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Abstract—We revisit the dilemma of whether one should or
should not code when operating under delay constraints. In those
curious cases when the source and the channel are probabilis-
tically matched so that symbol-by-symbol coding is optimal in
terms of the average distortion achieved, we show that it also
achieves the dispersion of joint source-channel coding. Moreover,
even in the absence of such probabilistic matching between the
source and the channel, symbol-by-symbol transmission, though
asymptotically suboptimal, might outperform not only separate
source-channel coding but also the best known random-coding
joint source-channel coding achievability bound in the finite
blocklength regime.
Index Terms—Achievability, converse, finite blocklength

regime, joint source-channel coding, lossy source coding, memo-
ryless sources, rate-distortion theory, Shannon theory.

I. INTRODUCTION

Shannon’s fundamental limit on the maximal joint source-
channel coding (JSCC) rate at a given fidelity is, in general,
attainable only in the limit of long blocklength. Two con-
spicuous examples when symbol-by-symbol coding is, in fact,
optimal in terms of average distortion are the transmission of a
binary equiprobable source over a binary-symmetric channel
provided the desired bit error rate is equal to the crossover
probability of the channel [1, Sec.11.8], [2, Problem 7.16], and
the transmission of a Gaussian source over an additive white
Gaussian noise channel under the mean-square error distortion
criterion, provided that the tolerable source signal-to-noise
ratio attainable by an estimator is equal to the signal-to-noise
ratio at the output of the channel [3]. More generally, Gastpar
et al. [4] gave a set of necessary and sufficient conditions
on the source, its distortion measure, the channel and its cost
function in order for symbol-by-symbol transmission to be
optimal in terms of average distortion.
In this paper, we revisit the dilemma of whether one should

or should not code when operating under delay constraints.
In the foregoing examples in which no coding attains the
minimum average (over source realizations) distortion, the
source and the channel are probabilistically matched. In this
paper, we show that even in the absence of such a match
between the source and the channel, symbol-by-symbol trans-
mission, though asymptotically suboptimal, might outperform
separate source-channel coding (SSCC) and even the best
JSCC achievability bound from [5] in the finite blocklength
regime. In addition, we prove (for channels with finite input
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alphabet without power constraints) that if the source and
the channel are matched probabilistically in the sense of [4],
then not only does symbol-by-symbol transmission achieve
the minimum average distortion, but also the dispersion of
JSCC. In other words, not only do such symbol-by-symbol
codes attain the minimum average distortion but also the
distortion variance of distortions at the decoder’s output is the
minimum achievable among all codes operating at that average
distortion. Finally, we dissect the binary and the Gaussian
examples mentioned above. One important conclusion in the
binary case is that no coding is the best among all rate-1
blocklength-n codes, for all n, in terms of excess distortion,
that is, it coincides with the converse exactly.

II. SYMBOL-BY-SYMBOL VS. OPTIMAL SOURCE-CHANNEL
CODES

In the conventional block setting, the channel input and out-
put alphabets are the n−fold Cartesian products of alphabetsA
and B, and the source output and representation alphabets are
the k−fold Cartesian products of alphabets S and Ŝ . A lossy
source-channel k-to-n block code (of rate k

n ) is a (possibly
randomized) pair of mappings f : Sk "→ An and g : Bn "→ Ŝk.
A distortion measure dk : Sk × Ŝk "→ [0, +∞) is used to
quantify its performance. A cost function cn : An "→ [0, +∞)
is imposed on the channel inputs.

Definition 1. An (k, n, d, ε, α) code for
{S, A, B, Ŝ, PS, d, PY|X, c} is a source-channel code
with P

[

dk
(

Sk, g(Y k)
)

> d
]

≤ ε and either E [cn(Xn)] ≤ α
(average cost constraint) or supxn∈An cn(xn) ≤ α (maximal
cost constraint), where f(Sk) = Xn.

A symbol-by-symbol code, formally defined next, has rate
1.

Definition 2. An (n, d, ε, α) symbol-by-symbol code is an
(n, n, d, ε, α) code (f, g) (according to Definition 1) that
satisfies

f(sn) = (f1(s1), . . . , f1(sn)) (1)
g(yn) = (g1(y1), . . . , g1(yn)) (2)

where f1 : S "→ A and g1 : B "→ Ŝ.

Our goal in this section is to compare the excess distortion
performance of the optimal code of rate 1 at channel block-
length n with that of the optimal symbol-by-symbol code,
evaluated after n channel uses. The corresponding minimum
achievable excess distortions are formally defined as follows.



Definition 3. Fix ε, α, source blocklength k and channel
blocklength n. The minimum achievable excess distortion is
defined by

D(k, n, ε, α) = inf {d : ∃(k, n, d, ε, α) code} (3)

The minimum excess distortion achievable with symbol-by-
symbol codes is defined by,

D1(n, ε, α) = inf {d : ∃(n, d, ε, α) symbol-by-symbol code} .
(4)

If there is no cost constraint (c(a) = 0 for all a ∈ A), we
will simplify the notation and write D(k, n, ε) and D1(n, ε)
for D(k, n, ε, α) and D1(n, ε, α), respectively.
We assume the following basic conditions.
(i) The channel is stationary and memoryless, PY n|Xn =

PY|X × . . . × PY|X, and its input cost function satisfies
cn(xn) =

∑n
i=1 c(xi). The capacity-cost function is

denoted by C(α).
(ii) The source is stationary and memoryless, PSn =

PS × . . . × PS, and the distortion measure is separable,
dn(sn, zn) = 1

n

∑n
i=1 d(si, zi). The rate-distortion func-

tion is denoted by R(d).
(iii) There exist d̄ and α such that

R(d̄) = C(α) (5)

and there exist PX!|S and PZ!|Y such that PX! and PZ!|S
generated by the joint distribution PSPX!|SPY|XPZ!|Y
achieve C(α) and R(d̄), respectively.

(iv) The optimal distributions PX! and PZ!|S are unique.
(v) E

[

d9(S, Z!)
]

< ∞ where the average is with respect to
PS × PZ! .

The essential condition (iii) ensures that there exists an optimal
code operating at average distortion d̄ and average cost α.
Condition (iv) is imposed for clarity of presentation, while the
technical condition (v) ensures applicability of the Gaussian
approximation in Theorem 4 below.

Theorem 1 (Achievability, symbol-by-symbol code). Under
restrictions (i)-(iv), if

P

[

n
∑

i=1

d(Si, Z
!
i ) > nd

]

≤ ε (6)

where PZn!|Sn = PZ!|S × . . . × PZ!|S, and PZ!|S achieves
R(d̄), then there exists an (n, d, ε, α) symbol-by-symbol code
(average cost constraint).

Proof: As shown in [4], if (iii) holds there exist a symbol-
by-symbol encoder and decoder such that the conditional
distribution of the output of the decoder given the source
outcome coincides with distribution PZ!|S, so the excess-
distortion probability of this symbol-by-symbol code is given
by (6).

Theorem 2 (Converse, symbol-by-symbol code). Under re-
striction (i), any (n, d, ε, α) symbol-by-symbol code (average

cost constraint) must satisfy

ε ≥ inf
PZ|S :

I(S;Z)≤C(α)

P [dn(Sn, Zn) > d] (7)

where PZn|Sn = PZ|S × . . . × PZ|S.

Proof: The excess-distortion probability at blocklength n,
distortion d and cost α achievable among all single-letter codes
PX|S, PZ|Y must satisfy

ε ≥ inf
PX|S,PZ|Y :
S−X−Y−Z

E[c(X)]≤α

P [dn(Sn, Zn) > d] (8)

≥ inf
PX|S,PZ|Y :
E[c(X)]≤α

I(S;Z)≤I(X;Y)

P [dn(Sn, Zn) > d] (9)

where (9) holds since S−X−Y−Z implies I(S; Z) ≤ I(X; Y)
by the data processing inequality. The right side of (9) is lower
bounded by the right side of (7) because I(X; Y) ≤ C(α)
holds for all PX with E [c(X)] ≤ α.

Theorem 3 (Gaussian approximation, optimal symbol-
-by-symbol code). Assume that alphabets S and Ŝ are finite.
Under restrictions (i)-(v) and an average power constant,

D1(n, ε, α) = d̄ +

√

W1(d̄, α)

n
Q−1 (ε) + O

(

1

n

)

(10)

W1(d̄, α) = Var [d(S, Z!)] (11)

Proof: Appendix.

Theorem 4 (Gaussian approximation, optimal code). In ad-
dition to restrictions (i)-(v), assume that the channel either
has finite input and output alphabets and there is no cost
constraint, or is AWGN with a maximal power constant. The
excess distortion attained by the optimal code is given by

D(n, n, ε, α) = d̄ +

√

W(d̄, α)

n
Q−1 (ε) + O

(

log n

n

)

(12)

W(d̄, α) =
Var

[

S(S, d̄)
]

+ Var
[

ı!
X;Y(X!; Y!)

]

λ!2
(13)

where λ! = −R′(d̄),

ı!X;Y(x; y) = log
dPY|X=x

dPY!

(y) (14)

and S(S, d̄) is the d-tilted information [6], [7] that can be
computed using the identity

S(s, d̄) = ıS;Z!(s; z) + λ!d(s, z) − λ!d̄ (15)

which holds for PZ!−almost every z.

We call W(d̄, α) (W(d̄) if there is no cost constraint) the
distortion-dispersion function of JSCC, and W1(d̄, α) (W1(d̄)
if there is no cost constraint) the single-letter distortion-
dispersion function of JSCC.



Remark 1. In the finite-alphabet channel case without cost
constraints, because the set of all (n, n, d, ε) codes includes
all (n, d, ε) symbol-by-symbol codes, we have D1(n, ε) ≥
D(n, n, ε). Since Q−1 (ε) is positive or negative depending
on whether ε < 1

2 or ε > 1
2 , we must necessarily have

W(d̄) = W1(d̄) (16)

Note that (16) is a consequence of conditions (iii) and (iv).

III. LOSSY TRANSMISSION OF BMS OVER BSC
The memoryless binary source with PS(0) = p ≤ PS(1) is

transmitted over a binary symmetric channel with crossover
probability δ, under the constraint that the bit error rate ex-
ceeds 0 ≤ d ≤ p with probability not greater than 0 < ε < 1.
If p = 1

2 , C = 1 − h(δ), R(d) = 1 − h(d), and (5) is
achieved at d̄ = δ. If the encoder and the decoder are both
identity mappings (uncoded transmission), the resulting joint
distribution satisfies condition (iii). Using (11) and (13), it is
easy to verify that

W(d̄) = W1(d̄) = δ(1 − δ) (17)

that is, uncoded transmission is optimal in terms of dispersion,
as anticipated in Remark 1. Moreover, for an equiprobable
source, regardless of the allowed epsilon, uncoded transmis-
sion attains the minimum distortion D(n, n, ε) achievable
among all codes operating at blocklength n, as the following
result demonstrates.

Theorem 5 (BMS-BSC, symbol-by-symbol code). At block-
length n and excess distortion probability ε, the uncoded
scheme achieves

D1(n, ε) = min







d :

%nd&
∑

t=0

(

n

t

)

δt(1 − δ)n−t ≥ 1 − ε







(18)
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Fig. 1. Distortion-blocklength tradeoff for the transmission of a fair BMS
over a BSC with crossover probability δ = 0.11 and R = 1, ε = 10−2.
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Fig. 2. Rate-blocklength tradeoff (a) for the transmission of a fair BMS
over a BSC with crossover probability δ = 0.11 and d = 0.22. The excess-
distortion probability ε is set to be the one achieved by the uncoded scheme
(b).
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Fig. 3. Distortion-blocklength tradeoff for the transmission of a BMS with
p = 2

5
over a BSC with crossover probability δ = 0.11 and R = 1, ε =

10−2.



Moreover, if the source is equiprobable,

D1(n, ε) = D(n, n, ε) (19)

To show (19), we need the converse result in Theorem
6 below, which is a particularization of [5, Theorem 5].
The idea behind its (omitted) proof is the observation that
1{d(Sn, Zn) ≤ d} is a (not necessarily optimal) binary hy-
pothesis test between a carefully chosen auxiliary distribution
and PSPX|SPY |XPZ|Y (where PX|S and PZ|Y are a given
encoder/decoder pair). We adopt the following notation.

〈n

k

〉

=
k

∑

j=0

(

n

j

)

(20)

Theorem 6 (EBMS-BSC, Converse). If there exists a
(k, n, d, ε) joint source-channel code, then

λ

(

n

r! + 1

)

+
〈 n

r!

〉

≤
〈

k

*kd+

〉

2n−k (21)

where

r! = max

{

r :
r

∑

t=0

(

n

t

)

δt(1 − δ)n−t ≤ 1 − ε

}

(22)

and λ ∈ [0, 1) is the solution to
r!

∑

j=0

(

n

t

)

δt(1−δ)n−t+λδr!+1(1−δ)n−r!−1

(

n

r! + 1

)

= 1−ε

(23)

Proof of Theorem 5: Let us compare d! = D1(n, ε) with
the conditions imposed on d by Theorem 6. Comparing (18)
to (22), we see that either
(a) equality in (18) is achieved, r! = nd!, λ = 0, and

(plugging k = n into (21))
〈 n

nd!

〉

≤
〈

n

*nd+

〉

(24)

thereby implying that d ≥ d!, or
(b) r! = nd! − 1, λ > 0, and (21) becomes

λ

(

n

nd!

)

+

〈

n

nd! − 1

〉

≤
〈

n

*nd+

〉

(25)

which also implies d ≥ d!. To see this, note that d < d!

would imply *nd+ ≤ nd!−1 since nd! is an integer, which
in turn would require (according to (25)) that λ ≤ 0, which
is impossible.

For the transmission of the fair binary source over a BSC,
Figure 1 shows the distortion achieved by the uncoded scheme
and the separated scheme versus n for a fixed excess-distortion
probability ε = 0.01. Figure 2(a) shows the rate achieved by
separate coding when d > δ is fixed, and the excess-distortion
probability ε is set to be the one achieved by uncoded transmis-
sion, namely, (18) (Figure 2(b)). Figure 2(a) highlights the fact

that at short blocklengths (n ≤ 100) separate source/channel
coding is vastly suboptimal. As the blocklength increases, the
performance of the separated scheme approaches that of the
no-coding scheme, but according to Theorem 5 it can never
outperform it. Had we allowed the excess distortion probability
to vanish sufficiently slowly, the JSCC curve would have
approached the Shannon limit as n → ∞. However, in Figure
2(a), the exponential decay in ε is such that there is indeed an
asymptotic rate penalty as predicted in [8].
For the biased binary source with p = 2

5 and BSC
with crossover probability 0.11, Figure 3 plots the distortion
achieved with probability 0.99 by the uncoded scheme, which
in this case is asymptotically suboptimal. Nevertheless, un-
coded transmission performs remarkably well in the displayed
range of blocklengths, achieving the converse almost exactly
at blocklengths less than 100, and outperforming the JSCC
achievability result of [5] at blocklengths as long as 900.

IV. LOSSY TRANSMISSION OF A GMS OVER AN AWGN
In this section we analyze the setup where the Gaussian

memoryless source Si ∼ N (0, σ2
S
) is transmitted over an

AWGN channel N (0, σ2
N) with average power P , under the

constraint that the MSE distortion exceeds 0 ≤ d ≤ σ2
S
with

probability no greater than 0 < ε < 1.
Since C(P ) = 1

2 log
(

1 + P
σ2

N

)

and R(d) = 1
2 log

(

σ2

S

d

)

, we
find that (5) is attained at

d̄ =
σ2

N
σ2

S

σ2
N

+ P
(26)

Theorem 7 (GMS-AWGN, single-letter code). Consider the
following symbol-by-symbol transmission scheme in which the
encoder and the decoder are amplifiers:

f1(s) = αs, α2 =
P

σ2
S

(27)

g1(y) = βy, β =
ασ2

S

α2σ2
S

+ σ2
N

(28)

This is an (n, d, ε, P ) symbol-by-symbol code (with average
cost constraint) such that

P
[

Wd̄ > nd
]

= ε (29)

where d̄ is given by (26), and W is chi-square distributed with
n degrees of freedom.

Note that (29) is a particularization of (7). Using (29), we
find that

W1(d̄, P ) = 2d̄2 log2 e (30)

On the other hand, using (13), we compute

W(d̄, P ) = d̄2(2 − d̄2) log2 e (31)

which means that

W1(d̄, P ) > W(d̄, P ) (32)

for d̄ < 1. The difference between (32) and (16) is due
to the fact that the optimal single-letter code in Theorem



7 obeys an average power constraint, rather than the more
stringent maximal power constraint of Theorem 4, so it is not
surprising that for ε > 1

2 the single-letter code outperforms
the best code obeying the maximal power constraint. More
interestingly, in the practically relevant case ε < 1

2 , (32)
implies that the symbol-by-symbol code of Theorem 7 is only
suboptimal in terms of dispersion, even though it achieves
the minimum average distortion. Nevertheless, in the range
of blocklenghts displayed in Figure 4, the symbol-by-symbol
code even outperforms the converse for codes operating under
a maximal power constraint.
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APPENDIX
PROOF OF THEOREM 3

Achievability. Similar to [6], note that restriction (v) im-
plies that the third absolute moment of the random variables
d(Si, Z

!
i ) is finite, so the achievability part of (10) follows

by a straightforward application of the Berry-Esseen bound to
(6).
Before we show the converse, consider the following aux-

iliary result.

Lemma 1. Let D be a compact metric space, and let d : D2 →
R+ be a metric. Fix f : D "→ R and g : D "→ R. Let

f! = max
x∈D

f(x) (33)

g! = sup
x∈D!

g(x) (34)

D! = {x ∈ D : f(x) = f!} (35)

Suppose that for some constants f1 > 0, f2 > 0, we have

f! − f(x) ≥ f1d(x,D!) (36)
|g(x) − g!| ≤ f2d(x,D!) (37)

for all x ∈ D, where

d(x,D!) = min
y∈D!

d(x, y) (38)

For any positive scalars ϕ1, ϕ2 such that

f2ϕ2 ≤ f1ϕ1 (39)

we have

max
x∈D

[ϕ1f(x) + ϕ2g(x)] = ϕ1f
! + ϕ2g

! (40)

Proof: Let x! achieve the maximum on the left side of
(40). Using (36) and (37), we have

0 ≤ ϕ1 (f(x!) − f!) + ϕ2 (g(x!) − g!) (41)
≤ (−f1ϕ1 + f2ϕ2) d(x!,D!) (42)
≤ 0 (43)

where where (43) follows from (39).
Converse. Observe that by restriction (iii) the constraint

I(S; Z) ≤ C(α) in the right side of (7) can be replaced by
I(S; Z) ≤ R(d̄). Applying the Berry-Esseen bound to (7), we
obtain

D1(n, ε, α)

≥ min
PZ|S :

I(S;Z)≤R(d̄)

{

E [d(S, Z)] +

√

Var [d(S, Z)]

n
Q−1

(

ε +
B√
n

)

}

= d̄ +

√

W1(d̄, α)

n
Q−1

(

ε +
B√
n

)

(44)

where B is the Berry-Esseen constant, and (44) fol-
lows by the application of Lemma 1 with D =
{

PSZ = PZ|SPS : I(S; Z) ≤ R(d̄)
}

, ϕ1 = 1, ϕ2 = 1√
n
. Note

that E [d(S, Z)] is a linear function of PSZ and Var [d(S, Z)]
is a quadratic function of PSZ, so conditions (36) and (37)
hold with the metric being the usual Euclidean distance
between vectors in R|S|×|Ŝ|. So, (44) follows immediately
upon observing that by the definition of the rate-distortion
function, E [d(S, Z)] ≥ E [d(S, Z!)] = d̄ for all PZ|S such that
I(S; Z) ≤ R(d̄).
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