⊥|2 (C.63)

≥ λ+min(PY|XP
T
Y|X)λ

+
min(P

2
⊥)|v|2 (C.64)

where P⊥ is the orthogonal projection matrix onto (KerPY|X)
⊥.

Finally, conditions (A.44) and (A.52) (with F2 = 0) hold due to continuous differentiability of

µ(·) and V (·) on the compact P⋆δ .

Theorem A.6 is thereby applicable.

At this point we consider two cases separately, V > 0 and V = 0.

C.1.1 V > 0.

Let

ǫk,n = ǫ+
B√
k
+

K√
n
+

1√
n+ 1

+
4C2

R2(d)∆̄2

V(d)
k

(C.65)

where B > 0 will be chosen in the sequel, K is the same as in (A.50), and k, n are chosen so that

both (C.8) and the following version of (C.9) hold:

nC − kR(d) ≤
√
nV + kV(d)Q−1 (ǫk,n)− γ (C.66)

In order to apply Theorem A.6.3, let W ⋆ ∼ N
(
C, Vn

)
, independent of Sk. Weakening (C.10)
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using (C.11) and Theorem A.6.3, we can lower bound ǫ′ by

E

[
min
xn∈An

P

[
ıX;Y(xi;Yi)−

k∑

i=1

S(Si, d) ≤ −γ | Sk
]
· 1
{
Sk ∈ Tk,n

}
]
− 1√

n+ 1

≥ E

[
P

[
nW ⋆ −

k∑

i=1

S(Si, d) ≤ −γ | Sk
]
· 1
{
Sk ∈ Tk,n

}
]
− K√

n
− 1√

n+ 1
(C.67)

= P

[
nW ⋆ −

k∑

i=1

S(Si, d) ≤ −γ, Sk ∈ Tk,n
]
− K√

n
− 1√

n+ 1
(C.68)

≥ P

[
nW ⋆ −

k∑

i=1

S(Si, d) ≤ −γ
]
− P

[
Sk /∈ Tk,n

]
− K√

n
− 1√

n+ 1
(C.69)

≥ P

[
nW ⋆ −

k∑

i=1

S(Si, d) ≤ −γ
]
− 4C2

R2(d)∆̄2

V(d)
k
− K√

n
− 1√

n+ 1
(C.70)

≥ ǫ (C.71)

where (C.67) is by Theorem A.6.4, (C.69) is by the union bound, and (C.70) makes use of (C.16). To

justify (C.71), observe that if V(d) = 0, S(Si, d) = R(d) a.s., and (C.71) is immediate with B = 0 in

view of (C.65). Otherwise, (C.71) follows by the Berry-Esséen bound (Theorem 2.23) letting B to be

the Berry-Esséen ratio (2.159) of the k+1 independent random variables S(S1, d), . . . , S(Sk, d), nW
⋆.

C.1.2 V = 0.

If V = V(d) = 0, fix 0 < η < 1− ǫ and let

γ = (|A| − 1) log(n+ 1) + log
1

η
(C.72)

and choose k, n that satisfy

nC − kR(d) ≥
(

K

1− ǫ − η

) 2
3

n
1
3 + γ (C.73)

where K > 0 is that in (A.53). Plugging S(Si, d) = R(d) a.s. in (C.10), we have

ǫ′ ≥ min
xn∈An

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ kR(d)− γ
]
− (n+ 1)|A|−1 exp (−γ) (C.74)

≥ min
xn∈An

P

[
n∑

i=1

ıX;Y(xi;Yi) ≤ nC +

(
K

1− ǫ− η

) 2
3

n
1
3

]
− η (C.75)

≥ ǫ (C.76)
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where (C.76) invokes Theorem A.6.4 with β = 1
6 , A =

(
K

1−ǫ−η

) 2
3

.

If V(d) > 0, we choose γ as in (C.11), and we let

ǫk,n = ǫ+
B√
k
+ (n+ 1)|A|−1 exp (−γ) + 1

n
1
4− 3

2β
(C.77)

where B > 0 is the same as in (C.65), and k, n are chosen so that the following version of (C.9)

holds:

nC − kR(d) ≤
√
kV(d)Q−1 (ǫk,n)− γ −An

1
2−β (C.78)

where A = K
2
3 , where K is that in (A.53). Weakening (C.10) using Theorem A.6.4, we have

ǫ′ ≥ min
xn∈An

P

[
ıX;Y(xi, Yi) ≥ nC +An

1
2−β

]
P

[
k∑

i=1

S(Si, d) ≥ nC +An
1
2−β + γ

]

− (n+ 1)|A|−1 exp (−γ) (C.79)

≥
(
1− 1

n
1
4− 3

2β

)
P

[
k∑

i=1

S(Si, d) ≥ kR(d) +
√
kV(d)Q−1 (ǫk,n)

]
− (n+ 1)|A|−1 exp (−γ) (C.80)

≥
(
1− 1

n
1
4− 3

2β

)(
ǫk,n −

B√
k

)
− (n+ 1)|A|−1 exp (−γ) (C.81)

≥ ǫk,n −
B√
k
− 1

n
1
4− 3

2β
− (n+ 1)|A|−1 exp (−γ) (C.82)

= ǫ (C.83)

where (C.80) uses(A.53) and (C.78), and (C.81) is by the Berry-Esséen bound.

C.1.3 Symmetric channel

We show that if the channel is such that the distribution of ı⋆X;Y(x;Y) (according to PY|X=x) does

not depend on the choice x ∈ A, Theorem 3.2 leads to a tighter third-order term than (3.93).

If either V > 0 or V(d) > 0, let

γ =
1

2
logn (C.84)

ǫk,n = ǫ+
B√
n+ k

+
1√
n

(C.85)

where B > 0 can be chosen as in (C.65), and let k, n be such that the following version of (C.9)
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(with the remainder θ(n) satisfying (3.93) with c = 1
2 ) holds:

nC − kR(d) ≤
√
nV + kV(d)Q−1 (ǫk,n)− γ (C.86)

Theorem 3.2 and Theorem 2.23 imply that the error probability of every (k, n, d, ǫ′) code must satisfy,

for an arbitrary sequence xn ∈ An,

ǫ′ ≥ P




k∑

i=1

S(Si, d)−
n∑

j=1

ı⋆X;Y(xi;Yi) ≥ γ


− exp (−γ) (C.87)

≥ ǫ (C.88)

If both V = 0 and V(d) = 0, choose k, n to satisfy

kR(d)− nC ≥ γ (C.89)

= log
1

1− ǫ (C.90)

Substituting (C.90) and S(Si, d) = R(d), ı⋆X;Y(xi;Yi) = C a.s. in (C.87), we conclude that the right

side of (C.87) equals ǫ, so ǫ′ ≥ ǫ whenever a (k, n, d, ǫ′) code exists.

C.1.4 Gaussian channel

In view of Remark 3.14, it suffices to consider the equal power constraint (3.107). The spherically-

symmetric PȲ n = PY n⋆ = PY⋆ × . . . × PY⋆ , where Y⋆ ∼ N (0, σ2
N(1 + P )), satisfies the symmetry

assumption of Theorem 3.2. In fact, for all xn ∈ F(α), ı⋆Xn;Y n(xn;Y n) has the same distribution

under PY n|Xn=xn as (cf. (3.142))

Gn =
n

2
log (1 + P )− log e

2

(
P

1 + P

n∑

i=1

(
Wi −

1√
P

)2

− n
)

(C.91)

where Wi ∼ N
(

1√
P
, 1
)
, independent of each other. Since Gn is a sum of i.i.d. random variables,

the mean of Gn

n is equal to C = 1
2 log (1 + P ) and its variance is equal to (3.92), the result follows

analogously to (C.84)–(C.88).
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C.2 Proof of the achievability part of Theorem 3.10

C.2.1 Almost lossless coding (d = 0) over a DMC.

The proof consists of an asymptotic analysis of the bound in Theorem 3.9 by means of Theorem

2.23. Weakening (3.87) by fixing PXn = P ⋆Xn = PX⋆ × . . . × PX⋆ , we conclude that there exists a

(k, n, 0, ǫ′) code with

ǫ′ ≤ E


exp


−

∣∣∣∣∣
n∑

i=1

ı⋆X;Y (X⋆
i ;Y

⋆
i )−

k∑

i=1

ıS(Si)

∣∣∣∣∣

+



 (C.92)

where (Sk, Xn⋆, Y n⋆) are distributed according to PSkPXn⋆PY n|Xn . The case of equiprobable S has

been tackled in [3]. Here we assume that ıS(S) is not a constant, that is, Var [ıS(S)] > 0.

Let k and n be such that

nC − kH(S) ≥
√
nV + kVQ−1 (ǫk,n) (C.93)

ǫk,n = ǫ− Bk,n√
n+ k

− 2 log 2√
2π(nV + kV)

+
4Bk,n
n+ k

(C.94)

where V = Var [ıS(S)], and Bk,n is the Berry-Esséen ratio (2.159) for the sum of n+ k independent

random variables appearing in the right side of (C.92). Note that Bk,n is bounded by a constant

due to:

• Var [ıS(S)] > 0;

• the third absolute moment of ıS(S) is finite;

• the third absolute moment of ı⋆X;Y(X
⋆;Y⋆) is finite since the channel has finite input and output

alphabets.

Therefore, (C.93) can be written as (3.88) with the remainder therein satisfying (3.97). So, it suffices

to prove that if k, n satisfy (C.93), then the right side of (C.92) is upper bounded by ǫ. Let

Sk,n = nC − kH(S)−
√
nV + kVQ−1 (ǫk,n) (C.95)
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Note that Sk,n ≥ 0. We now further upper bound (C.92) as

ǫ′ ≤ E

[
exp

(
−

n∑

i=1

ı⋆X;Y (X⋆
i ;Y

⋆
i ) +

k∑

i=1

ıS(Si)

)
1

{
n∑

i=1

ı⋆X;Y (X⋆
i ;Y

⋆
i )−

k∑

i=1

ıS(Si) > Sk,n

}]

+ P

[
n∑

i=1

ı⋆X;Y (X⋆
i ;Y

⋆
i )−

k∑

i=1

ıS(Si) ≤ Sk,n
]

(C.96)

≤ 2

(
log 2√

2π(nV + kV)
+

2Bk,n
n+ k

)
1

exp(Sk,n)
+ ǫk,n −

Bk,n√
n+ k

(C.97)

≤ ǫ (C.98)

where we invoked Lemma A.4.4 and the Berry-Esséen bound (Theorem 2.23) to upper-bound the

first and the second term in the right side of (C.96), respectively.

C.2.2 Lossy coding over a DMC.

The proof consists of the asymptotic analysis of the bound in Theorem 3.8 using Theorem 2.23 and

Lemma 2.24, which deals with asymptotic behavior of distortion d-balls. Note that Lemma 2.24

is the only step that requires finiteness of the ninth absolute moment of d(S,Z⋆) as required by

restriction (iv) in Section 2.6.2. We weaken (3.82) by fixing

PXn = PXn⋆ = PX⋆ × . . .× PX⋆ (C.99)

PZk = PZk⋆ = PZ⋆ × . . .× PZ⋆ (C.100)

γ =
1

2
loge k + 1 (C.101)

where ∆ > 0, so there exists a (k, n, d, ǫ′) code with error probability ǫ′ upper bounded by

E


exp


−

∣∣∣∣∣
n∑

i=1

ı⋆X;Y(X
⋆
i ;Y

⋆
i )− log

γ

PZk⋆(Bd(Sk))

∣∣∣∣∣

+



+ e1−γ (C.102)

where (Sk, Xn⋆, Y n⋆, Zk⋆) are distributed according to PSkPXn⋆PY n|XnPZk⋆ . We need to show that

for k, n satisfying (3.88), (C.102) is upper bounded by ǫ.

We apply Lemma 2.24 to upper bound (C.102) as follows:

ǫ′ ≤ E

[
exp

(
− |Uk,n|+

)]
+
K + 1√

k
(C.103)
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with

Uk,n =

n∑

i=1

ı⋆X;Y(X
⋆
i ;Y

⋆
i )−

k∑

i=1

S(Si, d)− C0 log k − log γ − c (C.104)

where constants c, C0 and K are defined in Lemma 2.24.

We first consider the (nontrivial) case V(d) + V > 0. Let k and n be such that

nC − kR(d) ≥
√
nV + kV(d)Q−1 (ǫk,n) + C0 log k + log γ + c (C.105)

ǫk,n = ǫ− Bk,n√
n+ k

− 2 log 2√
2π(nV + kV(d))

− 4Bk,n
n+ k

− K + 1√
k

(C.106)

where Bk,n is the Berry-Esséen ratio (2.159) for the sum of n + k independent random variables

appearing in (C.103). Note that Bk,n is bounded by a constant because:

• either V(d) > 0 or V > 0 by the assumption;

• the third absolute moment of S(S, d) is finite by restriction (iv) in Section 2.6.2 as spelled out

in (C.2);

• the third absolute moment of ı⋆X;Y(X
⋆;Y⋆) is finite since the channel has finite input and output

alphabets.

Applying a Taylor series expansion to (C.105) with the choice of γ in (C.101), we conclude that

(C.105) can be written as (3.88) with the remainder term satisfying (3.94).

It remains to further upper bound (C.103) using (C.105). Let

Sk,n = nC − kR(d)−
√
nV + kV(d)Q−1 (ǫk,n) (C.107)

Noting that Sk,n ≥ C0 log k+ log γ+ c, we upper-bound the expectation in the right side of (C.103)

as

E

[
exp

(
− |Uk,n|+

)]
≤ E

[
exp (−Uk,n) 1

{
n∑

i=1

ı⋆X;Y(X
⋆
i ;Y

⋆
i )−

k∑

i=1

S(Si, d) > Sk,n

}]

+P

[
ı⋆X;Y(X

⋆
i ;Y

⋆
i )−

k∑

i=1

S(Si, d) ≤ Sk,n
]

(C.108)

≤ 2

(
log 2√

2π(nV + kV(d))
+

2Bk,n
n+ k

)
+ ǫk,n +

Bk,n√
n+ k

(C.109)

where we used (C.105) and (C.107) to upper bound the exponent in the right side of (C.108).
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Putting (C.103) and (C.109) together, we conclude that ǫ′ ≤ ǫ.

Finally, consider the case V = V(d) = 0, which implies S(S, d) = R(d) and ı⋆X;Y(X
⋆
i ;Y

⋆
i ) = C

almost surely, and let k and n be such that

nC − kR(d) ≥ C0 log k + log γ + c+ log
1

ǫ − K+1√
k

(C.110)

where constants c and C0 are defined in Lemma 2.24. Then

E

[
exp

(
− |Uk,n|+

)]
≤ ǫ− K + 1√

k
(C.111)

which, together with (C.103), implies that ǫ′ ≤ ǫ, as desired.

C.2.3 Lossy or almost lossless coding over a Gaussian channel

In view of Remark 3.14, it suffices to consider the equal power constraint (3.107). As shown in the

proof of Theorem 3.18, for any distribution of Xn on the power sphere,

ıXn;Y n(Xn;Y n) ≥ Gn − F (C.112)

where Gn is defined in (C.91) (cf. (3.142)) and F is a (computable) constant.

Now, the proof for almost lossless coding in Appendix C.2.1 can be modified to work for the

Gaussian channel by adding logF to the right side of (C.93) and replacing
∑n

i=1 ı
⋆
X;Y (X⋆

i ;Y
⋆
i ) in

(C.92) and (C.96) with Gn − logF , and in (C.95) with Gn.

Similarly, the proof for lossy coding in Appendix C.2.2 is adapted for the Gaussian channel by

adding logF to the right side of (C.105) and replacing
∑n
i=1 ı

⋆
X;Y (X⋆

i ;Y
⋆
i ) in (C.102), (C.104) and

(C.108) with Gn − logF .

C.3 Proof of Theorem 3.22

Applying the Berry-Esséen bound to (3.164), we obtain

D1(n, ǫ, α) ≥ min
PZ|S :

I(S;Z)≤C(α)

{
E [d(S,Z)] +

√
Var [d(S,Z)]

n
Q−1

(
ǫ+

B√
n

)}
(C.113)

= D(C(α)) +

√
W1(α)

n
Q−1

(
ǫ+

B√
n

)
(C.114)
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where B is the Berry-Esséen ratio, and (C.114) follows by the application of Lemma A.8 with

D =
{
PSZ = PZ|SPS : I(S;Z) ≤ R(d̄)

}
(C.115)

f(PSZ) = −E [d(S,Z)] (C.116)

g(PSZ) = −
√
Var [d(S,Z)]Q−1

(
ǫ+

B√
n

)
(C.117)

ϕ = 1 (C.118)

ψ =
1√
n

(C.119)

Note that the mean and standard deviation of d(S,Z) are linear and continuously differentiable in

PSZ, respectively, so conditions (A.68) and (A.70) hold with the metric being the usual Euclidean

distance between vectors in R|S|×|Ŝ|. So, (C.114) follows immediately upon observing that by the

definition of the rate-distortion function, E [d(S,Z)] ≥ E [d(S,Z⋆)] = D(C(α)) for all PZ|S such that

I(S;Z) ≤ C(α).
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Appendix D

Noisy lossy source coding: proofs

D.1 Proof of the converse part of Theorem 4.6

The proof consists of an asymptotic analysis of the bound in Theorem 4.1 with a careful choice of

tunable parameters.

The following auxiliary result will be instrumental.

Lemma D.1. Let X1, . . . .Xk be independent on A and distributed according to PX. For all k, it

holds that

P

[∣∣type
(
Xk
)
− PX

∣∣2 > log k

k

]
≤ |A|√

k
(D.1)

Proof. By Hoeffding’s inequality, similar to Yu and Speed [132, (2.10)].

Let PZ|X : A 7→ Ŝ be a stochastic matrix whose entries are multiples of 1
k . We say that the

conditional type of zk given xk is equal to PZ|X, type
(
zk|xk

)
= PZ|X, if the number of a’s in xk that

are mapped to b in zk is equal to the number of a’s in xk times PZ|X(b|a), for all (a, b) ∈ A× Ŝ.

Let

logM = kR(d) +

√
kṼ(d)Q−1 (ǫk)−

1

2
log k − log |P[k]| (D.2)

where ǫk = ǫ+o (1) will be specified in the sequel, and P[k] denotes the set of all conditional k−types

Ŝ → A.
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We weaken the bound in (4.20) by choosing

PX̄k|Z̄k=zk(x
k) =

1

|P[k]|
∑

PX|Z∈P[k]

k∏

i=1

PX|Z=zi(xi) (D.3)

λ = kλ(xk) = kR′
type(xk)(d) (D.4)

γ =
1

2
log k (D.5)

By virtue of Theorem 4.1, the excess distortion probability of all (M,d, ǫ) codes where M is that

in (D.2) must satisfy

ǫ ≥ E

[
min
zk∈Ŝk

P
[
ıX̄k|Z̄k‖Xk(Xk; zk) + kλ(Xk)(d(Sk, zk)− d) ≥ logM + γ|Xk

]]
− exp(−γ) (D.6)

We identify the typical set of channel outputs:

Tk =

{
xk ∈ Ak :

∣∣type
(
xk
)
− PX

∣∣2 ≤ log k

k

}
(D.7)

where | · | is the Euclidean norm.

We proceed to evaluate the minimum in in (D.6) for xk ∈ T k.

For a given pair (xk, zk), abbreviate

type
(
xk
)
= PX̄ (D.8)

type
(
zk|xk

)
= PZ̄|X̄ (D.9)

λ(xk) = λX̄ (D.10)

We define PX̄|Z̄ through PX̄PZ̄|X̄ and lower-bound the sum in (D.3) by the term containing PX̄|Z̄,

concluding that

ıX̄k|Z̄k‖Xk(xk; zk) + λ(xk)(d(Sk, zk)− d) ≥ kI(X̄; Z̄) + kD(X̄‖X)

+ λX̄

(
k∑

i=1

d̄Z̄(Si|xi)− kd
)
− log

∣∣P[k]

∣∣ (D.11)

=

k∑

i=1

Wi + kD(X̄‖X)− log
∣∣P[k]

∣∣ (D.12)
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where

Wi = I(X̄; Z̄) + λX̄
(
d̄Z̄(Si|xi)− d

)
(D.13)

where PSX̄Z̄(s, a, b) = PX̄(a)PS|X(s|a)PZ̄|X̄(b|a).

Conditioned on Xk = xk, the random variables Wi are independent with (in the notation of

Theorem A.6 where z = PZ̄|X̄)

µk(PZ̄|X̄) = I(X̄; Z̄) + λX̄
(
E
[
d̄Z̄(S|X̄)

]
− d
)

(D.14)

Vk(PZ̄|X̄) = λ2
X̄
E
[
Var

[
d̄Z̄(S|X̄)|X̄

]]
(D.15)

Tk(PZ̄|X̄) = λ3
X̄
E

[∣∣d̄Z̄(S|X̄)− E
[
d̄Z̄(S|X̄)|X̄

]∣∣3
]

(D.16)

Denote the backward conditional distribution that achieves RX̄(d) by PX̄|Z̄⋆ . Write

µk(PZ̄|X̄) = I(X̄; Z̄) + λX̄
(
E
[
d̄(X̄, Z̄)

]
− d
)

(D.17)

= E
[
ıX̄;Z̄⋆(X̄; Z̄) + λX̄d̄(X̄, Z̄)

]
− λX̄d+D

(
PX̄|Z̄‖PX̄|Z̄⋆ |PZ̄

)
(D.18)

≥ RX̄(d) +D
(
PX̄|Z̄‖PX̄|Z̄⋆ |PZ̄

)
(D.19)

≥ RX̄(d) +
1

2

∣∣∣PX̄|Z̄PZ̄ − PX̄|Z̄⋆PZ̄

∣∣∣
2

log e (D.20)

where (D.19) is by Theorem 2.1, and (D.20) is by Pinsker’s inequality (given in (A.6)). Similar to

the proof of (C.50), we conclude that the conditions of Theorem A.6. 4 are satisfied.

Denote

ak = logM +
1

2
log k + log

∣∣P[k]

∣∣− kD(X̄‖X)− kRX̄(d) (D.21)

bk = logM +
1

2
log k + log

∣∣P[k]

∣∣− kD(X̄‖X)− kRX(d) − c log k (D.22)

W ⋆
i = X(Xi, d)− RX(d) + λXd̄Z⋆(Si|Xi)− λXE

[
d̄Z⋆ (Si|Xi) |Xi

]
(D.23)

where M is that in (D.2), and constant c > 0 will be identified later. Weakening (D.6) further, we
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have

ǫ ≥ E

[
min
PZ̄|X̄

P

[
k∑

i=1

Wi ≥ kRX̄(d) + ak|type
(
Xk
)
= PX̄

]
1
{
Xk ∈ Tk

}
]
− 1√

k
(D.24)

≥ E

[
P

[
λX̄

(
k∑

i=1

d̄Z̄⋆(Si|Xi)− kd
)
≥ ak|type

(
Xk
)
= PX̄

]
1
{
Xk ∈ Tk

}
]
− K + 1√

k
(D.25)

≥ E

[
P

[
λX

(
k∑

i=1

d̄Z⋆(Si|Xi)− kE
[
d̄Z⋆(S|X̄)

]
)
≥ ak|type

(
Xk
)
= PX̄

]
1
{
Xk ∈ Tk

}
]

− K1 log k +K + 1√
k

(D.26)

≥ E

[
P

[
k∑

i=1

W ⋆
i ≥ bk|type

(
Xk
)
= PX̄

]
1
{
Xk ∈ Tk

}
]
− K1 log k +K + 2B + 1√

k
(D.27)

≥ P

[
k∑

i=1

W ⋆
i ≥ bk

]
− P

[
Xk /∈ Tk

]
− K1 log k +K + 2B + 1√

k
(D.28)

≥ P

[
k∑

i=1

W ⋆
i ≥ bk

]
− K1 log k +K + 2B + |A|+ 1√

k
(D.29)

≥ ǫk −
K1 log k +K + 2B +B⋆ + |A|+ 1√

k
(D.30)

where

• (D.25) is by Theorem A.6. 4, and K > 0 is defined therein.

• To show (D.26), which holds for some K1 > 0, observe that since

E
[
d̄Z̄⋆(S|X̄)

]
= E

[
d̄(X̄, Z̄⋆)

]
(D.31)

= d (D.32)

conditioned on xk, both random variables λX̄

(∑k
i=1 d̄Z̄⋆(Si|xi)− kd

)

and λX

(∑k
i=1 d̄Z⋆(Si|xi)− kE

[
d̄Z⋆(S|X̄)

])
are zero mean. By the Berry-Esséen theorem and
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the assumption that all alphabets are finite, there exists B > 0 such that

P

[
λX

(
k∑

i=1

d̄Z̄⋆(Si|Xi)− kd
)
≥ ak|type

(
Xk
)
= PX̄

]

≥ Q


 ak

λX̄

√
kVar

[
d̄Z̄⋆(S|X̄)|X̄

]


− B√

k
(D.33)

≥ Q


 ak

λX

√
kVar

[
d̄Z⋆(S|X)|X

]

(
1 + a

√
log k

k

)
− B√

k
(D.34)

≥ Q


 ak

λX

√
kVar

[
d̄Z⋆(S|X)|X

]


− B√

k
−K1

log k√
k

(D.35)

≥ P

[
λX

(
k∑

i=1

d̄Z⋆(Si|Xi)− kE
[
d̄Z⋆(S|X̄)

]
)
≥ ak|type

(
Xk
)
= PX̄

]

− 2B√
k
−K1

log k√
k

(D.36)

where (D.34) for some scalar a is obtained by applying a Taylor series expansion to 1√
Var[d̄Z̄⋆ (S|X̄)|X̄]

in the neighborhood of typical PX̄, i.e. those types corresponding to xk ∈ Tk, and (D.35) in-

vokes (A.32) with ξ ∼ log k√
k

because ak = O
(√
k log k

)
for typical PX̄.

• (D.27) holds because due to Taylor’s theorem, there exists c > 0 such that

RX̄(d) ≥ RX(d) +
∑

a∈A
(PX̄(a)− PX(a)) ṘX(a)− c |PX̄ − PX|2 (D.37)

= RX(d) +
1

k

k∑

i=1

ṘX(Xi)− E

[
ṘX(X)

]
− c |PX̄ − PX|2 (D.38)

=
1

k

k∑

i=1

X(Xi, d)− c |PX̄ − PX|2 (D.39)

≥ 1

k

k∑

i=1

X(Xi, d)− c log k (D.40)

where (D.39) uses (2.16), and (D.40) is by the definition (D.7) of the typical set of xk’s.

• (D.29) is by Lemma D.1.

• (D.30) applies the Berry-Esséen theorem to the sequence of i.i.d. random variables W ⋆
i whose

Berry-Esséen ratio is denoted by B⋆.
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The result now follows by letting

ǫk = ǫ+
K + 2B +B⋆ + |A|+ 1 +K1 log k√

k
(D.41)

in (D.2).

D.2 Proof of the achievability part of Theorem 4.6

The proof consists of an asymptotic analysis of the bound in Theorem 4.5 with a careful choice of

auxiliary parameters so that only the first term in (4.49) survives.

Let PZ̄k = PZk⋆ = PZ⋆ × . . .× PZ⋆ , where Z⋆ achieves RX(d), and let PX̄ = PX̄k = PX̄ × . . . PX̄,

where PX̄ is the measure on X generated by the empirical distribution of xk ∈ X k:

PX̄(a) =
1

k

k∑

i=1

1{xi = a} (D.42)

We let T = Tk in (D.7) so that by Lemma D.1

PXk(T ck ) ≤
|A|√
k

(D.43)

so we will concern ourselves only with typical xk.

Let PZ̄⋆|X̄ be the transition probability kernel that achieves RX̄,Z⋆(d), and let PZ⋆k|Xk = PZ⋆|X ×

. . .×PZ⋆|X. Let PZk|Xk be uniform on the conditional type which is closest to (in terms of Euclidean

distance)

PZ|X=x(z) =
PZ⋆(z) exp

(
−λd̄(x, z)

)

E
[
exp

(
−λd̄(x,Z⋆)

)] (D.44)

(cf. (4.16)) where

λ = λX̄ = −R′
X̄,Z⋆(d− ξ) (D.45)

ξ =

√
a log k

k
(D.46)

for some 0 < a < 1, so that (4.48) holds, and

E
[
d̄(X̄,Z)

]
= d− ξ (D.47)
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where PX̄ → PZ|X → PZ.

It follows by the Berry-Esséen Theorem that

P

[
k∑

i=1

d̄Z(Si|Xi = xi) > kd|Xk = xk

]
≤ 1√

2πaka log k
+

B√
k

(D.48)

where B is the maximum (over xk ∈ Tk) of the Berry-Esséen ratios for d̄Z(Si|Xi = xi). Also by the

Berry-Esséen theorem, we have

P

[
kd− τ ≤

k∑

i=1

d̄Z(Si|Xi = xi) ≤ kd|Xk = xk

]
≥ b√

k
(D.49)

for some b > 0, k large enough and τ = (2B + b)
√
2πka.

We now proceed to evaluate the first term in (4.49).

D(PZk‖Xk=xk‖PZ⋆ × . . .× PZ⋆) ≤ kD(Z‖Z⋆) + kH(Z)− kH(Z|X̄) + |A||Ŝ| log(k + 1) (D.50)

= kD(PZ|X‖PZ⋆ |PX̄) + |A||Ŝ| log(k + 1) (D.51)

where to obtain (D.60) we used the type counting lemma [46, Lemma 2.6]. Therefore

g(sk, xk) , D(PZk‖Xk=xk‖PZ⋆ × . . .× PZ⋆) + kλX̄d̄Zk(sk|xk)− kλX̄d (D.52)

= kD(PZ|X‖PZ⋆ |PX̄) + λX̄

k∑

i=1

E
[
d̄Z(si|X̄)

]
− kλX̄d+ |A||Ŝ| log(k + 1) (D.53)

= E
[
JZ⋆(X̄, λX̄)

]
− kλX̄d+ kλX̄

k∑

i=1

E
[
d̄Z(si|X̄)

]
− λX̄E

[
d̄Z(S|X̄)

]
+ |A||Ŝ| log(k + 1)

(D.54)

≤ kE
[
JZ⋆(X̄, λ⋆

X̄,Z⋆)
]
− kλ⋆

X̄,Z⋆d+ λX̄

k∑

i=1

E
[
d̄Z(si|X̄)

]
− λX̄E

[
d̄Z(S|X̄)

]

+ |A||Ŝ| log(k + 1) + L log k (D.55)

where to show (D.55) recall that by the assumption RX̄,Z⋆(d) is twice continuously differentiable, so

there exists a > 0 such that

λ− λ⋆
X̄,Z⋆ = R′

X̄,Z⋆(d− ξ)− R′
X̄,Z(d) (D.56)

≤ aξ (D.57)

231



Since λ⋆
X̄,Z⋆ is a maximizer of E

[
JZ⋆(X̄, λ)

]
− λd (see (B.58) in Appendix B.5.A)

∂

∂λ
E
[
Z⋆(X̄, λ)

]
|λ=λ⋆

X̄,Z⋆
= d (D.58)

the first term in the Taylor series expansion of E
[
Z⋆(X̄, λ)

]
− λd in the vicinity of λ⋆

X̄,Z⋆ vanishes,

and we conclude that there exists L such that

E
[
Z⋆(X̄, λ)

]
− λd ≥ E

[
Z⋆(X̄, λ⋆

X̄,Z⋆)
]
− λ⋆

X̄,Z⋆d− Lξ2 (D.59)

Moreover, according to Lemma B.4, there exist C2,K2 > 0 such that

P

[
k∑

i=1

(
JZ⋆(Xi, λX̄,Z⋆)− λX̄,Z⋆d

)
≤

k∑

i=1

X(Xi, d) + C2 log k

]
> 1− K2√

k
(D.60)

The cdf of the sum of the zero-mean random variables λX̄
(
d̄Z(Si|Xi = xi)− E

[
d̄Z(S|Xi)|Xi = xi

])

is bounded for each xk ∈ Tk as in the proof of (D.26), leading to the conclusion that there exists

K1 > 0 such that for k large enough

P

[
k∑

i=1

JZ⋆(Xi, λX̄,Z)− kλX̄,Zd+ λX̄

k∑

i=1

(
d̄Z(Si|Xi)− E

[
d̄Z(S|Xi)|Xi

])
≤

k∑

i=1

̃S,X(Si, Xi, d) + C2 log k

]

> 1− K1 log k +K2 + |A|√
k

(D.61)

It follows using (D.55) and (D.61) that

P
[
g(Sk, Xk) > log γ − log β − kλ0δ

]
≤ P

[
k∑

i=1

̃S,X(Si, Xi, d) > log γ −∆k

]
+
K1 log k +K2 + |A|√

k

(D.62)

where λ0 = maxxk∈Tk
λX̄,Z⋆ and

∆k = log β + kλ0δ + |A||Ŝ| log(k + 1) + L log k + C2 log k (D.63)
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We now weaken the bound in Theorem 4.5 by choosing

β =

√
k

b
(D.64)

δ =
τ

k
(D.65)

log γ = logM − log loge k + log 2 (D.66)

where b is that in (D.49) and τ > 0 is that in (D.49). Letting

logM = kR(d) +

√
kṼ(d)Q−1 (ǫk) + ∆k (D.67)

ǫk = ǫ− K1 log k +K2 +B + B̃ + |A|+ 1√
k

(D.68)

where B̃ is the Berry-Esséen ratio for ̃S,X(Si, Xi, d), and applying (D.48), (D.49) and (D.62), we

conclude using Theorem 4.5 that there exists an (M,d, ǫ′) code with M in (D.67) satisfying

ǫ′ ≤ P

[
k∑

i=1

̃S,X(Si, Xi, d) > kR(d) +

√
kṼ(d)Q−1 (ǫk)

]

+
K1 log k +K2 +B + B̃ + |A|+ 1√

k
(D.69)

≤ ǫ (D.70)

where (D.70) is by the Berry-Esséen bound.

D.3 Proof of Theorem 4.9

Converse. The proof of the converse part follows the Gaussian approximation analysis of the converse

bound in Theorem 4.7. Let i = k δ2 + k∆1 and j = kδ− k∆2. Using Stirling’s approximation for the

binomial sum (B.147), after applying a Taylor series expansion we have

2−(k−j)
〈

k − j
⌊nd− i⌋

〉
=
C(∆)√

k
exp {−k g(∆1,∆2)} (D.71)
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where C(∆) is such that there exist positive constants C, C̄, ξ such that C ≤ C(∆) ≤ C̄ for all

|∆| ≤ ξ, and the twice differentiable function g(∆1,∆2) can be written as

g(∆1,∆2) = R(d) + a1∆1 + a2∆2 +O
(
|∆|2

)
(D.72)

a1 = log
1− d− δ

2

d− δ
2

= λ⋆ (D.73)

a2 = log
2
(
1− d− δ

2

)

1− δ = log
2

1 + exp(−λ⋆) (D.74)

It follows from (D.72) that g(∆1,∆2) is increasing in a1∆1 + a2∆2 ∈ (−b, b̄) for some constants

b, b̄ > 0 (obviously, we can choose b, b̄ small enough in order for C ≤ C(∆) ≤ C̄ to hold). In the

sequel, we will represent the probabilities in the right side of (4.80) via a sequence of i.i.d. random

variables W1, . . . ,Wk with common distribution

W =





a1 w.p. δ
2

a2 w.p. 1− δ

0 otherwise

(D.75)

Note that

E [W] =
a1δ

2
+ a2(1− δ) (D.76)

Var [W] = δ(1− δ)
(
a2 −

a1
2

)2
+
δa21
4

= V (d) (D.77)

and the third central moment of W is finite, so that Bk in (2.159) is a finite constant. Let

bk =

√
V (d)

k
Q−1 (ǫk) (D.78)

ǫk =

(
1− C̄√

k

)−1

ǫ+
2Bk√
k

+

√
V (d)

2πk

1

b̄
e−k

b̄2

2V (d) (D.79)

R = min
∆1, ∆2:

bk≤a1∆1+a2∆2≤b̄

g(∆1,∆2) (D.80)

= R(d) + bk +O
(
b2k
)

(D.81)

With M = exp (nR), since R ≤ g(∆1,∆2) for all a1∆1 + a2∆2 ∈ [bk, b̄], for such (∆1,∆2) it holds

that [
1− C̄√

k
M exp {−k g(∆1,∆2)}

]+
≥ 1− C̄√

k
(D.82)
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Denoting the random variables

N(x) =
1

k

k∑

i=1

1{Wi = x} (D.83)

Gk = k g

(
N(a1)−

δ

2
, N(a2)− 1 + δ

)
(D.84)

and using (D.71) to express the probability in the right side of (4.80) in terms of W1, . . . ,Wk, we

conclude that the excess-distortion probability is lower bounded by

E

[(
1− C̄√

k
exp {logM −Gk}

)+
]
≥
(
1− C̄√

k

)
P

[
bk ≤

k∑

i=1

Wi − kE [W] < b̄

]
(D.85)

≥
(
1− C̄√

k

)(
ǫk −

2Bk√
k
−
√
V (d)

2πk

1

b̄
e−k

b̄2

2V (d)

)
(D.86)

= ǫ (D.87)

where (D.85) follows from (D.82), and (D.86) follows from the Berry-Esséen inequality (2.155) and

(A.28), and (D.87) is equivalent to (D.79).

Achievability. We now proceed to the Gaussian approximation analysis of the achievability bound

in Theorem 4.8. Let

bk =

√
V (d)

k
Q−1 (ǫk) (D.88)

ǫk = ǫ− 2Bk√
k
−
√
V (d)

2πk

1

b̄
e−k

b̄2

2V (d) − 1√
k

(D.89)

logM = k min
∆1, ∆2:

bk≤a1∆1+a2∆2≤b̄

g(∆1,∆2) +
1

2
log k + log

(
loge k

2C

)
(D.90)

= kR(d) +
√
nV (d)Q−1 (ǫ) +

1

2
log k + log log k +O (1) (D.91)

where g(∆1,∆2) is defined in (D.71), and (D.91) follows from (D.72) and a Taylor series expansion

of Q−1 (·). Using (D.71) and (1 − x)M ≤ e−Mx to weaken the right side of (4.84) and expressing

the resulting probability in terms of i.i.d. random variables W1, . . . ,Wk with common distribution

(D.75), we conclude that the excess-distortion probability is upper bounded by (recall notation
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(D.84))

E

[
e
− C√

k
exp{logM−Gk}

]
≤ P

[
k∑

i=1

Wi ≥ kE [W] + kbk

]
+ P

[
k∑

i=1

Wi ≤ kE [W]− kb
]

+ E

[
e
− C√

k
exp{logM−Gk}1

{
kb <

k∑

i=1

Wi − kE [W] < kbk

}]
(D.92)

≤ ǫk +
Bk√
k
+
Bk√
k
+

√
V (d)

2πk

1

b̄
e−k

b̄2

2V (d) +
1√
k

(D.93)

= ǫ (D.94)

where the probabilities are upper bounded by the Berry-Esséen inequality (2.155) and (A.28), and

the expectation is bounded using the fact that in b < a1∆1 + a2∆2 < bk, the minimum difference

between logM and k g(∆1,∆2) is
1
2 log k + log

(
loge k
2C

)
. Finally, (D.94) is just (D.89).
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Appendix E

Channels with cost constraints:

proofs

E.1 Proof of Theorem 5.1

This proof is from [24]. Equality in (5.12) is a standard result in convex optimization (Lagrange

duality). By the assumption, the supremum in the right side of (5.12) is attained by PX⋆ , therefore

C(α) is equal to the right side of (5.14).

To show (5.13), fix 0 ≤ α ≤ 1. Denote

PX̄ → PY |X → PȲ (E.1)

PX̂ = αPX̄ + (1− α)PX⋆ (E.2)

PX̂ → PY |X → PŶ = αPȲ + (1 − α)PY ⋆ (E.3)

and write

α
(
E
[
⋆X;Y (X

⋆;Y ⋆, β)
]
− E

[
⋆X;Y (X̄ ; Ȳ , β)

])
+D(Ŷ ‖Y ⋆)

= αD(PY |X‖PY ⋆ |PX⋆)− αD(PY |X‖PY ⋆ |PX̄) +D(Ŷ ‖Y ⋆) + λ⋆αE
[
b(X̄)

]
− λ⋆αE [b(X⋆)] (E.4)

= D(PY |X‖PY ⋆ |PX⋆) +D(PY |X‖PŶ |PX̂)− λ⋆E [b(X⋆)] + λ⋆E
[
b(X̂)

]
(E.5)

= E
[
⋆X;Y (X

⋆;Y ⋆, β)
]
− E

[
X̂;Ŷ (X̂; Ŷ , β)

]
(E.6)

≥ 0 (E.7)

237



where (E.7) holds becauseX⋆ achieves the supremum in the right side of (5.12). SinceD(Ŷ ‖Y ⋆) <∞

(e.g. [24]), Lemma A.1 implies that D(Ŷ ‖Y ⋆) = o (α). Thus, supposing that E
[
⋆X;Y (X̄ ; Ȳ , β)

]
>

E
[
⋆X;Y (X

⋆;Y ⋆, β)
]
would lead to a contradiction, since then the left side of (E.4) would be negative

for sufficiently small α. We thus infer that (5.13) holds.

To show (5.15), denote PX̄ → PY |X → PȲ and define the following function of a pair of proba-

bility distributions on X :

F (PX , PX̄) = E
[
X̄;Ȳ (X ;Y, β)

]
−D(X‖X̄) (E.8)

= E [X;Y (X ;Y, β)]−D(X‖X̄) +D(Y ‖Ȳ ) (E.9)

≤ E [X;Y (X ;Y, β)] (E.10)

where (E.10) holds by the data processing inequality for relative entropy. Since equality in (E.10)

is achieved by PX = PX̄ , C(β) can be expressed as the double maximization

C(β) = max
PX̄

max
PX

F (PX , PX̄) (E.11)

To solve the inner maximization in (E.11), we invoke Lemma A.2 with

g(x) = E
[
X̄;Ȳ (x;Y, β)|X = x

]
(E.12)

to conclude that

max
PX

F (PX , PX̄) = logE
[
exp

(
E
[
X̄;Ȳ (X̄; Ȳ , β)|X̄

])]
(E.13)

which in the special case PX̄ = PX⋆ yields, using representation (E.11),

C(β) ≥ logE
[
exp

(
E
[
⋆X;Y (X

⋆;Y, β)|X⋆
])]

(E.14)

≥ E
[
⋆X;Y (X

⋆;Y ⋆, β)
]

(E.15)

= C(β) (E.16)

where (E.15) applies Jensen’s inequality to the strictly convex function exp(·), and (E.16) holds

by the assumption. We conclude that, in fact, (E.15) holds with equality, which implies that

E
[
⋆X;Y (X

⋆;Y, β)|X⋆
]
is almost surely constant, thereby showing (5.15).

238



E.2 Proof of Corollary 5.2

To show (5.17), we invoke (5.5) to write, for any x ∈ X ,

Var
[
⋆X;Y (X ;Y, β)|X = x

]
= Var

[
ı⋆X;Y (X ;Y )− λ⋆ (b(X)− β) |X = x

]
(E.17)

= Var
[
ı⋆X;Y (X ;Y )|X = x

]
(E.18)

To show (5.16), we invoke (5.15) to write

E
[
Var

[
⋆X;Y (X

⋆;Y ⋆, β)|X⋆
]]

= E

[(
⋆X;Y (X

⋆;Y ⋆, β)
)2]

− E

[(
E
[
⋆X;Y (X

⋆;Y ⋆, β)|X⋆
])2]

(E.19)

= E

[(
⋆X;Y (X

⋆;Y ⋆, β)
)2]− C2(β) (E.20)

= Var
[
⋆X;Y (X

⋆;Y ⋆, β)
]

(E.21)

E.3 Proof of the converse part of Theorem 5.5

Given a finite set A, let P be the set of all distributions on A that satisfy the cost constraint,

E [b(X)] ≤ β (E.22)

which is a convex set in R|A|. We say that xn ∈ An has type PX if the number of times each letter

a ∈ A is encountered in xn is nPX(a). An n-type is a distribution whose masses are multiples of 1
n .

We will weaken (5.24) by choosing PȲ n to be the following convex combination of non-product

distributions (cf. [99]):

PȲ n(yn) =
1

A

∑

k∈K
exp

(
−|k|2

) n∏

i=1

PY|K=k(yi) (E.23)
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where {PY|K=k, k ∈ K} are defined as follows, for some c > 0,

PY|K=k(y) = PY⋆(y) +
ky√
nc

(E.24)

K =



k ∈ Z|B| :

∑

y∈B
ky = 0,−PY⋆(y) +

1√
nc
≤ ky√

nc
≤ 1− PY⋆(y)



 (E.25)

A =
∑

k∈K
exp

(
−|k|2

)
<∞ (E.26)

Denote by PΠ(Y) the minimum Euclidean distance approximation of an arbitrary PY ∈ Q, where

Q is the set of distributions on the channel output alphabet B, in the set
{
PY|K=k : k ∈ K

}
:

PΠ(Y) = PY|K=k⋆ where k⋆ = argmin
k∈K

∣∣PY − PY|K=k

∣∣ (E.27)

The quality of approximation (E.27) is governed by

∣∣PΠ(Y) − PY

∣∣ ≤
√
|B|(|B| − 1)

nc
(E.28)

For an arbitrary xn ∈ An, let type(xn) = PX → PY|X → PY. Lower-bounding the sum in (E.23) by

the term containing PΠ(Y), we have

Y n|Xn‖Ȳ n(xn; yn, β) ≤
n∑

i=1

Y|X‖Π(Y) (xi, yi, β) + nc
∣∣PΠ(Y) − PY⋆

∣∣2 +A (E.29)

Applying (E.23) and (E.29) to loosen (5.24), we conclude by Theorem 5.3 that, as long as an

(n,M, ǫ′) code exists, for an arbitrary γ > 0,

ǫ′ ≥ min
xn∈An

P

[
n∑

i=1

Wi ≤ logM − γ −A|Z = type(xn)

]
− exp (−γ) (E.30)

where

Wi = Y|X‖Π(Y) (xi, Yi, β) + c
∣∣PΠ(Y) − PY⋆

∣∣2 (E.31)

Z = type (Xn) (E.32)

where Yi is distributed according to PY|X=xi
. To evaluate the minimum on the right side of (E.30),

we will apply Theorem A.6 with Wi in (E.31).
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Define the following functions P ×Q 7→ R+:

µ(PX, PȲ) = E

[
Y|X‖Ȳ(X;Y, β)

]
+ c |PȲ − PY⋆ |2 (E.33)

V (PX, PȲ) = E

[
Var

[
Y|X‖Ȳ(X;Y, β) | X

]]
(E.34)

T (PX, PȲ) = E

[∣∣∣Y|X‖Ȳ(X;Y, β) − E

[
Y|X‖Ȳ(X;Y, β)|X

]∣∣∣
3
]

(E.35)

where the expectations are with respect to PY|XPX. Denote by P
X̂
the minimum Euclidean distance

approximation of PX in the set of n-types, that is,

P
X̂
= arg min

P∈P :
P is an n-type

|PX − P | (E.36)

The accuracy of approximation in (E.36) is controlled by the following inequality.

∣∣PX − PX̂

∣∣ ≤
√
|A| (|A| − 1)

n
(E.37)

With the choice in (E.31) and (E.32) the functions (A.40)–(A.42) are particularized to the following

mappings P 7→ R+:

µn(PX) = µ
(
P
X̂
, PΠ(Ŷ)

)
(E.38)

Vn(PX) = V
(
P
X̂
, PΠ(Ŷ)

)
(E.39)

Tn(PX) = T
(
P
X̂
, PΠ(Ŷ)

)
(E.40)

where P
X̂
→ PY|X → P

Ŷ
, and µ⋆n, V

⋆
n are

µ⋆n = C(β) (E.41)

V ⋆n = V (β) (E.42)

We perform the minimization on the right side of (E.30) separately for type(xn) ∈ P⋆δ and

type(xn) ∈ P\P⋆δ , where

P⋆δ = {PX ∈ P : |PX − PX⋆ | ≤ δ} (E.43)

Assuming without loss of generality that all outputs in B are accessible (which implies that PY⋆(y) >
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0 for all y ∈ B), we choose δ > 0 so that

min
PX∈P⋆

δ

min
y∈B

PY(y) = pmin > 0 (E.44)

2 min
PX∈P⋆

δ

V (PX) ≥ V (β) (E.45)

To perform the minimization on the right side of (E.30) over P⋆δ , we will invoke Theorem A.6

with D = P⋆δ , the metric being the usual Euclidean distance between |A|-vectors. Let us check that

the assumptions of Theorem A.6 are satisfied.

It is easy to verify directly that the functions PX 7→ µ(PX, PY), PX 7→ V (PX, PY), PX 7→ T (PX, PY)

are continuous (and therefore bounded) on P and infinitely differentiable on P⋆δ . Therefore, assump-

tions (A.46) and (A.47) of Theorem A.6 are met.

To verify that (A.43) holds, write

C(β) − µ
(
P
X̂
, PΠ(Ŷ)

)
= C(β)− µ (PX, PY) + µ (PX, PY)− µ

(
P
X̂
, PΠ(Ŷ)

)
(E.46)

≥ ℓ′1ζ
2 − c|PY − PY⋆ |2 + µ (PX, PY)− µ

(
P
X̂
, PΠ(Ŷ)

)
(E.47)

≥ ℓ1ζ
2 + µ (PX, PY)− µ

(
P
X̂
, PΠ(Ŷ)

)
(E.48)

≥ ℓ1ζ
2 + µ

(
P
X̂
, P

Ŷ

)
− µ

(
P
X̂
, PΠ(Ŷ)

)
− ℓ′3
n

(E.49)

= ℓ1ζ
2 −D

(
Ŷ‖Π(Ŷ)

)
+ c|P

Ŷ
− PY⋆ |2 − c|PΠ(Ŷ) − PY⋆ |2 − ℓ′3

n
(E.50)

≥ ℓ1ζ
2 + c|P

Ŷ
− PY⋆ |2 − c|PΠ(Ŷ) − PY⋆ |2 − ℓ′′3

n
(E.51)

≥ ℓ1ζ
2 − c|P

Ŷ
− PΠ(Ŷ)|2 − 2c|P

Ŷ
− PΠ(Ŷ)||PŶ

− PY⋆ | − ℓ′′3
n

(E.52)

≥ ℓ1ζ
2 − ℓ2√

n
ζ − ℓ3

n
(E.53)

where all constants ℓ are positive, and:

• (E.47) uses

E [X;Y(X;Y, β)] ≤ C(β) − ℓ′1ζ2 (E.54)

shown in the same way as (C.50) invoking invoking (5.15) in lieu of the corresponding property

for the conventional information density (C.7).

• In (E.48), we denoted

ℓ1 = ℓ′1 − c|A| (E.55)
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which can be made positive by choosing a small enough c, and used (E.37) and

|PY − PȲ| ≤ |PY|X||PX − PX̄| (E.56)

where PX̄ → PY|X → PȲ, and the spectral norm of PY|X satisfies |PY|X| ≤
√
|A|.

• (E.49) holds due to (E.37) and continuous differentiability of PX 7→ µ(PX, PY), as the latter

implies

|µ(PX, PY)− µ (PX̄, PȲ)| ≤ L |PX − PX̄| (E.57)

where PX̄ → PY|X → PȲ.

• (E.50) is equivalent to

E [X;Y(X;Y, β)] = E

[
Y|X‖Ȳ(X;Y, β)

]
−D(Y‖Ȳ) (E.58)

• (E.51) uses (E.28), (E.44) and (A.7).

• (E.53) applies (E.28) and (E.56).

To establish (A.44), write

C(β) −D(P
X̂
, PΠ(Ŷ)) ≤ C(β) − E

[

Y|X‖Π(Ŷ)(X̂; Ŷ, β)

]
(E.59)

= C(β) − E

[

X̂;Ŷ(X̂; Ŷ, β)

]
−D(Ŷ‖Π(Ŷ)) (E.60)

≤ C(β) − E [X;Y(X;Y, β)] +
L1

n
−D(Ŷ‖Π(Ŷ)) (E.61)

≤ C(β) − E [X;Y(X;Y, β)] +
L1

n
(E.62)

where

• (E.61) uses continuous differentiability of PX 7→ E [X;Y(X;Y, β)] and (E.37);

• (E.62) applies D(Ŷ‖Π(Ŷ)) ≥ 0 .

Substituting X = X⋆ into (E.62), we obtain (A.44).
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Finally, to verify (A.45), write

∣∣∣V
(
P
X̂
, PΠ(Ŷ)

)
− V (β)

∣∣∣

≤ |V (PX, PY)− V (β)|+
∣∣V (PX, PY)− V

(
P
X̂
, P

Ŷ

)∣∣+
∣∣∣V
(
P
X̂
, PΠ(Ŷ)

)
− V

(
P
X̂
, P

Ŷ

)∣∣∣ (E.63)

≤ F1|PX − PX⋆ |+ F ′
2|PX − PX̂

|+ F ′′
2

∣∣∣PΠ(Ŷ) − PŶ

∣∣∣ (E.64)

≤ F1ζ +
F2√
n

(E.65)

where

• (E.64) uses continuous differentiability of PX 7→ V (PX, PY) (in P⋆δ ) and PȲ 7→ V (PX, PȲ) (at

any PȲ with PȲ(Y) > 0 a.s.).

• (E.65) applies (E.37) and (E.28).

Theorem A.6 is thereby applicable.

If V (β) > 0, letting

γ =
1

2
logn (E.66)

logM = nC(β) −
√
nV (β) Q−1

(
ǫ+

K + 1√
n

)
+

1

2
logn+A (E.67)

where constant K is the same as in (A.48), we apply Theorem A.6. 1 to conclude that the right side

of (E.30) with minimization constrained to types in P⋆δ s lower bounded by ǫ:

min
type(xn)∈P⋆

δ

P

[
n∑

i=1

Wi ≤ logM − γ −A|Z = type(xn)

]
− exp (−γ) ≥ ǫ (E.68)

If V (β) = 0, we fix 0 < η < 1− ǫ and let

γ = log
1

η
(E.69)

logM = nC(β) +

(
K

1− ǫ − η

) 2
3

n
1
3 + log

1

η
+A (E.70)

where K > 0 is that in (A.53). Applying Theorem A.6.4 with β = 1
6 , we conclude that (E.68) holds

for the choice of M in (E.70) if V (β) = 0.
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To evaluate the minimum over P\P⋆δ on the right side of (E.30), define

C(β) − max
PX∈P\P⋆

δ

E [X;Y(X;Y, β)] = 2∆ > 0 (E.71)

and observe

D(PX, PΠ(Y)) = E [X;Y(X;Y, β)] +D(Y‖Π(Y)) + c|PΠ(Y) − PY⋆ |2 (E.72)

≤ E [X;Y(X;Y, β)] +D(Y‖Π(Y)) + 4c (E.73)

≤ E [X;Y(X;Y, β)] +
|B|(|B| − 1) log e√

nc
+ 4c (E.74)

where

• (E.73) holds because the Euclidean distance between two distributions satisfies

|PY − PȲ| ≤ 2 (E.75)

• (E.74) is due to (E.28), (A.10), and

min
Y

min
y∈B

PΠ(Y)(y) ≥
1√
nc

(E.76)

which is a consequence of (E.25).

Therefore, choosing c < ∆
4 , we can ensure that for all n large enough,

C(β)− max
PX∈P\P⋆

δ

µ(PX, PΠ(Y)) ≥ ∆ > 0 (E.77)

Also, it is easy to show using (E.76) that there exists a > 0 such that

V (PX, PΠ(Y)) ≤ a log2 n (E.78)

By Chebyshev’s inequality (see Lemma A.4.3), we have, for the choice of γ in (E.66) and M in
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(E.67),

max
type(xn)∈P\P⋆

δ

P

[
n∑

i=1

Wi > logM − γ −A|Z = type(xn)

]

≤ P

[
n∑

i=1

Wi − E [Wi|Z = type(xn)] >
n∆

2
|Z = type(xn)

]
(E.79)

≤ 4a

∆2

log2 n

n
(E.80)

Since for large enough n, 4a
∆2

log2 n
n < 1√

n
, combining (E.68) and (E.80) concludes the proof.

E.4 Proof of the achievability part of Theorem 5.5

The proof consists of the asymptotic analysis of the following bound.

Theorem E.1 (Dependence Testing bound [3]). There exists an (M, ǫ, β) code with

ǫ ≤ inf
PX

E

[
exp

(
−
∣∣∣∣ıX;Y (X ;Y )− log

M − 1

2

∣∣∣∣
+
)]

(E.81)

where PX is supported on b(X) ≤ β.

Let PXn be equiprobable on the set of sequences of type P
X̂⋆ , where PX̂⋆ is the minimum Euclidean

distance approximation of PX⋆ formally defined in (E.36). Let PXn → PY n|Xn → PY n , P
X̂⋆ →

PY|X → P
Ŷ⋆ , and PŶ n⋆ = P

Ŷ⋆ × . . .× PŶ⋆ .

The following lemma demonstrates that PY n is close to PŶ n⋆ .

Lemma E.2. Almost surely, for n large enough and some constant c,

ıY n‖Ŷ n⋆(Y
n) ≤ 1

2
(|supp (PX⋆)| − 1) logn+ c (E.82)

Proof. For a vector k = (k1, . . . , k|B|), denote the multinomial coefficient

(
n

k

)
=

n!

k1!k2! . . . k|B|!
(E.83)

By Stirling’s approximation, the number of sequences of type P
X̂⋆ satisfies, for n large enough and

some constant c1 > 0 (
n

nP
X̂⋆

)
≥ c1n− 1

2 (|supp(PX⋆ )|−1) exp
(
nH(X̂⋆)

)
(E.84)
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On the other hand, for all xn of type P
X̂⋆ ,

PX̂⋆n(x
n) = exp

(
−nH(X̂⋆)

)
(E.85)

Assume without loss of generality that all outputs in B are accessible, which implies that PY⋆(y) > 0

for all y ∈ B. Hence, the left side of (E.82) is almost surely finite, and for all yn ∈ Yn with nonzero

probability according to PY n ,

PY n(yn)

PŶ n⋆(yn)
=

(
n

nP
X̂⋆

)−1∑⋆
PY n|Xn=xn(yn)

∑
xn∈An PY n|Xn=xn(yn)PX̂n⋆(xn)

(E.86)

≤
(

n
nP

X̂⋆

)−1∑⋆
PY n|Xn=xn(yn)

∑⋆
PY n|Xn=xn(yn)PX̂n⋆(xn)

(E.87)

=

(
n

nP
X̂⋆

)−1∑⋆
PY n|Xn=xn(yn)

exp
(
−nH(X̂⋆)

)∑⋆ PY n|Xn=xn(yn)
(E.88)

=

(
n

nP
X̂⋆

)−1

exp
(
nH(X̂⋆)

)
(E.89)

≤ c1n
1
2 (|supp(PX⋆ )|−1) (E.90)

where we abbreviated
∑⋆

=
∑

xn : type(xn)=P
X̂⋆
.

We first consider the case V (β) > 0. For c in (E.82), let

log
M − 1

2
= Sn −

1

2
(|supp (PX⋆)| − 1) logn− c (E.91)

Sn = nµn −
√
nVnQ

−1

(
ǫ− 2

(
log 2√
2π

+
2Tn√
nVn

)
1

γ
√
nVn

− Bn√
n

)
(E.92)

where µn and Vn are those in (2.156) and (2.157), computed with Wi = ı
X̂⋆;Ŷ⋆(xi;Yi), namely

µn = E

[
ı
X̂⋆;Ŷ⋆(X̂

⋆; Ŷ⋆)
]

(E.93)

Vn = Var
[
ı
X̂⋆;Ŷ⋆(X̂

⋆; Ŷ⋆)|X̂⋆
]

(E.94)

Since the functions PX 7→ E [ıX;Y(X;Y)] and PX 7→ Var [ıX;Y(X;Y)|X] are continuously differentiable

in a neighborhood of PX⋆ in which PY(Y) > 0 a.s., there exist constants L1 ≥ 0, F1 ≥ 0 such that

|µn − C(β)| ≤ L1|PX̂⋆ − PX⋆ | (E.95)

|Vn − V (β)| ≤ F1|PX̂⋆ − PX⋆ | (E.96)
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where we used (5.17). Applying (E.37), we observe that the choice of logM in (E.91) satisfies (5.41),

(5.44). Therefore, to prove the claim we need to show that the right side of (E.81) with the choice

of M in (E.91) is upper bounded by ǫ.

Weakening (E.81) by choosing PXn equiprobable on the set of sequences of type P
X̂⋆ , as above,

we infer that an (M, ǫ′, β) code exists with

ǫ′ ≤ E

[
exp

(
−
∣∣∣∣ıXn;Y n(Xn;Y n)− log

M − 1

2

∣∣∣∣
+
)]

(E.97)

≤ E

[
exp

(
−
∣∣∣∣ıY n|Xn‖Ŷ n⋆(X

n;Y n)− ıY n‖Ŷ n⋆(Y
n)− log

M − 1

2

∣∣∣∣
+
)]

(E.98)

= E


exp


−

∣∣∣∣∣
n∑

i=1

ı
X̂⋆;Ŷ⋆(Xi;Yi)− ıY n‖Ŷ n⋆(Y

n)− log
M − 1

2

∣∣∣∣∣

+



 (E.99)

≤ E


exp


−

∣∣∣∣∣
n∑

i=1

ı
X̂⋆;Ŷ⋆(Xi;Yi)− Sn

∣∣∣∣∣

+



 (E.100)

= E


exp


−

∣∣∣∣∣
n∑

i=1

ı
X̂⋆;Ŷ⋆(xi;Yi)− Sn

∣∣∣∣∣

+



 (E.101)

≤ exp (Sn)E

[
exp

(
−

n∑

i=1

ı
X̂⋆;Ŷ⋆(xi;Yi)

)
1

{
n∑

i=1

ı
X̂⋆;Ŷ⋆(xi;Yi) > Sn

}]

+ P

[
n∑

i=1

ı
X̂⋆;Ŷ⋆(xi;Yi) ≤ Sn

]
(E.102)

≤ ǫ (E.103)

where

• (E.100) applies Lemma E.2 and substitutes (E.91);

• (E.101) holds for any choice of xn of type P
X̂⋆ because the (conditional on Xn = xn) distri-

bution of ıY n|Xn‖Ŷ n⋆(xn;Y n) =
∑n

i=1 ıX̂⋆;Ŷ⋆(xi;Yi) depends the choice of xn only through its

type;

• (E.103) upper-bounds the first term using Lemma A.4.4, and the second term using Theorem

2.23.

If V (β) = 0, let Sn in (E.91) be

Sn = nµn − 2γ (E.104)
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and let γ > 0 be the solution to

exp(−γ) + F1

√
|A|(|A| − 1)

γ2
= ǫ (E.105)

where F1 is that in (E.96). Note that such solution exists because the function in the left side of

(E.105) is continuous on (0,∞), unbounded as γ → 0 and vanishing as γ →∞. The reasoning up to

(E.101) still applies, at which point we upper-bound the right-side of (E.101) in the following way:

ǫ′ ≤ exp (−γ)P
[
n∑

i=1

ı
X̂⋆;Ŷ⋆(xi;Yi) > Sn + γ

]
+ P

[
n∑

i=1

ı
X̂⋆;Ŷ⋆(xi;Yi) ≤ Sn + γ

]
(E.106)

≤ exp (−γ) + nVn
γ2

(E.107)

≤ ǫ (E.108)

where

• (E.107) upper-bounds the second probability using Chebyshev’s inequality;

• (E.108) uses V (α) = 0, (E.37) and (E.96).

E.5 Proof of Theorem 5.5 under the assumptions of Re-

mark 5.3

Under assumption (a), every (n,M, ǫ, β) code with a maximal power constraint can be converted

to an (n + 1,M, ǫ, β) code with an equal power constraint (i.e. equality in (5.22) is requested) by

appending to each codeword a coordinate xn+1 with

b(xn+1) = β −
n∑

i=1

b(xi) (E.109)

Since
∑n
i=1 b(xi) ≤ βn, the right side of (E.109) is no smaller than β, and so by assumption (a) a

coordinate xn+1 satisfying (E.109) can be found. It follows that

M⋆
eq(n, ǫ, β) ≤M⋆

max(n, ǫ, β) ≤M⋆
eq(n+ 1, ǫ, β) (E.110)
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where the subscript specifies the nature of the cost constraint. We thus may focus only on the codes

with equal power constraint. To show that the capacity-cost function can be expressed as (5.48),

write

C(β) = lim
n→∞

1

n
max
PXn :

bn(X
n)=β a.s.

I(Xn;Y n) (E.111)

= lim
n→∞

1

n
max
PXn :

bn(X
n)=β a.s.

{
D(PY n|Xn‖PY n⋆ |PXn)−D(Y n‖Y n⋆)

}
(E.112)

= lim
n→∞

1

n
max
PXn :

bn(X
n)=β a.s.

{
D(PY n|Xn=xn‖PY n⋆)−D(Y n‖Y n⋆)

}
(E.113)

= D(PY|X=x‖PY⋆)− lim
n→∞

min
PXn :

bn(X
n)=β a.s.

1

n
D(Y n‖Y n⋆) (E.114)

= D(PY|X=x‖PY⋆) (E.115)

where

• (E.113) holds for all xn satisfying the equal power constraint due to assumption (b);

• (E.114) holds for all coordinates x such that x appears in some xn with bn(x
n) = β;

• (E.115) invokes assumption (d) to calculate the limit.

Now, to show the converse part, we invoke (5.23) where the infimum is over all distributions

supported on F , and PȲ n = PY⋆ × . . .× PY⋆ , γ = 1
2 logn. A simple application of the Berry-Esséen

bound (Theorem 2.23) leads to the desired result.

To show the achievability part, we follow the proof in Appendix E.4, drawing the codewords

from PXn appearing in assumption (d), replacing all minimum distance approximations by the true

distributions, and replacing the right side of (E.82) by fn.
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