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Abstract

Quantal Response Equilibrium (QRE) builds the possibility of errors into an equilibrium

analysis of games. One objection to QRE is that specific functional forms must be chosen

to derive equilibrium predictions. As these can be chosen from an infinitely dimensional set,

another concern is whether QRE is falsifiable. Finally, QRE can typically only be solved nu-

merically. We address these concerns through the lens of a novel set-valued solution concept,

Rank-Dependent Choice Equilibrium (RDCE), which imposes a simple ordinal monotonicity

condition: equilibrium choice probabilities are ranked the same as their associated expected

payoffs. We first discuss important differences between RDCE and QRE and then show

that RDCE envelopes all QRE models. Finally, we show that RDCE (and, hence, QRE)

is falsifiable since the measure of the RDCE set, relative to the set of all mixed-strategy

profiles, converges to zero at factorial speed in the number of available actions.
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1. Introduction

The central solution concept of game theory, Nash equilibrium, is based on two premises.

First, players make optimal choices given their beliefs about others’ behavior, and, second,

these beliefs are correct in a probabilistic sense. Together these assumptions imply mutually

consistent behavior in the form of an equilibrium distribution of actions that is stable, i.e.

no player has an incentive to deviate from the planned action distribution.

While observed behavior conforms to Nash play in some settings, a large body of work in

experimental game theory has documented systematic departures from Nash equilibrium. In

some cases, the Nash equilibrium works well while in others it fails miserably. “Ten Treasures

and Ten Contradictions of Game Theory” (Goeree and Holt, 2001), for instance, exhibits

ten games in which Nash equilibrium predicts well but, under a simple change in parameters

that preserves the game structure and Nash prediction, behavior shifts dramatically away

from Nash. These anomalies have stirred interest in generalizations of the Nash equilibrium

that relax the assumptions on which it relies.

One approach, pioneered by McKelvey and Palfrey (1995, 1998), is Quantal Response

Equilibrium (QRE). The methodological innovation of QRE is to incorporate the possibility

of errors into an equilibrium framework. Players may make errors, i.e. choose actions that

do not maximize expected payoffs, and are aware that other players may do so as well. This

creates a feedback loop because errors of one player affect the expected payoffs of other

players, which , in turn, affect their choice probabilities. Unlike prior approaches, QRE

assumes errors are payoff sensitive, i.e. larger errors are committed less frequently. However,

QRE retains the Nash premise that beliefs are correct on average. That is, a player’s QRE

choice probabilities are derived relative to the true expected payoffs of that player’s possible

actions, taking into account the distribution of errors across the other players.1

QRE has proven to be a remarkable tool for organizing data across a wide variety of

games in experiments. For the “Treasures” studied by Goeree and Holt (2001), for instance,

QRE predictions resemble those of the Nash equilibrium, while for the “Contradictions” they

differ sharply. Importantly, QRE predictions match observed data from both the “Treasures”

and the “Contradictions.” Beyond fitting data, QRE has important implications for doing

1Goeree and Holt (2004) propose a model of “noisy introspection” that allows for surprises. The intuition
is that players think through several steps of iterative reasoning but that each step becomes increasingly
hard and, hence, noisier. See also Goeree, Louis, and Zhang (2017) for applications of the noisy introspection
model to data from variants of the “11-20” game.
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theory. In extensive-form games, for example, there is no play “off the equilibrium path”

in QRE as all strategy profiles have a strictly positive chance of being used. QRE therefore

avoids the subtle-yet-complex refinements necessary to address the probability-zero (out-

of-equilibrium) events that standard theory has to deal with. Two decades of work on

QRE, summarized in the recent book Quantal Response Equilibrium: A Stochastic Theory

of Games by Goeree, Holt, and Palfrey (2016), has enhanced the relevance of game theory

for the social sciences. Experimenters, econometricians, and game theorists now routinely

use QRE for their data analyses and theoretical modeling.

Despite this success (or, perhaps, because of it), there has been criticism of QRE as well.

One objection that has been raised by theorists is that QRE, unlike Nash equilibrium, is a

parametric theory. For instance, in the structural approach originally proposed by McKelvey

and Palfrey (1995), an error or noise term is added to expected payoffs, and each player

chooses the action with highest perturbed payoff. In this formulation, QRE corresponds to

the Bayesian equilibrium of the disturbed game where the error terms, typically assumed to

be i.i.d., are private information (types). In the regular approach to QRE proposed by Goeree,

Holt, and Palfrey (2005), best response functions are more directly replaced by smoothed-out

“better response” functions, embodying the soft optimization of players’ choices. With either

the structural or regular approach, specific functional forms must be chosen (e.g. the error

distributions) to derive equilibrium predictions. The model’s predictions therefore depend

on the ad hoc, if not arbitrary, choice of functional forms.

A related objection, raised by empiricists, is that the freedom to choose arbitrary functi-

ons might render QRE not falsifiable. For the structural approach, for instance, Haile,

Hortacsu, and Kosenok (2008) show that without restrictions on the error structure, one

can exactly match any profile of observed choices including those that violate payoff mo-

notonicity.2,3 The latter is not possible with regular QRE, which imposes monotonicity on

the quantal response functions. However, also in this approach, the question remains what

outcomes are possible when varying over all possible quantal response functions.

A final objection is that the QRE fixed-point equations can typically be solved only nume-

2This observation also applies to the non-game-theoretic additive random utility models frequently used
in econometrics.

3Haile, Hortacsu, and Kosenok (2008) rely on error structures that violate interchangeability to construct
non-monotonic choice probabilities. Since applications of structural QRE have typically assumed i.i.d. errors
(which is stronger assumption than interchangeability), this part of their falsifiability critique has no apparent
practical relevance for the application of QRE.
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rically. For instance, the commonly used Logit and Probit models result in non-polynomial

(“transcendental”) fixed-point equations that cannot be solved analytically. The lack of

closed-form solutions may hamper adoption of QRE in applied work, e.g. Industrial Orga-

nization.

We address these objections through the lens of a new equilibrium concept, Rank-

Dependent Choice Equilibrium (RDCE), see also Goeree and Louis (2018). Rank-dependent

choice rests on a simple ordinal monotonicity condition: if one action has a higher expected

payoff than another, it is chosen with higher probability but there is no need to specify ex-

actly by how much. All that is required is that choice probabilities are monotone in expected

payoffs. The RDCE set then consists of those strategy profiles that are mutually consistent,

i.e. those strategy profiles so that for all players the ranking of choice probabilities matches

the ranking of expected payoffs calculated from other players’ strategies.

RDCE differs from QRE in a number of important ways. First, RDCE is a non-parametric

theory. It does not rely in any way on a particular choice of functional form and can

therefore not be criticized as generating predictions that rely on a modeler’s choice of response

functions or error distributions, as those concepts have no meaning in RDCE.

Second, RDCE is a set-valued equilibrium concept: since RDCE only imposes conditions

on the ranks of choice probabilities, there is typically a continuous range of choice proba-

bilities consistent with those ranks. Consider, for example, a symmetric dominant-strategy

solvable game (e.g. Prisoner’s Dilemma) with two possible actions, a1 and a2, and a1 has

the higher expected payoff. Then the RDCE set contains of all strategy profiles where both

players choose a1 more likely, i.e. {p1(a1), p2(a1)} ∈ [1
2
, 1]2. While this set may be relatively

large for “small games” we show its size falls quickly in the number of available actions.

Moreover, even for two-by-two games the RDCE set can be arbitrary small.

Third, computation of the RDCE set does not involve any fixed-point equations. Rather

it follows from computing the choice probabilities for which the ranking of expected payoffs

changes, i.e. for which there are payoff indifferences. We illustrate the construction of the

RDCE set for a symmetric two-player game with three options in the next section. In this

case, the RDCE set is easy to compute and can be illustrated graphically as a subset of

the two-dimensional simplex. The idea is that expected payoffs are linear in (other players’)

choice probabilities so points of indifference, i.e. where the expected payoffs of two actions

are the same, satisfy a linear equation. Either there are no solutions to the indifference
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equations in the simplex (when one option dominates another) or the solutions divide the

probability simplex into two parts: a part where one expected payoff ranks higher and a

complementary part where it ranks lower. Making all pairwise comparisons divides the

probability simplex into at most 6 regions. Intersecting these regions with those that follow

from ranking the probabilities themselves then yields the RDCE set, fully characterized by

a collection of linear inequality conditions. This construction stands in contrast to QRE and

Nash equilibrium, both of which require the solution of complex fixed-point equations. In

fact, except in very special cases, no analytical solution exists for QRE and, instead, one

typically resorts to numerical solutions of the model.

Despite these differences, there is an important connection between set-valued RDCE and

various parametric theories, including QRE, that are based on fixed-points. Specifically, for

the case of QRE, Theorem 1 establishes that for all finite games the RDCE set is essentially

equivalent to the collection of fixed-points from all different QRE models. In other words,

suppose one picks a set of quantal responses and solves the fixed-point equations, then picks

a new set of quantal responses and solves the fixed-point equations again, and repeats this

process ad infinitum until all possible quantal response functions have been sampled, then

the collection of fixed-points so found fills up the RDCE set. Importantly, the same result

holds for other (parametric) models, including those that do not fit the QRE framework

(Goeree and Louis, 2018): RDCE is precisely the solution concept that nests all equilibrium

theories that respect monotonicity of choice probabilities in expected payoffs.

Because RDCE generalizes all parametric theories that respect payoff monotonicity it can

be used to address their falsifiability: what outcomes are possible if one does not commit to

a particular set of parameters (e.g. quantal responses) upfront but instead tailors these to

the data? Theorem 2 establishes an upper bound on the size of the RDCE set, which turns

out to be quite strong. If K is the largest number of actions available to any player in the

game, then the measure of the RDCE set relative to the measure of the full set of mixed

strategy profiles is bounded above at 1/K!. This shows tat RDCE is falsifiable. A fortiori,

various parametric theories, including QRE, are falsifiable even when their parameters are

estimated to best fit the data.

Section 4 illustrates the RDCE set for several commonly-studied two-by-two games and

shows that the measure of the RDCE set is typically smaller than the 1/K! upper bound.

This section also discusses comparative-statics properties of RDCE. Section 5 concludes.
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2. An Example: the Lieberman Game

When confronted with data from experimental games, the Nash equilibrium suffers from two

obvious problems – systematic contradictions to predicted behavior and overly restrictive

point predictions. To illustrate, consider the symmetric two-player zero-sum game in Ta-

ble 1, which is dominance solvable. Each player has three possible actions. The entries

in the payoff matrix in Table 1 are Row’s payoffs (and the negative of Column’s payoffs).

Action a2 is strictly dominated by a3 (for each player). Once these dominated actions are

removed, a1 is strictly dominated by a3. Thus the unique rationalizable action, and so also

the prediction from any standard equilibrium concept, is for both players to choose a3. Yet,

in the laboratory, one observes all three actions being chosen by both Row and Column

players (Lieberman, 1960). Indeed, both Row and Column often choose a1.

a1 a2 a3

a1 0 15 −2
a2 −15 0 −1
a3 2 1 0

Table 1: A dominance solvable game (Lieberman, 1960).

In order to model behavior in games like this in a rigorous way, one needs a model that

admits the statistical possibility for any strategy to be used. Indeed, without such a statis-

tical model, for any game with a unique equilibrium in pure strategies, a single observation

of a player using a different strategy (as is invariably the case in the laboratory) leads to im-

mediate rejection of Nash equilibrium at any level of significance. This is sometimes referred

to as the zero-likelihood problem, since the theoretical model assigns zero-likelihood to some

data sets.4 Call a model that assigns positive probability to all data sets a statistical model.

Without a statistical model, standard maximum likelihood methods are virtually useless for

analyzing most data sets generated by laboratory experiments, due to unspecified variation

outside the model.

One commonly-used statistical model is the logit-QRE, which stipulates that choice pro-

babilities are positively, but not perfectly, related to expected payoffs via a logit choice

4For the Lieberman game in Table 1, the Nash equilibrium assigns zero likelihood to nearly all data sets.
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function. The probability of choosing ak for k = 1, . . . , 3 is given by:

pk =
exp(λπk)∑3
l=1 exp(λπl)

(1)

where the non-negative “precision” parameter λ determines the sensitivity of choices with

respect to expected payoffs. When λ = 0, choice probabilities are uniform irrespective of

expected payoffs, while only the action with the highest expected payoff is chosen as λ → ∞.

Importantly, the expected payoffs on the right side of (1)

π1 = 2p1 + 17p2 − 2

π2 = −14p1 + p2 − 1

π3 = 2p1 + p2 (2)

depend on the choice probabilities that appear on the left side of (1). In other words, (1)

defines a set of fixed-point equations. These equations cannot be solved analytically but, for

a given value of λ, they can be solved numerically. The red curve in the bottom triangle of

Figure 1 shows the set of logit QRE: starting in the center when λ = 0 and ending at the

unique Nash equilibrium choice a3 when λ = ∞.

This example highlights three criticisms of QRE: (i) it relies on the numerical solution

of a fixed-point equation, (ii) the equilibrium probabilities in (1) rely on the choice of a

specific functional form, i.e. a choice rule different from logit, e.g., probit, would yield a

different curve in the bottom triangle of Figure 1, which (iii) raises the falsifiability question

of whether any point of the probability simplex can possibly be reached by using a suitably

chosen choice rule.

Rank-dependent choice, in contrast, is a non-parametric model that stipulates that acti-

ons with higher expected payoffs are more likely to be chosen without explicitly modeling

by how much. It relies only on the ordinal content of expected utility calculations. For

instance, from the expected payoffs in (2) it is clear that π3 > π2, which means that a3 is

always more likely to be chosen than a2. The ranking of a1 depends on the choice proba-

bilities. To find the regions of the probability simplex where a1 ranks highest, middle, or

lowest we can simply solve for points of indifference, i.e where π1 = π2 or π1 = π3, which

yields p1 + p2 = 1
16

and p2 = 1
8
respectively. These solutions are shown by the dashed lines
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Figure 1: Construction of the set of RDCE for the Lieberman game. The top-left triangle
shows the ranking of choice probabilities over the simplex and the top-right triangle shows
the ranking of expected payoffs. Their “intersection,” i.e. the points of the simplex where
the two rankings match, define the set of RDCE and are indicated by the shaded areas in
the bottom triangle. The curve that runs from the centroid to the Nash equilibrium shows
the symmetric logit equilibria.
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in the top-right triangle of Figure 1, which also indicates the ranking of expected payoffs in

each of the three areas. A rank-dependent choice equilibrium (RDCE) now follows from the

consistency condition, embedded in the equilibrium definition, that the ordering of payoffs

matches the ordering of underlying choice probabilities as shown in the top-left triangle of

Figure 1. The points of the simplex for which this matching holds constitute the RDCE set

and are indicated by the shaded areas of the bottom triangle.

3. Rank-Dependent Choice Equilibrium

Consider a finite normal-form game G = (N, {Ai}ni=1, {Πi}ni=1), where N = {1, . . . , n} is

the set of players, Ai = {ai1, . . . , aiKi
} is player i’s set of Ki actions (or pure strategies),

with A = A1 × · · · × An the set of action profiles, and Πi : A → R is player i’s payoff

function. Let Σi be the set of probability distributions over Ai. An element σi ∈ Σi is a

mixed strategy for player i, which is a mapping from Ai to Σi, where σi(aik) is the probability

that player i chooses pure strategy aik. Denote by Σ =
∏

i∈N Σi the set of mixed strategy

profiles. For each k = 1, . . . , Ki and any σ ∈ Σ, player i’s expected payoff of choosing

action aik is πik(σ) =
∑

a−i∈A−i
p(a−i)Πi(aik, a−i) where p(a−i) =

∏
j ̸=i σj(aj). Since player

i has Ki possible actions, the vector of expected payoffs for these actions, denoted by πi =

(πi1, . . . , πiKi
), is an element of RKi .

3.1. Regular QRE

The main idea behind regular QRE is to replace best responses with “better” responses, i.e.

instead of players simply choosing the strategy with the highest expected payoff, they instead

choose higher-payoff strategies with greater probability. The sensitivity of choices with

respect to expected payoffs is determined by the better-response function, or quantal response

function, which can be thought of as a “smooth” version of the best-response function

that underlies Nash equilibrium. In particular, a quantal response function for player i,

denoted Ri, maps the vector of expected payoffs for i’s alternative actions into a probability

distribution of choices over these strategies. To ensure some degree of (stochastic) rationality

we require the quantal response functions satisfy the intuitive notions of responsiveness and

monotonicity, as well as the technical conditions of interiority and continuity. Such functions

are called regular.
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Definition 1 Ri : RKi → Σi is a regular quantal response function if it satisfies the

following four axioms.

(R1) Interiority: Rik(πi) > 0 for all k = 1, . . . , Ki and for all πi ∈ RKi.

(R2) Continuity: Rik(πi) is a continuous function for all k = 1, . . . , Ki, πi ∈ RKi.

(R3) Responsiveness: Rik(πi) is strictly increasing in πik for all k = 1, . . . , Ki, πi ∈ RKi.

(R4) Monotonicity: πik > πil ⇒ Rik(πi) > Ril(πi) for all k, l = 1, . . . , Ki.

Interiority ensures a statistical model, i.e. one that is logically consistent with all possible

data sets. As mentioned, avoiding the zero-likelihood problem is important for empirical

applications. Continuity ensures that Ri is single-valued, and also seems natural from a

behavioral standpoint, since arbitrarily small changes in expected payoffs should not lead

to jumps in choice probabilities. Responsiveness requires that if the expected payoff of an

action increases, ceteris paribus, the choice probability must also increase. Monotonicity is

a stochastic form of rationality that involves binary comparisons of actions: an action with

higher expected payoff is chosen more frequently than one with a lower expected payoff.

Recall that an element σ ∈ Σ specifies a mixed strategy profile, i.e., one mixed strategy

for each player. Since players’ beliefs can also be represented by probability distributions

over other players’ decisions, one can think of σ in two ways: as representing a common set

of beliefs regarding play and as stochastic responses to the expected payoffs determined by

those beliefs. Loosely speaking, a QRE is a set of belief distributions for which the stochastic

responses are consistent with the beliefs, i.e. it is a set of mixed strategies that gets mapped

into itself via the response functions. More formally, define R(π) = (R1(π1), . . . , Rn(πn)) to

be regular if each Ri satisfies axioms (R1)–(R4). Since R(π) ∈ Σ and π = π(σ) is defined

for any σ ∈ Σ, R ◦ π defines a mapping from Σ into itself.

Definition 2 Let R be regular. A regular Quantal Response Equilibrium of the finite

normal-form game G is a mixed-strategy profile σ∗ such that σ∗ = R(π(σ∗)).

Since regularity of R includes continuity, R ◦ π is a continuous mapping. Existence of a

regular QRE therefore follows directly from Brouwer’s fixed-point theorem. Like the Nash

equilibrium, this fixed-point is not necessarily unique. Let QRER(G) denote the set of all
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fixed-points for the finite game, G, given the quantal responses R = (R1, . . . , Rn). For

generic games, QRER(G) is a finite set.

Definition 2 makes explicit that regular QRE depends on the choice of R, the vector

of quantal response functions, and it is in this sense that QRE can be called a parametric

theory. A common choice, and the one used in Section 2, is to set the elements of R equal

to

Rik =
exp(λπik)∑Ki

l=1 exp(λπil)
, i = 1, . . . , n, k = 1, . . . , Ki, (3)

which is known as the logit choice rule and the corresponding equilibrium is the logit QRE.

Obviously, many other choice rules can be used, e.g. the Probit choice rule, see Goeree,

Holt, and Palfrey (2016) for an overview. Since regular QRE is a parametric theory, it is not

clear a priori that its predictions are falsifiable non-parametrically given that the parameter

space is infinite dimensional, i.e. the set of all regular quantal response functions.

We want to understand the nature of the empirical restrictions of regular QRE, i.e., what

is the full set of strategy profiles that can be generated from all different regular QRE. This

appears to be a difficult question to address, since any given QRE is difficult to compute

and the space of all possible quantal response functions is infinitely dimensional. It turns

out, however, that understanding the “envelope theory” of all different QRE models is much

simpler than computing any particular QRE.

In order to do so, we apply the Rank-Dependent Choice Equilibrium (RDCE) concept.

RDCE is a non-parametric theory, which relies only on the ordinal ranking of expected

payoffs and mutual consistency. We show an equivalence between the RDCE set and the

envelope of all different QRE models. We further show that the RDCE set is easy to compute

via payoff indifference conditions, and quickly becomes small as the number of actions in the

game grows.

3.2. RDCE

Let rank(vk) denote the set-valued rank of the k-th element of a vector v ∈ RK . Then, for

example, if action aik yields higher expected payoffs than all other actions rank(πik) = {1}.
On the other hand, if action aik and ail (with l ̸= k) yield the same expected payoff, which

is higher than that of all other strategies, then rank(πik) = rank(πil) = {1, 2}.
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Player i’s best response set, BRi ⊂ Σ, can be defined as follows:

BRi(Σ) = {σ ∈ Σ |σik = 0 if 1 /∈ rank(πik) for k = 1, . . . , Ki} .

In other words, a best response assigns zero probability to any action that yields less than

the maximum expected payoff. Instead, consider a relaxation of the traditional best response

based on the idea that players choose strategies with higher expected payoffs more frequently

without specifying by how much.

Definition 3 Player i’s rank-dependent response set is given by

RDRi(Σ) = {σ ∈ Σ | rank(σik) ⊂ rank(πik) for k = 1, . . . , Ki} .

Note that the rank-dependent response set is typically not closed. In particular, it does not

include limit points where choice probabilities are equal but expected payoffs are strictly

ranked.5

Just like the set of Nash equilibria for the game G can be defined as the intersection of

players’ best responses, the RDCE set is given by the intersection of players’ rank-dependent

response sets.

Definition 4 For any normal-form game G, the Rank-Dependent Choice Equilibrium set is

given by

RDCE(G) = cl(∩iRDRi).

The closure is necessary as the rank-dependent response set does not contain all its limit

points.

RDCE is thus an explicitly set-valued solution concept, unlike QRE and Nash, which

correspond to specific strategy profiles that solve certain fixed-point equations. There is,

however, a connection between the RDCE set and the collection of fixed-points from all

different QRE models. Let R denote the (infinitely-dimensional) space of regular quantal

5For instance, given any σ, the centroid of Σi, where each action in Ai is played with equal probability
1
Ki

(“purely random behavior”), can be approximated arbitrarily closely by elements of RDRi(σ), but for
most games and most σ−i the centroid of Σi is not an element of RDRi(σ), as expected payoffs are typically
not all equal.
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functions with typical element R ∈ R. Recall that, QRER(G) denotes the finite set of QRE

fixed-points for the particular quantal response, R.

Theorem 1 For any normal-form game G, the RDCE set is nonempty, closed, and is es-

sentially the same as the union of fixed-points for all different QRE models, i.e.

RDCE(G) = cl(
⋃

R∈R

QRER(G))

In particular, RDCE(G) contains all Nash equilibria of G and perfectly random behavior.

Proof. Condition (R4) of Definition 1 implies that in any regular QRE, choice probabilities

satisfy payoff monotonicity. Hence, QRER(G) is an element of RDCE(G) for any R. Since

the RDCE set is closed by Definition 4, it contains all its limit points so we have

RDCE(G) ⊃ cl(
⋃

R∈R

QRER(G))

The right side is non-empty, hence, so is the RDCE set. Since both Nash equilibria and

perfectly random behavior can be seen as limit points of QRE (e.g. the logit-QRE in (3)

with λ → ∞ and λ → 0 respectively), they are contained in the RDCE set as well.

To establish the reverse, i.e.

RDCE(G) ⊂ cl(
⋃

R∈R

QRER(G))

we next show that for any strategy profile, σ, in the interior of the RDCE set one can

construct a set of quantal response functions, R = (R1, . . . , Rn), so that σ ∈ QRER(G).

Denote the set of totally mixed strategies by Σo = {σ ∈ Σ |σik ∈ (0, 1) for all i {1, . . . , n},
k ∈ {1, . . . , Ki}} and denote the interior of the RDCE set by RDCEo(G) = RDCE(G)∩Σo.

Let σ ∈ RDCEo(G) then the Ki components of πi(σ) are ordered the same as the Ki

components of σi. Without loss of generality, relabel i’s actions so that j < k implies

πij(σ) ≤ πik(σ) and σij ≤ σik. Construct a strictly positive, continuous, strictly increasing

function, hi : R → R+ as follows. For each j ∈ {1, . . . , Ki} let hi(πij(σ)) = σij. This pins
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down the value of hi at Ki ordered points6 and these values are increasing. Next let

hi(x) =


σi1

1+πi1(σ)−x
for x ≤ πi1(σ)

σij+1(x−πij(σ))+σij(πij+1(σ)−x)

πij+1(σ)−πij(σ)
for πij(σ) ≤ x ≤ πij+1(σ), j = 1, . . . , Ki − 1

σiKi
+ x− πiKi

(σ) for x ≥ πiKi
(σ)

which extends hi to the real line such that it is strictly increasing and strictly positive

everywhere. Now, for each i ∈ {1, . . . , n}, define i’s quantal response function Ri as

Rij(πi) =
hi(πij)∑Ki

k=1 hi(πik)

It is readily verified Ri satisfies conditions (R1)–(R4) of Definition 1 and, hence, is a regular

quantal response function. Furthermore, by construction we have σij = Rij(πi(σ)) for all

i ∈ {1, . . . , n} and for all j ∈ {1, . . . , Ki}. Hence, σ is a regular QRE for the regular quantal

response functions R = (R1, . . . , Rn).

Remark 1 While Theorem 1 focuses on QRE, it should be noted that a similar result holds

for other (parametric) equilibrium concepts that respect payoff monotonicity, see Goeree and

Louis (2018).

Remark 2 Usual applications of QRE, for reasons of parsimony, assume that each player

has the same quantal response function and estimate a single parameter, such as λ in the

case of logit-QRE. While Theorem 1 does not impose symmetry, the empirical restrictions on

the data that are implied by requiring all players to have the same quantal response function

would be more severe. It is an open question as to exactly how much stronger the empirical

implications would be for single-parameter models.

Remark 3 The result that all QRE lie inside the RDCE set also applies to Heterogeneous

QRE (HQRE), which is characterized and analyzed in Rogers et al. (2009). That is, suppose

that each player behaves according to a quantal response function that is drawn from a

distribution of possible quantal response functions. For example, each player has a logit

response function with precision parameters that are independent draws from a log normal

6There may be fewer than Ki points if some of i’s actions yield the same expected payoffs at σ.
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distribution over λ. Then the prediction of HQRE behavior in the aggregate will be restricted

to the RDCE set, for any distribution of quantal response functions from which player types

are drawn.

One might worry that RDCE lacks predictive power as it is far less restrictive than the Nash

equilibrium or logit-QRE, both of which restrict choice probabilities to a finite set of (mixed)

strategy profiles for almost all games. However, we next show that as the size of action sets

increase, the RDCE set converges quickly to a sharp prediction in almost all games. To

show this result, we constrain attention to the set of games G with the property that for

each player i, the set of strategy profiles σ−i that make i indifferent between two actions has

measure zero in Σ−i. This is a generic class of games, i.e. G is open and dense in the space

of all finite normal games.

Theorem 2 For every game G ∈ G, µ(RDCE(G)) ≤ 1/K! where K = maxi Ki.

Proof. Let i∗ be such that Ki∗ = K. By the definition of G, at almost every σ−i∗ , i
∗ has a

strict ranking of expected payoffs associated with the K possible actions. So the measure of

player i∗’s rank-dependent response set is 1/K! for almost every σ−i∗ . In other words, even

without imposing an equilibrium consistency condition (i.e. intersecting the rank-dependent

response sets across players), the measure of the RDCE set is already limited to 1/K!.

The proof of Theorem 2 makes clear that the theoretical upper bound is attained only

when players’ rank-dependent response sets are identical (and, hence, also equal to their

intersection). As we show in the next section, this is a rather special case. Typically, the

measure of the RDCE set is smaller than the upper bound in Theorem 2.

4. Applications to 2× 2 Games

Theorem 2 shows that the RDCE set shrinks quickly as the number of possible actions grows.

RDCE seems least restrictive in small games, which is one reason why we discuss 2×2 games

in some detail. Another reason is that it conveniently allows us to graph the RDCE set,

even for asymmetric games, as part of the set of mixed-strategy profiles Σ = [0, 1]2 (i.e. the

unit square).
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4.1. A Prisoner’s Dilemma Game

In the prisoner’s dilemma game, two players face the choice to stay silent (S) and do jail time

or talk (T ), i.e. provide evidence incriminating the other player, to get a reduced sentence.

The game payoffs are shown in Table 2. Note that irrespective of the other’s choice, a player

is better off talking: π(T ) = π(S) + 1. In other words, T is the dominant strategy.

S T

S −1, −1 −3, 0

T 0, −3 −2, −2

Table 2: A prisoner’s dilemma game.

Let pR(S) and pC(S) denote the probabilities with which S is chosen by Row and Column

respectively. In terms of rank-dependent response sets the dominant-strategy property im-

plies pR(S) <
1
2
for all pC(S) and, likewise, pC(S) <

1
2
for all pR(S). These sets are shown

as the light-shaded areas in Figure 2. Their intersection, the dark-shaded area, corresponds

to the RDCE set.

The filled square at (1
2
, 1
2
) corresponds to perfectly random behavior while the filled circle

at the origin indicates the unique Nash equilibrium. Furthermore, let F (x) = exp(x)/(1 +

exp(x)) denote the logistic distribution function, then the logit QRE probabilities satisfy

pR(S) = F (λR(πR(S)− πR(T )))

pC(S) = F (λC(πC(S)− πC(T ))) (4)

The solid red line connecting the center and origin shows the set of symmetric logit QRE, i.e.

when λ = λR = λC ranges from λ = 0 (random) to λ = ∞ (rational). It may seem intuitive

that the predicted choice probabilities are symmetric as the game is symmetric. However,

this result also relies on the assumption that both players use the same logit quantal response

functions, e.g. with the same precision parameter. The low / middle / high dashed red lines

in the bottom-left quadrant of Figure 2 show the set of asymmetric logit QRE when Column’s

precision parameter is half / thrice / ten times that of Row.

A priori there is no reason to assume that players’ responsiveness to expected payoff
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Figure 2: The rank-dependent response sets (light) and the rank-dependent choice equilibria
(dark) for the Prisoner’s Dilemma game in Table 2. The filled square at (1

2
, 1
2
) corresponds

to random behavior and the filled circle at (0, 0) to the unique Nash equilibrium. The solid
(long-dashed) curves show the set of symmetric (asymmetric) logit QRE while the short-
dashed curves show the set of asymmetric probit QRE.

differences is the same – the RDCE set shows the possible outcomes for any combination of

precision parameters and, in fact, for any set of quantal response functions. For example,

probit QRE choice probabilities follow by replacing the logistic distribution function F (·) in
(4) with the cumulative distribution for a standard normal variable, Φ(·). The dotted blue

lines in the bottom-left quadrant of Figure 2 show the set of asymmetric probit QRE when

Row’s precision parameter is half / thrice / ten times that of Column.

Note that the different dashed (dotted) lines suggest that any point in the RDCE set can

be seen as a logit (probit) QRE for some asymmetric combination of precision parameters.

For the prisoner’s dilemma game this can easily be made more precise since π(S) = π(T )−1.

So (4) is equivalent to

λR = F (−1)(1− pR(S))

λC = F (−1)(1− pC(S)) (5)
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for any pR(S) ≤ 1
2
and pC(S) ≤ 1

2
, where we used F (−x) = 1 − F (x). In other words,

any point in the RDCE set can be seen as a logit QRE with positive parameters (λR, λC)

that satisfy (5). Equivalently, any point in the RDCE set can be seen as probit QRE with

parameters λ̃R = Φ(−1)(F (λR)) and λ̃C = Φ(−1)(F (λC)). These findings suggest a conjecture

that all regular QRE can be obtained via an asymmetric logit QRE, i.e., that the infinite

dimensional space of all regular QRE reduces to the two-dimensional choice of logit precision

parameters (λR, λC) in the case of two players. Finally, note that the measure of the RDCE

set is only 1
4
, i.e. half the upper bound of Theorem 2.

4.2. A Minimum-Effort Coordination Game

Consider two students who work together on a project and who simultaneously have to

decide whether to exert low effort, L = 1, or high effort, H = 2. The grade or payoff from

the project to both is determined by the lowest of the efforts exerted: if both students work

hard the payoff is 2 for each, but if one or both students slack off, the payoff is only 1.

Moreover, every unit of effort costs 0 < c < 1.

L H

L 1− c, 1− c 1− c, 1− 2c

H 1− 2c, 1− c 2− 2c, 2− 2c

Table 3: A 2× 2 coordination game.

The normal-form representation of this game, see Table 3, represents a coordination game in

the following sense. If Row chooses L, Column wants to choose L (and vice versa) and if Row

chooses H, Column wants to choose H (and vice versa). These are the two pure-strategy

Nash equilibria of the game. In addition, there exists a mixed-strategy Nash equilibrium of

the game where both players choose L with probability 1− c and H with probability c.

The theoretical construct most commonly used to “select” among the equilibria in 2× 2

coordination games is Harsanyi and Selten’s (1988) notion of risk dominance. Risk domi-

nance can, in this case, be thought of as maximizing the loss incurred when deviating from

equilibrium play and, in turn, this depends on the parameter c, as follows. When both

players are choosing low efforts, the cost of a unilateral deviation to high effort is just the
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cost of the extra effort, c, which will be referred to as the “deviation loss.” Similarly, the

deviation loss at the (H,H) equilibrium is 1−c, since a unilateral reduction in effort reduces

the minimum by 1 but saves the marginal effort cost c. In this case, risk dominance selects

the equilibrium that has the highest deviation loss. The deviation loss from the low-effort

equilibrium is greater than that from the high-effort equilibrium if c > 1− c, or equivalently,

if c > 1
2
, in which case the low-effort equilibrium is risk dominant. Risk dominance, there-

fore, has the desirable property that it selects the low-effort outcome if the cost of effort is

sufficiently high.

The RDCE set is also sensitive to effort costs, but of course does not make point predicti-

ons. The left panel of Figure 3 shows Column’s rank-dependent response set when c > 1
2
.

When Column’s probability of choosing L is less than 1− c, Row is more likely to choose H,

i.e. pR(L) <
1
2
, and otherwise Row is more likely to choose L, i.e. pR(L) >

1
2
. Similarly, the

middle panel shows the rank-dependent response set for Row. The right panel shows their

intersection, i.e. the RDCE set, as well as the Nash equilibria (three filled circles), random

behavior (filled square), and the symmetric logit QRE (red line segments).

Figure 3 assumes c > 1
2
, in which case the measure of the RDCE set with L being the

more likely choice, µL = 1
4
, exceeds the measure of the RDCE set in which H is the more

likely choice, µH = (1− c)2 and in this sense makes qualitatively similar predictions to risk

dominance. The reverse is true when c < 1
2
, in which case these measures are µL = c2 and

µH = 1
4
respectively. To summarize the total measure of the RDCE set is

µL + µH =


1
4
+ c2 if 0 < c ≤ 1

2

1
4
+ (1− c)2 if 1

2
≤ c < 1

and the relative measure is given by

µH

µL

=

 (2c)−2 if 0 < c ≤ 1
2

(2− 2c)2 if 1
2
≤ c < 1

which is strictly decreasing in the effort cost, c. In other words, RDCEmakes the comparative

statics prediction that an increase (decrease) in effort cost enlarges the set of outcomes in

which L (H) is more frequently chosen.

19



F
ig
u
re

4:
T
h
e
R
D
C
E
se
t
fo
r
th
e
as
y
m
m
et
ri
c
m
at
ch
in
g-
p
en
n
ie
s
ga
m
e
in

T
ab

le
4
fo
r
X

=
20
.
T
h
e
fi
ll
ed

sq
u
ar
e
at

(1 2
,
1 2
)
co
rr
es
p
on

d
s

to
ra
n
d
om

b
eh
av
io
r
an

d
th
e
fi
ll
ed

ci
rc
le

at
(

1
X
+
1
,

1
X
+
1
)
co
rr
es
p
on

d
s
to

th
e
u
n
iq
u
e
m
ix
ed
-s
tr
at
eg
y
N
as
h
eq
u
il
ib
ri
u
m
.
T
h
e
cu
rv
e

sh
ow

s
th
e
se
t
of

p
ro
b
it
Q
R
E
w
h
en

λ
=

λ
R
=

λ
C
va
ri
es

fr
om

λ
=

0
(s
q
u
ar
e)

to
λ
=

∞
(c
ir
cl
e)
.

20



4.3. An Asymmetric Matching-Pennies Game

A final example is the asymmetric matching-pennies game shown in Table 4 with X > 1.

This game has a unique mixed-strategy Nash equilibrium in which both the Row and Column

select Heads (H) with probability 1/(X + 1) and Tails (T ) with complementary probability

X/(X + 1). For large X, the Nash equilibrium prediction puts almost all weight on the

(T, T ) outcome, which seems unintuitive from Row’s point of view.

H T

H X, 0 0, X

T 0, 1 1, 0

Table 4: An asymmetric matching-pennies game.

Figure 4 shows the RDCE set, the Nash equilibrium (filled circle) and random behavior

(filled square) as well as the set of symmetric logit QRE for X = 20. The measure of the

RDCE is readily computed as

µ =
1

4
−
( 1

X + 1

)2

and highlights that the theoretical upper bound of 1
2
(see Theorem 2) is again loose: the

measure of the RDCE set is less than 1
4
for all X > 1 and tends to zero when X limits to 1.

Finally, note that for large X, RDCE makes the intuitive prediction that both players

are more likely to choose the action that might yield X, i.e. pR(H) ≥ 1
2
and pC(T ) ≥ 1

2
.

5. Conclusion

Quantal Response Equilibrium (QRE) has proven an extremely useful tool for experimenters

and theorists alike. It serves as a statistical model that can be applied to any data set from

the laboratory or the field without running into zero-likelihood problems. It provides intuitive

comparative statics predictions that are often absent in standard theoretical analyses. Yet,

QRE has met some criticism as well. Its predictions rely on making specific parametric

assumptions about the quantal response functions that map expected payoffs into choice

probabilities. Moreover, the parameter space (i.e. the space of possible quantal response
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functions) is infinite dimensional, which raises the question of whether QRE is falsifiable.

Finally, the fixed-point equations that define QRE can typically only be solved numerically.

We address these criticisms through the lens of a novel set-valued equilibrium concept

called Rank-Dependent Choice Equilibrium (RDCE) (see also Goeree and Louis, 2018) .

Rank-dependent choice relies on the idea that actions with higher expected payoffs are more

likely to be chosen without explicitly specifying by how much. The RDCE consists of all

strategy profiles that are mutually consistent, i.e. for each player, choice probabilities are

ranked the same as their associated expected payoffs (given others’ strategies). As we have

shown, the RDCE set is often simple to compute, see e.g. the Lieberman example of Section

2. For multi-person games with large action sets the computation of the RDCE set is not as

straightforward but its conceptual simplicity remains.

While the characterization of RDCE is achieved through completely different – and much

simpler – means than QRE, it can be seen as an “envelope theory” for all QRE models. The

RDCE set of a normal-form game G is essentially the same as the union of fixed-points from

all different QRE models, see Theorem 1. Furthermore, for generic games, the size of the

RDCE set decreases at factorial speed in the number of available actions, see Theorem 2.

This demonstrates that RDCE (and, a fortiori, QRE) is a falsifiable theory.

Like the Nash equilibrium, RDCE is parameter free, but unlike the Nash equilibrium, it

provides intuitive comparative statics. In coordination games, for instance, RDCE predicts

that an increase in effort cost shrinks the set of predicted outcomes in which high efforts are

more likely to be chosen. And in games with an asymmetric mixed-strategy Nash equili-

brium, RDCE predicts that own payoff effects matter, as robustly observed. We leave it to

future research whether RDCE can be as successfully applied in other contexts.
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