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Abstract

We compare behavior in six variations of prisoners’ dilemma and stag hunt games played

by 5-member teams to behavior in the same games played by individuals. The experimental

design is informed by a theory of team equilibrium that generates hypotheses about sys-

tematic differences between teams and individuals in these games. We also compare three

different team collective choice procedures: majority rule; majority rule preceded by a poll;

and majority rule preceded by chat. In all six games, we observe significant bandwagon

effects that drive consensus in the poll and chat treatments, but voting procedures have

no significant effects on team decision frequencies except for the poll treatment of the stag

hunt games. Surprisingly, teams do not always defect more than individuals. In prisoners’

dilemma games with higher incentives to cooperate, teams cooperate more than individuals.

A one-parameter logit specification of the team equilibrium model provides a good fit to

the prisoners’ dilemma data across all treatments. Teams coordinate more successfully than

individuals in the stag hunt games. Additional data are gathered using Amazon Mechanical

Turk, including data for much larger (25-member) teams. The observed MTurk behavior

differs quantitatively from laboratory behavior, but with similar qualitative comparative

statics.
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1 Introduction

In many, if not most, strategic situations that are studied in economics, the interacting

parties, “players” in game-theoretic language, are actually groups of individuals - what

we refer to here as teams. Prominent examples include models of international con-

flict where the players are nation-states, models of oligopoly and imperfect competition

where the players are firms, and bargaining models where the objective is to understand

strategic interactions between unions and management or political parties. In all of these

applications, the choice of strategy for each player in the game is itself the product of a

collective choice procedure to reach a team decision. Experimental economists and social

psychologists have recognized this fact and have conducted experiments in which games

are played between teams of individuals with identical payoffs, and each team uses a

collective decision-making procedure to decide on their strategy in the game. These ex-

periments have been, for the most part, purely exploratory and have sought to determine

whether there are systematic differences in observed behavior depending on whether the

strategy choices are made by teams or by individuals, and if so, what the nature of these

differences is.

The typical finding in these experiments is that teams act more rationally than individ-

uals (and this is also true in non-strategic choice tasks), and outcomes tend to be closer to

Nash equilibrium or best replies. This finding is not universal, but has been found in the

overwhelming majority of such experiments. We discuss some of this existing literature

in more detail in the next section.

There have been a number of qualitative explanations based on general psychological

principles, but there has been a dearth of formal models with which to study team games,

as implemented in these experiments, in rigorous analytical frameworks. As a first step

toward filling this gap, Kim et al. (2021) propose a framework, team equilibrium, that

combines the formal elements of noncooperative game theory to capture the strategic

interaction between teams with a general social choice theoretic framework to model the

team collective choice procedure within teams to decide on a strategy. The framework is

developed in sufficient generality such that it can be applied to any finite game in strategic

or extensive form and can incorporate a broad range of collective choice procedures.

A key element of the team equilibrium framework in Kim et al. (2021) is that members

of the same team are heterogeneous in their expectations about the expected payoff of each

available strategy, but these expectations are, on average, equal to equilibrium expected
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payoffs of the underlying game. Each team then uses a collective choice rule to aggregate

the members’ diverse expectations and implement a strategy. Disagreements between

team members about which strategy is better can be due to heterogeneity of beliefs

about the expected payoffs of the possible strategies or random payoff disturbances as in

quantal response equilibrium (McKelvey and Palfrey 1995, 1998) and in the same spirit

as Harsanyi (1973).1 Because of this heterogeneity, team choices are not deterministic.

In a strategic environment, this leads to equilibrium effects, in which the distribution of

strategy choices that emerge from one team’s choice procedure will affect other teams’

choices. A team equilibrium is then a mutually consistent distribution of strategy choices

for each team, taking into account the collective choice procedures of each team.

Two results that emerge from the framework are as follows: (1) for a wide class of

collective choice procedures, team equilibrium will closely approximate Nash equilibrium

if teams are sufficiently large; and (2) for many games, small teams will be further from

Nash equilibrium than individuals (i.e., single-member teams), as predicted by team equi-

librium.

These two results have different interpretations in terms of the existing findings from

laboratory experiments. On the one hand, the first result (Nash convergence) seems to

match up nicely with the typical experimental finding that games played by teams produce

outcomes that are closer to Nash equilibrium. On the other hand, Nash convergence is

a limiting theoretical result, while most experimental findings have been based on small

teams of two or three members. The second theoretical result suggests that it may have

only been by coincidence that the games played by teams in the laboratory happen to

also be games in which the behavior of even very small teams will theoretically be closer

to Nash equilibrium than with games played by individuals. The theory allows one to

identify specific games in which the nonmonotonicity results (2) are likely to be observed,

making it possible to design an experiment in which the “surprising” finding that teams

are further from Nash equilibrium is, at the same time, the “expected” finding in the

team equilibrium theoretical framework.

This paper compares choice behavior in six different 2× 2 games using majority rule

1Kim et al. (2021) refer to these disturbances as estimation errors, but note that equivalently, one can
assume that players have correct beliefs about the other team’s mixed strategy, but each member of the
team has a random idiosyncratic additive private payoff term associated with each of his or her team’s
strategies, and these idiosyncratic payoffs are distributed identically and independently. The theoretical
properties of the two alternative specifications of team equilibrium are identical. In this paper we adopt
the payoff disturbance interpretation.
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with 1-member, 5-member, and 25-member teams, including four variations of the pris-

oners’ dilemma game and two variations of the stag hunt coordination game. Some of the

games are designed so that team equilibrium behavior with 5-member teams is further

from the Nash equilibrium than with 1-member teams, and behavior with 25-member

teams is even further from the Nash equilibrium.2

In addition to comparing team and individual behaviors in these six games, we vary

the collective choice procedure used within each team to reach a decision about which

strategy to choose. The first procedure is simple majority rule (Majority). Each member

of the team simultaneously and independently casts a vote for one of the strategies and

the strategy with the majority of votes is chosen. The second procedure is similar to

the first, except that it is preceded by a straw vote (Poll). The result of the straw vote

is reported to all members, who then cast a final binding vote. The third procedure is

similar to the first, except that the vote is preceded by a discussion stage during which

the members can communicate with each other (Chat). In principle, the use of different

pre-play communication protocols can lead to significantly different behavior in collective

decision making, as has been observed in many past experiments with voting rules in

strategic environments.3

As the third element of our experimental design, we conduct an Amazon Mechanical

Turk (MTurk) experiment with much larger (25-member) teams, which was not feasi-

ble in the laboratory setting. We also include both the individual and 5-member team

treatments with MTurk to obtain a baseline comparison with the laboratory data. One

challenge with MTurk is to have multiple interactions among subjects and to give them

feedback about outcomes between interactions. To render the experimental design as

comparable as possible to the experimental design in the lab, we perform a longitudinal

experiment over five consecutive days.

We find systematic differences in behavior between the 1× 1 games, the 5× 5 games,

and the 25×25 games we study. For prisoners’ dilemma games, the incentives for defection

determine the direction of differences. In games with high incentives for defection, teams

defect more than individuals, but the opposite holds true in games with low incentives

for defection. This result is in sharp contrast to the results of previous experiments

that found that teams always defect more than individuals. In coordination games, teams

2In our team game equilibrium framework, the equilibrium with 1-member teams coincides with a
quantal response equilibrium of the game.

3See, for example, Guarnaschelli et al. (2000), Agranov and Tergiman (2014, 2019), Martinelli and
Palfrey (2020), Palfrey and Pogorelskiiy (2019), and Palfrey et al. (2017).
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successfully coordinate more frequently than individuals, and conditional on coordination,

teams coordinate more frequently on the payoff-dominant outcome than individuals.

Second, we find that the different collective choice procedures affect the voting de-

cisions of individual team members. Specifically, the presence of a straw poll or pre-

vote discussion leads to more one-sided votes, indicating the information aggregation and

consensus-formation roles of communication in the group. While these significantly affect

the distribution of vote margins, pre-play communication has little impact on the distribu-

tion of team action choices, except in coordination games. We also observe a bandwagon

effect in the poll treatment, according to which team members voting in the minority in

the straw poll are more likely to switch their votes than members voting in the majority

in the straw poll.

Third, we fit the data from the PD and WPD games to a logit specification of the team

equilibrium model by estimating a single logit precision parameter for all games and team

treatments.4 We find that the one-parameter logit specification of the team equilibrium

model fits the data well and matches the qualitative comparative statics for the row and

column players’ defection frequencies. An OLS regression of the fitted defect frequencies

on the observed defect frequencies produces an R2 = .69. In contrast the standard Nash

equilibrium model predicts no treatment effects, with 100% defection in all treatments of

all PD and WPD games for both the row and column players/teams.

Fourth, we find some difference in behavior between subjects in the MTurk experiment

and subjects in the laboratory sessions. While most of the qualitative comparisons across

games and across different team sizes are similar in the two environments, there are

some notable differences. For instance, in prisoners’ dilemma games, we observe more

cooperation in the MTurk experiment than in the lab. The effect is large in magnitude

and statistically significant and applies to both the 1-member and 5-member teams. A

second difference is that in coordination games, MTurk teams are more successful than

teams in the laboratory. Mturk teams are not only less likely to miscoordinate, but, in

addition, conditional on coordination they are more likely to coordinate on the payoff-

dominant outcome.

Fifth, we examine the comparative static predictions regarding the team size variable

using the MTurk data, which allows a comparison of 5-member and 25-member teams.

4The PD and WPD games have a unique team equilibrium for all values of the logit parameter. We
do not estimate the team equilibrium model for the SH games because there are multiple team equilibria
in both SH games.

4



For prisoners’ dilemma games, as subjects gain experience, teams in the 25 × 25 games

cooperate significantly more than teams in the 5 × 5 games. In coordination games, 25-

member teams coordinate more successfully than 5-member teams. In fact, in one of the

two coordination games, the observed coordination rate is 100% for 25× 25 games - and

always at the payoff-dominant equilibrium.

Section 2 provides an overview of previous experimental results concerning observed

behavioral differences between games played by teams of players and games played by

individuals. Section 3 presents the model of team games developed in Kim et al. (2021),

specialized to the case of two-by-two games. Section 4 presents the six games used in

the experiment and draws hypotheses based on the team equilibrium model. Section 5

describes the procedures in the laboratory experiment, with the results reported in Section

6. Section 7 describes the procedures and results of the MTurk experiment, and compares

those results with the laboratory experiment.

2 Related literature

The bulk of the evidence on differences between teams and individuals in PD games

comes from the social psychology literature, referred to as the “discontinuity” effect,

according to which teams defect more than individuals.5. Most of these experiments use

communication and consensus (a form of unanimity rule) to decide on a team decision.

For instance, Insko et al. (1988) and Wildschut et al. (2001) allowed three members in

a team three minutes of face-to-face communication to reach a final consensus to either

defect or cooperate. More recently, there were two economics experiments that studied

team behavior in a one-shot PD, but the questions addressed by and motivations for

these studies are different from ours. Subjects in Cason et al. (2019) played a single

PD game without repetition, with pairs of 3-member teams matched against each other,

where each team decided to cooperate or defect. Team decisions were made in three

stages: first, a poll; second a chat stage; and third, a binding majority vote. The main

focus was to investigate whether induced group identity would affect behavior in these

games. They showed successful coordination in a six-person coordination game played by

the two three-member teams can increase individuals’ concerns for the welfare of their

out-group and increase cooperation in the subsequent one-shot prisoner’s dilemma played

5This literature fairly extensive. See Kugler et al. (2012) and the references therein
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by the two three-member teams. Bauer et al. (2018) investigated PD game behavior

using a non-standard pool of subjects: adolescents aged 12-18 years old in Slovakia and

Uganda. Subjects were randomly assigned a team of three members and communicated

to reach a team consensus decision. Their findings were similar to those of the psychology

experiments.

There have been two studies of coordination games with teams. Behavior in team

coordination games was studied in Feri et al. (2010). Subjects were randomly assigned

a three-member team and five teams engaged in several different coordination games,

including weakest-link and average opinion games with 7 or 14 numerical action choices

using a two-round chat/unanimity voting rule. In each round, team members first chatted

and then each team member voted for a number. If all of the entered numbers by team

members were identical, this number became the team choice. If such unanimity failed

in both rounds, all of the team members earned zero payoff, and that team’s decision

was excluded from the 5-team coordination game. Each coordination game was repeated

20 times. The main finding was that teams were more likely to choose higher numbers

(which leads to more efficient outcomes) than individuals. They also had a treatment

using the median voting rule instead of unanimity, and they obtained similar results.

Charness and Jackson (2007) studied the effects of voting rules on 2-member team

behavior in a 2-player network formation game, with the same incentive structure as a

stag hunt game. Each player (team) could pay a cost to attempt to form a link with

the other player. A link was formed, yielding a bonus for both sides, if and only if both

players (teams) attempted to form a link. Thus, attempting to form a link is similar to

choosing stag, and not trying to form a link is similar to choosing hare. There was no

communication, and they compared two different unanimity rules within each team. In

the first, a team tried to form a link only if both members voted to try to form the link. In

the second, a team tried to form a link if at least one member voted in favor. The authors

found that individual subjects were more likely to vote in favor under the second voting

rule. Feri et al. (2010) also conducted a stag hunt game framed as a 2-number minimum

game but did not find significant differences between 3-person teams and individuals.

While most previous studies of team play in strategic games used a consensus rule

through communication for collective decision making, Gillet et al. (2009) is a notable

exception in which majority and unanimity voting rules were compared in a common

pool resource dilemma. They found that 3-member teams with majority rule behave

more competitively than individuals, while 3-member teams with unanimity do so only
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with repetition.6 There have been many other studies of team play in games using games

other than PD and coordination games.7 See Kim et al. (2021) and the survey paper by

Charness and Sutter (2012) for more details.

3 Team Equilibrium in 2× 2 Games

The experimental design, hypotheses, and analysis of results are closely linked to the

theory of team equilibrium in games (Kim et al. 2021). Therefore, we first describe the

theory of team equilibrium in this section, specialized to the case of 2 × 2 games with

equal-sized odd-numbered teams, where each team independently chooses a strategy by

majority rule voting.

3.1 Team equilibrium with majority rule

Let Γ = [A, , u] be a 2 × 2 game, where A = A1× A2 = {a11, a12} × {a21, a22} is the set of

strategy profiles and u = (u1, u2) are the payoff functions with ut : At → ℜ, t = 1, 2.

Each player in the team game associated with Γ = [A, , u] consists of a team, t, of an odd

number, n, of individual members.8 Each team t = 1, 2 chooses one of the two available

actions in At. Given a team action profile a = (a1, a2), all members of the same team, t,

receive the same payoff ut(a). Denote by σ1 the probability that team 1 chooses action a11,

and let σ2 the probability that team 2 chooses action a21 and denote the expected payoff to

team t from choosing action atk by U t
k(σ

−t) = σ−tut(atk, a
−t
1 ) + (1− σ−t)ut(atk, a

−t
2 ). Using

an approach similar to quantal response equilibrium, each member i of team t has an

additive random payoff disturbance. We denote the disturbed expected payoff to member

i to action atk if team −t uses mixed strategy σ−t by Ũ t
ik(

−t) = U t
k(

−t) + εtk where the

εtk’s are iid draws from a distribution with full support on the real line, and a continuous,

strictly increasing cdf. Because there are only two actions for each team, we simplify the

notation by letting εti = εti1 − εti2 equal the difference in disturbance terms for individual

6Blinder and Morgan (2005) found no difference between majority and unanimity rules in a 5-member
team monetary policy experiment without strategic interaction.

7For instance, Cason and Mui (1997) and Luhan et al. (2009) for dictator games, Sutter (2005),
Kocher and Sutter (2005), and Kocher et al. (2006) for beauty contest games, Ambrus et al. (2015)
for gift-giving games, Bornstein and Yaniv (1998) and Elbittar et al. (2011) for ultimatum games, Cox
(2002) and Kugler et al. (2007) for trust games, and Cooper and Kagel (2005) for limit-pricing games.

8We assume the two teams have equal size, since this is the case in our experiment. See Kim et al.
(2021) for the general model with different team sizes.
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i on team t and denote by H t the distribution of this difference, εti. Hence H t is strictly

positive and continuously differentiable on (−∞,∞) and symmetric around 0 ; i.e., for

all x ∈ ℜ, H t(x) = 1 − H t(−x) and F t(0) = 1
2
. Thus, given any mixed strategy σ, and

any team member i in team t, the difference in expected utility to member j of team t is:

∆Ũ t
i (σ) ≡ Ũ t

i1(σ)− Ũ t
i2(σ)̇ = U t

1(σ)− U t
2(σ) + εti.

The probability that a member of team t prefers action at1 to at2 is

ptn(σ
−t
n ) = Pr{∆Ũ t

i (σ
−t
n ) > 0}

= H(U t
1(σ

−t
n )− U t

2(σ
−t
n ))

where we call ptn the at1 vote probability for team t since a member of team t votes for at1

if ∆Ũ t
i (σ

−t
n ) > 0. Since the team collective choice rule is majority rule, the probability

team t chooses action at1 in response to σ−t, P t
n(σ

−t
n ), is equal to the probability that

|{i ∈ t|∆Ũ t
i (σ

−t
n ) > 0}| > n−1

2
, which is given by the cumulative binomial distribution:

P t
n(σ

−t
n ) =

n∑
j=n+1

2

(
n

j

)
ptn(σ

−t
n )j(1− ptn(σ

−t
n ))n−j.

These team response functions define a mapping from the set of team mixed strategy

profiles into itself, and any fixed point of this mapping is an equilibrium of the team

game. Formally:

Definition 1. Given a 2 × 2 team game under majority rule, Γ = [A, u, n,H] a Team

Equilibrium of Γ is a mixed strategy profile σ∗
n = (σ∗1

n , σ∗2
n ) such that σ∗t

n = P t
n(σ

∗−t
n ) for

t = 1, 2, with corresponding vote probabilities equal to p∗n = (p∗1n , p∗2n ) such that p∗tn (σ
∗−t
n ) =

Pr{∆Ũ t
i (σ

∗−t
n ) > 0} for t = 1, 2

It is straightforward to see that this definition reduces to regular quantal response equi-

librium of the underlying game if n = 1.9 The following two results about the properties

of team equilibrium were proved in Kim et al. (2021).10

9See Goeree et al. (2016, p. 19-20).
10In addition, Kim et al. (2021) proved that team response functions in 2 × 2 games under majority

rule satisfy the same properties of stochastic rationality as regular quantal response functions (payoff
responsiveness and rank dependence).
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Theorem 1. For any 2 × 2 team game under majority rule, Γ = [A, u, n,H], a Team

Equilibrium exists.

Theorem 2. Consider an infinite sequence of team games under majority rule, {Γm}∞m=1

such that (1) At
m = At = {at1, at2} for all m; (2) ut

m = ut for all m; (3) nm is odd for

all m; (4) nm+1 > nm for all m; and Hm = H for all m. Let {σ∗
m}∞m=1 be a sequence of

team equilibria where limm→∞ σ∗
m = σ∗. Then σ∗ is a Nash equilibrium of the underlying

strategic form game [A, u].

The second of these results only considers the limit when team sizes become arbitrarily

large.11 There is no general monotonicity property of convergence to Nash equilibrium.

Thus, for example, it is possible for small n that the team equilibrium of a game drifts

further away from Nash equilibrium as n increases, even though for large n all team

equilibria are approximate Nash equilibria. We provide some examples of this below,

which suggest that the typical findings in past experiments where games are played by

teams may be rather special and dependent on the specific choice of game parameters in

those experiments.

4 Experimental Design and Hypotheses

4.1 Games

The experiment was designed to compare behavior in several variations on prisoners’

dilemma and stag hunt games, played between individual players (1-player teams), to

behavior in the same games played between 5-player teams and 25-player teams. In the

canonical prisoners’ dilemma (PD) game, there is a unique strictly dominant strategy

equilibrium that yields an inefficient outcome, (Defect, Defect). We also study a modified

version of the prisoners’ dilemma game that is strictly dominance solvable in two steps.

One player has a strictly dominant strategy to defect, while the other player’s best reply to

defection is to defect and best reply to cooperation is to cooperate. Thus, these modified

prisoners’ dilemma games also have (Defect, Defect) as the unique rationalizable strategy

11For the case of two teams and two actions for each team, this resembles a form of the Condorcet
jury theorem, except there is strategic interaction across the two teams. Because heterogeneity within a
team is due to payoff disturbances, sincere voting for each team member is a weakly dominant strategy -
in contrast to the usual approach with heterogeneous information, where strategic voting considerations
can have an effect (Austen-Smith and Banks 1996).
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profile and strict pure strategy Nash equilibrium. We call these weak prisoners’ dilemma

(WPD) games.

Stag hunt (SH) games have two strict equal-payoff Pareto-ranked Nash equilibria, with

one relatively safe strategy with low coordination payoffs and one riskier strategy with

high coordination payoffs. Thus, all of the games we investigate here share a similar

properties in that there is an unambiguous, efficient and fair outcome, but they differ in

that players face the problem of cooperation in PD and WPD games and the problem of

coordination in SH games.

To check for robustness of our results and to test the comparative static predictions

of the theory, we include two payoff variations of each of the three classes of games. The

two PD games that we study differ in the gain from defection. There is a larger gain

from defection in PD1 than in PD2. The two WPD games have a similar difference.

In WPD1, the player with the dominant strategy to defect gains twice as much from

defection than in WPD2, and the second player (without a dominant strategy) also gains

twice as much in WPD1 by defecting in response to defection compared to WPD2. The

two SH games differ only in the payoffs from the safe strategy. In SH2 the safe strategy is

both riskier and has lower payoffs than in SH1. In both SH1 and SH2, playing safe is the

risk dominant equilibrium, while both playing the risky strategy is the payoff-dominant

equilibrium. The efficiency gain from playing the payoff-dominant equilibrium in SH2 is

more than three times greater than in SH1. The payoff matrices are displayed in Figure

1.

Figure 1: Payoff matrices for the games used in the experiment
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(a) PD1 (b) PD2

Figure 2: Team Equilibrium in PD games

4.2 Hypotheses

In this section, we propose hypotheses about behavior in the six games and how it depends

on the team sizes, 1:1, 5:5 and 25:25.12

4.2.1 Specific Hypotheses for the Prisoners’ Dilemma Games

Figure 2 compares the equilibria in the 1:1, 5:5, and 25:25 member team games for the

two PD games as a function of the precision of the distribution of payoff disturbances, λ.13

The precision is on the horizontal axis, and the team equilibrium probability of defection

is on the vertical axis.

In both games, the 5:5 team equilibrium defection rates are higher than the defection

rate in the 1:1 treatment played by individual players, and the 25:25 team equilibrium

defection rates are even higher. Second, for all values of λ > 0 the equilibrium defection

rate is higher in PD1 than in PD2 for both the 5:5 team games and the 1:1 individual

games, due to the stronger incentives to defect in PD1. These observations lead to the

following hypotheses for the two PD games.

Hypothesis 1. (a) For all team treatments and the 1:1 treatment, the rate of defection

will be higher in PD1 than in PD2. (b) For both PD games, teams will defect more

12For clarity we use the following terminology. “Team” refers to a team in the team treatments. For
individual voting behavior in the team treatments, we use the term “team member”. Subjects in the 1:1
treatment are called “individuals in the 1:1 treatment”.

13All figures in this section are created using a logistic distribution of the payof disturbances, H(x) =
1

1+e−.λx , and graphs the team equilibrium for precisions in the range of λ ∈ [0, .2].
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(a) WPD1 (b) WPD2

Figure 3: Team Equilibrium in WPD games

frequently than individuals in the 1:1 treatment, with 25-member teams defecting more

than 5-member teams.

4.2.2 Specific Hypotheses for the Weak Prisoners’ Dilemma Games

Figure 3 displays the equilibrium in the 1:1 games and 5:5 team games for the two WPD

games as a function of the precision of the distribution of payoff disturbances. The

equilibrium choice frequencies for row are represented by the lighter curves, with the

25:25 team equilibrium shown as the solid curve, the 5:5 team equilibrium shown as the

dotted curve and the 1:1 equilibrium shown as the dashed curve. The corresponding

darker curves display the column player’s team equilibrium choice frequencies.

The theory generates a number of comparative static predictions. As in the PD

games, the incentive to defect is stronger in WPD1 than in WPD2; hence, the equilibrium

defection rate is higher in WPD1 than in WPD2 for all team sizes, for both the row and

column player, and for all λ > 0.

This difference between WPD1 and WPD2 is particularly striking for the column

player, whose best reply depends on the probability of row defection. The equilibrium

defect probability for column is always greater than column’s cooperate probability in

WPD1, which is not the case in WPD2. For relatively low values of λ, the equilibrium

row defection probability is sufficiently close to 1
2
so that column’s best reply is to cooperate

in WPD2. Hence, for all three team treatments (25:25, 5:5, and 1:1), the model predicts

column’s equilibrium defect probability to be less than 1
2
. Hence, for these relatively

low values of λ, the theory predicts that equilibrium team behavior is further from Nash

12



(a) SH1 (b) SH2

Figure 4: Team Equilibrium converging to risk-dominant Nash equilibrium in the SH
games

equilibrium than individuals. In fact, 25:25 teams will defect even less than the smaller 5:5

teams.14 This is a reversal of the predictions for WPD1, PD1, and PD2. The qualitative

effect of team size on row defection frequencies goes in the same direction as in WPD1,

PD1, and PD2, with larger teams predicted to defect more than smaller teams.

For both games, there is also a comparison between equilibrium row and column

defection rates. For all team sizes and for both WPD1 and WPD2, row players are

predicted to defect more than column players, and this holds for all λ > 0.

Hypothesis 2. (a) For all team treatments and the 1:1 treatment and for both the row

and column players, the rate of defection will be higher in WPD1 than in WPD2. (b) In

WPD1, row and column defection rates are increasing with team size. (c) In WPD2, row

defection rates are increasing with team size, but column defection rates are decreasing

with team size for relatively low values of λ. (d) In both treatments (1:1 and 5:5) of both

games, row players/teams will defect more than column players/teams.

4.2.3 Specific Hypotheses for the Stag Hunt Games

Figure 4 displays the team equilibrium Stag frequencies that converge toward the risk-

dominant Nash equilibrium (H,H) for the 1:1 games (dashed curve), the 5:5 games (dotted

curve), and the 25:25 games (solid curve) for the two SH games as a function of the error

precision. As is clear from the figure, the probability of coordination increases with team

14These properties of team equilibrium for low values of λ are not special to the logit distribution of
payoff disturbances, and hold for all H functions.
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size along these curves for both games and for all λ > 0. There is also a second component

of the team equilibrium graph (not shown) corresponding to the payoff-dominant (S,S)

equilibrium that exists for sufficiently large values of λ. This second component converges

to the (S,S) equilibrium as λ goes to infinity, and the probability of coordinating on (S,S)

in the two SH games increases with team size on this component.

The intuition for the observation that larger teams are more likely to coordinate than

smaller teams can be understood in terms of stability of the two pure strategy equilibrium.

Consider a stag hunt game in which the individual member vote frequency for Stag is ptn

in a team t with the team size n. For a large n, an interesting observation is that ptn

must converge to 0.5. Suppose to the contrary ptn ̸= 0.5 in the limit. Then, it is easy

to see that the team choice probability will converge to either 0 or 1 by the consensus

effect. That is, a small change in the individual member vote frequency will push the team

strategy toward a pure strategy equilibrium. Since the boundary limits of this dynamic

are indeed stable Nash equilibria, this leads to the hypothesis that teams will coordinate

more successfully than individuals.15

Hypothesis 3. In both SH games, the rate of coordination will be higher in the 5:5 team

treatment than in the 1:1 treatment, and higher yet in the 25:25 team treatment.

5 Laboratory Experiment: Procedures

The experimental sessions were conducted at the Experimental Social Science Laboratory

(ESSL) located on the campus of the University of California, Irvine. Subjects were

recruited from the general undergraduate population, from all majors. Experiments were

conducted using ZTree software (Fischbacher, 2007). We conducted 22 sessions, using a

total of 420 subjects. No subject participated in more than one session. The experiments

lasted, on average, one and a half hours, and subjects’ average earnings were $28.15,

including the $8 show-up fee (max. $38 and min. $18).

Each session was divided into two phases. In Phase 1 of each session, each subject

made a single individual decision for each of the six games over a sequence of six rounds.

For each game, the subject was randomly matched with another subject to determine

15This stability argument does not address which of the two pure strategy equilibria is more likely to be
played by teams. Intuition suggests that it would depend on the relative coordination payoffs for S and
H and the risk associated with S. For our two games, this dependency would suggest that coordination
in the payoff-dominant equilibrium is more likely in SH2 than SH1, although we do not state this as a
hypothesis.
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the payoff, and subjects were informed of this fact. That is, Phase 1 consisted of the six

one-shot games played once each in sequence by 1-person teams. Subjects received no

feedback about the play of their randomly selected opponent until the very end of the

session. One round in Phase 1 was randomly selected at the end for subject payment. We

also used two different sequences of presenting the games, with half of the sessions using

one sequence and half of them a different sequence.16

Phase 2 of each session was run using one of four different treatment conditions. In

each of these treatment conditions, subjects played each of the games for 5 rounds with

anonymous random rematching and feedback between rounds, for a total of 30 rounds.

That is, each subject would play five rounds of game X, followed by 5 rounds of game Y,

and so on. In four sessions, called the 1:1 treatment, the games were played exactly as

in Phase 1, except that there was feedback after every round. That is, the games were

played by 1-person teams that were randomly rematched after each round. Phase 2 of the

three ”team” treatments, with 6 sessions of 20 subjects for each treatment, which were

played by 5-person teams.17 Team membership was always reassigned at the beginning

of each round by randomly dividing the 20 subjects into 4 different teams, and these four

teams for the round were then randomly matched into pairs of teams, with team playing

one of the roles in the game.18 Subjects were fully informed of this matching protocol.

The three team treatments differed in the collective choice procedure used by teams to

reach a decision on an action choice. In the Majority condition, each subject voted for

one of the two actions, and for each team, the action that received a majority of votes by

members of the team was implemented as the team’s action. In the Poll condition, the

majority vote was preceded by a straw vote. 19 In the Chat condition, the majority vote

was preceded by computerized chat among the members of each group.20. For all of the

team treatments, the vote totals for both teams were included in the feedback after each

round. For payment in Phase 2, exactly one round of each of the six games played in part

16We used the following two sequences: PD2-SH1-WPD1-PD1-SH2-WPD2 and WPD2-SH2-PD1-
WPD1-SH1-PD2. Each session also included additional rounds for strictly competitive games with a
unique mixed strategy equilibrium.

17The 25:25 treatment was not feasible to run in the laboratory, but was run in the MTurk environment.
See Section 7.

18In the asymmetric WPD games, each subject’s role was fixed for all five rounds of the game. Hence,
rematching for the 5-person team sessions was conducted with two populations of 10 subjects in each
role.

19Before voting for an action, the subjects received feedback about their team’s straw vote totals.
20The length of time allowed for chat was 80 seconds for the first round and 40 seconds for rounds 2-5

of each game.
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two was randomly selected for payment.21

The reason for employing two phases was to allow for a direct comparison within the

team treatments between naive decisions in the 1-person team games (Phase 1) and naive

decisions in the 5-person team games (Round 1 of each game in Phase 2). For this reason

there was no feedback in Phase 1. This comparison was not relevant for the 1:1 treatment.

The reason for having 5 plays of each game in Phase 2 is that our benchmark theory is

an equilibrium theory, so we expect learning to occur.

The games were presented to subjects in matrix form, exactly as displayed in Figure

1 with three differences. In all of the games, the top action for rows was always labeled

action A, and the bottom action was always labeled action B. Similarly, the left action for

the column player was always labeled action A and the right action was always labeled

action B. Second, the matrices were configured so that all subjects made decisions as row

players, so in the asymmetric games, the payoff matrix for column players was displayed

as the transpose of the matrix shown in Figure 1. Third, each subject saw a matrix that

randomly flipped the payoffs entries for actions A and B and reversed the left and right

actions to control for possible framing or labeling effects (such as a bias to choose ”A” or

top). For the 1:1 treatment, four sessions were conducted with a total of 60 subjects. For

each of the three team treatments, six sessions were run with 20 subjects in each session.

6 Laboratory Experiment: Results

The strategic considerations in SH games are quite different from those in PD and WPD

games, especially because communication within a team could have different effects in

the case of multiple equilibria. Therefore, we analyze the results separately, beginning

with the four prisoners’ dilemma variants, followed by an analysis of the results from

coordination games. In each subsection, our primary focus is given to the difference

between the action choices in the 1:1 games and the team choice frequencies in the 5:5

games of Phase 2.

21A sample copy of the instructions for the Poll treatment appears in the Appendix. Instructions for
the other three treatments are similar.
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6.1 PD and WPD Games

6.1.1 Effects of the collective choice procedure

We begin the data analysis by reporting the effects of the different voting procedures on

behavior. The purpose of examining the effect of voting procedures is beyond testing

the robustness of majority voting in team games. Given the fact that most of previous

experiments use unanimity voting through face-to-face or chat communication, it is im-

portant to know whether any difference between the result of our experiment and that

of the previous experiments is due to the different voting rules (majority vs. unanimity)

or to the existence of communication opportunities in the collective decision making pro-

cedure. Since the poll and chat treatments differ from the majority treatment only to

the extent that team members are able to communicate with each other before making a

final voting decision, comparing voting procedures will allow us to examine the effect of

communication on team choice frequencies in a minimal manner.

Table 1: Comparison of team defection frequencies in PD and WPD games under different
Voting rules (Phase 2)

Game Majority Poll Chat
PD 1 0.90 0.93 0.90
PD 2 0.66 0.74 0.58∗1

WPD 1 Row 0.85 0.90 0.88
WPD 1 Column 0.83 0.85 0.85
WPD 2 Row 0.62 0.48 0.42∗2

WPD 2 Column 0.43 0.28 0.35
* Significant at the 5% level.
1 Poll vs. Chat.
2 Majority vs. Chat.

The effect of the collective choice procedure on team decision frequencies

Table 1 displays the final team defection frequencies across the three voting procedures

in different PD games for all rounds of Phase 2. The table shows that communication

has little, if any, effect on the team defection frequencies. We conducted three pairwise

comparisons of the frequencies (Majority vs. Poll, Majority vs. Chat, and Poll vs. Chat)

for each row. There are only two statistically significant differences22 out of a total of

22Unless otherwise noted, all significant differences reported in this paper are at the 5% level, using
Fisher’s exact test.
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18 comparisons. However, there is a high likelihood of false positives since 18 separate

tests were simultaneously conducted. There are several ways to correct for this. Applying

either Bonferroni’s or the Dunn-Sidak correction for multiple comparisons, we cannot

reject the null hypothesis that none of the comparisons are significant. Alternatively,

we fail to reject the null using the BH step-up procedure to control for false discoveries

(Benjamini and Hochberg, 1995).

This leads to the first result: there is little, if any, effect of the voting procedure on

the final team decisions. Hence, in the remainder of the analysis of the PD and WPD

games, we pool the team decision frequencies across the three treatments.

Result 1. There is no significant difference in team defection frequencies across the three

collective choice treatments in the PD and WPD games.

The effect of communication on consensus formation In addition to considering

the effect of collective choice procedures on the team decision frequencies, there is a

separate (possibly related) issue regarding the effects of collective choice procedures on

voting and consensus formation. The relevant procedural variable to address this question

is the deliberation process leading to the team decision choice. Our experimental design,

with three different deliberation processes - no deliberation, straw votes, and pre-vote

discussion - allows us to provide some insight into this issue. For this purpose we consider

two direct measures of consensus formation: the distribution of margins of victory in

the elections in both the poll treatment and the chat treatment, compared with the no-

deliberation treatment; and vote-switching between the straw vote and the final vote in

the poll treatment.

One-sided votes In the team treatments, we have three collective decision-making

rules to determine team behavior—majority voting, majority voting after poll, and ma-

jority voting after chat. The observation from the previous section is that the decisions

of teams do not significantly differ across the collective choice treatments. A possible

explanation is that, even though the team decision frequencies are the same, the vote

results are more one-sided (closer to unanimous) in the Poll and the Chat treatments

than in the Majority treatment. This is a subtle form of an equilibrium effect, which can

be measured in terms of individual vote decisions, even if team decision probabilities are

not significantly affected. Thus, we first examine the distribution of the one-sided votes.
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Figure 5: Frequency of one-sided votes

We define a one-sided vote as occurring if the vote on the team decision is decided

by supermajority, i.e., either a 4-1 margin or a 5-0 margin. Measuring the frequency

of one-sided votes provides a simple way to check whether the three different collective

decision-making procedures produce different levels of consensus in teams. Figure 5 shows

the distribution of one-sided votes across games and team treatments. In all cases, one-

sided votes are less frequent in the Majority treatment without communication than either

of the treatments with communication. Furthermore, in most comparisons the effect of

communication on consensus is statistically significant.23 Finally, we note that in three

out of four games one-sided votes occurred more frequently in the Chat treatment than

23The three exceptions where the effect was not significant were all in the prisoners’ dilemma games
with strong incentives to defect (PD1 and WPD1). Recall that in these games the vast majority of
subjects voted to defect, so there were many one-sided votes in all team treatments. Specifically in PD1,
the comparisons between majority and chat and majority and poll showed no significant difference in
one-sided votes (p = 0.46 and p = 0.09, respectively). In WPD1, the comparison between majority
and chat was significant (p < 0.01) but the comparison between majority and Poll was not significant
(p = 0.10).

19



Table 2: The rate of switching behavior in the poll treatment

Game Majority Minority
PD1 0.05 0.36
PD2 0.08 0.30

WPD1 0.04 0.34
WPD2 0.06 0.26

in the Poll treatment, and this difference is significant in both WPD games.

Result 2. The effects of straw polls and pre-vote chat communication lead to more group

consensus than in the Majority treatment. Open chat communication leads to greater

consensus than straw polls.

This result indicates that individual voting behavior in teams is affected by the collec-

tive decision making rule, and in particular, communication leads to more agreement or

consensus in teams, even if the effect of the pre-vote communication on the final decision

by the teams is weak (Result 1). Thus we do not find that procedures that lead to greater

consensus ultimately lead to different outcomes, at least for these simple games. Such a

conclusion is not supported by our data, which reveal no significant effects of the collective

choice procedure on strategy choice frequencies decided by teams.

Bandwagon effects The Poll treatment allows for a simple quantitative test of the

process by which consensus is reached in a team. This provides another piece of evidence

and additional insight into consensus building in teams. Given that we have data for

both the straw vote and the final vote of each team member, this sequence allows us to

measure the extent to which an individual team member’s final vote choice is affected by

the feedback from outcomes of the straw vote. We say that a bandwagon effect occurs if

team members who cast a minority vote in the straw poll switch to vote with the majority

in the final vote.24 To control for possible random effects of individual vote switches, we

compare this to switches from the majority to the minority. We classify team members

as majority and minority poll voters if their choice in the straw vote agrees or disagrees,

respectively, with the opinions of majority straw vote outcome in their group.

Table 2 shows the rate of switching behavior in the poll treatment depending on

whether a voter was in the majority or the minority in the straw poll. In every game,

24There are several possible explanations for why a voter might switch between the poll and the final
vote. For example, Callander (2007) shows that bandwagon effects can arise if voter have a direct
preference for conformity, in the sense of preferring to vote with the winning side.
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the differences are systematic, highly significant (p < 0.01), and large in magnitude. The

probability that a minority poll voter switches to the majority side across the four games

ranges from four to eight times greater than the probability that a majority voter switches

to the minority side. Between 26 and 36 percent of the minority voters switched their

straw vote to the majority side in the final vote, while only 4 to 8 percent of majority

voters switched to the minority. This result demonstrates a clear and strong bandwagon

effect indicating a convergence toward consensus via straw polling. The bandwagon effect

also explains why we observe more one-sided votes in the poll treatment than in the

majority treatment.

Result 3. There is a significant bandwagon effect in the PD and WPD games.

Taken together, we conclude that the effect of the voting procedure is prominent on

individual voting behavior in teams, but the final team decisions are robust to the voting

procedure. Hence, in the remainder of the analysis of the PD and WPD games, we pool

the team decision frequencies across the three treatments.

6.1.2 Testing Hypotheses 1 and 2 about predicted behavior in the PD and

WPD games

Figure 6 displays the frequency of 5:5 team defection rates and individual 1:1 defection

rates in the PD and WPD games. For the WPD games, which are asymmetric, the

defection rates are reported separately for row and column players.

We first compare defection rates between PD1 and PD2 and between WPD1 and

WPD2. Team equilibrium predicts higher defection rates in PD1 than in PD2 for both

the 1:1 treatment and the 5:5 treatment (Hypothesis 1a), and this is supported in the

data, where these differences have the correct sign and are statistically significant in all

cases (p < 0.01). Team equilibrium also predicts higher defection rates in WPD1 than in

WPD2 for both the 1:1 treatment and the 5:5 treatment and for both row and column

players (Hypothesis 2a), and this is supported in the data, where the differences have the

correct sign in all cases. These differences are statistically significant (p < 0.01) except

for the comparison of row players in the 1:1 treatment (p = 0.059).

We next compare defection rates between the 1:1 treatments and 5:5 treatments.

Surprisingly, we find that teams in the 5:5 treatment do not always defect more than

individuals in the 1:1 treatment. Rather, the effect of team size depends on the details

of the payoff matrix, and in particular on how strong are the incentives to defect. For
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Figure 6: Comparison of 1:1 and 5:5 defection frequencies.

PD1 and WPD1, the Nash equilibrium strategy of defect is chosen more often by 5-

member teams than in the 1:1 treatment, and these differences are statistically significant

except for the WPD1 column players (p-values: PD1< 0.01, WPD1 Row= 0.013, WPD1

Column= 0.25). This finding is consistent with findings from previous one-shot PD

experiments that generally found that teams were closer to Nash equilibrium, and provides

support for Hyotheses 1b and 2b.

However, in the PD2 and WPD2 games, where the payoffs provide weaker incentives

to defect, we find the opposite. For those games, we find less defection in the 5:5 treat-

ment than in the 1:1 treatment. This finding for PD2 and for row players in WPD2

contradict Hypothesis 1b, although the difference is not statistically significant at the 5%

level (p = 0.077). The effects in WPD2 are statistically significant (p-values: Row< 0.01,

and Column< 0.01) but this does not contradict Hypothesis 2c, where this ”reversal” is

predicted if λ is not too high. In fact, in WPD2, column players have a best response

to cooperate if they expect row players to cooperate at least 32% of the time, which is
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consistent with the data, where row teams cooperate 49% of the time. So, given the be-

havior of row players in the experiment, cooperation was in fact the best reply for column

players, which can explain why column teams in WPD2 cooperate nearly twice as often

as they defect. In contrast, column players in the 1:1 treatment cooperate only half the

time.

The data also provides partial support Hypothesis 2d, that row teams defect more

than column teams in the WPD games. This comparison significantly holds for WPD2

for both the 1:1 treatment and the 5:5 treatment (p < 0.01). However, in WPD 1, row and

column player behaviors for both the 1:1 treatment and the 5:5 treatment are essentially

the same and the differences are not significant (p = 0.39 and p = 0.22, respectively).

Recall from the discussion of past experiments that, in nearly all past experiments

that have found differences between team and individual play in games, team play was

closer to Nash equilibrium than individual play. In fact, this observation was the original

motivation for our theoretical paper. However, a result of that theoretical paper is that,

while team play is predicted to be closer to Nash equilibrium in games with very large

teams, it can go either way for small teams, depending on the exact parameters of the

game and the error rates. That is what we find in our games.

Result 4. In PD and WPD games, there are significant differences between team decisions

in the 5:5 treatments and individual decisions in the 1:1 treatment. Teams are closer to

Nash equilibrium in games with strong incentives to defect but not in games with weaker

incentives to defect.

6.2 Estimating the logit team equilibrium model from the PD

and WPD data

The analysis of the data from PD and WPD games above examined team equilibrium

predictions and comparative statics about the qualitative effect of payoffs, team size,

and collective choice rules. In fact, the logit equilibrium specification also makes precise

quantitative predictions about behavior, as a function of the logit error parameter, λ.

We know, for example, that for very low values of λ in the neighborhood of 0, there

are essentially no effects of team size, payoffs, and the collective choice rule, since all

choice probabilities (vote probabilities in the team treatments) are approximately 0.5.

At the other extreme, when λ is very large, the predictions also coincide for all payoff

and team treatments, i.e., defect choice probabilities by both row and column players
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should equal 1 in all treatments, since that is the Nash equilibrium in all cases. However,

for intermediate values of λ, as typically found in experimental data with logit QRE

estimation, the equilibrium defect choice probabilities differ greatly across the treatments,

and are predicted to differ between row and column players in the WPD games. Thus,

it is natural to estimate the error parameter for the logit team equilibrium model to see

if the predicted defect probabilities at that estimated value match the patterns found in

the data across payoffs, player roles (in the WPD games) and team sizes.

To avoid overfitting, we estimate a single logit error parameter using the row and

column data from all payoff and team size treatments, in the following way. For each

non-negative value of λ ∈ [0,∞), there is a unique logit equilibrium probability of de-

fection for each payoff and team treatment.25 For each λ and for each payoff matrix g

(PD1, PD2,WPD1,WPD2), team size treatment s (1 or 5) and team t (row or col), de-

note the equilibrium choice (or vote) defection probability by p∗gst(λ). Given the observed

defection frequencies in our data, fgst and the number of observations of each gst, ngst,

we can write the log likelihood function as follows:

L(f |λ) =
∑
g,s,t

[
fgst ln p

∗
gst(λ) + (ngst − fgst) ln(1− p∗gst(λ))

]
.

The value of λ that maximizes L(f |λ) is solved for computationally, which involves an

inner loop for each value of lambda to compute the unique team equilibrium, p∗gst(λ) for

each gst and for each value of λ.26

The estimated value of λ is 0.057. The results are presented in Table 3, with the

treatment/role in the first column, the observed relative frequency of defection in the

second column, and the model estimated equilibrium defection rates in the third column.

Figure 7 displays a scatter plot of the observed relative frequencies of defection for each

gst. The 5x5 (1x1) data and estimates are shown as triangles (squares). As a contrast, the

figure also displays (as circles) the scatter plot of observed vs. Nash defection probabilities,

where all the Nash defection probabilities equal 1. The team equilibrium model, with only

one free parameter (λ) provides a good fit to the data across all these different treatments.

25For the 1:1 games, the unique team equilibrium coincides with the unique logit QRE.
26The 5x5 data on individual vote choice has six times as many observations as the 1x1 data on

individual vote decisions. In order to avoid inflating the significance and to avoid overweighting the 5x5
vote data, the number of 5x5 observations and defect frequencies is deflated by a factor of six in the
estimation, which equals the number of observations in the 1x1 treatments.
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Table 3: Team Equilibrium Estimation Results

Game and Role Team Size Observed Estimated
PD1 1×1 0.84 0.82

5×5 0.81 0.80

PD2 1×1 0.72 0.70
5×5 0.61 0.71

WPD1Row 1×1 0.77 0.75
5×5 0.79 0.75

WPD1Col 1×1 0.79 0.66
5×5 0.75 0.71

WPD2Row 1×1 0.69 0.63
5×5 0.49 0.63

WPD2Col 1×1 0.53 0.48
5×5 0.38 0.52

A linear regression of all the points in the figure (dashed line) produces an R2 = 0.69.27

6.3 Coordination games

6.3.1 Effects of the collective choice procedure in coordination games

As with the previous analysis of the PD and WPD games, we first examine the effects of

the collective choice procedure on team behavior in coordination games. Table 4 represents

different aspects of team decision frequencies across the three voting procedures in the

coordination games.

In contrast to the PD and WPD games, there are significant effects of communication

on team behavior in coordination games. The first two rows show that within-team com-

munication via a poll leads to higher frequencies of Stag in team decisions compared to

simple majority rule without pre-play communications, while chat does not have signif-

icant effects. However, the rate of one-sided votes is the highest in the chat treatment,

implying that greater consensus has resulted through chat. While the rates of coordina-

tion in the poll and the chat treatments are not significantly different from that in the

Majority treatment in SH 1, pre-play communication through either via a poll or chat

27Social preferences could also account for some of the observed cooperation, so we also estimated a
two-parameter model, with an additional altruism parameter, A, in addition to the error parameter, λ.
The altruism parameter is statistically significant at the 1% level, but the fitted estimates of the defection
probabilities change only slightly. The altruism model and the resulting scatter plot figure (similar to
Figure 7) is in the appendix.
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Figure 7: Fitted equilibrium defect frequencies vs. observed defect frequencies.

significantly increases coordination rates in SH 2 where Stag is relatively less risky.28 As

shown in the last two rows, the Poll treatment is significantly more successful in achiev-

ing the payoff-dominant (S,S) outcome conditional on coordination than the Majority

treatment without communication, but the Chat treatment has no significant effect on

equilibrium selection.

In terms of the effect of polls on consensus building within teams, the findings are

similar to the PD and WPD games. There was a clear bandwagon effect in the poll

treatment for both coordination games. In SH1, 18% of the team members who voted

in the minority in the poll switched to the majority in the final binding vote, but only

3% of the team members who sided with the majority in the poll switched their vote, a

difference that is significant at p < 0.01. In SH2, the respective switching frequencies are

28It might be tempting to dismiss this finding as trivial, since pre-play communication in coordination
games between teams can obviously improve coordination by allowing correlated strategies. However,
communication in our experiments is limited to within-team communication, either by a poll or by chat.
There is never communication allowed between teams in any of our 5:5 treatments.
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Table 4: Comparison of Team decisions in Stag Hunt Games (Phase 2)

Game Majority Poll Chat
Stag SH 1 0.36 0.51∗1 0.36

SH 2 0.63 0.81∗1 0.68

One-sided votes SH 1 0.59 0.57 0.69
SH 2 0.60∗3 0.81 0.87

Coordination SH 1 0.65 0.55 0.72
SH 2 0.53∗3 0.82 0.88

Stag-Stag (S,S) SH 1 0.28 0.52 0.30
SH 2 0.75 0.88∗2 0.70

*Significant at the 1% or 5% level.
1 Poll vs. Majority/Chat.
2 Poll vs. Chat.
3 Majority vs. Poll/Chat.

29% and 4%, also significant at p < 0.01.

6.3.2 Comparison between 1:1 behavior and 5:5 team behavior in coordina-

tion games

For the two stag hunt games in our laboratory study, we compare 1:1 individual choices

and 5:5 team decisions in three different ways: (1) Are there differences in the frequency of

choosing the riskier strategy (stag) associated with the payoff-dominant Nash equilibrium?

(2) Are there differences in the frequency of successful coordination on either the risky or

the safe Nash equilibrium? (3) Conditional on coordination, is there a difference in the

frequency of the payoff-dominant Nash equilibrium?

The left panel of Figure 8 shows the action choice frequencies in the 1:1 and team

treatments. In both games, teams are significantly more likely to choose the riskier

strategy than individuals in the 1:1 treatment (p < 0.01).29

We next turn to the questions concerning coordination and equilibrium selection, ques-

tions (2) and (3). The right panel of Figure 8 compares the coordination rates between

the 1:1 and 5:5 treatments. In both coordination games, teams are more successful in

coordinating on a symmetric equilibrium, either (H,H) or (S,S). The difference is highly

significant (p < 0.01) in SH2, while the difference is not significant in SH1.

29In SH1, if we exclude the data from the Poll treatments, the qualitatively similar results still hold,
but the difference between the choice frequencies in the 1:1 treatments and the two team treatments
(Majority and Chat) becomes insignificant (p = 0.139).
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(a) Rates of Stag in SH (b) Rates of Coordination in SH

Figure 8: Team behavior and coordination in the SH games

Result 5. Coordination: Teams coordinate more frequently than individuals.

The right panel of Figure 8 also addresses the equilibrium selection question. Teams

are more likely to coordinate on (S,S), conditional on coordination. The differences are

significant and large in magnitude for both games. In SH1 the (S,S) coordination rate is

36% in the 5:5 treatments and 20% in the 1:1 treatment (p < 0.01), and in SH2 the (S,S)

coordination rate increases from 57% to 78% (p < 0.01).30

A Stag decision in SH2 is less risky and therefore relatively more attractive than in

SH1. Interestingly, given that the frequency that teams choose stag is much higher in

SH2 than in SH1 (0.71 vs. 0.41, p < 0.01)31, the rates of coordination are quite similar

between the two SH games. Specifically, for both individuals in the 1:1 treatment and

teams, coordination rates in SH1 compared to SH2 are not significantly different (p = 0.66

and = 0.13, respectively). However, the payoff-dominant coordination outcome is far

more frequent in SH2 than in SH1, conditional on coordination, and such differences are

significant for both individuals in the 1:1 treatment and teams (p < 0.01). That is, in

our experiment, the changes in the riskiness of efficient coordination affect the content

of coordination (intensive margin), but not the overall rate of coordination (extensive

margin), and this principle applies to both individuals and teams.

Result 6. Equilibrium selection: Conditional on successful coordination, teams are more

likely than individuals to coordinate on the payoff-dominant equilibrium, (S,S), than (H,H),

30The statistical significance does not depend on the inclusion of the data from the Poll treatments.
31Team member vote frequencies in Phase 2 of SH1 and SH2 are 0.42 and 0.70, respectively. This

difference is also significant (p < 0.01).
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compared with individual play in both stag hunt games.

7 The MTurk Experiment

In a laboratory experiment, because of the limited subject capacity of laboratory facilities,

it was not feasible to implement the 25:25 treatment.32 To overcome these difficulties, we

conducted sessions through Amazon Mechanical Turk (MTurk) with many subjects and

team sizes as large as 25 members per team.33

While the MTurk platform allows us to run the same 2 × 2 games with much larger

teams at an affordable cost, it also presents a number of logistical challenges. The basic

design of our MTurk experiment is as comparable as possible to the design of Phase 2 of

the 1:1 and the Majority treatments in the lab experiment: there are 5 rounds, and in

each round a subject makes one decision for each game, with feedback about the outcome

of a previous round.34 There were a number of hurdles to overcome. The major hur-

dle, which required a novel implementation of MTurk games, was having multiple rounds

with random matching and feedback between the rounds. The games in the laboratory in-

volve simultaneous interactions among subjects with immediate feedback about outcomes,

which is difficult in the MTurk environment because it is impractical, or even impossible,

to synchronize the choices of all MTurk subjects within the short (less than one minute)

decision time frame that is typical in the laboratory. Our solution for having five rounds

with feedback is to run a longitudinal experiment over five consecutive days - Monday

through Friday. Thus, we have one round on each day, and each subject makes one deci-

sion for every game on each of these days. We first describe the experimental procedures

and then explain the details of how we implemented the longitudinal experiment.

32Experimental laboratories typically have 20-40 computers, and the maximum team size is about 10
in symmetric games if games are played for multiple rounds with random rematching (or 5 in asym-
metric games). Moreover, obtaining a large sample of team games could also bump up against capacity
constraints with respect to the subject pool.

33Provided by Amazon, MTurk is an online labor market platform where a number of experimental
tasks have been done. There have been many experiments in economics conducted in MTurk, for instance,
see Horton et al. (2011).

34We only ran the Majority treatment because the logistics of the Poll treatment would have been too
complicated on MTurk, and the Chat treatment is not feasible on MTurk.
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7.1 Design and Procedures

An experimental session consists of 5 rounds (i.e., 5 days), with each session using three

different team sizes—1:1, 5:5, and 25:25.These five rounds corresponded to the Phase

2 part of the laboratory experiment.35 At the beginning of the first day of a session,

subjects were randomly assigned to one of three team sizes (1, 5, or 25), and these team

size assignments remained fixed throughout the session.36 The games that were played in

each round had the same payoff structure as those in Figure 137

After voting for an action in Round (day) 1, instantaneous feedback about the out-

comes was not feasible. Instead, immediately before voting for an action in each of the

8 games in Round (day) 2, each subject was informed about the actions chosen by their

Round 1 team and the Round 1 team with which they were matched. That is, the feed-

back about each game played in Round t was presented to subjects immediately before

playing that game again in Round t + 1. For feedback in the 5:5 and 25:25 treatments,

subjects were also told the vote totals of their Round t team and the Round t team with

which they were matched, as in the laboratory sessions.

In contrast to the lab experiment in which the experimenter has full control over the

number of subjects, it is not possible to guarantee an exact number of subjects in the

MTurk environment, which could potentially lead to difficulties in constructing teams.38

Therefore, we used the following procedure for randomly assigning teams on each day.

After closing each day, for each individual, a computer program randomly (1) selected

his/her team members (in 5:5 and 25:25 treatments) and (2) randomly formed a second

team of equal size from the remaining population of subjects who were assigned the same

team size. This process created random teams for each individual in a way that does not

require knowing the exact number of subjects on each day.39 This procedure also helps

35The MTurk design did not include the Phase 1 part.
36Subjects were informed of their own team size and that they were always matched randomly in each

round (day) with another team of the same size.
37One detail of the sequencing of games was slightly different in the MTurk experiment, necessitated by

the logistics of feedback between plays of each game. In Phase 2 of the lab experiment, subjects played
each game for 5 rounds before moving on to the next game of the sequence. In the MTurk experiment,
subjects played 5 rounds (days), making a decision for each game in each round.

38There are two main reasons for this problem. First, even if we target a specific number of subjects in
MTurk, we might not end up with those numbers since some subjects submit an incomplete task. Such
subjects were not eligible for the next day. Second, due to attrition between days, it is even more difficult
to predict how many subjects will participate in Round 2 and thereafter.

39This meant that there was some overlap in the membership of different teams, but this did not seem
problematic because of the very large number (hundreds) of subjects in each session and the fact that
team assignments were random. In the team treatments, subjects were told that they would be randomly
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us to prevent our results from being biased by the formation of specific teams with large

team sizes in the sense that it creates as many teams as individuals in each treatment,

implicitly bootstrapping the team data based on individual voting decisions.

On Monday, subjects were recruited from our task posting on MTurk, and subjects

who met the following conditions were eligible to view our posting: (1) reside in the U.S.;

and (2) approval rate is higher than 90%. At the time of recruiting on Monday, it was

clearly announced that this experiment would continue for five days. Upon accepting the

task posting, subjects received a link to our online survey page implemented by Qualtrics.

Then they were assigned a team size, read through the instructions of the experiment,

and were asked to vote for an action in each game.40 On Tuesday and thereafter, subjects

who participated in the previous day received an invitation message from the internal

MTurk message system and completed their task.41

An obvious concern for a longitudinal experiment is how to minimize attrition. We

used two incentives for continued participation that were initially implemented success-

fully in an earlier multi-day MTurk experiment (Kim, 2022). One incentive was a stick,

and the other was a carrot. The stick is that if a subject failed to return on the next

day of the experiment, then he or she was not allowed to participate in the remaining

days of the experiment. The carrot was a completion bonus on top of all earnings from

the experiment. Specifically, a subject received a completion bonus of $3.00 (approxi-

mately doubling his or her earnings from the experiment) for full participation in all five

days of the experiment. These two incentives were explicitly announced at the time of

recruitment.

We ran two sessions, which began on two different Mondays. The first session recruited

509 subjects and the second session recruited 407 subjects. Subjects who participated in

the first session were excluded from participating in the second session. For each session,

subjects were randomly assigned on day 1 to different team sizes: 1, 5 or 25. Table 5

summarizes the number of subjects that were assigned to each team size on each Monday.42

assigned to a team and their team would be randomly matched with another team of the same size.
40On the first day, subjects received $0.50 for completing a short demographic survey before starting

the main task, which is regarded as a participation fee. At the end of each day in Qualtrics, subjects
received a verification code that they needed to enter on the MTurk page. This practice is common on
MTurk to prevent subjects from submitting unfinished tasks.

41We tried to maintain consistency for the procedures over five days. From Tuesday to Friday, we
posted our MTurk task and sent messages to subjects at 7:00 AM, and closed the page at 7:00 PM,
allowing subjects up to 12 hours to finish their task. The message was sent directly to the subject’s email
address that is registered with their MTurk account.

42Between Monday and Tuesday, the attrition rates were 0.21 and 0.22 for each starting date, respec-
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Table 5: Session summary in the MTurk

Date 1:1 5:5 25:25 Total
12/17/18 0 207 302 509
1/7/19 252 155 0 407

For each round (day), one game was randomly selected for payment. Subjects re-

ceived their earnings after the experiment was finished. All payments were made through

MTurk’s internal payment system. The average payoff for 5 days of participation was

$5.52.

7.2 Large Teams

7.2.1 PD and WPD Games

We first examine the behaviors on MTurk. Given the team size effect in the lab, a

natural conjecture is that team behavior in the 25:25 treatment will be further away

from individual behavior in the 1:1 than team behavior in the 5:5 treatment. Indeed, we

confirm this conjecture.

Figure 9 compares the frequency of actions for teams with different sizes. It is clear

to note that cooperation increases in team sizes, resulting in the action choices of 25-

member teams being almost a pure strategy of cooperation. In all cases, 25-member

teams cooperate significantly more often than 5-member teams (p < 0.01), with the rate

of cooperation in the former case being at least 95% in 4 of 6 cases, reaching almost full

convergence to cooperation. Note also that different incentives for cooperation affect the

amount cooperation. For instance, in PD games, 25-member teams cooperate more in

PD2 where the incentive for defection is weaker than that in PD1. Hence, in the MTurk

experiment, teams are consistently further from Nash equilibrium than individuals in these

games, which is a sharp contrast to all past findings in PD games and also contrasts with

some of our lab experiment results.

Result 7. For PD and WPD games, larger teams cooperate significantly more often than

smaller teams, with 25-member teams cooperating nearly all the time. Higher incentives

for cooperation lead to higher rates of cooperation.

tively. However, after Tuesday, more than 93% of subjects returned on each subsequent day. See the
Appendix for details.
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Figure 9: Comparison of 1:1 and team defection frequencies in MTurk.

7.2.2 Coordination Games

We also conjecture the team behavior of 25-member teams based on the comparison

between individuals and 5-member teasm on MTurk. If the findings from the comparison

between 1:1 and 5:5 on MTurk are qualitatively similar to the lab experiment (i.e., 5:5

teams coordinate more often than 1:1 and, conditional on coordination, coordinate on

(S,S) more often), then we also project these differences between 5:5 and 25:25 member

teams to go in the same direction.

Figure 10 displays the action choices and coordination rates in SH games. In the left

panel, teams in 25:25 choose the riskier strategy significantly more often than individuals

in 1:1 and teams in 5:5 in both SH games (p < 0.01).43 Such differences in the choice of

actions result in differences in coordination. In the right panel, teams in 25:25 coordinate

43As in the laboratory environment, 5:5 teams choose the riskier strategy more frequently than in the
1:1 games (p < 0.01).
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(a) Rates of Stag in SH (b) Rates of Coordination in SH

Figure 10: Team behavior and coordination in the SH games in MTurk

significantly more often than individuals in 1:1 and teams in 5:5. These differences are

highly significant (p < 0.01). More striking is the fact that 25-member teams always

coordinate on the payoff-dominant equilibrium in both SH games. The tendency for larger

teams to better achieve efficient coordination is at least partly attributable to differences

individual team member votes, since individual team members in larger groups are more

likely to vote for Stag. For 25-member teams, most team members vote for Stag (81%

for SH1 and 84% for SH2). Although equilibrium selection in team games is still an

open question theoretically, our experiment empirically lends support to the hypothesis

that coordination games played between larger-sized teams are less likely to result in

miscoordination and are also more likely to result in the payoff dominant outcome.

Result 8. For both SH games, teams coordinate better than individuals in 1:1, and 25-

member teams coordinate more often on the payoff-dominant equilibrium than 5-member

teams.

8 Conclusion

This paper reports the results from team game experiments conducted both in the lab-

oratory and with MTurk subjects using a design motivated by an equilibrium theory of

team games (Kim et al. 2021). Our experiment has several features that distinguish

it from previous team game experiments. First, we compare team and individual be-

havior in games using four variations of prisoners’ dilemma games and two variations of
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stag hunt games. Second, in contrast to previous experiments that used consensus rule

through face-to-face or chat communication, we use three variations on majority voting

as the collective decision rule, with the variations designed to provide insights into the

roles of communication and consensus formation in teams. By comparing individuals

in one-on-one games with team decision probabilities and individual team member vote

choices, we can differentiate two channels of team game effects, the consensus effect and

the equilibrium effect. Third, while most previous experiments used teams with two or

three members, we employ 5-member teams in the laboratory environment and both 5-

and 25-member teams in the MTurk environment.

The laboratory experiment produced several findings. First, there are systematic

differences between games played by teams and individuals for most of the payoff con-

figurations. For PD and WPD games, while in games with high incentives for defection,

teams defect more than individuals, the opposite holds true in games with low incen-

tives for defection. We estimate the team equilibrium model using a one-parameter logit

specification. The estimation not only shows a good fit with the prisoners’ dilemma data

across all treatments and games but also proves to be robust when altruism is included.

In SH games, teams miscoordinate less frequently than individuals, and teams achieve

the efficient outcome more frequently than individuals, conditional on coordination.

Second, the different collective choice procedures affect vote margins but have little

effect on the frequency of team decisions. While the difference in team choice probabilities

across the three collective choice procedures are mostly small and insignificant, the effects

of procedure on voting behavior are unambiguous: a straw poll and pre-vote communi-

cation both make voting more one-sided. This points to the information aggregation role

of communication in the group. We also observe significant bandwagon effect in the poll

treatment, with team members voting with the minority in the straw poll being more

likely to switch their vote than members voting with the majority in the straw poll.

Third, we find supporting evidence for the effect of increasing team size from the large-

team MTurk data. The qualitative differences we observed between 1:1 and 5:5 treatments

are further reinforced with comparisons between the 5:5 and 25:25 treatments, for all six

games. For PD and WPD, teams in the 25:25 treatment cooperate significantly more

than teams in the 5:5 treatment and individuals in the 1:1 treatment. In coordination

games, teams in the 25:25 treatment coordinate more successfully than teams in 5:5 and

individuals in 1:1.

The experiment suggests a number of interesting avenues for future research. First,
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as an initial study of the effect of collective choice procedures, we focused on games with

binary strategies, and all three collective choice procedures were variations on majority

rule. In many teams there is a leader with veto power, and possibly unequal voting

weights for the individual members. An investigation of games with non-majoritarian

voting rules, or with different voting rules for the each team would be interesting avenues

to pursue. Along these lines, games with more than two actions for each team would allow

for comparisons between a an even richer variety of collective choice procedures, such as

rank-based voting, scoring rules, or sequential agendas.

Second, the finding that teams coordinate more frequently than individuals warrants

further investigation since the present study considered only two very simple versions of

the stag hunt game. The additional finding that teams tend to coordinate more on the

payoff dominant equilibrium raises interesting theoretical questions that deserve further

study.

Third, while behavior on the MTurk platform exhibited the same qualitative effects

of team size as the laboratory environment, we found that MTurk subjects made more

cooperative choices than subjects in the laboratory in all games and in all treatments.

This raises some interesting questions about obtaining data for strategic games in such

an uncontrolled setting with very low stakes. While the advantages are obvious (low cost,

unlimited pool, etc.), more evidence about behavior in strategic games on the MTurk

platform is needed. A larger-scale systematic study comparing MTurk and lab behavior

in strategic environments could shed valuable light on these issues.

Fourth, our theoretical model underlying the experiment assumes common payoffs

among team members. Introducing explicit heterogeneity in team members and whether

such heterogeneity helps/hampers teams’ efficient behavior would be interesting questions.

For example, there might be latent social preferences, in addition to the experimentally-

induced monetary payoffs. Social preferences would seem to be especially important

for games where the non-cooperative outcomes are Pareto dominated, as in the PD and

WPD games. Other kinds of latent preferences would also be relevant in field applications,

since team members in organizations might not have identical preferences, as they have

different career concerns, incentives, positions in hierarchies, etc. Finally, one could apply

the experimental design and methodology introduced in this paper to study a broad range

of other games. For example, team game experiments of extensive form games, such as

signaling games, could be a productive direction of further research, and theoretical results

in Kim et al. (2021) offer some guidance for designing such experiments.
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Appendix

Tables for Figures in the main text

Table 6: Figures in Section 6.1 PD and WPD games

Figure 5: Frequency of one-sided votes
Treatments PD1 PD2 WPD1 Row WPD1 Col. WPD2 Row WPD2 Col.

Majority 0.73 0.43 0.67 0.55 0.43 0.43
Poll 0.83 0.60 0.70 0.73 0.57 0.78
Chat 0.78 0.64 0.88 0.88 0.87 0.88

Figure 6: Comparison of 1:1 and 5:5 defection frequencies
Treatments PD1 PD2 WPD1 Row WPD1 Col. WPD2 Row WPD2 Col.

1:1 0.84 0.72 0.77 0.79 0.69 0.53
5:5 Team action 0.91 0.66 0.88 0.84 0.51 0.36

Table 7: Figures in Section 6.2 Coordination games

Figure 7: Team behavior and coordination in the SH games

Figure 7(a): Rates of Stag in SH
SH1 SH2

1:1 0.30 0.52
5:5 Team action 0.41 0.71

Figure 7(b): Rates of Coordination in SH
SH1 1:1 SH2 1:1

(S,S) 0.09 0.27
(H,H) 0.50 0.23
Miscoordination 0.41 0.50

SH1 5:5 Teams SH2 5:5 Teams

(S,S) 0.23 0.58
(H,H) 0.41 0.17
Miscoordination 0.36 0.25
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Table 8: Figures in Section 7.2.1 PD and WPD games

Figure 8: Comparison of 1:1 and team defection frequencies in MTurk
Treatments PD1 PD2 WPD1 Row WPD1 Col. WPD2 Row WPD2 Col.

1:1 0.55 0.45 0.51 0.54 0.41 0.26
5:5 Team action 0.39 0.16 0.27 0.31 0.17 0.05
25:25 Team action 0.20 0.04 0.17 0.05 0.02 0.01

Table 9: Figures in Section 7.2.2 Coordination games

Figure 9: Team behavior and coordination in the SH games in MTurk

Figure 9(a): Rates of Stag in SH
SH1 SH2

1:1 0.61 0.71
5:5 Team action 0.90 0.94
25:25 Team action 1.00 1.00

Figure 9(b): Rates of Coordination in SH
SH1 1:1 SH2 1:1

(S,S) 0.36 0.52
(H,H) 0.16 0.09
Miscoordination 0.48 0.39

SH1 5:5 Teams SH2 5:5 Teams

(S,S) 0.82 0.91
(H,H) 0.01 0.00
Miscoordination 0.17 0.09

SH1 25:25 Teams SH2 25:25 Teams

(S,S) 0.99 1.00
(H,H) 0.00 0.00
Miscoordination 0.01 0.00
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Returning rates in MTurk

Table 10: The rate of returning in each session of the MTurk experiment

12/17/18 1/7/19

Round # of subjects Returning rate # of subjects Returning rate
1 509 407
2 402 0.79 316 0.78
3 372 0.93 296 0.94
4 348 0.94 283 0.96
5 338 0.97 278 0.98
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Team choice frequencies over rounds in the lab and the MTurk

Although the direct comparison of behaviors across the different environments (lab and

MTurk) is not intended in our research design, it is worth mentioning for future research

how different those behaviors are. Figures from 11 to 14 show the moving averages over

three rounds for rates of defection and stag. For PD and WPD games, both defection

frequencies in the 1:1 treatment and team defection frequencies in the 5:5 treatment

are always significantly lower in the MTurk environments than in the lab environment

(p < 0.01). Such significant differences become more prominent as subjects gain experi-

ence and in Round 5, the differences are highly significant (p < 0.01) except for column

players for the 1:1 treatment comparison in WPD1 and WPD2 (p = 0.019 and p = 0.016,

respectively).

A similar pattern is observed in SH games. The rates of choosing a riskier action

both in the 1:1 treatment and in the 5:5 treatment in the MTurk environment are always

significantly higher than those in the lab environment (p < 0.01). Learning reinforces

such differences in SH games that all comparisons between the lab environment and the

MTurk environment are also highly significant in Round 5 (p < 0.01). Taken together,

we find that action choices in the MTurk environment are more cooperative and willing

to take more risk than those in the lab environment.
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Figure 11: Comparison of 1:1 and team defection frequencies in PD games.

Figure 12: Comparison of 1:1 and team defection frequencies in WPD1 game.
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Figure 13: Comparison of 1:1 and team defection frequencies in WPD2 game.

Figure 14: Comparison of 1:1 and team stag frequencies in SH games.
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The logit/altruism model and estimates

The altruism model we use introduces a single altruism parameter, A, which is the weight

each player places on the other team’s payoff. Thus, for example, in WPD1, the payoff

matrix with an altruism weight of A is:

C D

C 35+35A,35+35A 77+16A,16+77A

D 16+49A,49+16A 58+58A,58+58A

This results in MLE estimates of A = 0.056 and λ = 0.069. The scatter plot of

estimated vs. observed defection probabilities is shown in Figure 15, and there is not

much quantitative difference in the estimates, compared to the model without altruism.

The estimated defection probabilities in the altruism model are shown in Table 11.

Table 11: Team Equilibrium Estimation Results: Altruism Model

Game and Role Team Size Observed Estimated
PD1 1×1 0.84 0.83

5×5 0.81 0.82

PD2 1×1 0.72 0.69
5×5 0.61 0.70

WPD1Row 1×1 0.77 0.77
5×5 0.79 0.78

WPD1Col 1×1 0.79 0.67
5×5 0.75 0.73

WPD2Row 1×1 0.69 0.61
5×5 0.49 0.61

WPD2Col 1×1 0.53 0.41
5×5 0.38 0.45

The parameter A in the altruism model is significantly different from 0 at the 1%

level, using a likelihood ratio test (χ2 = 6.74), and the fit improves slightly relative to the

one-parameter model ( R2
A,λ = 0.73 vs. R2

λ = 0.69).
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Figure 15: Fitted equilibrium defect frequencies vs. observed defect frequencies. Altruism
model.

Online Appendix (not for publication)

Instructions (Poll treatment)

General instructions

Thank you for coming to the experiment. You are about to participate in an experiment

on decision-making. Your earnings will depend partly on your decisions, partly on the

decisions of others, and partly on chance.

The entire session will take place through computer terminals, and all interaction between

participants will take place through the computers. Please do not talk or in any way try

to communicate with other participants during the session.

There will be 2 phases in this experiment. Each phase will start with an instruction period
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in which you will be given a description of the main features of that phase. At the end

of phase 1, you will receive the instructions for phase 2. If you have any questions during

this instruction period, raise your hand and your question will be answered so everyone

can hear.

For each phase, some of your decisions will be randomly selected for payment. Your

earnings are denominated in points, and each point has a value of $0.05, i.e. 1 point =

$0.05. In other words, every 100 points generates $5 in earnings for you. In addition

to your earnings from decisions, you will receive a show-up fee of $8. At the end of the

experiment, your earnings will be rounded up to the nearest dollar amount. All your

earnings will be paid with cash in private at the end of the experiment.

Phase 1 Decision making

1. In phase 1, you will be asked to make decisions in 8 matches. You are randomly

matched with another participant for each separate match. This random pairing changes

in every match.

2. In each match you will be asked to choose an action. By clicking each action’s label

(A or B), you can choose your action. An example for choices and payoffs is as follows:

The numbers in the cells of the table represent your earnings in points. These numbers

are only for illustration and are different from the numbers in the experiment. The first

entry in each cell represents your earnings (in points), while the second entry represents

the earnings (in points) of the other participant you are matched with. The earnings

numbers in the table will change in every match, and you will be randomly re-matched

with another participant in each match. - As you can see, this shows the earnings asso-

ciated with each pair of action choices, one by you and one by the other participant you

are matched with. Once you and the other participant have each selected a choice, those

two choices will determine your earnings (in points) for this match.
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For example, if:

You select A and the other selects A, your earnings equal 100 points while the other’s

earnings equal 200 points.

You select A and the other selects B, your earnings equal 300 points while the other’s

earnings equal 400 points.

3. At the end of each match, you will be reminded of the action you made for that match.

However, the action chosen by the other participant will only be revealed to you at the

very end of the experiment. In other words, you will be informed of the payoff that is

determined by you and the other participant in each match at the end of the experiment.

4. At the end of the experiment, the computer will randomly select exactly one of your 8

matches from Phase I for actual payment.

- Are there any questions?

Phase 2 Instructions

Beginning of phase 2

Phase 2 will also have 8 matches, but now each match has 5 rounds. That is, for each

match, you will participate in 5 rounds, one after another, so you will be making a total

of 40 decisions in Phase 2.

Team assignment

At the beginning of every round of every match, you will be randomly re-grouped into 5

member teams. That is, including yourself, your team will always have exactly 5 members,

but the membership of your team changes randomly every round of every match. Also

at the beginning of every round of every match, your 5 member team will be randomly

matched with another 5 member team.

Team decision

1. In each round, your team will make a collective decision to choose an action. You will

be asked to vote for an action in each round, and your team decision will be determined

by majority rule.

2. That is, your team decision will be chosen as an action for which more than a half of

your team members voted. For instance, if there are 2 members of your team who vote
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for action A and 3 members who vote for action B, then your team’s collective decision

will be action B.

3. An example for choices and payoffs is as follows:

The first entry in each cell represents the payoff for each of your team members, while

the second entry represents the payoff of each of the other team members.

For example:

If your team’s collective decision is action A and the other team’s collective decision is

action A, each member of your team (including you) earns 100 points while each member

of the other team earns 200 points.

If your team’s collective decision is action A and the other team’s collective decision is

action B, each member of your team (including you) earns 300 points while each member

of the other team earns 400 points.

4. Each round consists of two stages: polling stage and voting stage. In the polling

stage, you will be asked to select an action that you think your team should collectively

choose. The poll result of your team will be revealed to all of your team members in the

voting stage. Your response in the polling stage is not binding for your vote in the next

stage.

5. In the voting stage, you will be asked to vote for an action. The poll results for your

team will be shown in parentheses in the payoff table. Once everyone votes for an action,

you will be informed of the both teams’ decisions and the actual votes made in each team.

That is, you will be informed of exactly how many members vote for each action on each

team. In the payoff table, the number of votes for each action made in each team will be
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presented in parentheses. This will also tell you the outcome and point earnings of that

round, which will be highlighted on your screen in purple.

6. After every round of every match, you will be randomly assigned to a new 5 member

team, and then your team will be randomly matched with another 5 member team.

7. At the end of the experiment, one round for each match will be randomly selected for

your phase 2 earnings. That is, 8 rounds in total will be randomly selected for your phase

2 earnings. Your phase 2 earnings will then be computed as the sum of your earnings in

those 8 randomly selected rounds, converted from points to dollars using the exchange

rate of 1 point = 5 cents.

Before we start, let me remind you that:

- In phase 2, there are 8 matches each of which has 5 rounds. At the beginning of

each round, you will be randomly assigned to a 5-member team, and your team will be

randomly matched with another team.

- Each round consists of two stages. In the polling stage, you will be asked to select an

action that you think your team should collectively choose. Your response in the polling

stage is not binding for your vote in the next stage.

- In the voting stage, you will be shown the poll result and asked to vote for an action.

Your team decision will be determined by majority rule, i.e., your team decision will be

the action for which 3 or more members of your team voted.

- Once everyone votes for an action, you will be informed of the team decisions and votes

made in each team. That is, you will be informed of how many members vote for each

action in each team, and hence, the outcome of the round.

- At the end of the experiment, one round for each of the 8 matches will be randomly

selected for your phase 2 earnings. Your phase 2 earnings equal the sum of your earnings

in those 8 randomly selected rounds. Your total earnings for the experiment equal your

phase I earnings plus your phase 2 earnings plus your $8 show up fee.
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Screen shot of the recruiting page in MTurk (Monday)
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