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Abstract—This paper shows new finite-blocklength converse
bounds applicable to lossy source coding as well as joint source-
channel coding, which are tight enough not only to prove the
strong converse, but to find the rate-dispersion functions in both
setups. In order to state the converses, we introduce the d-tilted
information, a random variable whose expectation and variance
(with respect to the source) are equal to the rate-distortion and
rate-dispersion functions, respectively.

Index Terms—Converse, finite blocklength regime, joint
source-channel coding, lossy source coding, memoryless sources,
rate-distortion theory, Shannon theory.

I. INTRODUCTION

The fundamental problem in non-asymptotic rate-distortion
theory is to estimate the minimum achievable source coding
rate at any given blocklength k compatible with allowable
distortion d. Similarly, in joint source-channel coding, channel
blocklength n and distortion d are fixed, and one is interested
in the maximum number of source samples k per channel
block. While in certain special cases these non-asymptotic
fundamental limits can be calculated precisely, in general no
such formulas exist. Fortunately, non-asymptotic computable
upper and lower bounds to the optimum code size can be
obtained. This paper deals with converse, or impossibility,
bounds that the rate of all codes sustaining a given fidelity
level must satisfy.

The rest of the paper is organized as follows. Section II
introduces the notion of d-tilted information. Sections III and
IV focus on source coding and joint source-channel coding,
respectively, while Section V discusses and generalizes the
results of Sections III and IV. Section VI investigates the
asymptotic analysis of the new converse bounds. Section VII
considers lossy compression with side information at both
compressor and decompressor.

II. d-TILTED INFORMATION

Denote by

ıS;Z(s; z) = log
dPZ|S=s(z)

dPZ(z)
(1)

the information density of the joint distribution PSZ at (s, z) ∈
M × M̂. We can define the right side of (1) for a given
(PZ|S , PZ) even if there is no PS such that the marginal of
PSPZ|S is PZ . We use the same notation ıS;Z for that more
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general function. Further, for a discrete random variable S, the
information in outcome s is denoted by

ıS(s) = log
1

PS(s)
(2)

Under appropriate conditions [1], the number of bits that
it takes to represent s divided by ıS(s) converges to 1 as
these quantities go to infinity. Note that if S is discrete, then
ıS;S(s; s) = ıS(s).

For a given PS and a distortion measure d : M × M̂ �→
[0,+∞], denote

RS(d) = inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) (3)

We impose the following basic restrictions on the source and
the distortion measure:
(a) RS(d) is finite for some d, i.e. dmin < ∞, where

dmin = inf {d : RS(d) < ∞} (4)

(b) The infimum in (3) is achieved by a unique PZ�|S , and
the distortion measure is finite-valued.1

The counterpart of (2) in lossy data compression, which in
a certain (asymptotic) sense corresponds to the number of bits
one needs to spend to encode s within distortion d, is the
following.

Definition 1 (d−tilted information). For d > dmin, the d-tilted
information in s is defined as

S(s, d) = log
1

E [exp {λ�d− λ�d(s, Z�)}] (5)

where the expectation is with respect to the unconditional
distribution of Z�, and

λ� = −R
′
S(d) (6)

A general proof of the following properties can be found
using [2, Lemma 1.4].

Property 1. For PZ� -almost every z,

S(s, d) = ıS;Z�(s; z) + λ�d(s, z)− λ�d (7)

hence the name we adopted in Definition 1.

Property 2.
RS(d) = E [S(S, d)] (8)

Property 3. For all z ∈ M̂,

E [exp {S(S, d) + λ�d− λ�d(S, z)}] ≤ 1 (9)

1Restriction (b) is imposed for clarity of presentation. We will show in
Section V that it can be dispensed with.



with equality for PZ� -almost every z.

Remark 1. Using Property 1, it is easy to show that restriction
(b) guarantees differentiability of RS(d), thus (6) is well
defined. Indeed, assume by contradiction that RS(d) has two
tangents at point d with slopes −λ1 �= −λ2. Writing S,1(s, d)
and S,2(s, d) for the corresponding d-tilted informations in
(5), we invoke (7) to write

ıS;Z�(s, z) = S,1(s, d) + λ1d(s, z)− λ1d (10)

= S,2(s, d) + λ2d(s, z)− λ2d (11)

which implies that d(s, z) does not depend on z. But that
means, via (7), that ıS;Z�(s; z) does not depend on z, which
leads to PS|Z� = PS , or RS(d) = 0. Thus RS(d) can be
non-differentiable only at the point where it vanishes.

Remark 2. While Definition 1 does not cover the case d =
dmin, for discrete random variables with d(s, z) = 1 {s �= z}
it is natural to define 0-tilted information as

S(s, 0) = ıS(s) (12)

Example 1. Consider the stationary binary memoryless source
(BMS) with PS(1) = p ≤ PS(0) and bit error rate distor-
tion, d(sk, zk) = 1

k

∑k
i=1 1 {si �= zi}. It is well known that

PS|Z�(1|0) = PS|Z�(0|1) = d, and a simple calculation using
(7) and λ� = k log 1−d

d yields, for 0 ≤ d < p,

Sk(sk, d) =

k∑
i=1

ıS(si)− kh(d) (13)

= w log
1

p
+ (k − w) log

1

1− p
− kh(d) (14)

where w is the number of ones in sk, and Sk(sk, d) = 0 if
d ≥ p.

Example 2. For the stationary Gaussian memoryless source
(GMS) with variance σ2 and mean-square error distortion,2

Sk(sk, d) =
k

2
log

σ2

d
+

( |sk|2
σ2

− k

)
log e

2
(15)

if 0 < d < σ2, and 0 if d ≥ σ2.

The distortion d-ball around s is denoted by

Bd(s) = {z ∈ M̂ : d(s, z) ≤ d} (16)

The d-tilted information is closely related to the (uncondi-
tional) probability that Z � falls within distortion d from S.
Indeed, since λ� > 0, for an arbitrary PZ we have by Markov’s
inequality,

PZ(Bd(s)) = P [d(s, Z) ≤ d] (17)

≤ E [exp {λ�d− λ�d(s, Z)}] (18)

where the probability measure is generated by the uncondi-
tional distribution of Z . Thus

log
1

PZ�(Bd(s))
≥ S(s, d) (19)

The “lossy AEP” [3] guarantees that under certain regularity
conditions equality in (19) can be closely approached.

2We denote the Euclidean norm by | · |, i.e. |sn|2 = s21 + . . .+ s2n.

III. LOSSY SOURCE CODING

In fixed-length lossy compression, the output of a general
source with alphabet M and source distribution PS is mapped
to one of the M codewords from the reproduction alphabet
M̂. A lossy code is a (possibly randomized) pair of mappings
f : M �→ {1, . . . ,M} and c : {1, . . . ,M} �→ M̂.

Let us introduce the following operational definition.

Definition 2. An (M,d, ε) code for {M, M̂, PS , d} is a
code with |f| = M such that P [d (S, c(f(S))) > d] ≤ ε.

Note that in the conventional fixed-to-fixed (or block) setting
M and M̂ are the k−fold Cartesian products of alphabets S
and Ŝ , and an (M,d, ε) code for such a setting is called an
(k,M, d, ε) code. We are now ready to state our nonasymptotic
converse bound for lossy compression.

Theorem 1 (Converse, source coding). Fix d > dmin. Any
(M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{P [S(S, d) ≥ logM + γ]− exp(−γ)} (20)

Proof: Let the compressor and the decompressor be the
random transformations PU|S and PZ|U , respectively, where
U takes values in {1, . . . ,M}. Let QU be equiprobable
on {1, . . . ,M}, and let Z̄ be independent of S, with its
distribution equal to the marginal of PZ|UQU . We have, for
any γ ≥ 0

P [S(S, d) ≥ logM + γ] (21)

= P [S(S, d) ≥ logM + γ, d(S,Z) > d]

+ P [S(S, d) ≥ logM + γ, d(S,Z) ≤ d] (22)

≤ ε + P [M ≤ exp (S(S, d) − γ) , d(S,Z) ≤ d] (23)

= ε + P [M ≤ exp (S(S, d) − γ) 1 {d(S,Z) ≤ d}] (24)

≤ ε +
exp (−γ)

M
E [exp (S(S, d)) 1 {d(S,Z) ≤ d}] (25)

≤ ε +
exp (−γ)

M
E [exp (S(S, d) + λ�d− λ�d(S,Z))] (26)

= ε +
exp (−γ)

M
E

[ M∑
u=1

PU|S(u|S)

· E [exp (S(S, d) + λ�d− λ�d(S,Z)) |U = u, S]

]
(27)

≤ ε + exp (−γ)E

[ M∑
u=1

1

M

· E [exp (S(S, d) + λ�d− λ�d(S,Z)) |U = u, S]

]
(28)

= ε + exp (−γ)E
[
exp

(
S(S, d) + λ�d− λ�d(S, Z̄)

)]
(29)

≤ ε + exp (−γ) (30)

where

• (25) is by Markov’s inequality,
• (28) uses PU|S(u|s) ≤ 1,
• (29) is by the definition of Z̄,
• (30) uses (9) averaged with respect to PZ̄ .



For lossy compression of a binary source with bit error rate
distortion, a simple particularization of Theorem 1 using (14)
leads to the following easily computable bound.

Corollary 1 (Converse, source coding, BMS). Consider a
BMS with bias p and bit error rate distortion measure. Fix
0 ≤ d < p, 0 < ε < 1. For any (k,M, d, ε) code,

ε ≥ sup
γ≥0

{P [gk(W ) ≥ logM + γ]− exp (−γ)} (31)

gk(w) = w log
1

p
+ (k − w) log

1

1− p
− kh(d) (32)

where W is binomial with success probability p and k degrees
of freedom.

Similarly, the particularization of Theorem 1 to the Gaussian
case using (15) yields the following result.

Corollary 2 (Converse, source coding, GMS). Consider a
GMS with variance σ2 and mean-square error distortion. Fix
0 < d < σ2 and 0 < ε < 1. For any (k,M, d, ε) code,

ε ≥ sup
γ≥0

{P [gk(W ) ≥ logM + γ]− exp(−γ)} (33)

gk(w) =
k

2
log

σ2

d
+

w − k

2
log e (34)

where W ∼ χk
2 (i.e. chi square distributed with k degrees of

freedom).

IV. LOSSY JOINT SOURCE-CHANNEL CODING

A lossy source-channel code is a (possibly randomized) pair
of mappings f : M �→ X and c : Y �→ M̂, where X and Y are
the channel input and output alphabets, respectively.

Definition 3. A (d, ε) code for {M, X , Y, M̂, PS , PY |X ,
d} is a source-channel code with P [d (S, c(Y )) > d] ≤ ε
where f(S) = X .

The special case d = 0 and d(s, z) = 1 {s �= z} corre-
sponds to almost-lossless compression. If, in addition, PS is
equiprobable on an alphabet of cardinality M , a (0, ε) code in
Definition 3 corresponds to an (M, ε) channel code (defined in
[4]). On the other hand, if the channel is an identity mapping
on an alphabet of cardinality M , a (d, ε) code in Definition 3
corresponds to an (M,d, ε) lossy code (Definition 2).

In the conventional block setting X and Y are the n−fold
Cartesian products of alphabets A and B, M and M̂ are the
k−fold Cartesian products of alphabets S and Ŝ, and a (d, ε)
code for such a setting is called a (k, n, d, ε) code.

Theorem 1 can be generalized to the joint source-channel
coding setup as follows.

Theorem 2 (Converse, joint source-channel coding). Fix d >
dmin. Any (d, ε) code for source S and channel PY |X must

satisfy

ε ≥ inf
PX|S

sup
γ>0

{
sup
PȲ

P
[
S(S, d)− ıX;Ȳ (X ;Y ) ≥ γ

]
− exp (−γ)

}
(35)

≥ sup
γ>0

{
sup
PȲ

E

[
inf
x∈X

P
[
S(S, d) − ıX;Ȳ (x;Y ) ≥ γ | S]]

− exp (−γ)

}
(36)

where in (35), S−X−Y , and in (36), the probability measure
is generated by PSPY |X=x, and

ıX;Ȳ (x; y) = log
dPY |X(y|x)
dPȲ (y)

(37)

Proof: The encoder and the decoder are the random
transformations PX|S and PZ|Y , respectively. Fix an arbitrary
PȲ on Y . Let Z̄ be independent of all other random variables,
with distribution dPZ̄(z) =

∫
dPZ|Y =y(z)dPȲ (y). We have,

P
[
S(S, d) − ıX;Ȳ (X,Y ) ≥ γ

]
≤ ε+ P

[
exp(ıX;Ȳ (X,Y )) ≤

exp (S(S, d)− γ) 1 {d(S,Z) ≤ d}
]

(38)

≤ ε+ exp (−γ)E
[
exp (S(S, d)) 1

{
d(S, Z̄) ≤ d

}]
(39)

≤ ε+ exp (−γ)E
[
exp

(
S(S, d) + λ�d− λ�d(S, Z̄)

)]
(40)

≤ ε+ exp (−γ) (41)

where (38) is obtained in the same way as going from (21)
to (24), (39) is by the change of measure argument, and (41)
is due to (9). Optimizing over γ > 0 and P Ȳ to obtain the
best possible bound for a given PX|S , then choosing PX|S
that gives the weakest bound, the code-independent converse
(35) follows. To show (36), we first weaken (35) as,

ε ≥ sup
γ>0

{
sup
PȲ

inf
PX|S

P
[
S(S, d) − ıX;Ȳ (X ;Y ) ≥ γ

]
− exp (−γ)

}
(42)

and then observe that for any P Ȳ ,

inf
PX|S

P
[
S(S, d) − ıX;Ȳ (X ;Y ) ≥ γ

]
= E

[
inf
x∈X

P
[
S(S, d)− ıX;Ȳ (x;Y ) ≥ γ | S]] (43)

V. THEOREMS 1 AND 2: DISCUSSION

A. Block coding

In the conventional block coding setting, fixing any three
parameters in the quartet (k,M, d, ε) (in source coding) or
(k, n, d, ε) (in source-channel coding), Theorems 1 and 2 can
be used to compute converse bounds on the fourth parameter.



In addition, fixing the rate and d and letting the blocklength
go to infinity, one can use Theorems 1 and 2 to obtain strong
converses in their respective setups (Section VI-A). In the
practically relevant setting in which design parameters d and
ε are fixed, a simple Gaussian approximation to the optimum
finite blocklenghth coding rate can be obtained via the analysis
of the bounds in Theorems 1 and 2 using the Berry-Esseen
Central Limit Theorem (Section VI-B).

B. Almost lossless data compression and transmission

Using (12), it is easy to check that both Theorem 1 and
Theorem 2 still hold in the almost-lossless case, which corre-
sponds to d = 0 and d(s, z) = 1 {s �= z}. In fact, Theorem
1 gives a pleasing generalization of the almost-lossless data
compression converse bound [5], [6, Lemma 1.3.2]:

ε ≥ sup
γ≥0

{P [ıS(S) ≥ logM + γ]− exp(−γ)} (44)

Similarly, applying Theorem 2 to the almost-lossless source-
channel coding setup, we conclude that any joint source-
channel code with error probability not exceeding ε must
satisfy (36) with S(S, d) replaced by ıS(S), which can be
regarded as a generalization of Wolfowitz’s converse [7] to
nonequiprobable source outputs [5].

C. Theorem 2 implies Theorem 1

Theorem 1 can be viewed as a particular case of the result in
Theorem 2. Indeed, if X = Y = {1, . . . ,M}, PY |X(m|m) =
1, PȲ (1) = . . . = PȲ (M) = 1

M , then ıX;Ȳ (x;Y ) = logM
a.s. regardless of x ∈ X , and (36) leads to (20).

D. Channels with input cost constraints

If the channel has input cost constraints, Theorem 2 still
holds with the entire channel input alphabet X replaced by
the subset of allowable channel inputs F , where F ⊆ X .

E. Theorems 1 and 2 still hold even if condition (b) fails

Even if the rate-distortion function is not achieved by any
output distribution, the definition of d−tilted information can
be extended appropriately, so that Theorems 1 and 2 still hold.

Instead of imposing restriction (b) of Section II, we require
that the following condition holds.
(b′) The distortion measure is such that there exists a finite

set G ⊆ M̂ such that

E

[
min
z∈G

d(S, z)

]
< ∞ (45)

Then the rate-distortion function admits the following gen-
eral representation due to Csiszár [2].

Theorem 3 (Alternative representation of R(d) [2]). Under
the basic restrictions (a), (b′), for each d > dmin, it holds that

RS(d) = max
α(s), λ

{E [α(S)]− λd} (46)

where the maximization is over α(s) ≥ 0 and λ ≥ 0 satisfying
the constraint

E [exp {α(S)− λd(S, z)}] ≤ 1 ∀z ∈ M̂ (47)

Let (α�(s), λ�) achieve the maximum in (9) for some d >
dmin, and define the d−tilted information in s by

S(s, d) = α�(s)− λ�d (48)

Note that (9), the only property of d−tilted information we
used in the proof of Theorems 1 and 2, still holds due to (47),
thus both theorems remain true.

VI. ASYMPTOTIC ANALYSIS

In addition to the basic conditions (a), (b) of Section II, in
this section we impose the following restrictions.

(i) The source is stationary and memoryless,
PSk = PS × . . .× PS.

(ii) The distortion measure is separable,
d(sk, zk) = 1

k

∑k
i=1 d(si, zi).

(iii) The distortion level satisfies d > dmin, where dmin is
defined in (4).

(iv) The supremum supPX
I(X;Y) is attained by a unique

PX� .
(v) The channel is stationary and memoryless, PY n|Xn =

PY|X × . . . × PY|X, either discrete with finite input
alphabet, or Gaussian with a maximal power constraint.

A. Strong converses

The strong converse for source coding on a general alphabet
under a distortion constraint was previously obtained in [8].
In joint source-channel coding, if the source and the channel
are both discrete or both Gaussian, strong converses can be
obtained via the error exponent results in [9], [10], however
no strong converses as general as that in [8] are known for
joint source-channel coding. As we show next, Theorems 1
and 2 lead to very general strong converses in their respective
setups.

Due to (i) and (ii), P �
Zk = P �

Z × . . .×P �
Z , and the d−tilted

information single-letterizes, that is, for a.e. sk,

Sk(sk, d) =

k∑
i=1

S(si, d) (49)

In the lossy compression setup, weakening (20) by choosing
γ = kτ for some fixed τ > 0 and choosing logM = kR(d)−
2γ, we obtain

ε ≥
{
P

[
k∑

i=1

S(Si, d) ≥ kR(d)− kτ

]
− exp(−kτ)

}
(50)

Using (8), we conclude that the right side of (50) tends to 1
as k increases by the law of large numbers.

In the joint source-channel coding setup, we choose γ
as above, choose PȲ = PY� , where PY� is the channel
output distribution generated by the capacity-achieving input
distribution PX� , let PY n = PY� × . . .× PY� , and for each n,



choose k so that kR(d) = nC + 3γ. Then, (36) weakens to

ε

≥ E


 inf
xn∈An

P


 k∑

i=1

S(Si, d)−
n∑

j=1

ıX;Y�(xi;Yi) ≥ kτ | Sk






− exp (−kτ) (51)

≥ inf
xn∈An

P


 n∑
j=1

ıX;Y�(xi;Yi) ≤ nC + kτ




· P
[

k∑
i=1

S(Si, d) ≥ nC + 2kτ

]
− exp (−kτ) (52)

Recalling (8) and E [ıX;Y�(x,Y)|X = x] ≤ C with equality for
PX� -a.e. x, we conclude using the law of large numbers that
the right side of (52) tends to 1 as k, n → ∞ for a fixed ratio
k
n > C

R(d) .

B. Gaussian approximation analysis

In addition to restrictions (i)-(v), we assume that the fol-
lowing holds.
(vi) The excess-distortion probability satisfies 0 < ε < 1.
(vii) The random variable S(S, d) has finite absolute third

moment.

Theorem 4 (Gaussian approximation, source coding). Under
restrictions (i)–(iii), (vi)–(vii), any (k,M, d, ε) code satisfies

logM ≥ kR(d) +
√
kV(d)Q−1 (ε)− 1

2
log k +O (1) (53)

where V(d) is the source rate-dispersion function [11] given
by

V(d) = Var [S(S, d)] (54)

Proof: Consider the case V(d) > 0, so that

B = 6
E

[
|S(S, d)−R(d)|3

]
[Var [S(S, d)]]

3
2

(55)

is finite according to restriction (vii), and Berry-Esseen bound
[12, Ch. XVI.5 Theorem 2] applies to

∑k
i=1 S(Si, d). Let

γ = 1
2 log k in (20), and choose

logM = kR(d) +
√
kV(d)Q−1 (εk)− γ (56)

εk = ε+ exp(−γ) +
B√
k

(57)

so that logM can be written as the right side of (53).
Substituting (49) and (56) in (20), we conclude that for any
(M,d, ε′) code it must hold that

ε′ ≥ P

[
k∑

i=1

S(Si, d) ≥ kR(d) +
√
kV(d)Q−1 (εk)

]

− exp(−γ) (58)

The proof for V(d) > 0 is complete upon noting that the right
side of (58) is lower bounded by ε by the Berry-Esseen bound
in view of (57).

If V(d) = 0, it follows that S(S, d) = R(d) almost surely.
Choosing γ = log 1

1−ε and logM = kR(d) − γ in (20) it is
obvious that ε′ ≥ ε.

Using Theorem 2, the following generalization of Theorem
4 can be shown for joint source-channel coding.

Theorem 5 (Gaussian approximation, joint source-channel
coding). Under restrictions (i)–(vii), any (k, n, d, ε) code must
satisfy

nC − kR(d) ≥
√
nV + kV(d)Q−1 (ε) +O (log(n+ k))

(59)
where V is the channel dispersion [4] given by

V = Var [ıX�;Y�(X�;Y�)] (60)

and V(d) is the source dispersion given by (54).

Matching achievability results can be proven [11], [13]
ensuring that the reverse inequalities in (53) and (59) also
hold (up to the O (log k) term).

VII. LOSSY SOURCE CODING WITH SIDE INFORMATION

The results of Sections III and VI can be easily generalized
to a setting in which both the compressor and the decom-
pressor have access to side information Y ∈ Y which is
statistically dependent on the source outcome S ∈ M. A
lossy code with side information at the compressor and the
decompressor is a (possibly randomized) pair of mappings
f : M×Y �→ {1, . . . ,M} and c : {1, . . . ,M} × Y �→ M̂.

Definition 4. An (M,d, ε) code for {M, Y, M̂, PSY , d} is a
code with |f| = M such that P [d (S, c(f(S, Y ), Y )) > d] ≤ ε.

The notion of tilted information introduced in Section II is
easily generalized when side information is available at the
compressor and the decompressor. In parallel with (1), (2),
denote

ıS;Z|Y (s; z|y) = log
dPSZ|Y =y

d(PS|Y =y × PZ|Y=y)
(s, z) (61)

ıS|Y (s|y) = log
1

PS|Y =y(s)
(62)

For a given PSY and a distortion measure d : M × M̂ �→
[0,+∞], denote

RS|Y (d) = inf
PZ|S,Y : M×Y�→M̂

E[d(S,Z)]≤d

I(S;Z|Y ) (63)

Under the same basic restrictions (a) and (b) in Section
II (replacing RS(d) by RS|Y (d) and PZ�|S by PZ�|SY ),
Definition 1 is generalized as follows.

Definition 5 (d−tilted information with side information). For
d > dmin, the d-tilted information in s with side information
y at the compressor and the decompressor is defined as

S|Y (s, d|y) = log
1

E [exp {λ�d− λ�d(s, Z�)} | Y = y]
(64)



where the expectation is with respect to PZ�|Y=y , and

λ� = −R
′
S|Y (d) (65)

The counterparts of Properties 1–3 in Section II are stated
below.

Property 1. For PZ�|Y=y-almost every z,

S|Y (s, d|y) = ıS;Z�|Y (s; z|y) + λ�d(s, z)− λ�d (66)

Property 2. RS|Y (d) = E
[
S|Y (S, d|Y )

]
Property 3. For any PZ|Y where S − Y − Z ,

E
[
exp

{
λ�d− λ�d(S,Z) + S|Y (S, d|Y )

}] ≤ 1 (67)

In parallel with (12), for discrete random variables with
d(s, z) = 1 {s �= z} we define 0-tilted information with side
information at the decompressor as

S|Y (s, 0|y) = ıS|Y (s|y) (68)

In the following stationary memoryless examples, PSk = PS×
. . .× PS and PY k = PY × . . .× PY.

Example 3. If S and Y are binary equiprobable with bit error
rate distortion and P [S = 1|Y = 0] = P [S = 0|Y = 1] = p,
then

Sk|Y k(sk, d|yk) = ıSk|Y k(sk|yk)− kh(d) (69)

if 0 ≤ d < min(p, 1− p), and 0 if d ≥ min(p, 1− p).

Example 4. Let S and Y are zero-mean jointly Gaussian with
variances σ2

S and σ2
Y and correlation coefficient −1 < ρ < 1.

Denoting the variance of S conditioned on Y by
σ2
S|Y = σ2

S(1− ρ2), we have

Sk|Y k(sk, d|yk) = k

2
log

σ2
S|Y
d

+

(
|xk − ρ σS

σY
yk|2

σ2
S|Y

− k

)
log e

2

(70)
if 0 < d < σ2

S|Y, and 0 if d ≥ σ2
S|Y .

We now state the counterpart of Theorem 1.

Theorem 6 (Converse, source coding with side information).
Fix d > dmin. Any (M,d, ε) code must satisfy

ε ≥ sup
γ≥0

{
P
[
S|Y (S, d|Y ) ≥ logM + γ

]− exp(−γ)
}

(71)

Proof: Let the encoder and the decoder be transformations
PU|SY and PZ|UY , where U takes values in {1, . . . ,M}. Let
Ū be equiprobable on {1, . . . ,M} independent of all other
random variables, and let Z̄ be such that S−Y − Z̄ and PZ̄|Y
is the marginal of PŪPZ|UY . We have, for any γ ≥ 0

P
[
S|Y (S, d|Y ) ≥ logM + γ

]
≤ ε +

exp (−γ)

M
E

[ M∑
u=1

PU|SY (u|S, Y )

· E [exp (S|Y (S, d|Y )
)
1 {d(S,Z) ≤ d} | S, Y ] ] (72)

≤ ε + exp (−γ)E
[
exp

(
S|Y (S, d|Y ) + λ�d− d(S, Z̄)

)]
(73)

= ε + exp (−γ) (74)

where (72) is obtained in the same way as going from (21) to
(27), (73) is by PU|SY (u, s, y) ≤ 1 and the definition of Z̄,
and (74) uses (67).

Similar to Theorems 1 and 2, with the substitution in (68),
Theorem 6 also applies to almost-lossless data compression
(i.e. d = 0 and d(s, z) = 1 {s �= z}). In addition, Theorem 6
leads to a strong converse and a counterpart of Theorem 4 for
source coding with side information.

VIII. CONCLUSION

Using the representation of the solution to the rate-distortion
minimization problem (3) via the so-called d-tilted informa-
tion, we have shown nonasymptotic general converse bounds
for source coding (Theorem 1), joint source-channel coding
(Theorem 2) and source coding with side information (Theo-
rem 6). The new bounds are tight enough not only to show the
strong converse, but to find the corresponding rate-dispersion
functions once coupled with the achievability bounds in [11],
[13].
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