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Abstract—This paper studies the minimum achievable source
coding rate as a function of blocklength n and probability ǫ that
the distortion exceeds a given level d. Tight general achievability
and converse bounds are derived that hold at arbitrary fixed
blocklength. For stationary memoryless sources with separable
distortion, the minimum rate achievable is shown to be closely

approximated by R(d)+
√

V (d)
n

Q−1 (ǫ), where R(d) is the rate-

distortion function, V (d) is the rate dispersion, a characteristic of
the source which measures its stochastic variability, and Q−1 (·)
is the inverse of the standard Gaussian complementary cdf.

Index Terms—achievability, converse, finite blocklength
regime, lossy source coding, memoryless sources, rate-distortion,
Shannon theory.

I. INTRODUCTION

The rate-distortion function characterizes the minimal

source coding rate compatible with a given distortion level,

either in average or excess distortion sense, provided that the

blocklength is permitted to grow without limit. However, in

some applications relatively short blocklengths are common

both due to delay and complexity constraints. It is therefore

of critical practical interest to assess the unavoidable penalty

over the rate-distortion function required to sustain the desired

fidelity at a given fixed blocklength. Neither the lossy source

coding theorem nor the reliability function, which gives the

asymptotic exponential decay of the probability of exceeding a

given distortion level when compressing at a fixed rate, provide

an answer to that question.

This paper presents new achievability and converse bounds

to the minimum sustainable rate as a function of blocklength

and excess probability, valid for general sources and general

distortion measures. In addition, for stationary memoryless

sources with separable (i.e., additive, or per-letter) distortion,

we show that the finite blocklength coding rate is well approx-

imated by

R(n, d, ǫ) ≈ R(d) +

√

V (d)

n
Q−1 (ǫ) , (1)

where n is the blocklength, ǫ is the probability that the

distortion incurred by the reproduction exceeds d, and V (d) is

the rate-dispersion function. The evaluation of the new bounds

is detailed for:

• the stationary discrete memoryless source (DMS) with

symbol error rate distortion;
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• the stationary Gaussian memoryless source (GMS) with

mean-square error distortion;

• the stationary binary memoryless source when the com-

pressor observes it through the binary erasure channel

(BES), and the distortion measure is bit error rate.

In the most basic special case, namely that of the equiprobable

source with symbol error rate distortion, the rate-dispersion

function is zero, and the finite blocklength coding rate is

approximated by

R(n, d, ǫ) = R(d) +
1

2

logn

n
+O

(

1

n

)

(2)

Section II sets up the problem, introduces the definitions

of the fundamental finite blocklengths limits and presents

the basic notation and properties of the information density

and related quantities used throughout the paper. Section III

reviews the few existing finite blocklength achievability and

converse bounds for lossy compression, as well as various

relevant asymptotic refinements of Shannon’s lossy source

coding theorem. Section IV shows the new general upper and

lower bounds to the minimum rate at a given blocklength.

Section V studies the asymptotic behavior of the bounds using

Gaussian approximation analysis. Sections VI, VII, VIII and

IX focus on the binary memoryless source (BMS)1, DMS,

BES and GMS, respectively.

II. PRELIMINARIES

A. Operational definitions

In fixed-length lossy compression, the output of a gen-

eral source with alphabet A and source distribution PX is

mapped to one of the M codewords from the reproduction

alphabet B. A lossy code is a (possibly randomized) pair of

mappings f : A 7→ {1, . . . ,M} and c : {1, . . . ,M} 7→ B.

A distortion measure d : A × B 7→ [0,+∞] is used to

quantify the performance of a lossy code. Given decoder

c, the best encoder simply maps the source output to the

closest (in the sense of the distortion measure) codeword,

i.e. f(x) = argminm d(x, c(m)). The average distortion over

the source statistics is a popular performance criterion. A

stronger criterion is also used, namely, the probability of

exceeding a given distortion level (called excess-distortion

probability). The following definitions abide by the excess

distortion criterion.

1Although the results in Section VI are a special case of those in Section
VII, it is enlightening to specialize our results to the simplest possible setting.
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Definition 1. An (M,d, ǫ) code for {A, B, PX , d : A ×
B 7→ [0,+∞]} is a code with |f| = M such that

P [d (X, c(f(X))) > d] ≤ ǫ.
The minimum achievable code size at excess-distortion

probability ǫ and distortion d is defined by

M⋆(d, ǫ) = min {M : ∃(M,d, ǫ) code} (3)

Note that the special case d = 0 and d(x, y) = 1 {x 6= y}
corresponds to almost-lossless compression.

Definition 2. In the conventional fixed-to-fixed (or block)

setting in which A and B are the n−fold Cartesian

products of alphabets A and B, an (M,d, ǫ) code for

{An, Bn, PXn , dn : An × Bn 7→ [0,+∞]} is called an

(n,M, d, ǫ) code.

Fix ǫ, d and blocklength n. The minimum achievable code

size and the finite blocklength rate-distortion function (excess

distortion) are defined by, respectively

M⋆(n, d, ǫ) = min {M : ∃(n,M, d, ǫ) code} (4)

R(n, d, ǫ) =
1

n
logM⋆(n, d, ǫ) (5)

Alternatively, using an average distortion criterion, we em-

ploy the following notations.

Definition 3. An 〈M,d〉 code for {A, B, PX , d : A ×
B 7→ [0,+∞]} is a code with |f| = M such that

E [d (X, c(f(X)))] ≤ d. The minimum achievable code size

at average distortion d is defined by

M⋆(d) = min {M : ∃〈M,d〉 code} (6)

Definition 4. If A and B are the n−fold Cartesian

products of alphabets A and B, an 〈M,d〉 code for

{An, Bn, PXn , dn : An × Bn 7→ [0,+∞]} is called an

〈n,M, d〉 code.

Fix d and blocklength n. The minimum achievable code

size and the finite blocklength rate-distortion function (average

distortion) are defined by, respectively

M⋆(n, d) = min {M : ∃〈n,M, d〉 code} (7)

R(n, d) =
logM⋆(n, d)

n
(8)

In the limit of long blocklengths, the minimum achievable

rate is characterized by the rate-distortion function [1] [2].

Definition 5. The rate-distortion function is defined as

R(d) = lim sup
n→∞

R(n, d) (9)

In a similar manner, one can define the distortion-rate

functions D(n,R, ǫ), D(n,R) and D(R).
In the review of prior work in Section III we will use

the following concepts related to variable-length coding. A

variable-length code is a pair of mappings f : A 7→ {0, 1}⋆
and c : {0, 1}⋆ 7→ B, where {0, 1}⋆ is the set of all possibly

empty binary strings. It is said to operate at distortion level d if

P [d(X, c(f(X))) ≤ d] = 1. For a given code (f, c) operating

at distortion d, the length of the binary codeword assigned to

x ∈ A is denoted by ℓ(x) = length of f(x).

B. Tilted information

Denote by

ıX;Y (x; y) = log
dPXY

d(PX × PY )
(x, y) (10)

the information density of the joint distribution PXY at

(x, y) ∈ A×B. Further, for a discrete random variable X , the

information in outcome x is denoted by

ıX(x) = log
1

PX(x)
(11)

Under appropriate conditions, the number of bits that it takes

to represent x divided by ıX(x) converges to 1 as these

quantities go to infinity. Note that if X is discrete, then

ıX;X(x;x) = ıX(x).
For a given PX and distortion measure, denote

RX(d) = inf
PY |X :

E[d(X,Y )]≤d

I(X ;Y ) (12)

We impose the following basic restrictions on the source and

the distortion measure.

(a) RX(d) is finite for some d, i.e. dmin < ∞, where

dmin = inf {d : RX(d) < ∞} (13)

(b) The distortion measure is such that there exists a finite set

E ⊂ B such that

E

[

min
y∈E

d(X, y)

]

< ∞ (14)

(c) The infimum in (12) is achieved by a unique P ⋆
Y |X , and

distortion measure is finite-valued. 2

The counterpart of (11) in lossy data compression, which

roughly corresponds to the number of bits one needs to spend

to encode x within distortion d, is the following.

Definition 6 (d−tilted information). For d > dmin, the

d−tilted information in x is defined as

X(x, d) = log
1

E [exp {λ⋆d− λ⋆d(x, Y ⋆)}] (15)

where the expectation is with respect to the unconditional

distribution3 of Y ⋆, and

λ⋆ = −R′
X(d) (16)

It can be shown that (c) guarantees differentiability of

RX(d), thus (15) is well defined. A measure-theoretic proof

of the following properties can be found in [3, Lemma 1.4].

Property 1. For P ⋆
Y -almost every y,

X(x, d) = ıX;Y ⋆(x; y) + λ⋆d(x, y)− λ⋆d (17)

hence the name we adopted in Definition 6, and

RX(d) = E [X(X, d)] (18)

2Restriction (c) is imposed for clarity of presentation. We will show in
Section V that it can be dispensed with.

3Henceforth, Y ⋆ denotes the rate-distortion-achieving reproduction random
variable at distortion d, i.e. its distribution P ⋆

Y
is the marginal of P ⋆

Y |X
PX ,

where P ⋆

Y |X
achieves the infimum in (12).
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Property 2. For all y ∈ B,

E [exp {λ⋆d− λ⋆d(X, y) + X(X, d)}] ≤ 1 (19)

with equality for P ⋆
Y -almost every y.

Remark 1. While Definition 6 does not cover the case d =
dmin, for discrete random variables with d(x, y) = 1 {x 6= y}
it is natural to define 0-tilted information as

X(x, 0) = ıX(x) (20)

Example 1. For the BMS with bias p ≤ 1
2 and bit error rate

distortion,

Xn(xn, d) = ıXn(xn)− nh(d) (21)

if 0 ≤ d < p, and 0 if d ≥ p.

Example 2. For the GMS with variance σ2 and mean-square

error distortion,4

Xn(xn, d) =
n

2
log

σ2

d
+

( |xn|2
σ2

− n

)

log e

2
(22)

if 0 < d < σ2, and 0 if d ≥ σ2.

The distortion d-ball around x is denoted by

Bd(x) = {y ∈ B : d(x, y) ≤ d} (23)

Tilted information is closely related to the (unconditional)

probability that Y ⋆ falls within distortion d from X . Indeed,

since λ⋆ > 0, for an arbitrary PY we have by Markov’s

inequality,

PY (Bd(x)) = P [d(x, Y ) ≤ d] (24)

≤ E [exp {λ⋆d− λ⋆d(x, Y )}] (25)

where the probability measure is generated by the uncondi-

tional distribution of Y . Thus

log
1

P ⋆
Y (Bd(x))

≥ X(x, d) (26)

As we will see in Theorem 6, under certain regularity condi-

tions the equality in (26) can be closely approached.

C. Generalized tilted information

Often it is more convenient [4] to fix PY defined on B
and to consider, in lieu of (12), the following optimization

problem:

RX,Y (d) = min
PZ|X :

E[d(X;Z)]≤d

D(PZ|X‖PY |PX) (27)

In parallel with Definition 6, define for any λ ≥ 0

ΛY (x, λ) = log
1

E [exp (λd− λd(x, Y ))]
(28)

As long as d > dmin|X,Y , where

dmin|X,Y = inf {d : RX,Y (d) < ∞} (29)

4We denote the Euclidean norm by | · |, i.e. |xn|2 = x2
1 + . . .+ x2

n.

the minimum in (27) is always achieved by a PZ⋆|X that

satisfies [3]

log
dPZ⋆|X(y|x)

dPY (y)

= log
exp

(

−λ⋆
X,Y d(x, y)

)

E

[

exp
(

−λ⋆
X,Y d(x, Y )

)] (30)

= ΛY (x, λ
⋆
X,Y )− λ⋆

X,Y d(x, y) + λ⋆
X,Y d (31)

where

λ⋆
X,Y = −R′

X,Y (d) (32)

III. PRIOR WORK

In this section, we summarize the main available bounds on

the fixed-blocklength fundamental limits of lossy compression

and we review the main relevant asymptotic refinements to

Shannon’s lossy source coding theorem.

A. Achievability bounds

Returning to the general setup of Definition 1, the basic

general achievability result can be distilled [5] from Shannon’s

coding theorem for memoryless sources:

Theorem 1 (Achievability, [2] [5]). Fix PX , a positive integer

M and d ≥ dmin. There exists an (M,d, ǫ) code such that

ǫ ≤ inf
PY |X

{

P [d (X,Y ) > d]

+ inf
γ>0

{

P [ıX;Y (X ;Y ) > logM − γ] + e− exp(γ)
}

}

(33)

Theorem 1 is the most general existing achievability result

(i.e. existence result of a code with a guaranteed upper bound

on error probability). In particular, it allows us to deduce that

for stationary memoryless sources with separable distortion

measure, i.e. when PXn = PX × . . . × PX, d(xn, yn) =
1
n

∑n
i=1 d(xi, yi), it holds that

lim sup
n→∞

R(n, d) ≤ RX(d) (34)

lim sup
n→∞

R(n, d, ǫ) ≤ RX(d) (35)

where RX(d) is defined in (12), and 0 < ǫ < 1.

For three particular setups of i.i.d. sources with separa-

ble distortion measure, we can cite the achievability bounds

of Goblick [6] (fixed-rate compression of a finite alphabet

source), Pinkston [7] (variable-rate compression of a finite-

alphabet source) and Sakrison [8] (variable-rate compression

of a Gaussian source with mean-square error distortion).

Sakrison’s achievability bound is summarized below as the

least cumbersome of the aforementioned:

Theorem 2 (Achievability, [8]). Fix blocklength n, and let

Xn be a Gaussian vector with independent components of

variance σ2. There exists a variable-length code achieving

average mean-square error d such that

E [ℓ(Xn)] ≤ −n− 1

2
log

(

d

σ2
− 1

1.2n

)

+
1

2
logn

+ log 4π +
2

3
log e+

5 log e

12(n+ 1)
(36)
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B. Converse bounds

The basic converse used in conjunction with (33) to prove

the rate-distortion fundamental limit with average distortion is

the following simple result, which follows immediately from

the data processing lemma for mutual information:

Theorem 3 (Converse, [2]). Fix PX , integer M and d ≥ dmin.

Any 〈M,d〉 code must satisfy

RX(d) ≤ logM (37)

where RX(d) is defined in (12).

Shannon [2] showed that in the case of stationary memo-

ryless sources with separable distortion, RXn(d) = nRX(d).
Using Theorem 3, it follows that for such sources,

RX(d) ≤ R(n, d) (38)

for any blocklength n and any d > dmin, which together with

(34) gives

R(d) = RX(d) (39)

The strong converse for lossy source coding [9], [10] states

that if the compression rate R is fixed and R < RX(d), then

ǫ → 1 as n → ∞, which together with (35) yields that for

i.i.d. sources with separable distortion and any 0 < ǫ < 1,

lim sup
n→∞

R(n, d, ǫ) = RX(d) = R(d) (40)

For prefix-free variable-length lossy compression, the key

non-asymptotic converse was obtained by Kontoyiannis [11]

(see also [12] for a lossless compression counterpart).

Theorem 4 (Converse, [11]). Assume that the infimum in the

right side of (12) is achieved by some conditional distribution

P ⋆
Y |X . If a prefix-free variable-length code for PX operates at

distortion level d, then for any γ > 0,

P [ℓ(X) ≤ X(X, d)− γ] ≤ 2−γ (41)

For DMS with finite alphabet and bounded separable dis-

tortion measure, a finite blocklength converse can be distilled

from Marton’s fixed-rate lossy compression error exponent

[13]:

Theorem 5 (Converse, [13]). Consider a DMS with finite

input and reproduction alphabets, source distribution P and

separable distortion measure with maxx miny d(x, y) = 0,

∆max = maxx,y d(x, y) < +∞. Fix 0 < d < ∆max. Let the

corresponding rate-distortion and distortion-rate functions be

denoted by RP (d) and DP (R), respectively. Fix an arbitrary

(n,M, d, ǫ) code.

• If the code rate R = logM
n satisfies

R < RP (d), (42)

then the excess-distortion probability is bounded away

from zero:

ǫ ≥ DP (R)− d

∆max − d
, (43)

• If R satisfies

RP (d) < R < max
Q

RQ(d), (44)

where the maximization is over the set of all probability

distributions on A, then

ǫ ≥ sup
δ>0,Q

(

DQ(R)− d

∆max − d
−Qn(Gδ,n

c)

)

· exp (−n (D(Q‖P ) + δ)) , (45)

where the supremization is over all probability distribu-

tions on A satisfying RQ(d) > R, and

Gδ,n =

{

xn ∈ An :
1

n
log

Qn(xn)

Pn(xn)
≤ D(Q‖P ) + δ

}

It turns out that the converse in Theorem 5 results in rather

loose lower bounds on R(n, d, ǫ) unless n is very large, in

which case the rate-distortion function already gives a tight

lower bound. Generalizations of the error exponent results in

[13] are found in [14]–[18].

C. Gaussian Asymptotic Approximation

The “lossy asymptotic equipartition property (AEP)” [19],

which leads to strong achievability and converse bounds for

variable-rate quantization, is concerned with the almost sure

asymptotic behavior of the distortion d−balls. Second-order

refinements of the “lossy AEP” were studied in [11], [20],

[21].5

Theorem 6 (“Lossy AEP”). For memoryless sources with sep-

arable distortion measure satisfying the regularity restrictions

(i)–(iv) in Section V,

log
1

P ⋆
Y n(Bd(Xn))

=

n
∑

i=1

X(Xi, d) +
1

2
logn+O (log logn)

almost surely.

Remark 2. Note the different behavior of almost lossless data

compression:

log
1

P ⋆
Y n(B0(Xn))

= log
1

PXn(Xn)
=

n
∑

i=1

ıX(Xi) (46)

Kontoyiannis [11] pioneered the second-order refinement of

the variable-length rate-distortion function showing that for

memoryless sources with separable distortion measures the

optimum prefix-free description length at distortion level d
satisfies

ℓ⋆(Xn) = nR(d) +
√
nGn +O (logn) a.s. (47)

where Gn converges in distribution to a Gaussian random

variable with zero mean and variance equal to the rate-

dispersion function defined in Section V.

5The result of Theorem 6 was pointed out in [11, Proposition 3] as a
simple corollary to the analyses in [20], [21]. See [22] for a generalization to
α-mixing sources.
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D. Asymptotics of redundancy

Considerable attention has been paid to the asymptotic

behavior of the redundancy, i.e. the difference between the

average distortion D(n,R) of the best n−dimensional quan-

tizer and the distortion-rate function D(R). For finite-alphabet

i.i.d. sources, Pilc [23] strengthened the positive lossy source

coding theorem by showing that

D(n,R)−D(R) ≤ −∂D(R)

∂R

logn

2n
+ o

(

logn

n

)

(48)

Zhang, Yang and Wei [24] proved a converse to (48), thereby

showing that for memoryless sources with finite alphabet,

D(n,R)−D(R) = −∂D(R)

∂R

logn

2n
+ o

(

logn

n

)

(49)

Using a geometric approach akin to that of Sakrison [8],

Wyner [25] showed that (48) also holds for stationary Gaussian

sources with mean-square error distortion, while Yang and

Zhang [20] extended (48) to abstract alphabets. Note that as the

average overhead over the distortion-rate function is dwarfed

by its standard deviation, the analyses of [20], [23]–[25] are

bound to be overly optimistic since they neglect the stochastic

variability of the distortion.

IV. NEW FINITE BLOCKLENGTH BOUNDS

In this section we give achievability and converse results for

any source and any distortion measure according to the setup

of Section II. When we apply these results in Sections V - IX,

the source X becomes an n−tuple (X1, . . . , Xn).

A. Converse bounds

Our first result is a general converse bound.

Theorem 7 (Converse). Assume the basic conditions (a)–(c)

in Section II are met. Fix d > dmin. Any (M,d, ǫ) code must

satisfy

ǫ ≥ sup
γ≥0

{P [X(X, d) ≥ logM + γ]− exp(−γ)} (50)

Proof. Let the encoder and decoder be the random transfor-

mations PZ|X and PY |Z , where Z takes values in {1, . . . ,M}.

Let QZ be equiprobable on {1, . . . ,M}, and let QY denote

the marginal of PY |ZQZ . We have6, for any γ ≥ 0

P [X(X, d) ≥ logM + γ] (51)

= P [X(X, d) ≥ logM + γ, d(X,Y ) > d]

+ P [X(X, d) ≥ logM + γ, d(X,Y ) ≤ d] (52)

≤ ǫ+
∑

x∈A

PX(x)
M
∑

z=1

PZ|X(z|x)

·
∑

y∈Bd(x)

PY |Z(y|z)1 {M ≤ exp (X(x, d) − γ)} (53)

≤ ǫ+ exp (−γ)
∑

x∈A

PX(x) exp (X(x, d))

·
M
∑

z=1

1

M

∑

y∈Bd(x)

PY |Z(y|z) (54)

= ǫ+ exp (−γ)
∑

x∈A

PX(x) exp (X(x, d))QY (Bd(x)) (55)

≤ ǫ+ exp (−γ)
∑

y∈B

QY (y)

·
∑

x∈A

PX(x) exp (λ⋆d− λ⋆d(x, y) + X(x, d)) (56)

≤ ǫ+ exp (−γ) (57)

where

• (54) follows by upper-bounding

PZ|X(z|x)1 {M ≤ exp (X(x, d)− γ)}

≤ exp (−γ)

M
exp (X(x, d)) (58)

for every (x, z) ∈ A× {1, . . . ,M},

• (56) uses (25) particularized to Y distributed according

to QY , and

• (57) is due to (19).

Remark 3. Theorem 7 gives a pleasing generalization of the

almost-lossless data compression converse bound [5], [26,

Lemma 1.3.2]. In fact, skipping (56), the above proof applies

to the case d = 0 and d(x, y) = 1 {x 6= y} that corresponds

to almost-lossless data compression.

Remark 4. As explained in Appendix C, condition (c) can be

dropped from the assumptions of Theorem 7.

Our next converse result, which is tighter than the one

in Theorem 7 in some cases, is based on binary hypothe-

sis testing. The optimal performance achievable among all

randomized tests PW |X : A → {0, 1} between probability

distributions P and Q on A is denoted by (1 indicates that

the test chooses P ):7

βα(P,Q) = min
PW |X :

P[W=1]≥α

Q [W = 1] (59)

6We write summations over alphabets for simplicity. All our results in
Sections IV and V hold for arbitrary probability spaces.

7Throughout, P , Q denote distributions, whereas P, Q are used for the
corresponding probabilities of events on the underlying probability space.
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Theorem 8 (Converse). Let PX be the source distribution

defined on the alphabet A. Any (M,d, ǫ) code must satisfy

M ≥ sup
Q

inf
y∈B

β1−ǫ(PX , Q)

Q [d(X, y) ≤ d]
(60)

where the supremum is over all distributions on A.

Proof. Let (PZ|X , PY |Z) be an (M,d, ǫ) code. Fix a distribu-

tion Q on A, and observe that W = 1 {d(X,Y ) ≤ d} defines

a (not necessarily optimal) hypothesis test between PX and Q
with P [W = 1] ≥ 1− ǫ. Thus,

β1−ǫ(PX , Q)

≤
∑

x∈A

QX(x)

M
∑

m=1

PZ|X(m|x)
∑

y∈B

PY |Z(y|m)1{d(x, y) ≤ d}

≤
M
∑

m=1

∑

y∈B

PY |Z(y|m)
∑

x∈A

QX(x)1{d(x, y) ≤ d} (61)

≤
M
∑

m=1

∑

y∈B

PY |Z(y|m) sup
y∈B

Q [d(X, y) ≤ d] (62)

= M sup
y∈B

Q [d(X, y) ≤ d] (63)

Suppose for a moment that X takes values on a finite

alphabet, and let us further lower bound (60) by taking Q
to be the equiprobable distribution on A, Q = U . Consider

the set Ω ⊂ A that has total probability 1− ǫ and contains the

most probable source outcomes, i.e. for any source outcome

x ∈ Ω, there is no element outside Ω having probability

greater than PX(x). For any x ∈ Ω, the optimum binary

hypothesis test (with error probability ǫ) between PX and Q
must choose PX . Thus the numerator of (60) evaluated with

Q = U is proportional to the number of elements in Ω, while

the denominator is proportional to the number of elements in

a distortion ball of radius d. Therefore (60) evaluated with

Q = U yields a lower bound to the minimum number of d-

balls required to cover Ω.

Remark 5. In general, the lower bound in Theorem 8 is not

achievable due to overlaps between distortion d−balls that

comprise the covering. One special case when it is in fact

achievable is almost lossless data compression on a countable

alphabet A. To encompass that case, it is convenient to relax

the restriction in (59) that requires Q to be a probability mea-

sure and allow it to be a σ-finite measure, so that βα(PX , Q)
is no longer bounded by 1.8 Note that Theorem 8 would still

hold. Letting U to be the counting measure on A (i.e. U
assigns unit weight to each letter), we have (Appendix A)

β1−ǫ(PX , U) ≤ M⋆(0, ǫ) ≤ β1−ǫ(PX , U) + 1 (64)

The lower bound in (64) is satisfied with equality whenever

β1−ǫ(PX , U) is achieved by a non-randomized test.

8The Neyman-Pearson lemma generalizes to σ-finite measures.

B. Achievability bounds

The following result gives an exact analysis of the excess

probability of random coding, which holds in full generality.

Theorem 9 (Exact performance of random coding). Denote by

ǫd (c1, . . . , cM ) the probability of exceeding distortion level d
achieved by the optimum encoder with codebook (c1, . . . , cM ).
Let Y1, . . . , YM be independent, distributed according to an

arbitrary distribution on the reproduction alphabet PY . Then

E [ǫd (Y1, . . . , YM )] = E [1− PY (Bd(X))]M (65)

Proof. Upon observing the source output x, the optimum

encoder chooses arbitrarily among the members of the set

arg min
i=1,...,M

d(x, ci)

The indicator function of the event that the distortion exceeds

d is

1

{

min
i=1,...,M

d(x, ci) > d

}

=

M
∏

i=1

1 {d(x, ci) > d} (66)

Averaging over both the input X and the choice of codewords

chosen independently of X , we get

E

[

M
∏

i=1

1 {d(X,Yi) > d}
]

= E

[

E

[

M
∏

i=1

1 {d(X,Yi) > d} |X
]]

(67)

= E

M
∏

i=1

E [1 {d(X,Yi) > d} |X ] (68)

= E (P [d(X,Y ) > d|X ])
M

(69)

where in (68) we have used the fact that Y1, . . . , YM are

independent even when conditioned on X .

Invoking Shannon’s random coding argument, the following

achievability result follows immediately from Theorem 9.

Theorem 10 (Achievability). There exists an (M,d, ǫ) code

with

ǫ ≤ inf
PY

E [1− PY (Bd(X))]
M

(70)

where the infimization is over all random variables defined on

B, independent of X .

While the right side of (70) gives the exact performance of

random coding, Shannon’s random coding bound (Theorem 1)

was obtained by upper bounding the performance of random

coding. As a consequence, the result in Theorem 10 is tighter

than Shannon’s random coding bound (Theorem 1), but it is

also harder to compute.

Applying (1 − x)M ≤ e−Mx to (70), one obtains the

following more numerically stable bound.

Corollary 11 (Achievability). There exists an (M,d, ǫ) code

with

ǫ ≤ inf
PY

E

[

e−MPY (Bd(X))
]

(71)
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where the infimization is over all random variables defined on

B, independent of X .

The last result in this section will come handy in the analysis

of the bound in Theorem 10 (see Section II-C for related

notation).

Lemma 1. For an arbitrary PY on B,

PY (Bd(x)) ≥ sup
PX̂ ,γ>0

exp
(

−ΛY (x, λ
⋆
X̂,Y

)− λ⋆
X̂,Y

γ
)

·P
[

d− γ < d(x, Ẑ⋆) ≤ d|X̂ = x
]

(72)

where the supremization is over all PX̂ on A such that

dmin|X̂,Y < d, and Ẑ⋆ achieves RX̂,Y (d).

Proof. We streamline the treatment in [20, (3.26)]. Fix γ > 0
and distribution PX̂ on the input alphabet A. We have

PY (Bd(x))

=
∑

y∈Bd(x)

PY (y) (73)

≥
∑

y∈Bd(x)\Bd−γ(x)

PY (y) (74)

≥ exp
(

−λ⋆
X̂,Y

γ
)

·
∑

y∈Bd(x)\Bd−γ(x)

PY (y) exp
(

λ⋆
X̂,Y

d− λ⋆
X̂,Y

d(x, y)
)

(75)

= exp
(

−ΛY (x, λ
⋆
X̂,Y

)− λ⋆
X̂,Y

γ
)

·
∑

y∈Bd(x)\Bd−γ(x)

PẐ⋆|X̂=x(y) (76)

= exp
(

−ΛY (x, λ
⋆
X̂,Y

)− λ⋆
X̂,Y

γ
)

P

[

d− γ < d(x, Ẑ⋆) ≤ d|X̂ = x
]

(77)

where (75) holds because y /∈ Bd−γ(x) implies

λd− λd(x, y)− λγ ≤ 0 (78)

for all λ > 0, and (76) takes advantage of (31).

V. GAUSSIAN APPROXIMATION

A. Rate-dispersion function

In the spirit of [27], we introduce the following definition.

Definition 7. Fix d ≥ dmin. The rate-dispersion function

(squared information units per source output) is defined as

V (d) = lim
ǫ→0

lim sup
n→∞

n

(

R(n, d, ǫ)−R(d)

Q−1 (ǫ)

)2

(79)

= lim
ǫ→0

lim sup
n→∞

n (R(n, d, ǫ)−R(d))
2

2 loge
1
ǫ

(80)

Fix d, 0 < ǫ < 1, η > 0, and suppose the target is to sustain

the probability of exceeding distortion d bounded by ǫ at rate

R = (1 + η)R(d). As (1) implies, the required blocklength

scales linearly with rate dispersion:

n(d, η, ǫ) ≈ V (d)

R2(d)

(

Q−1 (ǫ)

η

)2

(81)

where note that only the first factor depends on the source,

while the second depends only on the design specifications.

B. Main result

In addition to the basic conditions (a)-(c) of Section II-B,

in the remainder of this section we impose the following

restrictions on the source and on the distortion measure.

(i) The source {Xi} is stationary and memoryless, PXn =
PX × . . .× PX.

(ii) The distortion measure is separable, d(xn, yn) =
1
n

∑n
i=1 d(xi, yi).

(iii) The distortion level satisfies dmin < d < dmax, where

dmin is defined in (13), and dmax = infy∈B E [d(X, y)],
where averaging is with respect to the unconditional dis-

tribution of X. The excess-distortion probability satisfies

0 < ǫ < 1.

(iv) E
[

d9(X,Y⋆)
]

< ∞ where averaging is with respect to

PX × PY⋆ .

The main result in this section is the following9.

Theorem 12 (Gaussian approximation). Under restrictions

(i)–(iv),

R(n, d, ǫ) = R(d) +

√

V (d)

n
Q−1 (ǫ) + θ

(

logn

n

)

(82)

V (d) = Var [X(X, d)] (83)

and the remainder term in (82) satisfies

− 1

2

logn

n
+O

(

1

n

)

≤ θ

(

logn

n

)

(84)

≤ C
logn

n
+

log logn

n
+O

(

1

n

)

(85)

where

C =
1

2
+

Var [Λ′
Y⋆(X, λ⋆)]

E [|Λ′′
Y⋆(X, λ⋆)|] log e (86)

In (86), (·)′ denotes differentiation with respect to λ, ΛY⋆(x, λ)
is defined in (28), and λ⋆ = −R′(d).

Remark 6. Since the rate-distortion function can be expressed

as (see (18) in Section II)

R(d) = E [X(X, d)] (87)

it is equal to the expectation of the random variable whose

variance we take in (83), thereby drawing a pleasing parallel

with the channel coding results in [27].

Remark 7. For almost lossless data compression, Theorem 12

still holds as long as the random variable ıX(X) has finite third

moment. Moreover, using (64) the upper bound in (85) can be

strengthened (Appendix B) to obtain for Var [ıX(X)] > 0

R(n, 0, ǫ) = H(X) +

√

Var [ıX(X)]

n
Q−1 (ǫ)

− 1

2

logn

n
+O

(

1

n

)

(88)

9Recently, using an approach based on typical sequences and error expo-
nents, Ingber and Kochman [28] independently found the dispersion of finite
alphabet sources. The Gaussian i.i.d. source with mean-square error distortion
was treated separately in [28]. The result of Theorem 12 is more general as
it applies to sources with abstract alphabets.
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which is consistent with the second-order refinement for

almost lossless data compression developed in [29]. If

Var [ıX(X)] = 0, then

R(n, 0, ǫ) = H(X)− 1

n
log

1

1− ǫ
+ on (89)

where

0 ≤ on ≤ exp (−nH(X))

(1− ǫ)n
(90)

As we will see in Section VI, in contrast to the lossless case in

(88), the remainder term in the lossy case in (82) can be strictly

larger than − 1
2
logn
n appearing in (88) even when V (d) > 0.

Remark 8. As will become apparent in the proof of Theorem

12, if V (d) = 0, the lower bound in (82) can be strengthened

non-asymptotically:

R(n, d, ǫ) ≥ R(d)− 1

n
log

1

1− ǫ
(91)

which aligns nicely with (89).

Remark 9. Let us consider what happens if we drop restriction

(c) of Section II-B that R(d) is achieved by the unique

conditional distribution P ⋆
Y|X. If several PY|X achieve R(d),

writing X;Y(x, d) for the d−tilted information corresponding

to Y, Theorem 12 still holds with

V (d) =

{

maxVar [X;Y(X, d)] 0 < ǫ ≤ 1
2

minVar [X;Y(X, d)]
1
2 < ǫ < 1

(92)

where the optimization is performed over all PY|X that achieve

the rate-distortion function. Moreover, as explained in Ap-

pendix C, Theorem 7 and the converse part of Theorem 12

do not even require existence of a minimizing P ⋆
Y|X.

Let us consider three special cases where V (d) is constant

as a function of d.

a) Zero dispersion. For a particular value of d, V (d) = 0
if and only if X(X, d) is deterministic with probability 1. In

particular, for finite alphabet sources, V (d) = 0 if the source

distribution PX maximizes RX(d) over all source distributions

defined on the same alphabet [28]. Moreover, Dembo and

Kontoyiannis [30] showed that under mild conditions, the

rate-dispersion function can only vanish for at most finitely

many distortion levels d unless the source is equiprobable

and the distortion matrix is symmetric with rows that are

permutations of one another, in which case V (d) = 0 for

all d ∈ (dmin, dmax).
b) Binary source with bit error rate distortion. Plugging

n = 1 into (21), we observe that the rate-dispersion function

reduces to the varentropy [5] of the source,

V (d) = V (0) = Var [ıX(X)] (93)

c) Gaussian source with mean-square error distortion. Plug-

ging n = 1 into (22), we see that

V (d) =
1

2
log2 e (94)

for all 0 < d < σ2. Similar to the BMS case, the rate

dispersion is equal to the variance of log fX(X), where fX(X)
is the Gaussian probability density function.

C. Proof of Theorem 12

Before we proceed to proving Theorem 12, we state two

auxiliary results. The first is an important tool in the Gaussian

approximation analysis of R(n, d, ǫ).

Theorem 13 (Berry-Esseen CLT, e.g. [31, Ch. XVI.5 Theorem

2] ). Fix a positive integer n. Let Zi, i = 1, . . . , n be

independent. Then, for any real t
∣

∣

∣

∣

∣

P

[

n
∑

i=1

Zi > n

(

µn + t

√

Vn

n

)]

−Q(t)

∣

∣

∣

∣

∣

≤ Bn√
n
, (95)

where

µn =
1

n

n
∑

i=1

E [Zi] (96)

Vn =
1

n

n
∑

i=1

Var [Zi] (97)

Tn =
1

n

n
∑

i=1

E
[

|Zi − µi|3
]

(98)

Bn = 6
Tn

V
3/2
n

(99)

The second auxiliary result, proven in Appendix D, is

a nonasymptotic refinement of the lossy AEP (Theorem 6)

tailored to our purposes.

Lemma 2. Under restrictions (i)–(iv), there exist constants

n0, c,K > 0 such that for all n ≥ n0,

P

[

log
1

PY n⋆(Bd(Xn))
≤

n
∑

i=1

X(Xi, d) + C logn+ c

]

≥ 1− K√
n

(100)

where C is given by (86).

We start with the converse part. Note that for the converse,

restriction (iv) can be replaced by the following weaker one:

(iv′) The random variable X(X, d) has finite absolute third

moment.

To verify that (iv) implies (iv′), observe that by the concavity

of the logarithm,

0 ≤ X(x, d) + λ⋆d ≤ λ⋆E [d(x,Y⋆)] (101)

so

E

[

|X(X, d) + λ⋆d|3
]

≤ λ⋆3E
[

d3(X,Y⋆)
]

(102)

Proof of the converse part of Theorem 12. First, observe that

due to (i) and (ii), P ⋆
Y n = P ⋆

Y × . . . × P ⋆
Y , and the d−tilted

information single-letterizes, that is, for a.e. xn,

Xn(xn, d) =

n
∑

i=1

X(xi, d) (103)

Consider the case V (d) > 0, so that Bn in (99) with Zi =
X(Xi, d) is finite by restriction (iv′). Let γ = 1

2 logn in (50),
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and choose

logM = nR(d) +
√

nV (d)Q−1 (ǫn)− γ (104)

ǫn = ǫ+ exp(−γ) +
Bn√
n

(105)

so that R = logM
n can be written as the right side of (82)

with (84) satisfied. Substituting (103) and (104) in (50), we

conclude that for any (M,d, ǫ′) code it must hold that

ǫ′ ≥ P

[

n
∑

i=1

X(Xi, d) ≥ nR(d) +
√

nV (d)Q−1 (ǫn)

]

− exp(−γ) (106)

The proof for V (d) > 0 is complete upon noting that the

right side of (106) is lower bounded by ǫ by the Berry-Esseen

inequality (95) in view of (105).

If V (d) = 0, it follows that X(X, d) = R(d) almost surely.

Choosing γ = log 1
1−ǫ and logM = nR(d) − γ in (50) it is

obvious that ǫ′ ≥ ǫ.

Proof of the achievability part of Theorem 12. The proof

consists of the asymptotic analysis of the bound in Corollary

11 using Lemma 2. Denote

Gn = logM −
n
∑

i=1

X(xi, d)− C logn− c (107)

where constants c and C were defined in Lemma 2. Letting

X = Xn in (71) and weakening the right side of (71) by

choosing PY = P ⋆
Y n = P ⋆

Y × . . .×P ⋆
Y , we conclude that there

exists an (n,M, d, ǫ′) code with

ǫ′ ≤ E

[

e−MP⋆
Y n (Bd(X

n))
]

(108)

≤ E

[

e− exp(Gn)
]

+
K√
n

(109)

= E

[

e− exp(Gn)1

{

Gn < log
loge n

2

}]

+ E

[

e− exp(Gn)1

{

Gn ≥ log
loge n

2

}]

+
K√
n

(110)

≤ P

[

Gn < log
loge n

2

]

+
1√
n
P

[

Gn ≥ log
loge n

2

]

+
K√
n

(111)

where (109) holds for n ≥ n0 by Lemma 2, and (111) follows

by upper bounding e− exp(Gn) by 1 and 1√
n

respectively. We

need to show that (111) is upper bounded by ǫ for some R =
logM

n that can be written as (82) with the remainder satisfying

(85). Considering first the case V (d) > 0, let

logM = nR(d) +
√

nV (d)Q−1 (ǫn)

+ C log n+ log
loge n

2
+ c (112)

ǫn = ǫ− Bn +K + 1√
n

(113)

where Bn is given by (99) and is finite by restriction (iv′).
Substituting (112) into (111) and applying the Berry-Esseen

inequality (95) to the first term in (111), we conclude that

ǫ′ ≤ ǫ for all n such that ǫn > 0.

It remains to tackle the case V (d) = 0, which implies

X(X, d) = R(d) almost surely. Let

logM = nR(d) + C logn+ c+ log loge
1

ǫ− K√
n

(114)

Substituting M into (109) we obtain immediately that ǫ′ ≤ ǫ,
as desired.

D. Distortion-dispersion function

One can also consider the related problem of finding the

minimum excess distortion D(n,R, ǫ) achievable at block-

length n, rate R and excess-distortion probability ǫ. We define

the distortion-dispersion function at rate R by

V(R) = lim
ǫ→0

lim sup
n→∞

n (D(n,R, ǫ)−D(R))2

2 loge
1
ǫ

(115)

For a fixed n and ǫ, the functions R(n, ·, ǫ) and D(n, ·, ǫ)
are functional inverses of each other. Consequently, the rate-

dispersion and the distortion-dispersion functions also define

each other. Under mild conditions, it is easy to find one from

the other:

Theorem 14. (Distortion dispersion) If R(d) is twice differen-

tiable, R′(d) 6= 0 and V (d) is differentiable in some interval

(d, d̄] ⊆ (dmin, dmax] then for any rate R such that R = R(d)
for some d ∈ (d, d̄) the distortion-dispersion function is given

by

V(R) = (D′(R))2V (D(R)) (116)

and

D(n,R, ǫ) = D(R) +

√

V(R)

n
Q−1 (ǫ)−D′(R)θ

(

logn

n

)

(117)

where θ(·) satisfies (84), (85).

Proof. Appendix E.

In parallel to (81), suppose that the goal is to compress

at rate R while exceeding distortion d = (1 + η)D(R) with

probability not higher than ǫ. As (117) implies, the required

blocklength scales linearly with the distortion-dispersion func-

tion:

n(R, η, ǫ) ≈ V(R)

D2(R)

(

Q−1 (ǫ)

η

)2

(118)

The distortion-dispersion function assumes a particularly

simple form for the Gaussian memoryless source with mean-

square error distortion, in which case for any 0 < d < σ2

D(R) = σ2 exp(−2R) (119)

V(R)

D2(R)
= 2 (120)

n(R, η, ǫ) ≈ 2

(

Q−1 (ǫ)

η

)2

(121)

so in the Gaussian case, the required blocklength is essentially

independent of the target distortion.
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VI. BINARY MEMORYLESS SOURCE

This section particularizes the nonasymptotic bounds in

Section IV and the asymptotic analysis in Section V to

the stationary binary memoryless source with bit error rate

distortion measure, i.e. d(xn, yn) = 1
n

∑n
i=1 1 {xi 6= yi}. For

convenience, we denote

〈n

k

〉

=

k
∑

j=0

(

n

j

)

(122)

with the convention
〈

n
k

〉

= 0 if k < 0 and
〈

n
k

〉

=
〈

n
n

〉

if

k > n.

A. Equiprobable BMS (EBMS)

The following results pertain to the i.i.d. binary equiproba-

ble source and hold for 0 ≤ d < 1
2 , 0 < ǫ < 1.

Particularizing (21) to the equiprobable case, one observes

that for all binary n−strings xn

Xn(xn, d) = n log 2− nh(d) = nR(d) (123)

Then, Theorem 7 reduces to (91). Theorem 8 leads to the

following stronger converse result.

Theorem 15 (Converse, EBMS). Any (n,M, d, ǫ) code must

satisfy:

ǫ ≥ 1−M2−n

〈

n

⌊nd⌋

〉

(124)

Proof. Invoking Theorem 8 with the n−dimensional source

distribution playing the role of PX therein, we have

M ≥ sup
Q

inf
yn∈{0,1}n

β1−ǫ(PXn , Q)

Q [d(Xn, yn) ≤ d]
(125)

≥ inf
yn∈{0,1}n

β1−ǫ(PXn , PXn)

P [d(Xn, yn) ≤ d]
(126)

=
1− ǫ

P [d(Xn,0) ≤ d]
(127)

=
1− ǫ

2−n
〈

n
⌊nd⌋

〉 (128)

where (126) is obtained by substitution Q = PX .

Theorem 16 (Exact performance of random coding, EBMS).

The minimal averaged probability that bit error rate exceeds

d achieved by random coding with M codewords is

min
PY

E [ǫd (Y1, . . . , YM )] =

(

1− 2−n

〈

n

⌊nd⌋

〉)M

(129)

attained by PY equiprobable on {0, 1}n.

Proof. For all M ≥ 1, (1 − z)M is a convex function of z
on 0 ≤ z < 1, so the right side of (65) is lower bounded by

Jensen’s inequality:

E [1− PY n(Bd(X
n))]

M ≥ (1− E [PY n(Bd(X
n))])

M

(130)

Equality in (130) is attained by Y n equiprobable on {0, 1}n,

because then

PY n(Bd(X
n)) = 2−n

〈

n

⌊nd⌋

〉

a.s. (131)

Theorem 16 leads to an achievability bound since there must

exist an (M,d,E [ǫd (Y1, . . . , YM )]) code.

Corollary 17 (Achievability, EBMS). There exists an

(n,M, d, ǫ) code such that

ǫ ≤
(

1− 2−n

〈

n

⌊nd⌋

〉)M

(132)

As mentioned in Section V after Theorem 12, the EBMS

with bit error rate distortion has zero rate-dispersion function

for all d. The asymptotic analysis of the bounds in (132) and

(124) allows for the following more accurate characterization

of R(n, d, ǫ).

Theorem 18 (Gaussian approximation, EBMS). The minimum

achievable rate at blocklength n satisfies

R(n, d, ǫ) = log 2− h(d) +
1

2

logn

n
+O

(

1

n

)

(133)

if 0 < d < 1
2 , and

R(n, 0, ǫ) = log 2− 1

n
log

1

1− ǫ
+ on (134)

where 0 ≤ on ≤ 2−n

(1−ǫ)n .

Proof. Appendix F.

A numerical comparison of the achievability bound (33)

evaluated with stationary memoryless PY n|Xn , the new

bounds in (132) and (124) as well as the approximation in

(133) neglecting the O
(

1
n

)

term is presented in Fig. 1. Note

that Marton’s converse (Theorem 5) is not applicable to the

EBMS because the region in (44) is empty. The achievability

bound in (33), while asymptotically optimal, is quite loose in

the displayed region of blocklengths. The converse bound in

(124) and the achievability bound in (132) tightly sandwich

the finite blocklength fundamental limit. Furthermore, the

approximation in (133) is quite accurate, although somewhat

optimistic, for all but very small blocklengths.

B. Non-equiprobable BMS

The results in this subsection focus on the i.i.d. binary

memoryless source with P [X = 1] = p < 1
2 and apply for

0 ≤ d < p, 0 < ǫ < 1. The following converse result is a

simple calculation of the bound in Theorem 7 using (21).

Theorem 19 (Converse, BMS). For any (n,M, d, ǫ) code, it

holds that

ǫ ≥ sup
γ≥0

{P [gn(Z) ≥ logM + γ]− exp (−γ)} (135)

gn(Z) = Z log
1

p
+ (n− Z) log

1

1− p
− nh(d) (136)

where Z is binomial with success probability p and n degrees

of freedom.

An application of Theorem 8 to the specific case of non-

equiprobable BMS yields the following converse bound:
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Fig. 1. Bounds to R(n, d, ǫ) and Gaussian approximation for EBMS, d =
0.11, ǫ = 10−2.

Theorem 20 (Converse, BMS). Any (n,M, d, ǫ) code must

satisfy

M ≥
〈

n
r⋆

〉

+ α
(

n
r⋆+1

)

〈

n
⌊nd⌋

〉 (137)

where we have denoted the integer

r⋆ = max

{

r :

r
∑

k=0

(

n

k

)

pk(1− p)n−k ≤ 1− ǫ

}

(138)

and α ∈ [0, 1) is the solution to

r⋆
∑

k=0

(

n

k

)

pk(1− p)n−k + αpr
⋆+1(1− p)n−r⋆−1

(

n

r⋆ + 1

)

= 1− ǫ (139)

Proof. In Theorem 8, the n−dimensional source distribution

PXn plays the role of PX , and we make the possibly sub-

optimal choice Q = U , the equiprobable distribution on

A = {0, 1}n. The optimal randomized test to decide between

PXn and U is given by

PW |Xn(1|xn) =











0, |xn| > r⋆ + 1

1, |xn| ≤ r⋆

α, |xn| = r⋆ + 1

(140)

where |xn| denotes the Hamming weight of xn, and α is such

that
∑

xn∈A P (xn)PW |X(1|xn) = 1− ǫ, so

β1−ǫ(PX , U)

= min
PW |X :

∑

xn∈A P (xn)PW |X (1|xn)≥1−ǫ

2−n
∑

xn∈A

PW |X(1|xn)

= 2−n

[

〈 n

r⋆

〉

+ α

(

n

r⋆ + 1

)]

(141)

The result is now immediate from (60).

An application of Theorem 10 to the non-equiprobable BMS

yields the following achievability bound:

Theorem 21 (Achievability, BMS). There exists an

(n,M, d, ǫ) code with

ǫ ≤
n
∑

k=0

(

n

k

)

pk(1− p)n−k

[

1−
n
∑

t=0

Ln(k, t)q
t(1− q)n−t

]M

(142)

where

q =
p− d

1− 2d
(143)

and

Ln(k, t) =

(

k

t0

)(

n− k

t− t0

)

(144)

with t0 =
⌈

t+k−nd
2

⌉+
if t−nd ≤ k ≤ t+nd, and Ln(k, t) = 0

otherwise.

Proof. We compute an upper bound to (70) for the specific

case of the BMS. Let PY n = PY × . . .× PY, where PY(1) =
q. Note that PY is the marginal of the joint distribution that

achieves the rate-distortion function (e.g. [32]). The number of

binary strings of Hamming weight t that lie within Hamming

distance nd from a given string of Hamming weight k is

k
∑

i=t0

(

k

i

)(

n− k

t− i

)

≥
(

k

t0

)(

n− k

t− t0

)

(145)

as long as t−nd ≤ k ≤ t+nd and is 0 otherwise. It follows

that if xn has Hamming weight k,

PY n (Bd(x
n)) ≥

n
∑

t=0

Ln(k, t)q
t(1− q)n−t (146)

Relaxing (70) using (146), (142) follows.

The following bound shows that good constant composition

codes exist.

Theorem 22 (Achievability, BMS). There exists an

(n,M, d, ǫ) constant composition code with

ǫ ≤
n
∑

k=0

(

n

k

)

pk(1− p)n−k

[

1−
(

n

⌈nq⌉

)−1

Ln(k, ⌈nq⌉)
]M

(147)

where q and Ln(·, ·) are defined in (143) and (144) respec-

tively.

Proof. The proof is along the lines of the proof of Theorem

21, except that now we let PY n be equiprobable on the set of

binary strings of Hamming weight ⌈qn⌉.

The following asymptotic analysis of R(n, d, ǫ) strengthens

Theorem 12.

Theorem 23 (Gaussian approximation, BMS). The minimum

achievable rate at blocklength n satisfies (82) where

R(d) = h(p)− h(d) (148)

V (d) = Var [ıX(X)] = p(1− p) log2
1− p

p
(149)
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and the remainder term in (82) satisfies

O

(

1

n

)

≤ θ

(

logn

n

)

(150)

≤ 1

2

logn

n
+

log logn

n
+O

(

1

n

)

(151)

if 0 < d < p, and

θ

(

logn

n

)

= −1

2

logn

n
+O

(

1

n

)

(152)

if d = 0.

Proof. The case d = 0 follows immediately from (88). For

0 < d < p, the dispersion (149) is easily obtained plugging

n = 1 into (21). The tightened upper bound for the remainder

(151) follows via the asymptotic analysis of Theorem 22

shown in Appendix G. We proceed to show the converse part,

which yields a better log n
n term than Theorem 12.

According to the definition of r⋆ in (138),

P

[

n
∑

i=1

Xi > r

]

≥ ǫ (153)

for any r ≤ r⋆, where {Xi} are binary i.i.d. with PXi(1) = p.

In particular, due to (95), (153) holds for

r = np+
√

np(1− p)Q−1

(

ǫ+
Bn√
n

)

(154)

= np+
√

np(1− p)Q−1 (ǫ) +O (1) (155)

where (155) follows because in the present case Bn =

6 1−2p+2p2√
p(1−p)

, which does not depend on n. Using (137), we

have

M ≥

〈

n
⌊r⌋

〉

〈

n
⌊nd⌋

〉 (156)

Taking logarithms of both sides of (156), we have

logM

≥ log

〈

n

⌊r⌋

〉

− log

〈

n

⌊nd⌋

〉

(157)

= nh

(

p+
1√
n

√

p(1− p)Q−1 (ǫ)

)

− nh(d) +O (1)

(158)

= nh(p)− nh(d) +
√
n
√

p(1− p)h′(p)Q−1 (ǫ) +O (1)

where (158) is due to (359) in Appendix F. The desired bound

(151) follows since h′(p) = log 1−p
p .

Figures 2 and 3 present a numerical comparison of Shan-

non’s achievability bound (33), the new bounds in (142),

(137) and (135) as well as the Gaussian approximation in

(82) in which we have neglected θ
(

logn
n

)

. The achievability

bound (33) is very loose and so is Marton’s converse which

is essentially indistinguishable from R(d). The new finite

blocklength bounds (142) and (137) are fairly tight unless the

blocklength is very small. In Fig. 3 obtained with a more

stringent ǫ, the approximation of Theorem 23 is essentially

halfway between the converse and achievability bounds.
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Fig. 2. Bounds to R(n, d, ǫ) and Gaussian approximation for BMS with
p = 2/5, d = 0.11 , ǫ = 10−2.
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VII. DISCRETE MEMORYLESS SOURCE

This section particularizes the bounds in Section IV to sta-

tionary memoryless sources with alphabet A and symbol error

rate distortion measure, i.e. d(xn, yn) = 1
n

∑n
i=1 1 {xi 6= yi}.

For convenience, we denote the number of strings within

Hamming distance k from a given string by

Sk =

k
∑

j=0

(

n

j

)

(|A| − 1)j (159)
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A. Equiprobable DMS (EDMS)

In this subsection we fix 0 ≤ d < 1 − 1
|A| , 0 < ǫ < 1 and

assume that all source letters are equiprobable, in which case

the rate-distortion function is given by [33]

R(d) = log |A| − h(d)− d log(|A| − 1) (160)

As in the equiprobable binary case, Theorem 7 reduces to

(91). A stronger converse bound is obtained using Theorem 8

in a manner analogous to that of Theorem 15.

Theorem 24 (Converse, EDMS). Any (n,M, d, ǫ) code must

satisfy:

ǫ ≥ 1−M |A|−nS⌊nd⌋ (161)

The following result is a straightforward generalization of

Theorem 16 to the non-binary case.

Theorem 25 (Exact performance of random coding, EDMS).

The minimal averaged probability that symbol error rate

exceeds d achieved by random coding with M codewords is

min
PY

E [ǫd (Y1, . . . , YM )] =
(

1− |A|−nS⌊nd⌋
)M

(162)

attained by PY equiprobable on An.

Theorem 25 leads to the following achievability bound.

Theorem 26 (Achievability, EDMS). There exists an

(n,M, d, ǫ) code such that

ǫ ≤
(

1− S⌊nd⌋|A|−n
)M

(163)

The asymptotic analysis of the bounds in (163) and (161)

yields the following tight approximation.

Theorem 27 (Gaussian approximation, EDMS). The minimum

achievable rate at blocklength n satisfies

R(n, d, ǫ) = R(d) +
1

2

logn

n
+O

(

1

n

)

(164)

if 0 < d < 1− 1
|A| , and

R(n, 0, ǫ) = log |A| − 1

n
log

1

1− ǫ
+ on (165)

where 0 ≤ on ≤ |A|−n

(1−ǫ)n .

Proof. Appendix H.

B. Nonequiprobable DMS

In this subsection we assume that the source is stationary

memoryless on an alphabet of m = |A| letters labeled by

A = {1, . . . ,m}. We assume

PX(1) ≥ PX(2) ≥ . . . ≥ PX(m) (166)

and 0 ≤ d < 1− PX(1), 0 < ǫ < 1.

Recall that the rate-distortion function is achieved by [33]

PY⋆(b) =

{

PX(b)−η
1−d−η b ≤ mη

0 otherwise
(167)

P ⋆
X|Y(a|b) =











1− d a = b, a ≤ mη

η a 6= b, a ≤ mη

PX(a) a > mη

(168)

where 0 ≤ η ≤ 1 is the solution to

d =

m
∑

a=mη+1

PX(a) + (mη − 1)η (169)

mη = max{a : PX(a) > η} (170)

The rate-distortion function can be expressed as [33]

R(d) =

mη
∑

a=1

PX(a)ıX(a)+(1−d) log(1−d)+(mη −1)η log η

(171)

Note that if 0 ≤ d < (m−1)PX(m), then mη = m, η = d
m−1 ,

and (167), (168) and (171) can be simplified. In particular, the

rate-distortion function on that region is given by

R(d) = H(X) − h(d)− d log(m− 1) (172)

The first result of this section is a particularization of the bound

in Theorem 7 to the DMS case.

Theorem 28 (Converse, DMS). For any (n,M, d, ǫ) code, it

holds that

ǫ ≥ sup
γ≥0

{

P

[

n
∑

i=1

X(Xi, d) ≥ logM + γ

]

− exp {−γ}
}

(173)

where

X(a, d) = (1− d) log(1− d) + d log η

+min

{

ıX(a), log
1

η

}

(174)

and η is defined in (169).

Proof. Case d = 0 is obvious. For 0 < d < 1 − PX(1),
differentiating (171) with respect to d yields

λ⋆ = log
1− d

η
(175)

Plugging (168) and λ⋆ into (17), one obtains (174).

We adopt the notation of [34]:

• type of the string: k = (k1, . . . , km), k1 + . . .+ km = n
• probability of a given string of type k: pk =

PX(1)
k1 . . . PX(m)km

• type ordering: j � k if and only if pj ≥ pk

• type 1 denotes [n, 0, . . . , 0]
• previous and next types: j− 1 and j+ 1, respectively

• multinomial coefficient:

(

n

k

)

=
n!

k1! . . . km!
The next converse result is a particularization of Theorem

8.

Theorem 29 (Converse, DMS). Any (n,M, d, ǫ) code must

satisfy

M ≥

k⋆
∑

i=1

(

n

i

)

+ α

(

n

k⋆ + 1

)

S⌊nd⌋
(176)
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where

k⋆ = max

{

k :

k
∑

i=1

(

n

i

)

pi ≤ 1− ǫ

}

(177)

and α ∈ [0, 1) is the solution to

k⋆
∑

i=1

(

n

i

)

pi + α

(

n

k⋆ + 1

)

pk
⋆+1 = 1− ǫ (178)

Proof. Consider a binary hypothesis test between the

n−dimensional source distribution PXn and U , the equiprob-

able distribution on An. From Theorem 8,

M ≥ |A|n β1−ǫ(PXn , U)

S⌊nd⌋
(179)

The calculation of β1−ǫ(PXnU) is analogous to the BMS case.

The following result guarantees existence

of a good code with all codewords of type

t⋆ = ([nP ⋆
Y(1)], . . . , [nP

⋆
Y(mη)], 0, . . . , 0) where [·]

denotes rounding off to a neighboring integer so that
∑mη

b=1[nP
⋆
Y(b)] = n holds.

Theorem 30 (Achievability, DMS). There exists an

(n,M, d, ǫ) fixed composition code with codewords of type

t⋆ and

ǫ ≤
∑

k

(

n

k

)

pk

(

1−
(

n

t⋆

)−1

Ln(k, t
⋆)

)M

(180)

Ln(k, t
⋆) =

m
∏

a=1

(

ka
ta

)

(181)

where k = [k1, . . . , km] ranges over all n-types, and ka-types

ta = (ta,1, . . . , ta,mη) are given by

ta,b =
[

P ⋆
X|Y(a|b)t⋆b + δ(a, b)n

]

(182)

where

δ(a, b) =
∆a

mη
+















1
m2

η

∑m
i=mη+1 ∆i a = b, a ≤ mη

−1
m2

η(mη−1)

∑m
i=mη+1 ∆i a 6= b, a ≤ mη

0 a > mη

(183)

n∆a = ka − nPX(a), a = 1, . . . ,m (184)

In (182), a = 1, . . . ,m, b = 1, . . . ,mη and [·] denotes

rounding off to a neighboring nonnegative integer so that

mη
∑

b=1

tb,b ≥ n(1− d) (185)

mη
∑

b=1

ta,b = ka (186)

m
∑

a=1

ta,b = t⋆b (187)

and among all possible choices the one that results in the

largest value for (181) is adopted. If no such choice exists,

Ln(k, t
⋆) = 0.

Proof. We compute an upper bound to (70) for the specific

case of the DMS. Let PY n be equiprobable on the set of

m−ary strings of type t⋆. To compute the number of strings

of type t⋆ that are within distortion d from a given string xn

of type k, observe that by fixing xn we have divided an n-

string into m bins, the a-th bin corresponding to the letter a
and having size ka. If ta,b is the number of the letters b in a

sequence yn of type t⋆ that fall into a-th bin, the strings xn

and yn are within Hamming distance nd from each other as

long as (185) is satisfied. Therefore, the number of strings of

type t⋆ that are within Hamming distance nd from a given

string of type k is bounded by

∑

m
∏

a=1

(

ka
ta

)

≥ Ln(k, t
⋆) (188)

where the summation in the left side is over all collections

of ka-types ta = (ta,1, . . . , ta,mη), a = 1, . . .m that satisfy

(185)-(187), and inequality (188) is obtained by lower bound-

ing the sum by the term with ta,b given by (182). It follows

that if xn has type k,

PY n (Bd(x
n)) ≥

(

n

t⋆

)−1

Ln(k, t
⋆) (189)

Relaxing (70) using (189), (180) follows.

Remark 10. As n increases, the bound in (188) becomes

increasingly tight. This is best understood by checking that

all strings with ka,b given by (182) lie at a Hamming distance

of approximately nd from some fixed string of type k, and re-

calling [24] that most of the volume of an n−dimensional ball

is concentrated near its surface (a similar phenomenon occurs

in Euclidean spaces as well), so that the largest contribution

to the sum on the left side of (188) comes from the strings

satisfying (182).

The following second-order analysis makes use of Theorem

12 and, to strengthen the bounds for the remainder term, of

Theorems 29 and 30.

Theorem 31 (Gaussian approximation, DMS). The minimum

achievable rate at blocklength n, R(n, d, ǫ), satisfies (82)

where R(d) is given by (171), and V (d) can be characterized

parametrically:

V (d) = Var

[

min

{

ıX(X), log
1

η

}]

(190)

where η depends on d through (169), (170). Moreover, (85)

can be replaced by:

θ

(

logn

n

)

≤ (m− 1)(mη − 1)

2

logn

n
+

log logn

n
+O

(

1

n

)

(191)

If 0 ≤ d < (m− 1)PX(m), (190) reduces to

V (d) = Var [ıX(X)] (192)

and if d > 0, (84) can be strengthened to

O

(

1

n

)

≤ θ

(

logn

n

)

(193)
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while if d = 0,

θ

(

logn

n

)

= −1

2

logn

n
+O

(

1

n

)

(194)

Proof. Using the expression for d−tilted information (174),

we observe that Var [X(X, d)] = Var
[

min
{

ıX(X), log
1
η

}]

,

and (190) follows. The case d = 0 is verified using (88).

Theorem 30 leads to (191), as we show in Appendix I.

When 0 < d < (m − 1)PX(m), not only (171) and (190)

reduce to (172) and (192) respectively, but a tighter converse

for the logn
n term (193) can be shown. Recall the asymptotics

of S⌊nd⌋ in (388) (Appendix H). Furthermore, it can be shown

[34] that

k
∑

i=1

(

n

i

)

=
C√
n
exp

{

nH

(

k

n

)}

(195)

for some constant C. Armed with (195) and (388), we are

ready to proceed to the second-order analysis of (176). From

the definition of k⋆ in (177),

P

[

1

n

n
∑

i=1

ıX(Xi) > H(X) +

m
∑

a=1

∆aıX(a)

]

≥ ǫ (196)

for any ∆ with
∑m

a=1 ∆a = 0 satisfying n(p + ∆) � k⋆,

where p = [PX(1), . . . , PX(m)] (we slightly abused notation

here as n(p + ∆) is not always precisely an n-type; natu-

rally, the definition of the type ordering � extends to such

cases). Noting that E [ıX(Xi)] = H(X) and Var [ıX(Xi)] =
Var [ıX(X)], we conclude from the Berry-Esseen CLT (95) that

(196) holds for

m
∑

a=1

∆aıX(a) =

√

Var [ıX(X)]

n
Q−1

(

ǫ− Bn√
n

)

(197)

where Bn is given by (99). Taking logarithms of both sides

of (176), we have

logM

≥ log

[

k⋆
∑

i=1

(

n

i

)

+ α

(

n

k⋆

)

]

− logS⌊nd⌋ (198)

≥ log

k⋆
∑

i=1

(

n

i

)

− logS⌊nd⌋ (199)

≥ nH(p+∆)− nh(d)− nd log(m− 1) +O(1) (200)

= nH(p) + n

m
∑

a=1

∆aıX(a)− nh(d)− nd log(m− 1) +O(1)

(201)

where we used (388) and (195) to obtain (200), and (201) is

obtained by applying a Taylor series expansion to H(p+∆).
The desired result in (193) follows by substituting (197) in

(201), applying a Taylor series expansion to Q−1
(

ǫ− Bn√
n

)

in the vicinity of ǫ and noting that Bn is a finite constant.

The rate-dispersion function and the blocklength (81) re-

quired to sustain R = 1.1R(d) are plotted in Fig. 4 for a

quaternary source with distribution [ 13 ,
1
4 ,

1
4 ,

1
6 ]. Note that ac-

cording to (81), the blocklength required to approach 1.1R(d)
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Fig. 4. Rate-dispersion function (bits) and the blocklength (81) required to
sustain R = 1.1R(d) provided that excess-distortion probability is bounded

by ǫ for DMS with PX =
[

1
3
, 1
4
, 1
4
, 1
6

]

with a given probability of excess distortion grows rapidly as

d → dmax.

VIII. ERASED BINARY MEMORYLESS SOURCE

Let Sn ∈ {0, 1}n be the output of the binary equiprobable

source, Xn be the output of the binary erasure channel with

erasure rate δ driven by Sn. The compressor only observes

Xn, and the goal is to minimize the bit error rate with respect

to Sn. For d = δ
2 , codes with rate approaching the rate-

distortion function were constructed in [35]. For δ
2 ≤ d ≤ 1

2 ,

the rate-distortion function is given by

R(d) = (1− δ)

(

log 2− h

(

d− δ
2

1− δ

))

(202)

Throughout the section, we assume δ
2 < d < 1 − δ

2 and 0 <
ǫ < 1.
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Theorem 32 (Converse, BES). Any (n,M, d, ǫ) code must

satisfy

ǫ ≥
n
∑

k=0

(

n

k

)

δk(1 − δ)n−k

·
k
∑

j=0

2−k

(

k

j

)[

1−M2−(n−k)

〈

n− k

⌊nd− j⌋

〉]+

(203)

Proof. Fix an (n,M, d, ǫ) code (PZn|Xn , PY n|Zn). Even if the

decompressor knows erasure locations, the probability that k
erased bits are at Hamming distance ℓ from their representation

is

P
[

k d(Sk, Y k) = ℓ | Xk = (? . . .?)
]

= 2−k

(

k

ℓ

)

(204)

because given Xk = (? . . .?), Si’s are i.i.d. binary independent

of Y k.

The probability that n − k nonerased bits lie within

Hamming distance ℓ from their representation can be upper

bounded using Theorem 15:

P
[

(n− k)d(Sn−k, Y n−k) ≤ ℓ | Xn−k = Sn−k
]

≤ M2−n+k

〈

n− k

ℓ

〉

(205)

Since the errors in the erased symbols are independent of the

errors in the nonerased ones,

P [d(Sn, Y n) ≤ d]

=

n
∑

k=0

P[k erasures in Sn]

·
k
∑

j=0

P
[

k d(Sk, Y k) = j|Xk =? . . .?
]

· P
[

(n− k)d(Sn−k, Y n−k) ≤ nd− j|Xn−k = Sn−k
]

≤
n
∑

k=0

(

n

k

)

δk(1 − δ)n−k

·
k
∑

j=0

2−k

(

k

j

)

min

{

1, M2−(n−k)

〈

n− k

⌊nd− j⌋

〉}

(206)

Theorem 33 (Achievability, BES). There exists an (n,M, d, ǫ)
code such that

ǫ ≤
n
∑

k=0

(

n

k

)

δk(1− δ)n−k

·
k
∑

j=0

2−k

(

k

j

)(

1− 2−(n−k)

〈

n− k

⌊nd− j⌋

〉)M

(207)

Proof. Consider the ensemble of codes with M codewords

drawn i.i.d. from the equiprobable distribution on {0, 1}n. As

discussed in the proof of Theorem 32, the distortion in the

erased symbols does not depend on the codebook and is given

by (204). The probability that the Hamming distance between

the nonerased symbols and their representation exceeds ℓ,
averaged over the code ensemble is found as in Theorem 17:

P
[

(n− k)d(Sn−k,C(f(Xn−k))) > ℓ|Sn−k = Xn−k
]

=

(

1− 2−(n−k)

〈

n− k

ℓ

〉)M

(208)

where C(m), m = 1, . . . ,M are i.i.d on {0, 1}n−k. Averaging

over the erasure channel, we have

P [d(Sn,C(f(Xn)))) > d]

=

n
∑

k=0

P[k erasures in Sn]

·
k
∑

j=0

P
[

k d(Sk,C(f(Xk))) = j|Xk =? . . .?
]

· P
[

(n− k)d(Sn−k,C(f(Xn−k))) > nd− j|Xn−k = Sn−k
]

=

n
∑

k=0

(

n

k

)

δk(1− δ)n−k

·
k
∑

j=0

2−k

(

k

j

)(

1− 2−(n−k)

〈

n− k

⌊nd− j⌋

〉)M

(209)

Since there must exist at least one code whose excess-

distortion probability is no larger than the average over the

ensemble, there exists a code satisfying (207).

Theorem 34 (Gaussian approximation, BES). The minimum

achievable rate at blocklength n satisfies (82) where

V (d) = δ(1 − δ) log2 cosh

(

λ⋆

2 log e

)

+
δ

4
λ⋆2 (210)

λ⋆ = −R′(d) = log
1− δ

2 − d

d− δ
2

(211)

and the remainder term in (82) satisfies

O

(

1

n

)

≤ θ

(

logn

n

)

≤ 1

2

logn

n
+
log logn

n
+O

(

1

n

)

(212)

Proof. Appendix J.

Remark 11. It is satisfying to observe that even though

Theorem 12 is not directly applicable, still V (d) =
Var [S,X(S,X, d)], where S,X(s, x, d) is spelled out in (214)

below. Indeed, since the rate-distortion function is achieved by

P ⋆
Y(0) = P ⋆

Y(1) =
1
2 and

P ⋆
X|Y(a|b) =











1− d− δ
2 b = a

d− δ
2 b 6= a 6=?

δ a =?

(213)

where a ∈ {0, 1, ?} and b ∈ {0, 1}, we may adapt (17) to

obtain

S,X(S,X, d)

= ıX;Y⋆(X; 0) + λ⋆d(S, 0)− λ⋆d (214)

= − λ⋆d+











log 2
1+exp(−λ⋆) w.p. 1− δ

λ⋆ w.p. δ
2

0 w.p. δ
2

(215)
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Fig. 5. Rate-dispersion function (bits) and the blocklength (81) required to
sustain R = 1.1R(d) provided that excess-distortion probability is bounded
by ǫ for BES with erasure rate δ = 0.1.

The variance of (215) is (210).

The rate-dispersion function and blocklength required to

sustain a given excess distortion are plotted in Fig. 5. Note that

as d approaches δ
2 , the rate-dispersion function grows without

limit. This should be expected, because for d = δ
2 , a code

that reconstructs a sequence with vanishingly small excess-

distortion probability does not exist, as about half of the erased

bits will always be reconstructed incorrectly, regardless of the

blocklength.

The bounds in Theorems 32 and 33 as well as the approxi-

mation in Theorem 34 are plotted in Fig. 6. The achievability

and converse bounds are extremely tight. At blocklength 1000,

the penalty over the rate-distortion function is 9%.

IX. GAUSSIAN MEMORYLESS SOURCE

This section applies Theorems 7, 8 and 10 to the i.i.d. Gaus-

sian source with mean-square error distortion, d(xn, yn) =
1
n

∑n
i=1(xi − yi)

2, and refines the second-order analysis in

0 200 400 600 800 1000
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0.8

0.85
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0.95

1

 

 

R(d)

n

R Achievability (207)

Converse (203)

Approximation (82)

Fig. 6. Bounds to R(n, d, ǫ) and Gaussian approximation for BES with
δ = 0.1, d = 0.1, ǫ = 0.1

Theorem 12. Throughout the section, it is assumed that

Xi ∼ N (0, σ2), 0 < d < σ2 and 0 < ǫ < 1.

The particularization of Theorem 7 to the GMS using (22)

yields the following result.

Theorem 35 (Converse, GMS). Any (n,M, d, ǫ) code must

satisfy

ǫ ≥ sup
γ≥0

{P [gn(Z) ≥ logM + γ]− exp(−γ)} (216)

gn(Z) =
n

2
log

σ2

d
+

Z − n

2
log e (217)

where Z ∼ χn
2 (i.e. chi square distributed with n degrees of

freedom).

The following result can be obtained by an application of

Theorem 8 to the GMS.

Theorem 36 (Converse, GMS). Any (n,M, d, ǫ) code must

satisfy

M ≥
(

σ√
d
rn(ǫ)

)n

(218)

where rn(ǫ) is the solution to

P
[

Z < n r2n(ǫ)
]

= 1− ǫ, (219)

and Z ∼ χ2
n.

Proof. Inequality (218) simply states that the minimum num-

ber of n-dimensional balls of radius
√
nd required to cover

an n-dimensional ball of radius
√
nσrn(ǫ) cannot be smaller

than the ratio of their volumes. Since

Z =
1

σ2

n
∑

i=1

X2
i (220)
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is χ2
n-distributed, the left side of (219) is the probability

that the source produces a sequence that falls inside B, the

n-dimensional ball of radius
√
nσrn(ǫ) with center at 0.

But as follows from the spherical symmetry of the Gaussian

distribution, B has the smallest volume among all sets in

Rn having probability 1 − ǫ. Since any (n,M, d, ǫ)-code is

a covering of a set that has total probability of at least 1− ǫ,
the result follows.

Note that the proof of Theorem 36 can be formulated in the

hypothesis testing language of Theorem 8 by choosing Q to

be the Lebesgue measure on Rn.

The following achievability result can be regarded as the

rate-distortion counterpart to Shannon’s geometric analysis of

optimal coding for the Gaussian channel [36].

Theorem 37 (Achievability, GMS). There exists an

(n,M, d, ǫ) code with

ǫ ≤ n

∫ ∞

0

[1− ρ(n, z)]M fχ2
n
(nz)dz (221)

where fχ2
n
(·) is the χ2

n probability density function, and

ρ(n, z) =
Γ
(

n
2 + 1

)

√
πnΓ

(

n−1
2 + 1

)

(

1−
(

1 + z − 2 d
σ2

)2

4
(

1− d
σ2

)

z

)

n−1
2

(222)

if a2 ≤ z ≤ b2, where

a =

√

1− d

σ2
−
√

d

σ2
(223)

b =

√

1− d

σ2
+

√

d

σ2
(224)

and ρ(n, z) = 0 otherwise.

Proof. We compute an upper bound to (70) for the specific

case of the GMS. Let PY n be the uniform distribution on the

surface of the n-dimensional sphere with center at 0 and radius

r0 =
√
nσ

√

1− d

σ2
(225)

This choice corresponds to a positioning of representation

points that is optimal in the limit of large n, see Fig. 7(a),

[8], [25]. Indeed, for large n, most source sequences will be

concentrated within a thin shell near the surface of the sphere

of radius
√
nσ. The center of the sphere of radius

√
nd must

be at distance r0 from the origin in order to cover the largest

area of the surface of the sphere of radius
√
nσ.

We proceed to lower-bound PY n(Bd(x
n)), xn ∈ Rn.

Observe that PY n(Bd(x
n)) = 0 if xn is either too close or too

far from the origin, that is, if |xn| < √
nσa or |xn| > √

nσb,
where | · | denotes the Euclidean norm. To treat the more

interesting case
√
nσa ≤ |xn| ≤ √

nσb, it is convenient to

introduce the following notation.

• Sn(r) =
nπ

n
2

Γ(n
2 +1)

rn−1: surface area of an n-dimensional

sphere of radius r;

• Sn(r, θ): surface area of an n-dimensional polar cap of

radius r and polar angle θ.

Similar to [8], [25], from Fig. 7(b),

Sn(r, θ) ≥
π

n−1
2

Γ
(

n−1
2 + 1

) (r sin θ)n−1 (226)

where the right side of (226) is the area of an (n − 1)-
dimensional disc of radius r sin θ. So if

√
nσa ≤ |xn| = r ≤√

nσb,

PY n (Bd(x
n)) =

Sn(|xn|, θ)
Sn(|xn|) (227)

≥ Γ
(

n
2 + 1

)

√
πnΓ

(

n−1
2 + 1

) (sin θ)
n−1

(228)

where θ is the angle in Fig. 7(b); by the law of cosines

cos θ =
r2 + r20 − nd

2rr0
(229)

Finally, by Theorem 10, there exists an (n,M, d, ǫ) code with

ǫ ≤ E [1− PY n(Bd(X
n))]

M
(230)

= E

[

[1− PY n(Bd(X
n))]M | √nσa ≤ |Xn| ≤ √

nσb
]

+ P
[

|Xn| < √
nσa

]

+ P
[

|Xn| > √
nσa

]

(231)

Since
|Xn|2
σ2 is χ2

n-distributed, one obtains (221) by plugging

sin2 θ = 1 − cos2 θ into (228) and substituting the latter in

(231).

Essentially Theorem 37 evaluates the performance of Shan-

non’s random code with all codewords lying on the surface

of a sphere contained inside the sphere of radius
√
nσ. The

following result allows us to bound the performance of a code

whose codewords lie inside a ball of radius slightly larger than√
nσ.

Theorem 38 (Rogers [37] - Verger-Gaugry [38]). If r > 1 and

n ≥ 2, an n−dimensional sphere of radius r can be covered

by ⌊M(r)⌋ spheres of radius 1, where M(r) is defined in (232).

The first two cases in (232) (at the bottom of the page)

are encompassed by the classical result of Rogers [37] that

appears not to have been improved since 1963, while the last

M(r) =



































e (n loge n+ n loge loge n+ 5n) rn r ≥ n

n (n loge n+ n loge loge n+ 5n) rn n
loge n ≤ r < n

74 loge 7/7

4

√
2π

n
√
n
[

(n−1) loge rn+(n−1) loge loge n+ 1
2 loge n+loge

π
√

2n√
πn−2

]

r
(

1− 2
loge n

)(

1− 2√
πn

)

log2
e n

rn 2 < r < n
loge n

√
2π

√
n
[

(n−1) loge rn+(n−1) loge loge n+ 1
2 loge n+loge

π
√

2n√
πn−2

]

r
(

1− 2
loge n

)(

1− 2√
πn

) rn 1 < r ≤ 2

(232)
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Fig. 7. Optimum positioning of the representation sphere (a) and the geometry
of the excess-distortion probability calculation (b).

two are due to the recent improvement by Verger-Gaugry [38].

An immediate corollary to Theorem 38 is the following:

Theorem 39 (Achievability, GMS). For n ≥ 2, there exists

an (n,M, d, ǫ) code such that

M ≤ M

(

σ√
d
rn(ǫ)

)

(233)

where rn(ǫ) is the solution to (219).

Proof. Theorem 38 implies that there exists a code with

no more than M

(

σ√
d
rn(ǫ)

)

codewords such that all source

sequences that fall inside B, the n-dimensional ball of radius√
nσrn(ǫ) with center at 0, are reproduced within distortion

d. The excess-distortion probability is therefore given by the

probability that the source produces a sequence that falls

outside B.

Note that Theorem 39 studies the number of balls of radius√
nd to cover B that is provably achievable, while the converse

in Theorem 36 lower bounds the minimum number of balls of

radius
√
nd required to cover B by the ratio of their volumes.

Theorem 40 (Gaussian approximation, GMS). The minimum

achievable rate at blocklength n satisfies

R(n, d, ǫ) =
1

2
log

σ2

d
+

√

1

2n
Q−1 (ǫ) log e+ θ

(

logn

n

)

(234)

where the remainder term satisfies

O

(

1

n

)

≤ θ

(

logn

n

)

(235)

≤ 1

2

logn

n
+

log logn

n
+O

(

1

n

)

(236)

Proof. We start with the converse part, i.e. (235).

Since in Theorem 36 Z = 1
σ2

∑n
i=1 X

2
i , Xi ∼ N (0, σ2),

we apply the Berry-Esseen CLT (Theorem 13) to 1
σ2X

2
i . Each

1
σ2X

2
i has mean, second and third central moments equal to

1, 2 and 8, respectively. Let

r2 = 1 +

√

2

n
Q−1

(

ǫ +
12

√
2√

n

)

(237)

= 1 +

√

2

n
Q−1 (ǫ) +O

(

1

n

)

(238)

Then by the Berry-Esseen inequality (95)

P
[

Z > nr̄2
]

≥ ǫ (239)

and therefore rn(ǫ) that achieves the equality in (219) must

satisfy rn(ǫ) ≥ r. Weakening (218) by plugging r instead of

rn(ǫ) and taking logarithms of both sides therein, one obtains:

logM ≥ n

2
log

σ2r2

d
(240)

=
n

2
log

σ2

d
+

√

n

2
Q−1 (ǫ) log e+O (1) (241)

where (241) is a Taylor approximation of the right side of

(240).

The achievability part (236) is proven in Appendix K using

Theorem 37. Theorem 39 leads to the correct rate-dispersion

term but a weaker remainder term.

Figures 8 and 9 present a numerical comparison of Shan-

non’s achievability bound (33) and the new bounds in (221),

(233), (218) and (216) as well as the Gaussian approximation

in (234) in which we took θ
(

logn
n

)

= 1
2
log n
n . The achievabil-

ity bound in (233) is tighter than the one in (221) at shorter

blocklengths. Unsurprisingly, the converse bound in (218) is

quite a bit tighter than the one in (216).

X. CONCLUSION

To estimate the minimum rate required to sustain a given

fidelity at a given blocklength, we have shown new achiev-

ability and converse bounds, which apply in full generality

and which are tighter than existing bounds. The tightness of

these bounds for stationary memoryless sources allowed us

to obtain a compact closed-form expression that approximates

the excess rate over the rate-distortion function incurred in the

nonasymptotic regime (Theorem 12). For those sources and

unless the blocklength is small, the rate dispersion (along with

the rate-distortion function) serves to give tight approximations

to the fundamental fidelity-rate tradeoff.
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APPENDIX A

HYPOTHESIS TESTING

AND ALMOST LOSSLESS DATA COMPRESSION

To show (64), without loss of generality, assume that the

letters of the alphabet A are labeled 1, 2, . . . in order of

decreasing probabilities:

PX(1) ≥ PX(2) ≥ . . . (242)

Observe that

M⋆(0, ǫ) = min {m ≥ 1 : P [X ≤ m] ≥ 1− ǫ} , (243)

and the optimal randomized test to decide between PX and U
is given by

PW |X(1|a) =











1, a ≤ M⋆(0, ǫ)− 1

α, a = M⋆(0, ǫ)

0, a ≥ M⋆(0, ǫ) + 1

(244)

It follows that

β1−ǫ(PX , U) = M⋆(0, ǫ)− 1 + α (245)

where α ∈ (0, 1] is the solution to

P [X ≤ M⋆(0, ǫ)− 1] + αPX(M⋆(0, ǫ)) = 1− ǫ, (246)

hence (64).

APPENDIX B

GAUSSIAN APPROXIMATION ANALYSIS

OF ALMOST LOSSLESS DATA COMPRESSION

In this appendix we strenghten the remainder term in

Theorem 12 for d = 0 (cf. (88)). Taking the logarithm of

(64), we have

log β1−ǫ(PX , U)

≤ logM⋆(0, ǫ) (247)

≤ log (β1−ǫ(PX , U) + 1) (248)

= log β1−ǫ(PX , U) + log

(

1 +
1

β1−ǫ(PX , U)

)

(249)

≤ log β1−ǫ(PX , U) +
1

β1−ǫ(PX , U)
log e (250)

where in (250) we used log(1 + x) ≤ x log e, x > −1.

Let PXn = PX× . . .×PX be the source distribution, and let

Un to be the counting measure on An. Examining the proof of

Lemma 58 of [27] on the asymptotic behavior of β1−ǫ(P,Q)
it is not hard to see that it extends naturally to σ-finite Q’s;

thus if Var [ıX(X)] > 0,

log β1−ǫ(PXn , Un) = nH(X) +
√

nVar [ıX(X)]Q
−1 (ǫ)

− 1

2
logn+O (1) (251)

and if Var [ıX(X)] = 0,

log β1−ǫ(PXn , Un) = nH(X)− log
1

1− ǫ
(252)

Letting PXn and Un play the roles of PX and U in (247) and

(250) and invoking (251) and (252), we obtain (88) and (89),

respectively.
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APPENDIX C

GENERALIZATION OF THEOREMS 7 AND 12

We show that even if the rate-distortion function is not

achieved by any output distribution, the definition of d−tilted

information can be extended appropriately, so that Theorem 7

and the converse part of Theorem 12 still hold.

We use the following general representation of the rate-

distortion function due to Csiszár [3].

Theorem 41 (Alternative representation of R(d) [3]). Under

the basic restrictions (a)-(b) of Section II-B, for each d > dmin,

it holds that

RX(d) = max
α(x), λ

{E [α(X)]− λd} (253)

where the maximization is over α(x) ≥ 0 and λ ≥ 0 satisfying

the constraint

E [exp {α(X)− λd(X, y)}] ≤ 1 ∀y ∈ B (254)

Let (α⋆(x), λ⋆) achieve the maximum in (253) for some

d > dmin, and define the d−tilted information in x by

X(x, d) = α⋆(x) − λ⋆d (255)

Note that (19), the only property of d−tilted information we

used in the proof of Theorem 7, still holds due to (254), thus

Theorem 7 remains true.

The proof of the converse part of Theorem 12 generalizes

immediately upon making the following two observations.

First, (87) is still valid due to (253). Second, d-tilted infor-

mation in (255) still single-letterizes for memoryless sources:

Lemma 3. Under restrictions (i) and (ii) in Section V-B, (103)

holds.

Proof. Let (α⋆(x), λ⋆) attain the maximum in (253) for

the single-letter distribution PX. It suffices to check that

(
∑n

i=1 α
⋆(xi), nλ

⋆) attains the maximum in (253) for PXn =
PX × . . .× PX.

As desired,

E

[

n
∑

i=1

α⋆(Xi)

]

− nλ⋆d = nRX(d) = RXn(d) (256)

and we just need to verify the constraints in (254) are satisfied:

E

[

exp

{

n
∑

i=1

α⋆(Xi)− λ⋆
n
∑

i=1

d(Xi, y)

}]

=

n
∏

i=1

E [exp {α⋆(Xi)− λ⋆d(Xi, y)}] (257)

≤ 1 ∀yn ∈ Bn (258)

APPENDIX D

PROOF OF LEMMA 2

Before we prove Lemma 2, let us present some background

results we will use. For k = 1, 2, . . ., denote

d̄Y,k(x, λ) =
E
[

dk(x, Y ) exp (−λd(x, Y ))
]

E [exp (−λd(x, Y ))]
(259)

Observe that

d̄Y,k(x, 0) = E
[

dk(x, Y )
]

(260)

(the expectations in (259) and (260) are with respect to the

unconditional distribution of Y ). Denoting by (·)′ differentia-

tion with respect to λ > 0, we state the following properties

whose proofs can be found in [20].

A.
(

E
[

ΛY (X,λ⋆
X,Y )

])′
= 0 where λ⋆

X,Y = −R′
X,Y (d).

B. E [Λ′′
Y (X,λ)] < 0 for all λ > 0 if E

[

d̄Y,2(X, 0)
]

< ∞.

C. Λ′
Y (x, λ) = −d+ d̄Y,1(x, λ).

D. Λ′′
Y (x, λ) =

[

d̄2Y,1(x, λ)− d̄Y,2(x, λ)
]

(log e)
−1 ≤ 0

if d̄Y,1(x, 0) < ∞.

E. d̄′Y,k(x, λ) ≤ 0 if d̄Y,k(x, 0) < ∞.

F. dmin|X,Y = E [αY (X)], where αY (x) = ess inf d(x, Y ).

Remark 12. By Properties A and B,

E
[

ΛY (X,λ⋆
X,Y )

]

= sup
λ>0

E [ΛY (X,λ)] (261)

Remark 13. Properties C and D imply that

− d ≤ Λ′
Y (x, λ) ≤ −d+ d̄Y,1(x, 0) (262)

Therefore, as long as E
[

d̄Y,1(X, 0)
]

< ∞, the differentiation

in Property A can be brought inside the expectation invoking

the dominated convergence theorem. Keeping this in mind

while averaging the equation in Property C with λ = λ⋆
X,Y

with respect to PX , we observe that

E
[

d̄Y,1(X,λ⋆
X,Y )

]

= d (263)

Remark 14. Properties (17) and (18) of d−tilted information

imply that the equality in (263) holds if λ⋆
X,Y is replaced

by λ⋆ = −R′
X(d), and Y is replaced by Y ⋆ - the RX(d)-

achieving random variable. It follows that

λ⋆ = λ⋆
X,Y ⋆ (264)

Remark 15. By virtue of Properties D and E we have

−d̄Y,2(x, 0) ≤ Λ′′
Y (x, λ) log e ≤ 0 (265)

Remark 16. Using (263), derivatives of RX,Y (d) are conve-

niently expressed via E
[

d̄Y,k(x, λ
⋆
X,Y )

]

; in particular, at any

dmin|X,Y < d ≤ dmax|X,Y = E
[

d̄Y,1(X, 0))
]

(266)

we have

R′′
X,Y (d) = − 1

(

E

[

d̄Y,1(X,λ⋆
X,Y )

])′ (267)

=
log e

E

[

d̄Y,2(X,λ⋆
X,Y )

]

− E

[

d̄2Y,1(X,λ⋆
X,Y )

] (268)

> 0 (269)

where (268) holds by Property D and the dominated conver-

gence theorem due to (265) as long as E
[

d̄Y,2(X, 0)
]

< ∞,

and (269) is by Property B.

The proof of Lemma 2 consists of Gaussian approximation

analysis of the bound in Lemma 1. First, we weaken the bound

in Lemma 1 by choosing PX̂ and γ in (72) in the following

manner. Fix τ > 0, and let γ = τ
n , PY = PY n⋆ = PY⋆ × . . .×

PY⋆ , where Y⋆ achieves RX(d), and choose PX̂ = PX̂n =
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P
X̂
× . . . P

X̂
, where P

X̂
is the measure on A generated by the

empirical distribution of xn ∈ An:

P
X̂
(a) =

1

n

n
∑

i=1

1{xi = a} (270)

Since the distortion measure is separable, for any λ > 0 we

have

ΛY n⋆(xn, λn) =

n
∑

i=1

ΛY⋆(xi, λ) (271)

so by Lemma 1, for all

d > dmin|X̂n,Y n⋆ (272)

it holds that

PY n⋆(Bd(x
n)) ≥ exp

(

−
n
∑

i=1

ΛY⋆(xi, λ(x
n))− λ(xn)τ

)

· P
[

nd− τ <

n
∑

i=1

d(xi, Ẑ
⋆
i ) ≤ nd|X̂n = xn

]

(273)

where we denoted

λ(xn) = −R′
X̂;Y⋆(d) (274)

(λ(xn) depends on xn through the distribution of X̂ in (270)),

and PẐn⋆ = P
Ẑ⋆ × . . .×P

Ẑ⋆ , where P
Ẑ⋆|X̂ achieves R

X̂;Y⋆(d).
The probability appearing in (273) can be lower bounded by

the following lemma.

Lemma 4. Assume that restrictions (i)-(iv) in Section V-B

hold. Then, there exist δ0, n0 > 0 such that for all δ ≤ δ0,

n ≥ n0, there exist a set Fn ⊆ An and constants τ, C1,K1 >
0 such that

P [Xn /∈ Fn] ≤
K1√
n

(275)

and for all xn ∈ Fn,

P

[

nd− τ <

n
∑

i=1

d(xi, Ẑ
⋆
i ) ≤ nd|X̂n = xn

]

≥ C1√
n

(276)

|λ(xn)− λ⋆| < δ (277)

where λ⋆ = −R′
X(d).

Proof. The reasoning is similar to the proof of [20, (4.6)]. Fix

0 < ∆ <
1

3
min

{

d− dmin|X,Y⋆ , dmax|X,Y⋆ − d
}

(278)

(the right side of (278) is positive by restriction (iii) in Section

V-B) and denote

λ = −R′
X,Y⋆

(

d+
3∆

2

)

(279)

λ̄ = −R′
X,Y⋆

(

d− 3∆

2

)

(280)

µ′′ = E [|Λ′′
Y⋆(X, λ⋆)|] (281)

δ =
3∆

2
sup

|θ|< 3∆
2

R′′
X,Y⋆(d+ θ) (282)

V (xn) =
1

n

n
∑

i=1

sup
|θ|<δ

|Λ′′(xi, λ
⋆ + θ)| log e (283)

V (xn) =
1

n

n
∑

i=1

inf
|θ|<δ

|Λ′′(xi, λ
⋆ + θ)| log e (284)

We say that xn ∈ Fn if it meets the following conditions:

1

n

n
∑

i=1

αY⋆(xi) < dmin|X,Y⋆ +∆ (285)

1

n

n
∑

i=1

d̄Y⋆,1(xi, 0) > dmax|X,Y⋆ −∆ (286)

1

n

n
∑

i=1

d̄Y⋆,1(xi, λ) > d+∆ (287)

1

n

n
∑

i=1

d̄Y⋆,1(xi, λ̄) < d−∆ (288)

1

n

n
∑

i=1

d̄Y⋆,3(xi, 0) ≤ E
[

d̄Y⋆,3(X, 0)
]

+∆ (289)

V (xn) ≥ µ′′

2
log e (290)

V (xn) ≤ 3µ′′

2
log e (291)

Let us first show that (277) holds with δ given by (282) for

all xn satisfying the conditions (285)–(288). From (287) and

(288),

1

n

n
∑

i=1

d̄Y⋆,1(xi, λ̄) < d <
1

n

n
∑

i=1

d̄Y⋆,1(xi, λ) (292)

On the other hand, from (263) we have

d =
1

n

n
∑

i=1

d̄Y⋆,1(xi, λ(x
n)) (293)

Therefore, since the right side of (293) is decreasing (Property

B),

λ < λ(xn) < λ̄ (294)

Finally, an application Taylor’s theorem to (279) and (280)

using (264) expands (294) as

− 3∆

2
R′′

X,Y⋆(d̄) + λ⋆ < λ(xn) < λ⋆ +
3∆

2
R′′

X,Y⋆(d) (295)

for some d̄ ∈ [d, d + 3∆
2 ], d ∈ [d, d − 3∆

2 ]. Note that (278),

(285) and (286) ensure that

dmin|X,Y⋆ + 2∆ < d < dmax|X,Y⋆ − 2∆ (296)
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so the derivatives in (295) exist and are positive by Remark

16. Therefore (277) holds with δ given by (282).

We are now ready to show that as long as ∆ (and, therefore,

δ) is small enough, there exists a K1 ≥ 0 such that (275)

holds. Hölder’s inequality and assumption (iv) in Section

V-B imply that the third moments of the random variables

involved in conditions (287)–(289) are finite. By the Berry-

Esseen inequality, the probability of violating these conditions

is O
(

1√
n

)

. To bound the probability of violating conditions

(290) and (291), observe that since Λ′′
Y⋆(X, λ) is dominated by

integrable functions due to (265), we have by Fatou’s lemma

and continuity of Λ′′
Y⋆(x, ·)

µ′′ ≤ lim inf
δ↓0

E

[

inf
|θ′|≤δ

|Λ′′
Y⋆(X, λ⋆ + θ′)|

]

(297)

≤ lim sup
δ↓0

E

[

sup
|θ′|≤δ

|Λ′′
Y⋆(X, λ⋆ + θ′)|

]

(298)

≤ µ′′ (299)

Therefore, if δ is small enough,

3µ′′

4
log e ≤ E [V (Xn)] ≤ E

[

V (Xn)
]

≤ 5µ′′

4
log e (300)

The third absolute moments of V (Xn) and V (Xn) are finite

by Hölder’s inequality, (265) and assumption (iv) in Section

V-B. Thus, the probability of violating conditions (290) and

(291) is also O
(

1√
n

)

. Now, (275) follows via the union

bound.

To complete the proof of Lemma 4, it remains to show

(276). Toward this end, observe, recalling Properties D and E

that the corresponding moments in the Berry-Esseen theorem

are given by

µ(xn) =
1

n

n
∑

i=1

E

[

d(xi, Ẑ
⋆)|X̂ = xi

]

(301)

=
1

n

n
∑

i=1

d̄Y⋆,1(xi, λ(x
n)) (302)

= d (303)

V (xn) =
1

n

n
∑

i=1

[

d̄Y⋆,2(xi, λ(x
n))− d̄2Y⋆,1(xi, λ(x

n))
]

(304)

= − 1

n

n
∑

i=1

Λ′′(xi, λ(x
n)) log e (305)

T (xn) = (306)

1

n

n
∑

i=1

E

[

∣

∣

∣d(xi, Ẑ
⋆)− E

[

d(xi, Ẑ
⋆) | X̂ = xi

]∣

∣

∣

3

| X̂ = xi

]

≤ 8

n

n
∑

i=1

E

[

∣

∣

∣d(xi, Ẑ
⋆)
∣

∣

∣

3

| X̂ = xi

]

(307)

=
8

n

∑

d̄Y⋆,3(xi, λ(x
n)) (308)

≤ 8

n

∑

d̄Y⋆,3(xi, 0) (309)

Due to (277), (290) and (291), µ′′

2 log e ≤ V (xn) ≤ 3µ′′

2 log e
as long as xn ∈ Fn. Furthermore,

T (xn) ≤ 8E
[

d̄Y⋆,3(X, 0)
]

+ 8∆ (310)

for such xn due to (289). Therefore, by the Berry-Esseen

inequality we have for all xn ∈ Fn:

P

[

nd− τ <

n
∑

i=1

d(xi, Ẑ
⋆
i ) ≤ nd|X̂n = xn

]

(311)

≥ 1√
2π

∫ τ√
nV (xn)

0

e−
u2

2 du− 12T (xn)

V
3
2 (xn)

1√
n

(312)

≥
(

τ
√

2πV (xn)
e−

τ2

2nV (xn) − 12T (xn)

V
3
2 (xn)

)

1√
n

(313)

≥
(

τ√
3πµ′′ log e

e
− τ2

nµ′′ log e − 2B̄

)

1√
n

(314)

where B̄ = 96
√
2
E[d̄Y⋆,3(X,0)]+∆

(µ′′ log e)
3
2

. The proof is complete upon

observing that as long as n is large enough, we can always

choose τ > 0 so that (314) is positive.

To upper-bound
∑n

i=1 ΛY⋆(xi, λ(x
n)) appearing in (273),

we invoke the following result.

Lemma 5. Assume that restrictions (i)-(iv) in Section V-B

hold. There exist constants n0,K2 > 0 such that for n ≥ n0,

P

[

n
∑

i=1

ΛY⋆(Xi, λ(X
n)) ≤

n
∑

i=1

ΛY⋆(Xi, λ
⋆) + C2 logn

]

> 1− K2√
n

(315)

where

C2 =
Var [Λ′

Y⋆(X, λ⋆)]

E [|Λ′′
Y⋆(X, λ⋆)|] log e (316)

Proof. Using (277), we have for all xn ∈ Fn,

n
∑

i=1

[ΛY⋆(xi, λ(x
n))− ΛY⋆(xi, λ

⋆)]

= sup
|θ|<δ

n
∑

i=1

[ΛY⋆(xi, λ
⋆ + θ)− ΛY⋆(xi, λ

⋆)] (317)

= sup
|θ|<δ

θ
n
∑

i=1

Λ′
Y⋆(xi, λ

⋆) +
θ2

2

n
∑

i=1

Λ′′
Y⋆(xi, λ

⋆ + ξn) (318)

≤ sup
|θ|<δ

θS′(xn)− θ2

2
S′′(xn) (319)

≤ (S′(xn))
2

2S′′(xn)
(320)

where

• (317) is due to (261);

• (318) holds for some |ξn| ≤ δ by Taylor’s theorem;
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• in (319) we denoted

S′(xn) =

n
∑

i=1

Λ′
Y⋆(xi, λ

⋆) (321)

S′′(xn) = −
n
∑

i=1

inf
|θ′|<δ

|Λ′′
Y⋆(xi, λ

⋆ + θ′)| (322)

and used Property D;

• in (320) we maximized the quadratic equation in (319)

with respect to θ.

Note that the reasoning leading to (320) is due to [21, proof of

Theorem 3]. We now proceed to upper-bound the ratio in the

right side of (320). Since E
[

d̄Y⋆,1(X, 0)
]

< ∞ by assumption

(iv) in Section V-B, the differentiation in Property A can be

brought inside the expectation by (262) and the dominated

convergence theorem, so

E

[

1

n
S′(Xn)

]

= E [Λ′
Y⋆(X, λ⋆)] = 0 (323)

Denote

V ′ = Var [Λ′
Y⋆(X, λ⋆)] (324)

T ′ = E

[

|Λ′
Y⋆(X, λ⋆)− E [Λ′

Y⋆(X, λ⋆)]|3
]

(325)

If V ′ = 0, there is nothing to prove as that means S′(Xn) =
0 a.s. Otherwise, since (262) with Hölder’s inequality and

assumption (iv) in Section V-B guarantee that T ′ is finite, the

Berry-Esseen inequality (95) implies

P

[

(S′(Xn))
2
> V ′n loge n

]

≤ 12T ′

V ′ 32
√
n
+ 2Q

(

√

loge n
)

(326)

<

(

12T ′

V ′ 32
+

√

2

π

1
√

loge n

)

1√
n

(327)

≤
(

12T ′

V ′ 32
+

√

2

π loge 2

)

1√
n

(328)

=
K ′

2√
n

(329)

In (327), we used

Q(t) <
1√
2πt

e−
t2

2 (330)

and (328) obviously holds for n ≥ 2. To treat S′′(Xn), observe

that S′′(xn) = nV (xn) (log e)
−1

(see (284)), so as before,

the variance V ′′ and the third absolute moment T ′′ of Zi =
inf |θ′|≤δ |Λ′′

Y⋆(Xi, λ
⋆ + θ′)| are finite, and E [Zi] ≥ 3µ′′

4 by

(300), where µ′′ > 0 is defined in (281). If V ′′ = 0, we

have Zi >
µ′′

2 almost surely. Otherwise, by the Berry-Esseen

inequality (95),

P

[

S′′(Xn) < n
µ′′

2

]

≤
(

6T ′′

V ′′ 32
+

√

8V ′′

πµ′′2 e
− nµ′′2

32V ′′

)

1√
n

(331)

<

(

6T ′′

V ′′ 32
+

√

8V ′′

πµ′′2

)

1√
n

(332)

=
K ′′

2√
n

(333)

where in (331) we used (330). Finally, denoting

g(xn) =

n
∑

i=1

ΛY⋆(xi, λ(x
n))−

n
∑

i=1

ΛY⋆(xi, λ
⋆) (334)

and letting Gn be the set of xn ∈ An satisfying both

(S′(xn))
2 ≤ V ′n loge n (335)

S′′(xn) ≥ n
µ′′

2
(336)

we see from (275), (329), (333) applying elementary proba-

bility rules that

P [g(Xn) > C2 logn]

= P

[

g(Xn) > C2 log n, g(Xn) ≤ (S′(Xn))
2

2S′′(Xn)

]

+ P

[

g(Xn) > C2 log n, g(Xn) >
(S′(Xn))

2

2S′′(Xn)

]

(337)

≤ P

[

(S′(Xn))
2

2S′′(Xn)
> C2 logn

]

+
K1√
n

(338)

= P

[

(S′(Xn))
2

2S′′(Xn)
> C2 logn, Xn ∈ Gn

]

+ P

[

(S′(Xn))2

2S′′(Xn)
> C2 logn, Xn /∈ Gn

]

+
K1√
n

(339)

< 0 +
K ′

2√
n
+

K ′′
2√
n
+

K1√
n

(340)

We conclude that (315) holds for n ≥ n0 with K2 = K1 +
K ′

2 +K ′′
2 .

To apply Lemmas 4 and 5 to (273), note that (272) (and

hence (273)) holds for xn ∈ Fn due to (296). Weakening (273)

using Lemmas 4 and 5 and the union bound we conclude that

Lemma 2 holds with

C =
1

2
+ C2 (341)

K = K1 +K2 (342)

c = (λ⋆ + δ)τ − logC1 (343)
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APPENDIX E

PROOF OF THEOREM 14

In this appendix, we show that (117) follows from (82).

Fix a point (d∞, R∞) on the rate-distortion curve such that

d∞ ∈ (d, d̄). Let dn = D(n,R∞, ǫ), and let α be the acute

angle between the tangent to the R(d) curve at d = dn and

the d axis (see Fig. 10). We are interested in the difference

dn − d∞. Since [10]

lim
n→∞

D(n,R, ǫ) = D(R), (344)

there exists a δ > 0 such that for large enough n,

dn ∈ Bδ(d∞) = [d∞ − δ, d∞ + δ] ⊂ (d, d̄) (345)

For such dn,

|dn − d∞| ≤
∣

∣

∣

∣

R(dn)−R∞
tanαn

∣

∣

∣

∣

(346)

≤
∣

∣

∣

∣

R(n, dn, ǫ)−R(dn)

mind∈Bδ(d∞) R′(d)

∣

∣

∣

∣

(347)

= O

(

1√
n

)

(348)

where

• (346) is by convexity of R(d);
• (347) follows by substituting R(n, dn, ǫ) = R∞ and

tanαn = |R′(dn)|;
• (348) follows by Theorem 12. Note that we are allowed

to plug dn into (82) because the remainder in (82) can

be uniformly bounded over all d from the compact set

Bδ(d∞) (just swap Bn in (105) for the maximum of Bn’s

over Bδ(d∞), and similarly swap c,K,Bn in (112) and

(113) for the corresponding maxima); thus (82) holds not

only for a fixed d but also for any sequence dn ∈ Bδ(d∞).

It remains to refine (348) to show (117). Write

V (dn) = V (d∞) +O

(

1√
n

)

(349)

R(dn) = R(d∞) +R′(d∞)(dn − d∞) +O

(

1

n

)

(350)

= R(dn) +

√

V (dn)

n
Q−1 (ǫ)

+R′(d∞)(dn − d∞) + θ

(

logn

n

)

(351)

= R(dn) +

√

V (d∞)

n
Q−1 (ǫ)

+R′(d∞)(dn − d∞) + θ

(

logn

n

)

(352)

where

• (349) and (350) follow by Taylor’s theorem and (348)

using finiteness of V ′(d) and R′′(d) for all d ∈ Bδ(d∞);
• (351) expands R∞ = R(n, dn, ǫ) using (82);

• (352) invokes (349).

Rearranging (352), we obtain the desired approximation (117)

for the difference dn − d∞.

R(d)

R(n, d, ǫ)

d∞ dn

R∞

αn

Fig. 10. Estimating dn − d∞ from R(n, d, ǫ)− R(d).
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From the Stirling approximation, it follows that (e.g. [39])
√

n

8k(n− k)
exp

{

nh

(

k

n

)}

≤
(

n

k

)

(353)

≤
√

n

2πk(n− k)
exp

{

nh

(

k

n

)}

(354)

In view of the inequality

(

n

k − j

)

≤
(

n

k

)(

k

n− k

)j

(355)

we can write
(

n

k

)

≤
〈n

k

〉

(356)

≤
(

n

k

) ∞
∑

j=0

(

k

n− k

)j

(357)

=

(

n

k

)

n− k

n− 2k
(358)

where (358) holds as long as the series converges, i.e. as long

as 2k < n. Furthermore, combining (356) and (358) with

Stirling’s approximation (353) and (354), we conclude that

for any 0 < α < 1
2 ,

log

〈

n

⌊nα⌋

〉

= nh (α)− 1

2
logn+O (1) (359)

Taking logarithms in (124) and letting logM = nR for any

R ≥ R(n, d, ǫ), we obtain

log(1− ǫ) ≤ n(R− log 2) + log

〈

n

⌊nd⌋

〉

(360)

≤ n(R− log 2 + h(d))− 1

2
logn+O (1) (361)

Since (361) holds for any R ≥ R(n, d, ǫ), we conclude that

R(n, d, ǫ) ≥ R(d) +
1

2

logn

n
+O

(

1

n

)

(362)
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Similarly, Corollary 17 implies that there exists an

(exp(nR), d, ǫ) code with

log ǫ ≤ exp (nR) log



1−

〈

n
⌊nd⌋

〉

2n



 (363)

≤ − exp (nR)

〈

n
⌊nd⌋

〉

2n
log e (364)

where we used log(1 + x) ≤ x log e, x > −1. Taking the

logarithm of the negative of both sides in (364), we have

log log
1

ǫ
≥ n(R− log 2) + log

〈

n

⌊nd⌋

〉

+ log log e (365)

= n(R− log 2 + h(d)) − 1

2
logn+ O (1) , (366)

where (366) follows from (359). Therefore,

R(n, d, ǫ) ≤ R(d) +
1

2

logn

n
+O

(

1

n

)

(367)

The case d = 0 follows directly from (89). Alternatively, it

can be easily checked by substituting
〈

n
0

〉

= 1 in the analysis

above.
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By analyzing the asymptotic behavior of (147), we prove

that

R(n, d, ǫ) ≤ h(p)− h(d) +

√

V (d)

n
Q−1 (ǫ)

+
1

2

logn

n
+

log logn

n
+O

(

1

n

)

(368)

where V (d) is as in (149), thereby showing that a constant

composition code that attains the rate-dispersion function

exists. Letting M = exp (nR) and using (1 − x)M ≤ e−Mx

in (147), we can guarantee existence of an (n,M, d, ǫ′) code

with

ǫ′ ≤
n
∑

k=0

(

n

k

)

pk(1− p)n−ke−(
n

⌈nq⌉)
−1

Ln(k,⌈nq⌉) exp(nR)

(369)

In what follows we will show that one can choose an R
satisfying the right side of (368) so that the right side of

(369) is upper bounded by ǫ when n is large enough. Letting

k = np + n∆, t = ⌈nq⌉, t0 = ⌈ ⌈nq⌉+k−nd
2 ⌉+ and using

Stirling’s formula (353), it is an algebraic exercise to show

that there exist positive constants δ and C such that for all

∆ ∈ [−δ, δ],
(

n

t

)−1(
k

t0

)(

n− k

t− t0

)

=

(

n

k

)−1(
t

t0

)(

n− t

k − t0

)

(370)

≥ C√
n
exp {ng(∆)} (371)

where

g(∆) = h(p+∆)−qh

(

d− ∆

2q

)

−(1−q)h

(

d+
∆

2(1− q)

)

It follows that
(

n

⌈nq⌉

)−1

Ln(np+ n∆, ⌈qn⌉) ≥ C√
n
exp {−ng(∆)} (372)

whenever Ln(k, ⌈qn⌉) is nonzero, that is, whenever ⌈nq⌉ −
nd ≤ k ≤ ⌈nq⌉+ nd, and g(∆) = 0 otherwise.

Applying a Taylor series expansion in the vicinity of ∆ = 0
to g(∆), we get

g(∆) = h(p)− h(d) + h′(p)∆ +O
(

∆2
)

(373)

Since g(∆) is continuously differentiable with g′(0) =
h′(p) > 0, there exist constants b, b̄ > 0 such that g(∆) is

monotonically increasing on (−b, b̄) and (371) holds. Let

bn =

√

p(1− p)

n
Q−1 (ǫn) (374)

ǫn = ǫ− 2Bn√
n

−
√

V (d)

2πn

1

b̄
e−n b̄2

2V (d) − 1√
n

(375)

Bn = 6
1− 2p+ 2p2
√

p(1− p)
(376)

R = g(bn) +
1

2

logn

n
+

1

n
log

(

loge n

2C

)

(377)

Using (373) and applying a Taylor series expansion to Q−1 (·),
it is easy to see that R in (377) can be rewritten as the right

side of (368). Splitting the sum in (369) into three sums and

upper bounding each of them separately, we have

n
∑

k=0

(

n

k

)

pk(1− p)n−ke−(
n

⌈qn⌉)
−1

Ln(k,⌈qn⌉) exp(nR)

=

⌊np−nb⌋
∑

k=0

+

⌊np+nbn⌋
∑

k=⌊np−nb⌋+1

+

n
∑

k=⌊np+nbn⌋+1

(378)

≤ P

[

n
∑

i=1

Xi ≤ np− nb

]

+

⌊np+nbn⌋
∑

k=⌊np−nb⌋+1

(

n

k

)

pk(1− p)n−ke
− C√

n
exp{nR−ng( k

n−p)}

+ P

[

n
∑

i=1

Xi ≥ np+ nbn

]

(379)

≤ Bn√
n
+

√

V (d)

2πn

1

b̄
e−n b̄2

2V (d) +
1√
n
+ ǫn +

Bn√
n

(380)

= ǫ (381)

where {Xi} are i.i.d. Bernoulli random variables with bias p.

The first and third probabilities in the right side of (379) are

bounded using the Berry-Esseen bound (95) and (330), while

the second probability is bounded using the monotonicity

of g(∆) in (−b, bn] for large enough n, in which case the

minimum difference between R and g(∆) in (−b, bn) is
1
2
logn
n + 1

n log
(

loge n
2C

)

.
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In order to study the asymptotics of (161) and (163), we

need to analyze the asymptotic behavior of S⌊nd⌋ which can
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be carried out similarly to the binary case. Recalling the

inequality (355), we have

Sk =

k
∑

j=0

(

n

j

)

(m− 1)j (382)

≤
(

n

k

) k
∑

j=0

(

k

n− k

)j

(m− 1)k−j (383)

≤
(

n

k

)

(m− 1)k
∞
∑

j=0

(

k

(n− k)(m− 1)

)j

(384)

=

(

n

k

)

(m− 1)k
n− k

n− k m
m−1

(385)

where (385) holds as long as the series converges, i.e. as long

as k
n < m−1

m . Using

Sk ≥
(

n

k

)

(m− 1)k (386)

and applying Stirling’s approximation (353) and (354), we

have for 0 < d < m−1
m

logS⌊nd⌋ = log

(

n

⌊nd⌋

)

+ nd log(m− 1) +O(1) (387)

= nh(d) + nd log(m− 1)− 1

2
logn+O(1) (388)

Taking logarithms in (161) and letting logM = nR for any

R ≥ R(n, d, ǫ), we obtain

log(1 − ǫ) ≤ n(R − logm) + logS⌊nd⌋ (389)

≤ n(R − logm+ h(d) + d log(m− 1))

− 1

2
logn+O (1) (390)

Since (390) holds for any R ≥ R(n, d, ǫ), we conclude that

R(n, d, ǫ) ≥ R(d) +
1

2

logn

n
+O

(

1

n

)

(391)

Similarly, Theorem 26 implies that there exists an

(exp(nR), d, ǫ) code with

log ǫ ≤ exp (nR) log

(

1− S⌊nd⌋
mn

)

(392)

≤ − exp (nR)
S⌊nd⌋
mn

log e (393)

where we used log(1 + x) ≤ x log e, x > −1. Taking the

logarithm of the negative of both sides of (393), we have

log log
1

ǫ
≥ n(R− logm) + logS⌊nd⌋ + log log e (394)

= n(R− logm+ h(d))− 1

2
logn+O (1) , (395)

where (395) follows from (388). Therefore,

R(n, d, ǫ) ≤ R(d) +
1

2

logn

n
+O

(

1

n

)

(396)

The case d = 0 follows directly from (89), or can be obtained

by observing that S0 = 1 in the analysis above.
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Using Theorem 30, we show that

R(n, d, ǫ) ≤ R(d) +

√

V (d)

n
Q−1 (ǫ) (397)

+
(m− 1)(mη − 1)

2

logn

n
+

log logn

n
+O

(

1

n

)

where mη is defined in (170), and V (d) is as in (190). Similar

to the binary case, we express Ln(k, t
⋆) in terms of the

rate-distortion function. Observe that whenever Ln(k, t
⋆) is

nonzero,
(

n

t⋆

)−1

Ln(k, t
⋆) =

(

n

t⋆

)−1 m
∏

a=1

(

ka
ta

)

(398)

=

(

n

k

)−1 mη
∏

a=1

(

t⋆b
kb

)

(399)

where kb = (t1,b, . . . , tm,b). It can be shown [34] that for

n large enough, there exist positive constants C1, C2 such

that (400) and (401) at the bottom of the page hold for small

enough |∆|, where ∆ = (∆1, . . . ,∆m). A simple calculation

using
∑m

a=1 ∆a = 0 reveals that

m
∑

a=1

mη
∑

b=1

δ(a, b) log
1

P ⋆
X|Y(a|b)

=

mη
∑

a=1

∆a log
1

η
+

m
∑

a=mη+1

∆a log
1

PX(a)
(402)

so invoking (400) and (401) one can write

(

n

k

)−1 mη
∏

a=1

(

t⋆b
kb

)

≥ Cn− (m−1)(mη−1)

2 exp {−ng(∆)}

(403)

where C is a constant, and g(∆) is a twice differentiable

function that satisfies

g(∆) = R(d) +

m
∑

a=1

∆av(a) +O
(

|∆|2
)

(404)

v(a) = min

{

ıX(a), log
1

η

}

(405)

(

n

k

)

≤ C1n
−m−1

2 exp n

{

H(X) +
m
∑

a=1

∆a log
1

PX(a)
+O

(

|∆|2
)

}

(400)

(

t⋆b
kb

)

≥ C2n
−m−1

2 expn

{

P ⋆
Y(b)H (X|Y⋆ = b) +

m
∑

a=1

δ(a, b) log
1

P ⋆
X|Y(a|b)

+O
(

|∆|2
)

}

(401)
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Similar to the BMS case, g(∆) is monotonic in
∑m

a=1 ∆av(a) ∈ (−b, b̄) for some constants b, b̄ > 0
independent of n. Let

bn =

√

V (d)

n
Q−1 (ǫ) (406)

ǫn = ǫ− 2Bn√
n

− 1√
n
−
√

V (d)

2πn

1

b̄
e−n b̄2

2V (d) (407)

R = max
∆:

∑m
a=1 ∆av(a)∈(−b,bn]

g(∆)

+
(m− 1)(mη − 1)

2

logn

n
+

1

n
log

(

loge n

2C

)

(408)

where Bn is the finite constant defined in (99). Using (404)

and applying a Taylor series expansion to Q−1 (·), it is easy

to see that R in (408) can be rewritten as the right side of

(397). Further, we use nR = logM and (1 − x)M ≤ e−Mx

to weaken the right side of (180) to obtain

∑

∆

(

n

n(p+∆)

)

pn(p+∆)e−(
n
t⋆)

−1
Ln(n(p+∆),t⋆) exp(nR)

=
∑

∆:
∑m

a=1 ∆av(a)≤−b

+
∑

∆:
∑m

a=1 ∆av(a)∈(−b,bn)

+
∑

∆:
∑m

a=1 ∆av(a)≥bn

(409)

≤ P

[

n
∑

k=1

v(Xk) ≤ E [v(X)] − b

]

+ sup
∆:

∑m
a=1 ∆av(a)∈(−b,bn)

e−Cn− (m−1)(mη−1)

2 exp n{R−g(∆)}

+ P

[

n
∑

k=1

v(Xk) ≥ E [v(X)] + bn

]

(410)

≤ Bn√
n
+

√

V (d)

2πn

1

b̄
e−n b̄2

2V (d) +
1√
n
+ ǫn +

Bn√
n

(411)

where PXk
(a) = PX(a). The first and third probabilities in

(409) are bounded using the Berry-Esseen bound (95) and

(330). The middle probability is bounded by observing that the

difference between R and g(∆) in
∑m

a=1 ∆av(a) ∈ (−b, bn)

is at least
(m−1)(mη−1)

2
logn
n + 1

n log
(

loge n
2C

)

.
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Converse. The proof of the converse part follows the Gaussian

approximation analysis of the converse bound in Theorem 32.

Let j = n δ
2 + n∆1 and k = nδ − n∆2. Using Stirling’s

approximation for the binomial sum (359), after applying a

Taylor series expansion we have

2−(n−k)

〈

n− k

⌊nd− j⌋

〉

=
C(∆)√

n
exp {−n g(∆1,∆2)} (412)

where C(∆) is such that there exist positive constants C, C̄,

ξ such that C ≤ C(∆) ≤ C̄ for all |∆| ≤ ξ, and the twice

differentiable function g(∆1,∆2) can be written as

g(∆1,∆2) = R(d) + a1∆1 + a2∆2 +O
(

|∆|2
)

(413)

a1 = log
1− d− δ

2

d− δ
2

= λ⋆ (414)

a2 = log
2
(

1− d− δ
2

)

1− δ
= log

2

1 + exp(−λ⋆)
(415)

It follows from (413) that g(∆1,∆2) is increasing in a1∆1 +
a2∆2 ∈ (−b, b̄) for some constants b, b̄ > 0 (obviously, we

can choose b, b̄ small enough in order for C ≤ C(∆) ≤ C̄ to

hold). In the sequel, we will represent the probabilities in the

right side of (203) via a sequence of i.i.d. random variables

Z1, . . . , Zn with common distribution

Z =











a1 w.p. δ
2

a2 w.p. 1− δ

0 otherwise

(416)

Note that

E [Z] =
a1δ

2
+ a2(1 − δ) (417)

Var [Z] = δ(1− δ)
(

a2 −
a1
2

)2

+
δa21
4

= V (d) (418)

and the third central moment of Z is finite, so that Bn in (99)

is a finite constant. Let

bn =

√

V (d)

n
Q−1 (ǫn) (419)

ǫn =

(

1− C̄√
n

)−1

ǫ+
2Bn√

n
+

√

V (d)

2πn

1

b̄
e−n b̄2

2V (d) (420)

R = min
∆1, ∆2:

bn≤a1∆1+a2∆2≤b̄

g(∆1,∆2) (421)

= R(d) + bn +O
(

b2n
)

(422)

With M = exp (nR), since R ≤ g(∆1,∆2) for all a1∆1 +
a2∆2 ∈ [bn, b̄], for such (∆1,∆2) it holds that

[

1− C̄√
n
M exp {−n g(∆1,∆2)}

]+

≥ 1− C̄√
n

(423)

Denoting the random variables

N(x) =
1

n

n
∑

i=1

1{Zi = x} (424)

Gn = n g

(

N(a1)−
δ

2
, N(a2)− 1 + δ

)

(425)

and using (412) to express the probability in the right side of

(203) in terms of Z1, . . . , Zn, we conclude that the excess-

distortion probability is lower bounded by

E

[

(

1− C̄√
n
exp {logM −Gn}

)+
]

≥
(

1− C̄√
n

)

P

[

bn ≤
n
∑

i=1

Zi − nE [Z] < b̄

]

(426)

≥
(

1− C̄√
n

)

(

ǫn − 2Bn√
n

−
√

V (d)

2πn

1

b̄
e−n b̄2

2V (d)

)

(427)

= ǫ (428)
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where (426) follows from (423), and (427) follows from the

Berry-Esseen inequality (95) and (330), and (428) is equivalent

to (420).

Achievability. We now proceed to the Gaussian approximation

analysis of the achievability bound in Theorem 33. Let

bn =

√

V (d)

n
Q−1 (ǫn) (429)

ǫn = ǫ− 2Bn√
n

−
√

V (d)

2πn

1

b̄
e−n b̄2

2V (d) − 1√
n

(430)

logM = n min
∆1, ∆2:

bn≤a1∆1+a2∆2≤b̄

g(∆1,∆2)

+
1

2
logn+ log

(

loge n

2C

)

(431)

= nR(d) +
√

nV (d)Q−1 (ǫ)

+
1

2
logn+ log logn+O (1) (432)

where g(∆1,∆2) is defined in (412), and (432) follows from

(413) and a Taylor series expansion of Q−1 (·). Using (412)

and (1 − x)M ≤ e−Mx to weaken the right side of (207)

and expressing the resulting probability in terms of i.i.d.

random variables Z1, . . . , Zn with common distribution (416),

we conclude that the excess-distortion probability is upper

bounded by (recall notation (425))

E

[

e
− C√

n
exp{logM−Gn}

]

≤ P

[

n
∑

i=1

Zi ≥ nE [Z] + nbn

]

+ P

[

n
∑

i=1

Zi ≤ nE [Z]− nb

]

+ E

[

e
− C√

n
exp{logM−Gn}1

{

nb <

n
∑

i=1

Zi − nE [Z] < nbn

}]

(433)

≤ ǫn +
Bn√
n
+

Bn√
n
+

√

V (d)

2πn

1

b̄
e−n b̄2

2V (d) +
1√
n

(434)

= ǫ (435)

where the probabilities are upper bounded by the Berry-Esseen

inequality (95) and (330), and the expectation is bounded using

the fact that in b < a1∆1 + a2∆2 < bn, the minimum differ-

ence between logM and n g(∆1,∆2) is 1
2 logn+log

(

loge n
2C

)

.

Finally, (435) is just (430).
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Using Theorem 37, we show that R(n, d, ǫ) does not exceed

the right-hand side of (234) with the remainder satisfying

(236). Since the excess-distortion probability in (221) depends

on σ2 only through the ratio d
σ2 , for simplicity we let σ2 = 1.

Using inequality (1 − x)M ≤ e−Mx, the right side of (221)

can be upper bounded by
∫ ∞

0

e−ρ(n,z) exp(nR)fχ2
n
(nz)n dz, (436)

From Stirling’s approximation for the Gamma function

Γ (x) =

√

2π

x

(x

e

)x
(

1 +O

(

1

x

))

(437)

it follows that

Γ
(

n
2 + 1

)

√
πnΓ

(

n−1
2 + 1

) =
1√
2πn

(

1 +O

(

1

n

))

, (438)

which is clearly lower bounded by 1
2
√
πn

when n is large

enough. This implies that for all a2 ≤ z ≤ b2 and all n large

enough

ρ(n, z) ≥ 1

2
√
πn

exp
{

(n− 1) log (1− g(z))
1
2

}

(439)

where

g(z) =
(1 + z − 2d)2

4 (1− d) z
(440)

It is easy to check that g(z) attains its global minimum at z =
[1− 2d]+ and is monotonically increasing for z > [1− 2d]+.

Let

bn =

√

2

n
Q−1 (ǫn) (441)

ǫn = ǫ− 2Bn√
n

− 1√
n
− 1

4d
√
πn

e−2d2n (442)

R = −1

2
log (1− g(1 + bn)) +

1

2

logn

n
+

1

n
log
(√

π loge n
)

(443)

where Bn = 12
√
2. Using a Taylor series expansion, it is not

hard to check that R in (443) can be written as the right side

of (234). So, the theorem will be proven if we show that with

R in (443), (436) is upper bounded by ǫ for n sufficiently

large.

Toward this end, we split the integral in (436) into three

integrals and upper bound each separately:

∫ ∞

0

=

∫ [1−2d]+

0

+

∫ 1+bn

[1−2d]+
+

∫ ∞

1+bn

(444)

The first and the third integrals can be upper bounded using

the Berry-Esseen inequality (95) and (330):

∫ [1−2d]+

0

≤ P

[

n
∑

i=1

X2
i < n(1− 2d)

]

(445)

≤ Bn√
n
+

1

4d
√
πn

e−2d2n (446)

∫ ∞

1+bn

≤ P

[

n
∑

i=1

X2
i > n(1 + bn)

]

(447)

≤ ǫn +
Bn√
n

(448)

Finally, the second integral is upper bounded by 1√
n

because

by the monotonicity of g(z),

e−ρ(n,z) exp(nR) ≤ e
− 1

2
√

πn
exp{ 1

2 logn+log(
√
π loge n)} (449)

=
1√
n

(450)

for all [1− 2d]+ ≤ z ≤ 1 + bn.
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