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1 Additional proof details

Details for the proof of Theorem 2

We proceed in three steps.

Step 1. For any history, hkt with k missing volunteers and lower bound lhk
t
= l define the set

of possible equilibrium cutpoints as:

Z(l;w) =


c ≥ l

∣∣∣∣∣∣∣∣∣∣∣∣∣

c = e−γ∆
∑k−1

j=0

[ (
Qk−j−1 (c)− V k−j(c, c)

)
·B
(
j, n− 1−m+ k, F (c)−F (l)

1−F (l)

) ]
or c = l if e−γ∆Qk−1 (l) ≤ l,

for some: {Qk−j−1 (c) , V k−j(c, c)}k−1
j=1 ∈ {Vk−j(c)}k−1

j=1 ,

and V k(c, c) = w


(1)

where w is the continuation value following the history if no member volunteers at stage t. The set of

all possible future equilibrium value functions in the definition of Z(l;w), {Vk−j(c)}k−1
j=1 , is defined by

the induction hypothesis for all j ∈ 1, 2, ..., k−1, i.e. when at least one volunteer activates in stage t;

and {Qk−j−1 (c) , V k−j(c, c)}k−1
j=1 is a selection from {Vk−j(c)}k−1

j=1 : i.e., {Qk−j−1 (c) , V k−j(c, c)}k−1
j=1

is the collection of future equilibrium value functions associated with one specific PBE. Note that

we have proven in Section 3 that V 1(c, c) is a continuous function of c, so a fortiori V1(c) is an

upper-hemicontinuous correspondence in c. We now assume as induction hypothesis that Vk−j(c)

is an upper-hemicontinuous correspondence for all j ∈ [1, k − 1].

For any possible equilibrium cutoff, cw ∈ Z(l;w), and associated set of future equilibrium

value functions, {Qk−j−1 (c) , V k−j(c, c)}k−1
j=1 ∈ {Vk−j(c)}k−1

j=1 one obtains the corresponding value

functions Qk
w (l) ,

[
V k
w

]+
(c, l),

[
V k
w

]−
(c, l) and V k

w (c, l) = max{
[
V k
w

]+
(c, l),

[
V k
w

]−
(c, l)}. These

functions directly depend on both cw and w, since w is the expected continuation value in case of no

volunteers. Note that V k
w (c, l) = max{

[
V k
w

]+
(c, l),

[
V k
w

]−
(c, l)} is continuous in c since

[
V k
w

]+
(c, l)

and
[
V k
w

]−
(c, l) are both continuous in c. Let Ek(l;w) be the set of possible equilibrium values for

an uncommitted player of type l when the lower bound on types is l and k volunteers are missing;
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and denote the convex hull of Ek(l;w) by ∆Ek(l;w). Note that the set ∆Ek(l;w) corresponds to

the equilibrium values if the expected continuation values are PBE when at least one volunteer

activates in period t, and equal to w is the value if there is no contribution. Values in the interior

of the convex hull correspond to situations in which the public randomization device is used to mix

between equilibria in the continuation game, for example mixing between the equilibria generating

V k
w (l, l) and Ṽ k

w (l, l), where both V k
w (c, l) and Ṽ k

w (c, l) are equilibrium continuation values functions,

constructed as described above.

Step 2. Define now as initial steps of a sequence, Z0(l) = Z(l; 0), the set of equilibrium

cutpoints if the expected continuation value in case of no contributions is 0 (i.e., the game were to

be immediately terminated if there are no contributions), and ∆Ek
0 (l) = ∆Ek(l; 0), the convex hull

of the corresponding set of value functions. For each T = 1, 2, ..., given ∆Ek
T−1(l), recursively define

Z1(l), Z2(l), ... similarly, that is:

ZT (l) =


c ≥ l

∣∣∣∣∣∣∣∣∣∣∣∣

c = e−γ∆
∑k−1

j=0

[ (
Qk−j−1 (c)− V k−j(c, c)

)
·B
(
j, n− 1−m+ k, F (c)−F (l)

1−F (l)

) ]
or c = l if e−γ∆Qk−1 (l) ≤ l

for some: Qk−j−1 (c) , V k−j(c, c) ∈ Vk−j(c) ∀j j ∈ [1, k − 1]

and V k(c, c) ∈ ∆Ek
T−1(c)


(2)

In other words, the set ZT (l) is the set of cutpoints that can be an equilibrium at a history with k

missing volunteers if the game were to be terminated after T periods of no additional volunteers.

We call these the set of possible cutpoints for the T -truncated game, and it defines a sequence of

sets of possible cutpoints, {ZT (l)}∞T=1. If e
−γ∆Qk−1 (l) ≤ l, then ZT (l) is obviously not empty. If

e−γ∆Qk−1 (l) > l, note that the correspondence in c defined by

φT
l (c) =


x ∈ [l, 1]

∣∣∣∣∣x = e−γ∆
∑k−1

j=0

[ (
Qk−j−1 (c)− V k−j(c, c)

)
·B
(
j, n− 1−m+ k, F (c)−F (l)

1−F (l)

) ]
for some [Qk−j−1 (c) , V k−j(c, c)] ∈ Vk−j(c) ∀j ∈ [1, k − 1]

and V k(c, c) ∈ ∆Ek
T−1(c)


is non empty, convex- and closed-valued since Qk−j−1 (c) , V k−j(c, c) ∈ Vk−j(c) and V k(c, c) ∈
∆Ek

T−1(c). Moreover, since Vk−j(c) and ∆Ek
t−1(c) are upper-hemicontinuous in c, φT

l (c) is upper-

hemicontinuous in c as well. It follows that φT
l (c) is closed valued and upper-hemicontinuous in

c and hence has a closed graph. We conclude that φT
l (c) is non-empty, convex-valued and has

closed graph in c, so by the Kakutani fixed-point theorem implies it has a fixed point. This implies

ZT (l) is non empty, since any fixed point of φT
l (c) is an element of ZT (l). For each c̃ ∈ ZT (l),

we can construct the corresponding value functions Qk
T (l) and V k

T (c, l), which are continuous in c.

Define ∆Ek
T (l) to be the convex hull of the set of continuation values for a type l when the lower

bound is l. The set ∆Ek
T (l) is non empty, convex and closed valued and upper-hemicontinuous in

l. To verify the last property, note that for any sequence {lι} → l, we can select a corresponding

sequence of ckT (lι) ∈ ZT (lι) and define the corresponding values for uncommitted players, V k
T (c, lι).
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Let ckT (l) = limι→∞ ckT (lι), since ckT (lι) ∈ ZT (lι) for all ι, then we must have at least a subsequence

in which either the first or the second line of (2) is true for all ι: this implies that ckT (l) satisfies the

first or the second line of (2) as well, so ckT (l) ∈ ZT (l). Note that limι→∞ V k
T (c, lι) = V k

T (c, l) and

V k
T (c, l) is an equilibrium value function since ckT (l) ∈ ZT (l). So, for any sequence {lι} → l, there

is a selection V k
T (lι, lι) ∈ ∆Ek

T (lι) with V k
T (lι, lι) → V k

T (l, l), such that V k
T (l, l) ∈ ∆Ek

T (l).

Step 3. For any T > 0, the procedure descibed above generates a sequence of cutpoints(
ckT,τ (l)

)T
τ=1

where ckT,τ (l) = ckT−τ (l) is the cutpoints when there are T − τ attempts, i.e. under the

constraint that the game is terminated if there are T − τ periods without volunteers. For any τ , we

can define ckτ (l) = limT→∞ ckT,τ (l), and the value functions Qk (l) and V k(c, l) associated to the limit

cutpoints
(
ckτ (l)

)∞
τ=1

. We claim that this is a PBE. Assume this is not true. Then there is a deviation

for a player i that yields V
k
i (c, l) such that V

k
i (c, l)−V k(c, l) > 2ε for some ε > 0. We now make two

observations. First, let V
k
i,T (c, l) be the value of the strategies used in V

k
i (c, l) in the T -truncated

game. Since utilities are bounded and ∆, γ > 0, the truncated game is continuous at infinity (as

defined in Fudenberg and Levine, 1983). We must therefore have V
k
i,T (c, l) ≥ V

k
i (c, l) − ε/2 for T

sufficiently large. Moreover, by construction, V k
T (c, l) ≤ V k(c, l) + ε/2 for T sufficiently large. It

follows that there exists a T ∗ such that for T > T ∗:

V
k
i,T (c, l)− V k

T (c, l) ≥ ε

But this is in contradiction with the fact that V k
T (c, l) is the equilibrium value function of a PBE

in the T -truncated game.

Step 4. We conclude the induction step by proving that the set of equilibrium values Vk(l)

is nonempty, closed, convex-valued and upper-hemicontinuous in l. We showed above that Z(l)

is non empty. We now prove that Z(l) is upper hemicontinuous, which immediately implies the

desired result. Consider a sequence {lι} → l and the associated sequence ck(lι) ∈ Z(lι). We need

to prove that if ck(lι) → limι→∞ ck(lι), then limι→∞ ck(lι) ∈ Z(l). To show this, define ck(lι) ∈
argminck∈Z(lι)

∣∣ck − limj→∞ ck(lj)
∣∣ and assume by contradiction that

∣∣ck(l)− limj→∞ ck(lj)
∣∣ > ε

for some ε > 0. We can write:∣∣∣ck(l)− lim
ι→∞

ck(lι)
∣∣∣ ≤

∣∣∣ck(l)− ckT (l)
∣∣∣+ ∣∣∣ckT (l)− ckT (lι)

∣∣∣
+
∣∣∣ckT (lι)− ck(lι)

∣∣∣+ ∣∣∣∣ck(lι)− lim
j→∞

ck(lj)

∣∣∣∣
where

{
ckT (l)

}
is a sequence of equilibrium cutpoints in the truncated game such that ckT (l) → ck(l).

Note that by definition of ckT (l), there is a T ∗ such that for T > T ∗,
∣∣ck(l)− ckT (l)

∣∣ < ε/4 and∣∣ckT (lι)− ck(lι)
∣∣ < ε/4. Similarly, by definition of a limit, there is a ι∗ such that for ι > ι∗,∣∣ck(lι)− limj→∞ ck(lj)

∣∣ < ε/4. Finally, note that for a given T , ckT (l) is upper-hemicontinuous so

it admits a selection such that limj→∞ ckT (lj) ∈ ZT (l), implying that
∣∣ckT (l)− ckT (lι)

∣∣ < ε/4 for ι > ι∗

and some ckT (l) ∈ ZT (l) (if ι
∗ is chosen sufficiently large). We conclude that

∣∣ck(l)− limj→∞ ck(lj)
∣∣ <

ε for ι sufficiently large, a contradiction. ■
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Details for the proof of Theorem 4

We proceed in two steps.

Step 1. We have proven in the main text that if mn → ∞ as n → ∞ but mn ≺ n2/3, then

limn→∞
F (cmn

n,1 (0))

αn
→ L > 1, where L is either bounded but strictly larger than 1 or infinite (and

as, defined in the text, αn = mn/n). We now prove that if mn = m for all n (or equivalently

mn → m), then limn→∞
F (cmn,1(0))

m/n = ∞. Assume by contradiction that
nF (cmn,1(0))

m → L < ∞. In

this case, it can be proven using standard methods that:

B(m− 1, n− 1, F (cmn,1(0)))
∼=
(
n− 1

m− 1

)[(m
n

)m
n (1− m

n )
1−m

n

]n
m
n

∼=

√
1

2πm(1− m
n )

where the second step follows from the Strirling approximation formula, and ”∼=” means that left

hand side converges to zero or diverges to infinity at the same rate. Since
nF (cmn,1(0))

m → L implies

that cmn,1(0) → L
f(0)

m
n , so we must have that for sufficienly large n:

1 ≥
f(0)B(m− 1, n− 1, F (cmn,1(0)))

cmn,1(0)
≃
√

1

2π
(
m
n

)3
(1− m

n )n
=

√
n2

2πm3(1− m
n )

→ ∞,

a contradiction. We therefore conclude that in equilibrium if m is constant, then:
nF (cmn,1(0))

m → ∞.

Step 2. We finally prove that if mn = m, a constant, or if mn → ∞ as n → ∞ but mn ≺ n2/3,

then the probability of success in the first period converges to 1. Define for convenience here,

ζn =
F (cmn

n,1 (0))

αn
. Note that the probability of failure in the first period is equal to the probability

that the number of volunteers in period 1, j, is less than or equal to αnn agents, which can be

bounded above:

Pr (j ≤ αnn) = Pr(
j

n
≤ αn) = Pr(

j

n
≤ F

(
cmn
n,1 (0)

)
− (F

(
cmn
n,1 (0)

)
− αn)) (3)

≤ Pr

[∣∣∣∣ jn − F
(
cmn
n,1 (0)

)∣∣∣∣ ≥ αn(ζn − 1)

]

= Pr

∣∣∣∣ jn − F
(
cmn
n,1 (0)

)∣∣∣∣ ≥ σcmn,1(0)
(
j

n
) ·

√
nαn(ζn − 1)√

ζn(1− F
(
cmn,1(0)

)
)



≤


√

ζn(1− F
(
cmn
n,1 (0)

)
)

√
nαn(ζn − 1)


2

(4)

where in the second line we used F
(
cmn
n,1 (0)

)
− αn = αn(ζn − 1); in the third line we define

σcmn
n,1 (0)

( jn) =

√
F(cmn

n,1 (0))(1−F(cmn
n,1 (0)))√

n
and used Chebyshev’s inequality. We now have two cases to
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consider. If mn = m, a constant, then by Step 1 we have ζn → ∞ and can rewrite (3) as:

Pr(j ≤ αnn) ≤


√
ζn(1− F

(
cmn,1(0)

)
)

√
nαn(ζn − 1)


2

= lim
n→∞

1

ζn

1

m(1− 1
ζn
)2

= 0

If instead mn → ∞ as n → ∞ but mn ≺ n2/3, we have by Step 1 that ζn → L > 1 and:

Pr(j ≤ αnn) ≤


√
ζn(1− F

(
cmn
n,1 (0)

)
)

√
nαn(ζn − 1)


2

= lim
n→∞

1

mn

L

(L− 1)2
= 0

In both cases, we conclude that the probability of failure converges to zero. ■

Details for the proof of Theorem 5

Case 1.1. We prove here that reporting c′ > c and disobeying to a recomednation to volunteer

is not a strictly optimal deviation for a player i. Assume the recommendation is to volunteer and

the player strictly prefers to disobey by not volunteering. In this case, again, c−i must be such

that ct,i (c
′, c−i, θt) ≥ c′ for some t ≤ S(c) and a sequence of cutoffs ct,i (c

′, c−i, θt) corresponding

to a sequence of public signals θt, followed in a PBE with positive probability. As in Case 1 in

the main proof of Theorem 5, let t′ be the minimal period in which ct′,i (c
′, c−i, θt′) ≥ c. Then

ct′′,i (c
′, c−i, θt′′) < c for all t′′ < t′, and so ct′,i (c

′, c−i, θt′) = ct′,i (c, c−i, θt′). If t′ > t, then

ct,i (c
′, c−i, θt) < c′ and ct,i (c, c−i, θt) < c for t ≤ S(c, θ), so if the agent reported truthfully,

s/he would have received the recommendation to not volunteer. It follows that in this event

reporting c′ and disobeying induces the same action as reporting c and obeying: it cannot generate

a strictly superior deviation in this event. If instead, t′ ≤ t, then ct,i (c, c−i, θt) ≥ ct′,i (c, c−i, θt′) =

ct′,i (c
′, c−i, θt′) ≥ c. Player i does not know c−i and t, but s/he knows that conditioning on being

asked to volunteer, c−i is such that there is a t ≤ S(c, θ) in which ct,i (c, c−i, θt) ≥ c. This implies

the following. First that player i conditions on an event in which the set It−1 (c, c−i, θt−1) of

players volunteers for sure (indeed i conditions on a family of events with this property). Second,

i conditions on an event in which, for any j ≥ 0, the cutoffs at t+ j are identical to the cutoffs in

the PBE of the dynamic game (by construction) that follows the vector of cutoffs ct (c, c−i, θt) =

{ct,1 (c, c−i, θt) , ..., ct,n (c, c−i, θt)}. It follows that i has the same expected values as in the PBE,

and s/he weakly prefers to volunteer: s/he therefore cannot strictly prefer to disobey the mechanism

and not volunteer. We conclude that if the player disobeys when asked to volunteer after reporting

to be a type c′, the deviation cannot be strictly superior that reporting honestly and then obeying

the recommended action.

Case 2. In the case in which the recommendation is to abstain, we have two cases to consider:

Step 2.1. Consider first the case in which i reports c′ and obeys to a recommendation to

abstain. In this case, again, c−i must be such that ct,i (c
′, c−i, θt) ≤ c′ for some t ≤ S(c, θ) and
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a sequence of cutoffs ct,i (c
′, c−i, θt) corresponding to a sequence of public signals θt, followed in a

PBE with positive probability. Let t′ be the minimal period in which ct′,i (c
′, c−i, θt′) ≥ c. Then

ct′′,i (c
′, c−i, θt′′) < c for all t′′ < t′, and so by the same argument as in Step 1, ct′,i (c

′, c−i, θt′) =

ct′,i (c, c−i, θt′). If t′ > t, then ct,i (c
′, c−i, θt) < c′ and ct,i (c, c−i, θt) < c, so in this event reporting

c′ induces the same action as reporting c: it cannot generate a strictly superior deviation in this

event. If instead, t′ ≤ t, then ct,i (c, c−i, θt) ≥ ct′,i (c, c−i, θt′) = ct′,i (c
′, c−i, θt′) ≥ c. Player i does

not know c−i and t, but s/he knows that conditioning on being asked to volunteer, c−i is such that

it is as if s/he is a period t ≤ S(c, θ) with public signals θt in which ct,i (c, c−i, θt) ≥ c. As in Step

1.2, this implies that i has the same expected values as in the PBE, and weakly prefers to volunteer.

So reporting c′ and obeying a recommendation to abstain cannot yield a higher expected utility

than reporting truthfully and obeying the recommendation of the mechanism.

Step 2.2. Finally, consider the case in which i reports c′ and disobeys to a recommendation

to abstain. Again, let t′ be the minimal period in which ct′,i (c
′, c−i, θt′) ≥ c. If t′ > t, then

ct,i (c
′, c−i, θt) < c′ and ct′,i (c, c−i, θt′) < c for all t′ ≤ t. So a type c would find it optimal to

abstain. If instead, t′ ≤ t, then ct,i (c, c−i, θt) ≥ ct′,i (c, c−i, θt′) = ct′,i (c
′, c−i, θt′) ≥ c, and a type c

would receive the same expected payoff from reporting truthfully and obeying than from reporting

c′ and disobeying a recommendation to abstain.

Since there is no scenario in which the player finds it strictly optimal to report to be a type

c′ > c, we conclude that the player is never strictly better off by reporting to be c′ > c, no matter

what obedience policy s/he follows afterwards. ■

Details for the proof of Theorem 3′

To simplify notation, we suppress the dependence of the lower bound of the posterior beliefs, l, on

hkt . For any lower bound, l, define ck(l) as the minimal x such that:

v − x− e−γ∆ ·
∑k−2

j=0

( v

e−γ∆
−Qk−j−1 (x)

)
B
(
j, n− 1−m+ k, F̃ (x; l)

)
(5)

≥ v − e−γ∆ ·
∑k−1

j=0

( v

e−γ∆
− V k−j(x, x)

)
B
(
j, n− 1−m+ k, F̃ (x; l)

)
.

The left hand side is the utility of a cutpoint type x who volunteers when the cutpoint used by

the other agents is x. The right hand side is the utility of a type x who does not volunteer, when

the others are using cutpoint x. Note that the left hand side may be strictly lower than the right

hand side for any x ∈ [l, v]: in this case all types c strictly prefer not to volunteer and ck(l) = l,

in which case the cutpoint is not defined by an equality as in (5). It follows that there is no type

x < v that is willing to volunteer; when ck(l) > l, then any type x ≤ ck(l) is willing to volunteer.

When ck(l) = l, then type l is willing to volunteer only (5) holds with equality.

We can write (5) as:

ck(l) = min
c≥[l,1]

{
c|c ≤ e−γ∆

∑k−1

j=0

[(
Qk−j−1 (c)− V k−j(c, c)

)
B
(
j, n− 1−m+ k, F̃ (c; l)

)]}
(6)
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whereQ0 (c) = v/e−γ∆. We now prove that there is a v∗(n,m, γ,∆) such that for v > v∗(n,m, γ,∆),

ck(l) > l for any k ≤ m and l < min{v, 1}. We proceed in four steps.

Step 1. We have already proven in Lemma 2 that for any l < v, we have c1(l) > l. Moreover

it is easy to verify that there must be a v∗(n, 1, γ,∆) such that for v ≥ v∗(n, 1, γ,∆) we have

e−γ∆Q1 (l)− l > 0 for any l ∈ [0,min{v, 1}]: since as it can be verified using (4) in the paper, c1t (l)

is strictly increasing in v for all t; and Q1 (l) is increasing in both v and c1t (l) for all t.

Step 2. For the induction hypothesis, assume that for any l ∈ [0,min{v, 1}] and for all j =

1, ...,m − 1 there is a v∗(n, j, γ,∆) > 0 such that for v ≥ v∗(n, j, γ,∆), we have: cj(l) > l and

e−γ∆Qj (l) − l > 0. We prove that there is a v∗(n,m, γ,∆) such that for v ≥ v∗(n,m, γ,∆), we

have: cj(l) > l for all l < v and e−γ∆Qj (l) − l > 0 for any j ≤ m and l ∈ [0, 1]. There are two

sub-cases to consider.

Step 2.1. Suppose by contradiction that for any v even arbitrarily large, ck(l) = l and we have

that
[
V k
]−

(ck(l), l) >
[
V k
]+

(l, l) for some l ≤ min{1, v}. Hence, at l we therefore have a strict

corner solution when there are k missing volunteers. In this case, the value function for a type

l must be V k(l, l) = 0, since the project will never be realized: all players expect that no other

player of type c ≥ l is willing to contribute. Suppose that v ≥ v∗(n, k − 1, γ,∆), as defined by the

induction step. If a player of type l volunteers, s/he obtains:
[
V k
]+

(l, l) ≥ e−γ∆ ·Qk−1(l)− l > 0,

where the last inequality follows from the induction step: we thus have a contradiction.

Step 2.2. From the previous step, we conclude that, if Part 1 the theorem is not true, then for

v > v∗(n, k − 1, γ,∆), if ck(l) = l then V k(ck(l), l) =
[
V k
]+

(l, l). From ck(l) = l, we have:

B
(
j, n− 1−m+ k, F̃ (c; l)

)
= 0 for j > 0 (7)

B
(
0, n− 1−m+ k, F̃ (c; l)

)
= 1

since V k(ck(l), l) =
[
V k
]+

(l, l). Hence ck(l) satisfies (6) at equality, which implies that (6) can be

written as: l = ck(l) = e−γ∆ ·
(
Qk−1 (l)−

[
V k
]+

(l, l)
)
. Note that when ck(l) = l, there are no

other volunteers, so:
[
V k
]+

(l, l) = e−γ∆ ·Qk−1(l)− l. But then we have:

Qk−1 (l)−
[
V k
]+

(l, l) = Qk−1 (l)−
(
e−γ∆ ·Qk−1(l)− l

)
= l + (1− e−γ∆)Qk−1 (l)

This implies that we have e−γ∆ ·
(
Qk−1 (l)−

[
V k
]+

(l, l)
)
> l if e−γ∆l+e−γ∆(1−e−γ∆)Qk−1 (l) > l:

or equivalently e−γ∆Qk−1 (l) > l, an inequality that is always true if v > v∗(n, k− 1). But then we

have l = ck(l) = e−γ∆ ·
(
l + (1− e−γ∆)Qk−1 (l)

)
> l, a contradiction. We conclude that for for any

k ≤ m and l ≤ min {1, v}, ck(l) > l if v > v∗(n, k, γ,∆).

Step 3. Finally, we conclude the inductive argument by proving that there is a v∗(n, k, γ,∆) ≥
v∗(n, k − 1, γ,∆) such that for v > v∗(n, k, γ,∆), then e−γ∆Qk (l) > l for any l ∈ [l0,min {1, v}].
It is sufficient to prove e−γ∆Qk (l) > 1, for v sufficiently high. Assume not. Then it must be that

7



ck (l) converges to l as v increases, since if it converges to a constant c̃ > l. We must therefore have

that B
(
j, n− 1−m+ k, F (c̃)−F (l)

1−F (l)

)
> 0 for all j ≥ k and Qk (l) → ∞ as v → ∞, since it is strictly

increasing in v (and diverging at infinity as v increases, given the lower bounds on the probabilities of

j ≥ k volunteers): a contradiction. But if ck (l) → l, then we have:
[
V k
]+

(l, l) → e−γ∆Qk−1 (l)− l.

Since, by the previous step, the equilibrium is interior in stage k for v > v∗(n, k−1, γ,∆), we have:

ck(l) = e−γ∆ ·
(
Qk−1 (l)−

[
V k
]+

(l, l)
)
. Note moreover that for v > v∗(n, k − 1, γ,∆), we have

e−γ∆Qk−1 (l) > l. It follows that as v increases, we have:

ck(l) → e−γ∆ ·
(
l + (1− e−γ∆)Qk−1 (l)

)
> e−γ∆ ·

(
l + (1− e−γ∆)

l

e−γ∆

)
= l

where the last inequality follows from v > v∗(n, k − 1, γ,∆). We thus have a contradiction. We

conclude that there is a v∗(n, k) such that for v > v∗(n, k, γ,∆), e−γ∆Qk (l) > l. ■

Proof of Proposition 1

We show here that if v > v∗(n,m, γ,∆), then the group achieves the objective if there are at least m

players with type lower than v. Note that for v > v∗(n,m, γ,∆), in the history hkt with k volunteers

needed and a lower bound of types at lhk
t
, then in period t+1, there will either be j < k volunteers

needed, with a lower bound of ck(lhk
t
); or there will still be k volunteers needed with a higher lower

bound of types ck(l) > l.

Now suppose, by way of contradiction, that there is some k for which ckt → ck∞ < v for some

initial lhk
t
, following a sequence of many periods where there are no additional volunteers beyond

m− k. Note that as ckt → ck∞, we have:

F̃ (ckt ; c
k
t−1) →

limt→∞
(
F (ckt )− F (ckt−1)

)
1− F (ck∞)

= 0

Since (13) in the paper must hold, we therefore have:

ck∞ = min
c∈[ck∞,1]

{
c ≥ e−γ∆ ·

(
Qk−1 (c)−

[
V k
]+

(c, c)

)}
,

But then the same argument as Step 2.2. above proves that for v > v∗(n,m) we must have:

min
c∈[ck∞,1]

{
c ≥ e−γ∆ ·

[
Qk−1 (c)

−
[
V k
]+

(c, c)

]}
> e−γ∆ ·

(
ck∞ + (1− e−γ∆)

ck∞
e−γ∆

)
> ck∞,

a contradiction. We conclude that for all k, ckt → ck∞ = v. ■

Proof of Proposition 2

Call E2+ the event comprising histories ht in which at least two volunteers are missing and they

both have a cost ci ∈ (v/2, 1). Clearly this event has positive probability for any v ∈ (1, 2). We

now prove that for any v ∈ (1, 2), there is an equilibrium in which contributions are zero in E2+,

no matter what the level of γ, and ∆ are, thus even in the limit as γ,∆ → 0. Consider an history
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h2t with the properties as above. Assume the lower-bound on types is l > v/2. An active player i

who expects no other active player to contribute obtains from contributing at most a payoff

e−γ∆Q1(c2(l))− ci ≤ e−γ∆
[
v − c2(l)

]
− ci ≤ e−γ∆ [v − l]− l (8)

≤
[
e−γ∆ − 1

2
(1 + e−γ∆)

]
v < 0

where the first inequality follows from the fact that Q1(c2(l)) must be smaller than the utility of the

lowest remaining type, i.e. c2(l), so it must be Q1(c2(l)) ≤ v − c2(l) ≤ v − l; the second inequality

follows from the fact that c2(l) ≥ l and ci ≥ l. We conclude that no active player finds it optimal to

contribute if s/he does not expect some other player to contribute with positive probability. ■

Proof of Proposition 3

We prove here that for any n > mn and for any ε > 0, γ ∈ (0, 1) there exists a ∆n,ε,γ > 0 such

that for ∆ > ∆n,ε,γ the project is realized in an equilibrium with probability less than ε. This

implies that for any v̂, there is a ∆v̂ such that for ∆ > ∆v̂ we have v∗ (n,m.γ,∆) > v̂. For any F

and for any ε > 0, there is a cε > 0 such that with probability 1 − ε, at least n −mn + 2 players

have cost strictly larger than cε (so that there are no more than mn − 2 players with cost lower

than cε). Consider a continuation game with k ≤ mn and l ≥ cε, where k is the number of missing

volunteers, and l is the lower bound on types. For these continuation games, consider the path of

future play along which no uncommitted member volunteers. To see that there is a ∆n,ε,γ such

that for ∆ > ∆n,ε,γ this is an equilibrium, note that with these strategies the expected utility of

a player who does not volunteer is zero; the expected benefit of volunteering player is not higher

than Dn,ε,γ ≡ −cε + e−γ∆(v − cε): success can occur no sooner than a period after the deviator

volunteers, and the expected payoff the period after a unilateral deviation cannot be larger than

the utility of the lowest type, i.e. v−cε. For ∆ > 1
γ log

(
v−cε
cε

)
= ∆n,ε,γ , we have that Dn,ε,γ < 0, so

the equilibrium strategies are optimal. Given these equilibrium strategies, assign to any other k′, l′

with k′ ≤ mn and l′ < cε, some corresponding equilibrium strategy for the continuation game. In

the equilibrium of the overall game it must be that if ∆ > ∆n,ε,γ then with probability 1− ε there

are not enough members with cost c < cε to complete the project, which then must fail: indeed, if

∆ > ∆n,ε,γ then with probability at least 1− ε either we reach a continuation game corresponding

to k′, l′ with k′ ≤ mn and l′ < cε in which no player contributes; or we reach a state k, l with k ≤ mn

and l ≥ cε, in which case again no player finds it optimal to contribute by construction. ■

2 Formal statements and proofs of results in Section 3.3: The
effects of n and ∆ (or γ) on success and welfare

Since the distortion depends on a delay in realization, is natural to ask whether the distortion may

be mitigated by an increase in n, or a decrease in the delay costs (i.e. a reduction in either ∆ or

γ). For any fixed sequence of cutpoints, {ct}∞t=1, and any initial lower bound on the cost types,

l, an increase in n makes it easier to achieve the target m. On the other hand, an increase in
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n has potentially negative equilibrium implications because the sequence of equilibrium cutpoints

change with n. In fact, the following result shows that an increase in n leads to a uniform reduction

in the equilibrium cutpoints, implying that players are individually more reluctant to contribute.

Similar considerations are valid for γ or ∆: an increase would have a positive effect on welfare by

reducing the distortions generated by delays; the increase, however, exacerbates the dynamic free

rider problem, reducing the cutpoints and increasing equilibrium delays.

To study the overall effect of an increase in n, the following preliminary result will be instru-

mental. To make the dependence on n explicit, define ct(n) to be the cut-point with n players

at period t (for some given lower bound on types, l, and discounting parameters, ∆, γ). Define

as above Φt(n) as the cumulative probability of success up to and including the current period

t, for an active player who chooses not to contribute. We say that an increase in n generates an

improvement in success probability if Φt(n − 1) first order stochastically dominates Φt(n). This

implies that for a higher n the distribution is more skewed toward low values of t, which is good

for the players (so an improvement). We have:

Lemma A1. An increase in n shifts the cut-points downward so that ct(n) < ct(n − 1) for all t,

but it generates an improvement in success probability.

Proof: We proceed in two steps.

Step 1. We first prove that the cutpoints are declining in n so: ct(n) < ct(n − 1) for all t > 0.

To see this note that
(
1− e−γ∆

)
x/
[
1− e−γ∆ · x

]
is a strictly increasing function of x if, as always

verified in our environment, e−γ∆ · x < 1. Since 1 − F (c)/ [1− F (l)] < 1 for c > l, it follows that

the function:

λn(c; l, γ,∆) =

(
1− e−γ∆

) (1−F (c)
1−F (l)

)n−1

1− e−γ∆ ·
(
1−F (c)
1−F (l)

)n−1 (9)

is strictly decreasing in n for any c, l, γ,∆. It can also be verified that λn(c; l, γ,∆) is strictly

decreasing in c for all n, l, γ,∆. From (23) in the paper, it follows that the fixed point c1n,1 is

decreasing in n for any l, γ,∆. To see this, note that:

0 = λn(c1(n); l, γ,∆)− c1(n) < λn−1(c1(n); l, γ,∆)− c1(n)

where the equality follows by the definition of c1(n), and the inequality follows by the monotonicity

of λn(c; l, γ,∆) in n. Since λn−1(c; l, γ,∆)−c is strictly decreasing in c, it follows that we must have

c1(n− 1) > c1(n), else it would be λn−1(c1(n− 1); l, γ,∆)− c1(n− 1) > 0, a contradiction. Assume

the induction hypothesis that cj(n) is decreasing in n for all j ≤ t. We prove the same is true for

j = t+ 1. To see this note that an increase in n shifts the function
(

1−F (c)
1−F (ct(n))

)n−1
downward for

any c since it increases the exponent while reducing F (ct(n)), thus increasing the denominator. It

follows that λn(c; ct(n), γ,∆) shifts downward for any c after an increase in n, implying as above

that:

0 = λn(ct+1(n); ct(n), γ,∆)− ct+1(n) < λn−1(ct+1(n); ct(n), γ,∆)− ct+1(n)

thus implying that ct+1(n− 1) > ct+1(n). This proves the first part of the lemma.

10



Step 2. We now prove that Φt (n− 1) first order stochastically dominates Φt (n). The probability

of success at or before period t, Φt (n), can be written as:

Φt(n) = 1− (1− F (ct(n)))
n−1 = 1−

∏t

j=1

(
1− F (cj(n))

1− F (cj−1(n))

)n−1

From the cutpoint condition in equation (4) in the paper we have:

cj(n) =


(
1− e−γ∆

) ( 1−F (cj(n))
1−F (cj−1(n))

)n−m

1− e−γ∆ ·
(

1−F (cj(n))
1−F (cj−1(n))

)n−m

 v

Since the right hand side is increasing in
(

1−F (cj(n))
1−F (cj−1(n))

)n−m
, it follows that

(
1−F (cj(n))

1−F (cj−1(n))

)n−1
is

decreasing in n for any j, since cj(n) is decreasing in n. We conclude that an increase in n induces

an increase in 1−
∏t

j=1

(
1−F (cj(n))

1−F (cj−1(n))

)n−1
, and thus in Φt(n). It follows that Φt(n) ≥ Φt(n− 1) for

all t and Φt(n− 1) first order stochastically dominates Φt(n). ■

An increase in the size of the population induces players to be more reluctant to contribute in

every period. Lemma A1 however shows that, from the point of view of any player, the increase in

n more than compensates for this effect and generates an unambiguous improvement in the timing

of the realization of the public good until a player decides to contribute.

The next result shows that this implies an unambiguous improvement in welfare for all players.

Indeed, later where we generalize the analysis to allow for m > 1, we will show that the utility of

all players converges to the first best v as n → ∞ for any finite m (and thus for m = 1 as a special

case as well). Let EUn(c) be the expected utility of a player of type c with n players.

Theorem A1. An increase in n induces an increase in welfare for all types, strict for sufficiently

high types: i.e., EUn(c) ≥ EUn−1(c) for all c ∈ [0, 1] and EUn(c) > EUn−1(c) for c1(n).

Proof. If c ≤ c1(n), then a type c has a payoff of v − c irrespective of the total number of players.

If c ∈ [c1(n), c1(n− 1)], then with n − 1 players the payoff of a type c is v − c and with n players

the payoff of a type c is not lower than v − c by revealed preferences, strictly in (c1(n), c1(n− 1)].

We now prove the result by induction, using these findings as first step. Assume we have proven

that for all types c ≤ ct(n−1) for t ≤ j a player of type c with n players has utility EUn(c), weakly

higher than the utility of a type c with n− 1 players EUn−1(c). We have just proven this result for

j = 1.

Consider first a type c ∈ [cj(n− 1),min {cj+1(n), cj+1(n− 1)}], if not empty. When there are

n− 1 players, the payoff of a type c is:

EUn−1(c) = vΦj(n− 1)e−γ∆(t−1) + [1− Φj(n− 1)] e−γ∆j (v − c) . (10)

A type c with n players instead receives:

EUn(c) = vΦj(n)e
−γ∆(t−1) + [1− Φj(n)] e

−γ∆j · (v − c) > Vn−1(c).
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where the last inequality follows from the fact that Φt(n − 1) strictly first order stochastically

dominates Φt(∆, n) and v > v − c.

Alternatively, it could be that [cj(n− 1),min {cj+1(n), cj+1(n− 1)}] is empty. In that case,

consider c ∈ [min {cj+1(n), cj+1(n− 1)} , cj+1(n− 1)], which must be nonempty. In this case the

payoff of a type c with n− 1 players is again (10), which can be rewritten as:

EUn−1(c) = vΦj(n− 1)e−γ∆(t−1) +
∞∑
t=j

[Φt+1(n− 1)− Φt(n− 1)] e−γ∆j · (v − c)

The payoff with n of a player with type c instead is:

EUn(c) = vΦj(n)e
−γ∆(t−1) +

∞∑
t=j

[Φt+1(n)− Φt(n)] e
−γ∆j · Vn,j (c)

where Vn,j (c) is the expected continuation value function for a type c when there are n players and j

contributors; and where we have Vn,j (c) ≥ (v − c) by revealed preferences, since c > cj+1(n). Once

again we have that Vn−1(c) < Vn(c). We have therefore proven that for all c ≤ cj+1(n), we have

Vn−1(c) < Vn(c). It follows that for all types c < limj cj+1(n) = v, we have EUn−1(c) < EUn(c),

which proves the result. ■

The proof of this result follows from revealed preferences and a simple inductive argument on

types. The core of the argument runs as follows. If c ≤ c1(n), then a type c has a payoff of v − c

irrespective of the total number of players. If c ∈ [c1(n), c1(n− 1)], then with n − 1 players the

payoff of a type c is v − c and with n players the payoff of a type c is not lower than v − c by

revealed preferences, strictly in (c1(n), c1(n− 1)]. In both cases the utility of a type c ≤ c1(n− 1)

weakly increases with n. Assume we have proven this property for all types c ≤ ct(n − 1). Then

this property together with Lemma A1 can be used to prove that a type c in [ct(n− 1), ct+1(n− 1)]

is strictly better off with n players than with n − 1: even if type c does not change behavior the

other players volunteer more with a higher n by Lemma A1; and if c behaves differently, then by

revealed preferences this must induce an even higher utility. We can therefore extend the inductive

assumption to types c ≤ ct+1(n − 1). Since ct+1(n − 1) > ct(n − 1) and indeed we have proven

above that ct(n− 1) → v as t → ∞, this argument allows to show that all types c ∈ [0, 1] obtain a

higher expected utility with n than with n− 1.

Consider now the comparative statics with respect to γ and ∆. Similarly as for an increase

of n, a reduction in ∆ (or in γ) has an ex ante unambiguous effect on participation, leading to a

downward shift in all cutpoints.1 To make the dependence on ∆ explicit, define ct(∆) and Φt(∆)

similarly as above (for some given lower bound on types, l, and fixed values of n and γ), say

that a decrease from ∆′ to ∆ generates an improvement in success probability if Φt(∆) first order

stochastically dominates Φt(∆
′). Differently from n, now a reduction in ∆ implies an deterioration

in Φt(∆). This implies that although players are more patient, now success takes more time.

1We only consider a change in ∆, but the results also hold for changes in γ, since the equilibrium only depends
on the product of the two parameters, γ∆.
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Lemma A2. A decrease in ∆ shifts the cut-points downward so that ct(∆) < ct(∆
′) for all t

and ∆ < ∆′, and a downward shift in Φt(∆) in the sense first order stochastic dominance, i.e.

Φt(∆) > Φt(∆
′) for all t and ∆ < ∆′.

Proof: We proceed again in two steps.

Step 1. We first prove that the cutpoints are declining in ∆ so: ct(∆) < ct(∆
′) for all t and

∆ > ∆′. To see this note that
(1−e−γ∆)

(
1−F (c)
1−F (l)

)n−1

1−e−γ∆·
(

1−F (c)
1−F (l)

)n−1 is a strictly increasing function of ∆. It follows

that λn(c; l, γ,∆), as defined in (9), is strictly increasing in ∆ for any c, l, γ, n. By the same

argument as in Lemma A1, it follows from (9) that the fixed point c1(∆) is increasing in ∆ for

any l, γ, n. Assume the induction hypothesis that cj(∆) is increasing in ∆ for all j ≤ t. We now

prove the same is true for j = t + 1. To see this note that an increase in ∆ certainly increases(
1−F (c)

1−F (ct(∆))

)n−1
for any given c, since it increases F (ct(∆)). It follows that λn(c; ct(∆), γ,∆) shifts

upward after an increase in ∆, implying that ct+1(∆) increases. This proves the first part of the

lemma.

Step 2. We now prove that Φt(∆) first order stochastically dominates Φt(∆
′) for ∆ < ∆′. As in

the proof of Lemma A1, we define:

Φt(∆) = 1−
(
1− F (ct(∆))

1− F (l)

)n−1

Since
(
1−F (cj(∆))

1−F (l)

)n−1
is decreasing in ∆ for all j, then Φt(∆

′) ≤ Φt(∆) for all t and ∆ < ∆′. ■

Because Φt(∆) deteriorates, the decrease in ∆ has an ambiguous marginal effect on the welfare

of an agent that cannot be signed: while success takes more time, the cost of delay has decreased,

so these two effects go in opposite directions. The ambiguous overall effect, however, implies that

contrary to what we will prove happens when n → ∞, for a fixed n, efficiency is unattainable even

in the limit as ∆ → 0.2

Proposition A1: For all n, v and γ, there exists δ > 0 such that lim∆→0EUn(c) < v − δ for all

c ∈ [0, 1].

Proof. For any ε > 0, the probability of the event E in which no player has a type c lower than

ε is [1− F (ε)]n > 0. In this event, no success can occur until we reach a period t in which the

cutpoint is strictly larger than ε. Let tε be the minimal t such that ctε ≥ ε. For ∆ small, we can

assume without loss of generality that ctε−1 > ε
2 . To see this note that if ctε−1 ≤ ε

2 , then (4) in

the paper implies that for ∆ sufficiently small, ctε is arbitrarily close to ε
2 as well: so ctε < ε, a

contradiction. The utility of a player in event E is not larger than (v − ε
2) since in period tε − 1

no player can obtain a payoff larger than the lowest type. But then ∆ → 0, the utility of a player

is at most (1− [1− F (ε)]n) v + [1− F (ε)]n (v − ε/2) = v − [1− F (ε)]n ε
2 < v. The result is proven

if we let δ = [1− F (ε)]n ε
2 . ■

2The fact that equilibrium converges to its efficient value as n → ∞ when mn = 1 will be proven as a special case
of the case in which mn ≥ 1 and can potentially grow with n. See Theorem 7.
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The intuition is as follows. For any ε > 0, there is a strictly positive probability that all types

are strictly larger than ε. As ∆ → 0, the cutpoints become smaller and smaller, so no player will

volunteer until it is common knowledge that all types are strictly larger than, say, ε/2 > 0. In the

equilibrium of this continuation game, no player can receive a payoff larger than the payoff of the

lowest type, so no player receives more than v − ε/2. The result follows from the fact that this

continuation game has a strictly positive probability of being reached.

3 Additional extensions and variations described in Section 6.3

Aggregate uncertainty and learning

In the previous analysis we assumed the players’ types are i.i.d. In such environments, as time

progresses players update their beliefs about the types of the other players because they know that

the remaining active players must have a type higher than the previous equilibrium cutoffs. Yet,

they do not learn anything new about the original environment, since the distribution of the other

players’ types is common knowledge. It is natural to consider scenarios in which players are also

ex ante uncertain about the environment, for example about the shape of the distribution of types.

In these environments, as time progresses, players also learn about the shape of the distribution of

types and this learning also depends on equilibrium strategies.

To illustrate how the analysis can be generalized to this more complex case, we characterize

here the equilibrium in the volunteer’s dilemma with mn = 1 as in Section 3. The analysis can

extended in similar ways to the case with mn > 1. We assume for simplicity that there are two

states of nature ϑ = H,L; and that the distribution of types is Fϑ(c) in state ϑ, with density fϑ(c)

and FH(c) first order stochastically dominating FL(c). In this environment, at t = 1, a player’s

belief that the state is H at the beginning of the first period is necessarily function of their type

π1(c) since for any initial common prior π0, they would update after observing their type. We

assume here that π1(c) is increasing and continuous in c.3

Consider a threshold equilibrium with cutoffs (c·t)
∞
t=0 and c·t > c·t−1 as in Section 3, such that at

t all types c ≤ c·t contribute, and types c > c·t wait. Given these cutoffs and belief πt−1(c) at t− 1,

the belief at the beginning of period t > 1 for a type c is given by:

πt(c) =

1 + 1− πt−1(c)

πt−1(c)

(
1−FH(c·t−1)
1−FH(c·t−2)

)
(

1−FL(c·t−1)
1−FL(c·t−2)

)

−1

(11)

Note that, for any t, if πt−1(c) is continuous and increasing in c, then πt(c) is continuous and

increasing in c as well since 1−πt−1(c)
πt−1(c)

is continuous and decreasing in c.

3For an event E = [c − ε, c + ε], we have Pr(H;E) = π0∆FH (E)

π0∆FH (E)+(1−π0)∆FL(E)
, where we define ∆Fϑ(E) =

[Fϑ(c+ ε)− Fϑ (c− ε)] . Taking the limit as ε → 0, we have that Pr(H; c) = π0fH (c)

π0fH (c)+(1−π0)fL(c)
is increasing if

fH(c)/fL(c) is increasing in c.
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Given the posterior at t, πt(c), and the equilibrium lower bound c·t−1, an argument analogous

to the argument leading to (3) in Section 3, gives us the cutoff at t as the fixed-point of:

v − c·t =
∑

θ=H,L
πt
θ(c

·
t)

v

1−( 1− Fθ (c
·
t)

1− Fθ

(
c·t−1

))n−1
+ e−γ∆

(
1− Fθ (c

·
t)

1− Fθ

(
c·t−1

))n−1

(v − c·t)


(12)

note that now c·t does not only affect
1−Fθ(c

·
t)

1−Fθ(c·t−1)
in the right hand side of (12); but also the prior

probabilities πt
θ(c

·
t) at t with which the shape of the distribution is evaluated: this because all

players of different types have different posteriors at each history of the game, since they start from

heterogeneous priors π1(c). After some algebra, we have:

c·t =

(
1− e−γ∆

)
·
∑

θ=H,L πt
θ(c

·
t)

(
1−Fθ(c

·
t)

1−Fθ(c·t−1)

)n−1

1− e−γ∆
∑

θ=H,L πt
θ(c

·
t)

(
1−Fθ(c

·
t)

1−Fθ(c·t−1)

)n−1 v ≡ G(c·t) (13)

Condition (13) alone is no longer sufficient to characterize the equilibrium. The equilibrium now is

determined by the system of difference equations (11) and (13): π1(c) and the initial lower bound

c·0 determine c·1; π
1(c), c·0 and c·1 determine π2(c); c·1, c

·
2 and π2(c) determine c·3; and so on so forth

for any t > 0.

Condition (13) can be used to show that a cutoff equilibrium has similar properties to the

equilibria as in Section 3. To see this, consider the right hand side of (13), G(c·t). This function is

continuous in c·t and has the properties that G(c·t−1) = v and G(1) = 0; hence it has a fixed point

c·t > c·t−1 for any c·t−1 and t−1. We can moreover verify that c·t > c·t−1 and c·t → v. For this, assume

by way of contradiction that limt→∞ c·t = c·∞ < v. Then we would still have limt→∞ πt(c·t) = πt(c·∞)

and
∑

θ=H,L πt
θ(c

·
∞) = 1. It follows that:

lim
t→∞

c·t =

(
1− e−γ∆

)
·
∑

θ=H,L limt→∞ πt(c·t)

(
1−Fθ(c

·
t)

1−Fθ(c·t−1)

)n−1

1− e−γ∆
∑

θ=H,L limt→∞ πt(c·t)

(
1−Fθ(c

·
t)

1−Fθ(c·t−1)

)n−1 v = v,

a contradiction.

When the players learn about the distribution of types, however, an additional complication

may arise regarding whether an equilibrium is necessarily in cutoff strategies. To see this point,

consider (12) which characterizes the indifferent type c·t. For a type c < c·t, the left hand side is

v − c, so it decreases linearly with a slope of −1. The right hand side now is:

∑
θ=H,L

πt
θ(c)

v

1−( 1− Fθ (c
·
t)

1− Fθ

(
c·t−1

))n−1
+ e−γ∆

(
1− Fθ (c

·
t)

1− Fθ

(
c·t−1

))n−1

(v − c)


where we note that c enters only in the posterior πt

θ(c) and in the last term v − c, since c·t is the

strategy used by the other players. When fH(c)/fL(c) (and therefore a fortiori π1(c) and πt(c))

15



does not increase too sharply in c, then this term certainly declines in c at a rate slower than −1,

so types c > c·t find it optimal to abstain and types c < c·t to contribute (just as in the case with no

aggregate learning). But when fH(c)/fL(c) can change sharply (as for example when the support

of costs changes with the state, so that the posterior is discontinuous in c), then the equilibrium

may not be in cutoff strategies. It is interesting that even in the simplest case with m = 1 we might

have these complications.

Non-stationary environments

There are applications for collective action problems in which it seems natural to assume that the

value of a group’s success changes over time. In environmental problems, for example, the conse-

quences of not solving the collective problem (i.e. failing to succeed in collective action) become

more severe over time. In this section we show how non-stationarities can be easily incorporated

in the analysis and lead to new insights.

Assume that if the group does not obtain the common goal at t − 1, then at the beginning of

t each player suffers a loss of Zt for Z > 1. The loss from not obtaining the common goal (say

closing the ozone hole) grows exponentially over time.4 The equilibrium condition now becomes:

v − c··t − Zt = v

1−( 1− F (c··t )

1− F
(
c··t−1

))n−1
+ e−γ∆

(
1− F (c··t )

1− F
(
c··t−1

))n−1

(v − c··t − Zt+1)− Zt

At time t, the cost Zt is sunk, and thus irrelevant for the decision. But the cost at t+1 still matters,

since if the group is successful at t, it can avoid the cost Zt+1. As in the previous sections, the left

hand side is the utility from contributing, the right hand side is the utility for not contributing.

In both cases, a players suffers a cost Zt, which then can be simplified. In the utility for not

contributing we now have Zt+1 times the probability that none of the other players contributes.

The loss Zt+1 does not affect the decision at t+1, when it is a suck cost, but it affects the decision

at t. This condition can be rewritten as:

c··t =


(
1− e−γ∆(1− Zt+1

v )
)(

1−F (c··t )

1−F(c··t−1)

)n−1

1− e−γ∆

(
1−F (c··t )

1−F(c··t−1)

)n−1

 v (14)

For a given c··t−1 and c··t , the right hand side increases in Z and t. The monotonic worsening of the

environment reduces the utility of not contributing and leads to a lower utility of not contributing.

It can be shown that the cutpoints c··t are strictly increasing in t and eventually success is achieved

for all realizations of types.

4There are of course other ways to introduce non-stationary elements in the model (for example we could have
assumed that the distribution of c or v changes over time). We chose to model non-stationarity as above because it
seems it better captures the phenomenon described in the example of environmental protection described above.
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On the time horizon and the effectiveness of imposed deadlines

Theorem 6 showed that, while the ex ante probability if success is strictly optimal for any n, the

limit probability of success always converges to zero unless αn → 0 sufficiently fast. This suggests

the question of whether there are simple modifications in the strategic interaction of the players

that may avert this “curse of large numbers” for the collective action problem. We leave the

general problem of studying the optimal dynamic mechanism for future research, but focus here

on the discussion of simple rules that the group could adopt hoping to improve the performance:

deadlines, where the group commits to terminate the volunteering game if the goal is not reached

by some specified finite period T (if such a commitment power is granted to the group). While

terminating the game at T may be suboptimal once period T arrives, commitment to such a rule

may be beneficial if it stimulates more volunteering in periods τ = 1, ...T . Intuitively, in the

dynamic collective action problem players have a free rider problem not only with respect to other

participants, but to the future selves of all participants (including themselves); imposing a terminal

period for contributions could, in principle, limit this problem.

The following result shows that in large groups, deadlines may have an especially undesirable

side effect by generating a unique equilibrium in which participation is exactly zero, so the group

does not even try to achieve the goal. For a sufficiently high n, therefore, a deadline of T periods is

strictly suboptimal since it generates a payoff of exactly zero, while by Theorem 4 we know that in

the unbounded game the probability of success is always strictly positive, thus the expected payoff

is strictly positive.

Proposition A2. Assume mn = αn for some α < 1. For any finite deadline T , participation

is exactly zero if n is sufficiently large.

Proof : We proceed in two steps.

Step 1. Consider period T > 1 and assume that the number of missing volunteers is larger or

equal than kn = mn
T > 0; and that the lower bound of types is l ≥ 0. We now prove that there is

n(T ) such that for n > n(T ), the probability of contributing is zero for all players. It follows that at

any history in which kn ≥ mn
T at stage T , then the continuation values are Qkn

T (l) = V kn
T (c, l) = 0

for any c ≥ l and l ≥ 0.

At period T , let the equilibrium cutpoint be cT,Tn (we omit here for simplicity the dependence

on ht and l), which must satisfy:

cT,Tn = vB
(
βnzn − 1, zn − 1, F̃ (cT,Tn ; l)

)
= Ψ

(
cT,Tn

)
(15)

where we define the function Ψ
(
cT,Tn

)
, and zn = (1− α)n + kn and βn = kn

zn
≥ α

T > 0. We now

prove that for n large enough, it must be cT,Tn = l. If l > 0 and cT,Tn > l, then the right hand side of

(15) converges to zero, but the left hand side converges to a strictly positive value, a contradiction.

Assume therefore that l = 0 and cT,Tn > 0. Define β̂n to be the value such that F̃ (β̂n; l) =
βn

1−1/zn
.

This is the value that maximizes the right hand side of (15), i.e. Ψ (·). It is straightforward to
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verify that it must be that β̂n > 0 for any n. Moreover, since βn ≥ α
T , we have that for n large

enough:

vB

(
βnzn − 1, zn − 1,

βn
1− 1/zn

)
= vB

(
βnzn − 1, zn − 1, F̃ (β̂n; l)

)
< β̂n ≃ βn/f(0), (16)

given that the first and second terms converge to zero, but β̂n converges to βn/f(0), which is strictly

positive for all n. From the inequality in 16, we have that Ψ′
(
cT,Tn

)
< 1, at any fixed point cT,Tn of

Ψ. This follows from the fact that the right hand side of (15) has a maximum below the 45o line,

so if there is a strictly positive fixed point, there must be a fixed point at which Ψ (c) intersects

the 45o line from above. But, as we now show, this is impossible. To see this note that:

B′ (βnzn − 1, zn − 1, F
(
cT,Tn

))
= B

(
βnzn − 1, zn − 1, F

(
cT,Tn

)) βnzn−1

F(cT,T
n )

− zn−βnzn
1−F(cT,T

n )

 f
(
cT,Tn

)
(17)

→ f (0) cT,Tn

v

[
βnzn − 1

f (0) cTn
− zn − βnzn

]
=

1

v

[
1− f (0) cT,Tn − f (0)

cT,Tn

βn
− 1

βnzn

]
· βnzn → ∞

So we have a contradiction, since the right hand side of (16) converges to a bounded value. We

conclude that if kn ≥ mn
T , then cT,Tn = l is the unique fixed point of (15) for any l ≥ 0.

Step 2. Assume as an induction step that for some t < T and all τ ≥ t+1 we have: there is a n(τ)

such that for n > n(τ) we have V
kτn
τ (c, ln) = Q

kτn
τ (ln) = 0 for all c ≥ 0 when kτn ≥ k

τ
n = (T−τ+1)mn

T .

This property is true for t+ 1 = T by Step 1. We prove the result if we prove that:

ct,Tn = e−γ∆
∑ktn−1

j=0

[(
Qktn−j−1

(
ct,Tn
)
− V ktn−j(ct,Tn , ct,Tn )

)
B
(
j, n− 1−mn + ktn, F̃ (ct,Tn ; ln)

)]
.

(18)

has a no strictly positive fixed point ct,Tn when kτn ≥ k
τ
n = (T − τ + 1)mn

T . To this goal define,

similarly as in Step 1, ztn = n−mn + ktn, β
t
n = ktn/z

t
n and F̃ t

n = F̃ (ct,Tn ; ln).

By the induction step we have

ct,Tn = e−γ∆
∑ktn−1

j=mn
T

+1

[(
Qktn−j−1

(
ct,Tn
)
− V ktn−j(ct,Tn , ct,Tn )

)
B
(
j, ztn − 1, F̃ t

n

)]
(19)

The right hand side of (19) can be bounded above by:

e−γ∆v ·
∑ktn−1

j=mn
T

+1

[
B
(
j, ztn − 1, F̃ t

n

)]
≤ exp

(
−n

(
α

T
log

α/T

F̃ t
n

+ (1− α

T
) log

1− α/T

1− F̃ t
n

))
= Dn(F̃

t
n)

where for the inequality we used the Chernoff bound of the upper tail of the Binomial distribution

(see, for example, Ash [1990, 4.7.2)]. Without loss of generality we can assume that F̃ t
n < α

T for n

sufficiently large. Indeed, if this were not the case then we would have some cα/T > 0 such that

ct,Tn > cα/T , but this is impossible in equilibrium since the expected benefit of contributing for a

single player converges to zero as n → ∞. Note that for any F̃ t
n > F for some F > 0, we have
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Dn(F̃
t
n) < F , since Dn(F̃

t
n) → 0. Moreover a Taylor approximation tells us that for F < F with F

sufficiently small we have: Dn(F̃
t
n) = Dn(0) +D′

n(0)F̃
t
n + o(F̃ t

n), where o(F̃ t
n)/F̃

t
n → 0 as F̃ t

n → 0.

But then, if we have a positive fixed ct,Tn point, we have:

ct,Tn ≤ Dn(0) +D′
n(0)f(0)c

t,T
n + o(ct,Tn ) = ct,Tn

[
D′

n(0)f(0) +
o(ct,Tn )

ct,Tn

]
< ct,Tn

since
[
D′

n(0)f(0) +
o(ct,Tn )

ct,Tn

]
can be chosen to be arbitrarily small, a contradiction. We can iterate

the argument up to the first period. We must therefore have mn ≥ k
1
n = (T )mn

T = mn, which

implies that c1n = 0 for n > n(1). ■

The threshold n∗
T on n such that participation is zero for n > n∗

T may depend on the other

parameters of the game. Proposition A2 says that as n → ∞, the minimal deadline consistent with

positive participation must also diverge at infinity; for any finite deadline T , positive participation

is inconsistent with sufficiently large groups.

To see the intuition of this result, consider first the case in which T = 1. In this case the

equilibrium cutpoint is determined by the equation:5

c1,1n = vB
(
mn − 1, n− 1−mn, F

(
c1,1n

))
(20)

The left hand side is the cost of contributing for the marginal type; the right hand side is the

expected benefit, that is v times the probability of being pivotal. An equilibrium cutoff is a fixed

point of this equation.

Figure 1: Illustration of fixed point equation (20) for n = 30 (solid top curve), n = 50 (dashed
middle curve), and n = 100 (dashed bottom curve).

Figure 1 illustrates the result. The 45o line is the left hand side of (20); the black curves are the

right hand side of (20), for different values of n.6 Equilibrium cutpoints correspond to intersections

of the curve with the 45o line. As n increases the right hand side shifts down; when n is 100 or

5We denote cτ,Tn to be the cutoff at period τ in a model with a deadline with T periods.
6In the figure, F is Uniform, v = 1, and n = 30 (the solid line),50 (the intermediate dashed line) and 100 (the

lower dashed line).
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larger, the curve no longer intersects the 45o degree line for any p > 0, implying that the only

equilibrium cutpoint is c = 0. In Proposition A2 we indeed show that when the number of missing

volunteers mn grows at the speed of n (as when mn = αn for some α < 1) and T = 1 (or there only

one period left before termination), then there n(1) such that for n > n(1) there is no equilibrium

in which players with c > 0 contribute.

When T > 1, we can show that this phenomenon generalizes with an inductive argument, but

there are some complications. Consider, for simplicity, T = 2. From the discussion above, we

know that there is a n(1) such that for n > n(1) the probability of a contribution is zero when the

remaining contributors are k2n ≥ αn/2. It follows that at T = 1 a players knows that if volunteers

at T = 1 are not at least αn/2, then k2n ≥ αn/2 and the project fails. The complication is that

now a player can receive a positive payoff for any k2n in which k2n < αn/2, not just when a specific

threshold is reached. There are two possibilities. The first is when F
(
c1,2n

)
< α/2, where c1,2n is the

cutoff at T = 1. In this case the probability of at least k1n ≥ αn/2 contributors at T = 1 converges

to zero fast, and indeed can be bounded above by

H(c1,2n ) = exp
(
−n ·D(α

∥∥F (c1,2n ))
)
.

whereD(α ∥F (c)) = exp
(
−n
(
α
2 log α/2

F (c) + (1− α
2 ) log

1−α/2
1−F (c)

))
is the Kullback–Leibler divergence.

This function of c lies below the 45o line for n large, just as in Figure (1). The other possibility

is that F
(
c1,2n

)
≥ α/2. But this can be ruled out by the following argument. As n → ∞, the

expected benefit of contributing for an individual player always converges to zero; but then players

with a strictly positive cost near c = F−1(α/2) will not find it optimal to contribute in equilibrium.

In any equilibrium sequence we must have c1n → 0, so we are always in the first case in which

F
(
c1,2n

)
< α/2 for n sufficiently large.

A notable implication of this result is that when mn grows at the speed of n, the static one-shot

game leads to zero probability of success for large enough n. Therefore, in such environments, the

dynamic game leads to better outcomes in terms of welfare than the static game. I.e., the benefits

of information transmission and coordination from the equilibrium dynamics outweighs the delay

costs of dynamic free riding. This contrasts with the example in Section ?? of the paper, where

welfare is higher in the static game than the dynamic game when mn is a fixed constant that does

not increase with n. An interesting conjecture is that dynamics produces welfare gains (losses)

relative to the static game when the free riding problem is more (less) severe, where more severe

corresponds to environments where mn grows faster than speed of n2/3.
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