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Abstract

Collective action problems arise when a group’s common goal can only be achieved if enough

members engage in a costly action. We study the equilibrium properties of such problems when

decisions are made dynamically over time, delay is costly, and members have heterogeneous and

privately known preferences. In these environments, time acts as both a curse and a blessing:

individuals have incentives to delay their actions to observe the commitments of others, yet

time can also serve as a coordination device. This tension generates an equilibrium dynamic

that combines learning about the eventual probability of success with free-riding incentives and

coordination challenges. For finite n, dynamic collective decisions are inherently probabilistic:

the probability of success is always positive, but there remains a strictly positive probability that

the process halts inefficiently—stopping “cold turkey” before success is achieved. As n becomes

large, however, the outcome becomes essentially deterministic: success is achieved either almost

instantly at minimum cost or not at all, depending on how quickly the threshold number of

participants grows with n. We establish this result by uncovering a novel connection between

the equilibria of dynamic Bayesian games and the class of optimal static direct mechanisms

requiring Honest and Obedient behavior—an insight that may have broader applicability to

mechanism design, beyond collective action environments.

JEL Classification: C73, D70, D82, H41 Keywords: Collective Action; Free Riding; Volun-
teering; Mechanism Design

∗Support from the National Science Foundation (SES-2343948) is gratefully acknowledged. The paper
has benefited from comments and suggestions by seminar audiences at the 2025 Columbia Conference on
Economic Theory (CCET), the 2024 SITE Workshop on Dynamic Games, Contracts, and Markets, Brown
University, New York University, Northwestern University, NYUAD, Princeton University, Stanford Univer-
sity, the Tippie College of Business, the University of Chicago, Paris School of Economics, University College
London, and the University of Wisconsin-Madison. We also wish to thank Sandeep Baliga, Gary Cox, John
Ferejohn, Emir Kamenica, Roger Myerson, and Andrea Prat for discussions and comments. Edoardo Bollati
and Gabe Sekeres provided excellent research assistance. We are responsible for any remaining shortcomings.

†Department of Economics, Cornell University, Ithaca, NY 14850. Email:battaglini@cornell.edu
‡Division of the Humanities and Social Sciences, California Institute of Technology, Mail Code 228-77,

Pasadena, CA 91125. Email: trp@hss.caltech.edu.



1 Introduction

Collective action problems unfold dynamically, and require time to achieve success. Public

protests often start small and, if they do not die out, reach a critical mass only gradually.1

International agreements are initiated by small group of countries, but then require years

to rally further support and collect ratifications from enough participants.2 It is customary

to leave public good and charitable-giving fund drives open for weeks or months. In these

problems a common goal is achieved if and only if individual participation is sufficiently

high: time allows participants to better coordinate, getting a better sense of whether the

goal is achievable, which avoids wasting resources if a cause does not have enough support

from early contributors.

In these situations, time is both a curse and a blessing. It is a curse because it creates

incentives for individuals to delay their participation, waiting to see what others do; and

this moral hazard problem is not just with respect to other players, but also against an

individual’s future selves. It is however also a blessing because it enables coordination and

information transmission.

Some progress has been made in the study of dynamic moral hazard problems with free

riding, identifying some inefficiencies that arise, and even characterizing conditions under

which efficient allocations are possible in special cases (Schelling [1960], Fershtman and

Nitzan [1991], Admati and Perry [1991], Marx and Matthews [2000], Gale [1995, 2001],

Matthews [2013], Lockwood and Thomas (2002), Battaglini et al. [2014] among others). A

key takeaway from those studies is that the cost of moral hazard is not so much that projects

are not completed or that there are excess contributions, but that they are completed with

inefficient delays. Under special conditions, for example when the players are very patient and

have long horizons, the delay inefficiencies and the costs of overcontribution can disappear

entirely.

There is however an important factor affecting the ability of social groups to dynamically

achieve common goals that has not been adequately studied, which paints a less optimistic

picture - private information. A limitation of the existing studies of dynamic moral hazard is

that they focus almost exclusively on environments with complete information, where pref-

1For example, a classic historical account of the dynamic evolution of the Great English Agricultural
Uprising of 1839 is presented by Hobsbaum and Rude [1968]. More recently, Lohmann [1994] discusses the
dynamic evolution of demonstrations leading to the fall of the Berlin wall in 1989.

2The average time of ratification of the 1992 United Nations Framework Convention on Climate Change
was 810 days. Indeed more than a year passed by the time a quarter of the countries had ratified it, and
more than two years before half of the countries had ratified it (Fredrickson and Gaston [2000]).
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erences are common knowledge, so the uncertainty faced by individuals is entirely strategic:

How many others will do their part? Will additional participants engage? But in envi-

ronments with private information about preferences, players may become more (or less)

hesitant to volunteer over time because of what they learn about the prospects for success.

The relevant question then becomes: Are there a sufficient number of committed citizens

for whom it is worthwhile to participate in the collective action? Because of the strategic

effects of information transmission and learning, there is an additional curse from time: as

time progresses, players are uncertain whether delays are simply due to procrastination (i.e.,

moral hazard), or because other players lack a willingness to participate due to high private

costs (i.e., adverse selection). Players gradually accumulate information on the others’ pref-

erences and willingness to contribute. Because delays from procrastination are unavoidable,

this process generates a systematic bias toward failure. It is indeed possible that any further

participation stops “cold turkey” after some histories because uncommitted individuals be-

come too pessimistic about the prospects for eventual success and simply give up. How and

to what extent can the passage of time still help solve the collective action problem? These

questions have not been addressed and this paper provides some answers.

We study these and related questions in a simple but natural dynamic collective action

model with private information about preferences. The collective action problem is modeled

as a dynamic participation game with n individuals, or group members. The game takes place

over a possibly infinite sequence of discrete periods. In period one, each of the n members

independently and simultaneously decides whether or not to join in the collective action.

Participation decisions are binary and the associated sunk cost of participation for member

i, ci, is private information and is borne immediately. If the threshold number of required

participants for success,m, is met in period one, the game ends; each non-participant member

receives the benefit v and each participant receives v − ci. If the threshold is not met, the

game continues to the second period, and all non-participants again must decide whether

or not to join the action. The game continues indefinitely like this, with discounting, until

the threshold is met at which point the game ends and each member receives the success

payoff of v, discounted by the number of periods it took to reach the threshold; in addition

each participant loses −ci, discounted by the period when they participated. If the threshold

is never met, then the game continues forever, with final payoffs equal to 0 for each non-

participant, and −ci for each participant, discounted by the period when they participated.

When m = 1 the game can be interpreted as a classic war of attrition. The prize is

achieving the public good without paying for it (i.e. v); at any time, a player can terminate
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the game by participating and secure a lower payoff v − ci. When m > 1, however, the

game is fundamentally different from a war of attrition. If a player quits, the payoff now is

endogenous, because it depends on the externality generated by the other players completing

the game. Differently from the classic war of attrition, moreover, here there is no exogenous

flow cost to be paid for each period in which a player stays in the game, and it would not

be natural to assume any: the cost of procrastination is already captured by the delay in

receiving the public good.3

Two basic lessons emerge from the analysis. The first is that when m > 1 collective

decisions are probabilistic in all equilibria: the process starts for sure in the sense that

some group members volunteer with positive probability in early periods; the final outcome,

however, depends on the trajectory of participation decisions, which in turn depends on the

exact realization of types. With positive probability the required threshold m is reached and

the public good is obtained. On the other hand, the process will also get “stuck” with strictly

positive probability, where additional participation ceases forever, resulting in failure, even

if there is a sufficiently large number of players whose cost of contributing is strictly smaller

than the private benefit of success. This fundamentally differs from the case with m = 1, in

which if there is at least one player i with type ci < v, the collective goal is achieved for sure

in finite time.

The second lesson is that outcomes become essentially deterministic with large popula-

tions. This however does not imply that success is guaranteed (or even possible in some

equilibrium) nor that other sources of inefficiencies disappear. We indeed show that the

group’s success depends on the speed with which the threshold fraction of players required

for success αn = mn/n converges to zero as n → ∞: if αn converges faster than the cube root

of 1/n, then there is a sequence of equilibria converging to the efficient collective decision

with no delay; if instead it converges slower than the cube root of 1/n, then the expected

utility in the game converges to zero for all types of all players in all equilibria. We call

this phenomenon the Curse of Large Numbers for collective action because the requirement

for efficiency is very strong: even if an arbitrarily small share ε of population is required to

contribute, the project is doomed for failure for large n.4

3While this is true when m = 1 as well, in that case it does not have qualitative implications since the
game ends as soon as one player contributes. As we will explain, however, it is essential to the strategic
analysis of the game when m > 1.

4To prove the limit efficiency result, we rely on the characterization of symmetric PBE, thus making
the result stronger since we show there is no loss in assuming symmetric equilibria. The finding that the
expected utility in the game converges to zero when αn converges slower than the cube root of 1/n, however,
is not restricted to symmetric equilibria, and actually holds for all equilibrium thus giving us a fully general
impossibility result for dynamic collective action games.
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The result that success is achieved if and only if αn decreases at a rate of order of n−1/3 or

less offers two important qualitative insights: one regarding the limits of dynamic collective

action, and the other concerning a deep but yet unexplored connection between dynamic

games with incomplete information and optimal mechanisms without transfers.

Regarding the first point, a key result in several landmark papers in the literature is that

the inefficiency in the war of attrition and related games disappears as n → ∞. But these

results are based on the restrictive assumption that mn = 1 for all n (Bliss and Nalebuff,

1984). Our results significantly strengthen these findings by showing that full efficiency in

the limit can still be achieved even when mn increases with n, as long as the number of

required contributors, mn, grows at a rate on the order of n2/3 or less. If, however, the

prevailing lesson in the literature was that large numbers solve the free rider problem in

the war of attrition, our result significantly qualifies this conclusion: while our condition is

substantially less restrictive than previous ones, it is still very demanding. Our threshold

implies that efficiency fails for sure in the limit if success always requires even an arbitrarily

small positive fraction of the population.

As for the connection with mechanism design, we show that the condition for asymptotic

efficiency in the dynamic war of attrition is exactly the same as the condition for efficiency

in the optimal Honest and Obedient (static) direct mechanism without transfers. This

finding is important not only because it shows that the expected outcome generated by

spontaneous contributions over time cannot be improved upon in limit economies through

more sophisticated forms of communication or coordination, but also because it highlights a

deep connection between dynamic games with incomplete information and optimal Honest

and Obedient (HO) mechanisms, which we are able to exploit in the impossibility result

described above — a point we now explain.

In seminal contributions, Ausubel and Deneckere [1989a, 1989b] characterized the equi-

libria of a dynamic two-person bargaining game with one-sided private information in terms

of the equilibria of a suitable static incentive-compatible (IC) and individually rational (IR)

mechanism. This characterization allowed them to study the welfare properties of the equi-

librium payoffs of the dynamic game using the static IC and IR mechanism.

As we will explain in greater detail, the equivalence highlighted by Ausubel and Deneckere

does not hold in games with multilateral private information—such as the one we study—in

which the equilibria cannot be characterized in terms of simple IC and IR constraints of a

direct mechanism. In our work, we instead generalize the approach by demonstrating that for

any perfect Bayesian equilibrium (PBE) of the dynamic contribution game, we can construct
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a corresponding static Honest and Obedient (HO) mechanism that achieves exactly the same

expected payoffs for each player type.5 Given this, the payoffs attainable in any PBE can be

bounded above by the payoff attainable in the best HO mechanism. This argument allows

us to apply Theorem 4 in Battaglini and Palfrey [2024], which shows that if αn converges

to zero slower than the cube root of 1/n, then the payoff in the best Honest and Obedient

mechanism converges to zero, thereby proving the impossibility part of the result.

The connection between the PBE of dynamic games with multilateral private informa-

tion and static HO mechanisms that we exploit in our analysis is, to our knowledge, new

and potentially applicable for characterizing properties of equilibria in dynamic games with

incomplete information in other environments as well.

The connection between HO mechanisms and the PBE of the dynamic game, however,

does not allow us to prove that if αn converges to zero faster than the cube root of 1/n,

an efficient limit equilibrium exists, since the set of payoffs obtainable in HO mechanisms

is larger than the set of payoffs supported in PBE. We therefore prove the possibility result

directly using the characterization of the game. The reason the cube root of 1/n plays a key

role for efficiency stems from fundamental features of the strategic interaction and will be

intuitively explained in Section 5.

The reminder of the paper is organized as follows. In the next subsection we discuss the

related literature. We presents the model in Section 2. In Section 3, we study the dynamic

volunteer’s dilemma in which mn = 1, a case of independent interest that we refer to as the

dynamic volunteer’s dilemma.6 Building on this analysis, in Section 4, we study the dynamic

collective action problem in which mn > 1, showing that it is qualitatively and substantively

different. Section 5 is dedicated to the study of the properties of equilibria in large economies

as n → ∞. In Section 6 we present extensions and variations of the model.

1.1 Related literature

Our paper is most closely related to three lines of research. The first line, briefly mentioned

above, studies dynamic contributions to public goods. This research has focused on settings

with perfect information in which there is no uncertainty regarding the environment (say, for

example, regarding the players’ evaluations of the public good or their cost of contributing).

5HO mechanisms are a more demanding class of mechanisms, first introduced by Myerson (1982).
6The classic volunteer’s dilemma was introduced by Diekmann [1985] and refers to a static situation with

complete information about preferences in which a group can achieve a collective goal if at least one member
volunteers to pay a fixed cost c. It has been adopted as a paradigm of cooperation in economics (Bergstrom
[2018], Battaglini and Palfrey [2025]), biology (Patel et al. [2018]), neuroscience (Park et al. 2019), and
other fields.
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The key issue in these works is the moral hazard problem faced by participants who would

like the public good, but prefer for others to contribute and thus may postpone their contri-

butions.7 Our paper extends this analysis by considering environments where players’ costs

of contribution are private and heterogeneous. The key new feature of this environment is

that, as time unfolds, players learn about the distribution of types and re-evaluate whether

it is optimal to contribute.

The second line of research to which our work is connected is the war of attrition. Bliss

and Nalebuff [1984] present a continuous time model in which a public good is achieved

if at least one player volunteers for it. Players have private and heterogeneous costs of

volunteering and may choose to wait hoping that other players will do it for them. In

this problem, there is the usual moral hazard problem with public goods, but in addition

there is uncertainty regarding the conditions under which other players will be willing to

contribute. As time progresses, players update their beliefs about the cost of contributing of

the remaining players. Our work extends this volunteer’s dilemma framework by addressing

the collective action problem with multiple volunteers (mn > 1), and even allowing mn to

grow with n without bounds. These differences are essential to model collective action in

realistic environments, since it seems natural to require multiple contributors for success in

common projects with even moderately sized groups. As highlighted above, the analysis

of the general collective action problem with mn > 1 is qualitatively different from the

volunteers dilemma. While the war of attrition has been used as leading framework in

numerous important economic problems (see Alesina and Drazen [1991] for a prominent

example), applications restrict the analysis to setting in which only one player needs to

concede to terminate the game, as in the volunteers dilemma.8

7Seminal contributions are Admati and Perry [1991] and Marx and Matthews [2000]. The first paper
characterizes the unique equilibrium in a game in which two players alternate contributing until the sum
of contributions pass a threshold. They show that equilibrium generally implies delay and characterized
conditions for efficiency, showing that they are demanding. Marx and Matthews [2000] extend the analysis
to environments in which players can contribute simultaneously in each period, showing that although
equilibria involve delay, the conditions for the existence of equilibria that eventually reach efficient outcomes
are generally satisfied if there is a positive jump when a threshold is reached, as in our environment (or if
the utility for contributions is linear). Battaglini et al. [2014] show that efficient outcomes are attainable
even in environments with continuous, non-linear utilities and no threshold.

8The only other papers we are aware of that consider extensions of the war of attrition with m multiple
volunteers are Haigh and Cannings [1989] and Bulow and Klemperer [1999], but these works study different
economic environments, restrict attention to fixed m, and lead to very different results. The first restricts the
analysis to environments with complete information. Bulow and Klemperer [1999] study an all pay auction
with m+n players and m prizes in which players pay a strictly positive exogenous cost κ per period to stay
in the game. In the all pay auction the payoff of quitting is exogenous even with m > 1 since the auction
allocates private goods among the other players. In this setting, they show there is a unique equilibrium in
which the allocation is ex post efficient and the ex ante inefficiency converges to zero as n → ∞.
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A key feature of the war of attrition, especially in our version requiring multiple volun-

teers, is that players learn over time the distribution of other players’ types. Recent works

have studied this dynamic signaling problem in contribution games that are related but dif-

ferent from ours. Mutluer [2024] studies a dynamic volunteer’s dilemma with m = 1 under

the assumption that players decide sequentially, one at a time. In this model, with an exoge-

nous order of play, players cannot self-select as in our model. However, observing previous

decisions is informative in that game because players have common values and receive corre-

lated signals. The author shows that, in this environment, there is a unique finite population

size above which increasing the group size is associated with a reduction in the probability

of providing the public good. Deb et al. [2024] study a model of reward-based crowdfund-

ing, in which contributions to a business project can be made by randomly arriving private

investors who make one-shot decisions in the period of arrival, and by a long-lived donor

who has an interest in the success of the project. They study the extent to which the donor

can alleviate the coordination problem of the private investors by signaling his valuation of

the project with donations.

The third related line of research studies the optimal design of static public good mecha-

nisms (d’Aspremont et al. [1990], Mailath and Postlewaite [1990], Hellwig [2003], Battaglini

and Palfrey [2024], among others). As in our work, this literature focuses on environments

with private information; but, in addition to restricting attention to static settings, it has a

normative flavor, allowing for potentially complex communication mechanisms that require

commitment power. Our analysis is positive and explicitly dynamic: we are not interested

in characterizing the optimal mechanism, but in studying collective action in a natural dy-

namic environment in which society cannot commit to complex cooperation mechanisms. As

discussed above, however, there is a deep connection between our work and this literature,

especially insofar as it studies HO mechanisms (Battaglini and Palfrey [2024]).

Two other recent contributions are related to our work. Madsen and Schmaya [2025]

study optimal mechanisms for public good provision in dynamic environments and character-

ize the optimal mechanism for public goods requiring recurrent non-monetary contributions

for maintenance. Besides taking a normative approach, a key difference between Madsen

and Schmaya’s environment and ours is that they focus on settings with excludable public

goods, allowing the mechanism to restrict access in order to elicit preferences. Jehiel and

Leduc [2025] present a dynamic model of collective action in which a principal can intervene

to punish volunteers. In the model, both the agents and the principal receive opportunities

at random times to volunteer or punish a volunteer, respectively. The main result is that de-
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terrence of collective action is possible only if the principal can intervene sufficiently quickly

after an agent’s arrival.

2 The Dynamic Collective Action Model

A dynamic collective action problem is a public good game played over a possibly infinite

sequence of periods, t = 1, 2, ...,∞. There is a group with n members, and each member i

has a privately known participation cost ci that is an independent draw from a commonly

known cost distribution F (c) with a continuous density function, f(c) that is strictly positive

on the interval [0, 1]. In each period before the game ends, each member simultaneously and

independently decides whether to participate or not, a binary choice. A decision by any

member i to contribute in period t is irreversible and incurs the cost ci in the period at

which i contributes. If at least m members of the group have chosen to participate up to and

including in period t the game ends, and we say the group succeeds in period t. If fewer than

m members have contributed by period t, the game continues to period t+ 1. Participation

decisions are publicly observed.

Group success yields a common benefit of v ∈ (0, 1) to all group members. Payoffs are

discounted, and the discount factor is e−γ∆, where ∆ denotes the time delay between periods

and γ > 0 denotes the discount rate. Hence, if the group succeeds in period t the payoff

to inactive members is ve−γ∆(t−1) and the payoff to each member who contributed in period

τ ≤ t is ve−γ∆(t−1) − cie
−γ∆(τ−1). If the game continues indefinitely and success is never

achieved, then all members who never chose to participate receive a payoff of 0 and each

member who participated in period τ receives a payoff −cie
−γ∆(τ−1).9

We study the set of Perfect Bayesian equilibria of this dynamic game. A strategy is a

function that assigns, for each (public) history of play at period t and for each type, c, a

(possibly mixed) current action to either participate or not.10 A history at t, ht, has two

components. The first component is the sequence of participation decisions by all members

in the previous periods, t = 1, ..., t − 1. The sequence of the sets of members choosing to

participate in each period before t is It = (I1, ..., I t−1), where Iτ for τ ≤ t − 1 is the set of

players who volunteer at τ . We define κt = (κ1, ..., κt−1) as the sequence of the numbers of

members choosing to participate in each period before t, where κτ = |Iτ | for τ ≤ t− 1 is the

set of players who volunteer at t. The second component of the public history is a public

9The standard collective action problem is a one shot game and corresponds to an extreme case in our
model where γ∆ = ∞.

10Because participation decisions are irreversible, any individual who chooses to participate in some period
τ is inactive in all future periods t > τ .
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signal that is observed at the beginning of each period t, θt, which is the outcome of a single

independent draw from the uniform distribution on [0, 1].11 Thus, a history at period t is

denoted by ht = (It, θt), where θt = (θ1, ..., θt−1). Given a history ht we denote by kt the

minimum number of remaining members at period t who must contribute in order for the

group to achieve success. That is, kt = m−
∑t−1

τ=1 κ
τ .

In Sections 2 and 3, we characterize the set of symmetric Perfect Bayesian Equilibria

(PBE) in the game. Focusing on symmetric equilibria is both natural in this setting and

standard in the literature on the war of attrition (e.g., Bliss and Nalebuff [1984], Bulow and

Klemperer [1999]). However, in our analysis, this focus is also without loss of generality and

strengthens our results. Indeed, one of our key results is that limit efficiency can be achieved

in equilibrium when αn converges to zero faster than the cube root of 1/n as n → ∞. The

focus on symmetric PBE allows us to conclude that efficiency is achievable with symmetric

equilibria. Another key result is that if αn converges to zero slower than the cube root of 1/n,

then in all sequences of PBE we have limn→∞EUn(c) = 0. Notably, for this impossibility

result, we do not need the restriction to symmetric equilibria.

As we will prove, in a symmetric PBE, the strategies of the game are characterized as a

sequence of history-dependent cutpoints, {c(ht)}∞t=1, whereby, in period t, following history

ht, any player with a type c ≤ c(ht) who has not yet participated chooses to participate.

Hence, in an equilibrium, the game ends in period 1 if there are at least m members with

c ∈ [0, c(h1)], where h1 = (∅, θ1); the game ends in period 2 if, for some j < m, there are

exactly j members with c ∈ [0, c(h1)], and at least m − j members with c ∈ [c(h1), c(h2)],

where h2 = (j, θ2); and so forth. In a symmetric equilibrium, moreover, players are treated

anonymously by the other players: two histories ht and h′
t, that differ only in the identity

of the volunteers (so κt = κ′
t) are associated with the same cutpoint for the active players:

c(ht) = c(h′
t).

In an equilibrium, as the game progresses each remaining member’s belief about the

distribution of the other remaining members’ types are updated simply by increasing the

lower bound of the distribution of types, which we denote by lht = c(ht−1), with lh1 =

0. An equilibrium consists of a history-dependent cutoff strategy, c(ht), and conditional

beliefs about the distribution of remaining members, derived by Bayes rule: F̃ (c; lht) =

max
{
0,

F (c)−F (lht )

1−F (lht )

}
. Associated with an equilibrium are two value functions. For any history,

ht, Q(ht) is the continuation value for a member who has previously participated (i.e., any

member with c ≤ lht); and V (c, ht) is the continuation value for a member with cost c who

11The public signal does not affect the characterization of equilibrium, but simplifies the existence proof.
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has not yet contributed (i.e., any member with c > lht).

To solve this class of games, a key observation is that, for any given cutoff strategy

each public history of play results in a new continuation game Γ(ht) defined by the lower

bound on the cost distribution, lht , and the minimum number of contributors that are still

needed for success, kt. This is just another collective action problem with a new group size,

n′ = n−m+ kt, a new threshold, m′ = kt, and a new distribution F ′ which is F truncated

below at lht . Hence, a solution to the original collective action involves solving for all games

in this general class of collective action problems.

To characterize the equilibria of this more general class of games, we initially begin by

solving the case where the continuation game is a dynamic volunteers dilemma, i.e., the

special case of k = 1, and any lower bound l, and proceed inductively. That is, given the

solutions for k = 1 for all l ∈ [0, 1], and assuming we have a characterization for each

k′ = 2, ..., k − 1 for all lht ∈ [0, 1] we characterize the PBE for k.

3 The Dynamic Volunteer’s Dilemma

3.1 Equilibrium

In this case, we solve the continuation game for a group of n members following a history

ht, at which point exactly m− 1 members have already contributed, so kt = 1 and there are

(n− 1) − (m − 1) = n −m remaining uncommitted members, and the lower bound on the

distribution of types is lht . We call this continuation game, where the group is missing exactly

one contributor to succeed, the dynamic volunteers dilemma. We start with a preliminary

result. A PBE is in cutoff strategies if there is a cutoff c(ht) such that any type c ≤ c(ht)

find it optimal to contribute, and any type c > c(ht) find it strictly optimal to wait. It is

straightforward to show:

Lemma 1. All PBE of a continuation game starting from any history ht in which only one

contributor is missing for success are in cutoff strategies.

Proof: See the appendix. ■

We next show that the symmetric equilibrium of the continuation game, i.e., the equilib-

rium cutoff strategy function, c(·), is uniquely determined. The argument is as follows.

Suppose that at some history ht we have reached a point at which the lower bound of the

support is lht and exactly m − 1 members have already contributed, so kt = 1. Denote by

V −(c, ht) the expected value for a type c who does not contribute in the current period, and

V +(c, ht) the expected value for a type c who chooses to contribute in the current period.
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Since kt = 1, success is automatically achieved if the member contributes, so V +(c, ht) = v−c.

The expression for V −(c, ht) is slightly more complicated and depends on the continuation

value if no other member contributes, which in turn depends on the current cutpoint, c(ht)

(to be solved for) and the continuation value of the game if no other member contributes

in the current period, V (c, ht+1), in which case the lower bound of the distribution of types

will change in the next period to lht+1 = c(ht):

V −(c, ht) = v

[
1−

(
1− F (c(ht))

1− F (lht)

)n−m
]
+ e−γ∆

(
1− F (c(ht))

1− F (lht)

)n−m

V (c, ht+1) (1)

We have the following observation:

Lemma 2. lht < v ⇒ c(ht) > lht. Furthermore, limt→∞ c(ht) = v.

Proof: See the appendix ■.

In equilibrium, it must be that V +(c(ht), ht) = V −(c(ht), ht). Furthermore, from Lemma

2, we know that c(ht+1) > c(ht), so, the c(ht) type will contribute for sure in period t+ 1 if

the game continues. Hence:

V −(c(ht), ht) = v

[
1−

(
1− F (c(ht))

1− F (lht)

)n−m
]
+ e−γ∆

(
1− F (c(ht))

1− F (lht)

)n−m

(v − c(ht)).

We conclude that the indifference condition that characterizes the equilibrium cutpoint is:

v − c(ht) = v

[
1−

(
1− F (c(ht))

1− F (lht)

)n−m
]
+ e−γ∆

(
1− F (c(ht))

1− F (lht)

)n−m

(v − c(ht)) (2)

More generally, since the game can continue for many periods without anyone contribut-

ing, (2) can be rewritten as a difference equation for all τ ≥ t:

c(hτ ) =


(
1− e−γ∆

) ( 1−F (c(hτ ))
1−F (c(hτ−1))

)n−m

1− e−γ∆
(

1−F (c(hτ ))
1−F (c(hτ−1))

)n−m

 v (3)

with c(ht−1) = lht . Condition (3) is illustrated in Figure 1.

The left hand side is the opportunity cost of contributing in the current period for the

cutoff type, c(hτ ); the right hand side is the discounted net expected benefit of waiting and

contributing next period, for the cutoff type. The right hand side is a function of c(hτ ) itself,

since it depends on the strategy followed by the other players, which is itself determined by

the cutoff c(hτ ). The equilibrium cutoff is a fixed-point of (3). As illustrated by Figure 1,

the right hand side of (3) is always decreasing, higher than c at c = c(hτ−1), and lower than

11



Figure 1: The equilibrium for m = 1. The solid and dashed curves are, respectively, the
right hand side of (3) when n = 5 and n = 10, under the assumption that F is uniform, γ
and ∆ are such that e−γ∆ = 0.95 and ct−1 = 0.

c at c = 1: so there is a unique interior fixed-point c(hτ ) ∈ (c(hτ−1), 1). Difference equation

(3) can therefore be used to mechanically construct all the equilibrium cutpoints for all ht

and the associated value functions, and thus fully characterize the unique symmetric PBE

for the case of k = 1.

3.2 Value functions

The unique characterization of equilibrium cutpoints in the system of equations given by

(3) imply two relevant value functions: (1) the equilibrium continuation value for an agent

who has committed before t, given that the lower-bound of types is lht , which we denote as

Q (lht); and (2) the equilibrium continuation value of a player of type c when the lower-bound

on types is l who is still uncommitted, that we denote as V (c, lht). These will be useful for

the full characterization when k > 1.

Consider first the value in period t of a member who has already committed in some

previous period before t, when the lower-bound on types is lht = c(ht−1) and the group is

still missing exactly k = 1 contributors for success. Note there are n−1−(m−2) = n−m+1

other uncommitted players. The value Q (lht) for such a committed player (net of the sunk

12



cost of contributing) when the lower-bound on the types is lht can be written as:12

Q (lht) = v
(
1−B(0, n−m+ 1, F̃ (c(ht)))

)
+e−γ∆Q (c(ht))B(0, n−m+1, F̃ (c(ht); lht)) (4)

where B(0, n −m + 1, x) is the binomial probability of 0 successes out of n −m + 1 trials

when the probability of success equals x. Using the notation cτ = c(ht+τ−1), for τ ≥ 0 we

can use recursion to solve for Q (lht) and write (4) as:

Q (lht) =
∑∞

τ=1
e−γ∆(τ−1)

[∏τ

j=1

(
1− F (cj)

1− F (cj−1)

)n−m+1
][

1−
(
1− F (cτ+1)

1− F (cτ )

)n−m+1
]
v

(5)

where, by convention, c0 ≡ c1 = lht , so
1−F (c1)
1−F (c0)

= 1. Note that (5) is defined only as a

function of the primitives and the current and future cutpoints (cτ )
∞
τ=1, defined by (1).

We can also define the value of being uncommitted for a type c at k = 1 when the lower-

bound on types is lht and the group is missing k = 1 contributors for success as follows.

Note that in this case there are n − 1 − (m − 1) = n − m other uncommitted players. If

c ∈ (lht , c(ht)], we have V (c, lht) = v − c since the game ends when they contribute. Hence,

V (c(ht), lht) = v − c(ht). If c > c(ht), we can define V (c, lht) when c > c(ht) as follows:

V (c, lht) =

[
1−

(
1− F (c(ht))

1− F (lht)

)n−m
]
v + e−γ∆

(
1− F (c(ht))

1− F (lht)

)n−m

V (c, c(ht)) (6)

Using the same notation cτ = c(ht+τ−1), for τ ≥ 0 as in the derivation of Q (lht), define T (c)

as the largest τ such that cτ ≤ c. Solving recursively, as with Q (lht), gives:

V (c, lht) =
∑T (c)−1

τ=1
e−γ∆(τ−1) ·

[∏τ

j=1

(
1− F (cj)

1− F (cj−1)

)n−m
][

1−
(
1− F (cτ+1)

1− F (cτ )

)n−m
]
v

+e−γ∆·(T (c)−1) ·

[∏T (c)

j=1

(
1− F (cj)

1− F (cj−1)

)n−m
]
· (v − c) (7)

Note again that V (c, lht) is fully determined by the cutpoints (cτ )
∞
τ=1.

The characterization of the equilibrium for the dynamic volunteers dilemma has two

immediate implications. First, even when only one contributor is needed, the equilibrium

is inefficient since the probability of immediate realization of the public good, Φt = 1 −
[1− F (c1)]

n−1, is strictly less than 1. Second, the distortion is not due to the fact that the

12In writing the continuation value for the committed players as Q(lht
) we are slightly abusing notation,

since this value is both a direct function of the lower bound of types lht , and the history ht, that may directly
affect future cutpoints if there are multiple equilibria. We avoid writing it as Q(lht ;ht) for simplicity when
it does not generate confusion. When there is only one remaining missing volunteer, there is no loss of
generality since the equilibrium is unique.
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project is not realized when it should be realized, but because it is realized with a delay. In

equilibrium the threshold for participation is always lower than v, but it gradually approaches

this bound: so if there is at least one player with cost lower than v, then the project would

be eventually realized.

3.3 The effects of n and ∆ (or γ) on success and welfare

Since the distortion depends on a delay in realization, is natural to ask whether the distortion

may be mitigated by an increase in n, or a decrease in the delay costs (i.e. a reduction in

either ∆ or γ). In the online appendix we present supplementary material studying the

effect of n and ∆ on equilibrium behavior when k = 1. With respect to n, we prove that an

increase in n always leads to a uniform reduction in the equilibrium cutoff points, implying

that players are individually more reluctant to contribute. This free-rider effect, however,

is mitigated by the addition of more potential volunteers. A simple revealed preference

argument allows us to prove that this second effect always dominates: no type c is worse

off after an increase in n, and some types c are strictly better off; and the probability of

success increases. The comparative statics with respect to ∆ is less clear-cut. A decrease in

∆, also leads to a uniform reduction in the equilibrium cutoff points, thus making players

individually more reluctant to contribute. The number of players, however, remains constant,

so a decrease in ∆ always reduces the probability of success in each period. However, since

the costs of delays are lower when ∆ is smaller, a decrease in ∆ has a welfare effect that

cannot be unambiguously signed. In Section 5, we characterize the condition under which

the expected utility converges to the efficient level, which includes mn = 1 as a special case.

For any given n, however, full efficiency is unattainable even in the limit as ∆ and/or γ

converges to zero.

4 The General Dynamic Collective Action Problem

If k > 1 contributors are required, the analysis is more complicated and we modify the

notation accordingly. We denote a history by hk
t , to indicate a period t history at which

there are exactly k missing contributors.13 Let Qk(lhk
t
) denote the expected utility of a

committed player (net of the sunk contributing cost) at history hk
t when the lower bound on

types is lhk
t
; and define V k(c, lhk

t
) to be the expected utility of an active (uncommitted) player

13For the case of k = 1, we will henceforth use the notation h1
t .
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of type c at history hk
t .

14 As in the previous section, we say a PBE is in cutoff strategies if,

for every history hk
t , there is a critical cost c(hk

t ) with the property that every type c < c(hk
t )

finds it strictly optimal to contribute at hk
t , every type c > c(hk

t ) finds it strictly optimal to

wait at hk
t , and a player with type c(hk

t ) is indifferent between contributing and waiting at

hk
t . We have:

Lemma 3. All PBE of a continuation game starting from any history hk
t in which k con-

tributors are missing for success are in cutoff strategies.

Proof: See the appendix. ■

In the following, we will also use the notation ck(lhk
t
) to denote the cutpoint c(hk

t ) in order

to highlight that for a given equilibrium it directly depends on the missing contributors k

and the lower-bound lhk
t
.15 For a given history hk

t , when it does not generate confusion, we

also define as before ckt recursively to be ckt = ck(ckt−1) with an initial condition ck0 = lhk
t−j

in

case there are no contributors in the periods between from t− j to t− 1.

The previous section uniquely characterized the equilibrium for any l ∈ [0, 1] when k = 1,

denoted here as Q1
(
lh1

t

)
, V 1

(
c, lh1

t

)
, c1 (h1

t ) for all lh1
t
and h1

t , with the superscript indicating

k = 1. We now proceed inductively on k in the following way. Assume that, for all j =

1, ..., k − 1, the functions Qj
(
lhj

t

)
, V j

(
c, lhj

t

)
, cj

(
hj
t

)
are fully defined for all lhj

t
and hj

t .

In the next subsection, we first show that this information enables us to characterize the

cutpoints ckt (lhk
t
) for all hk

t ; then, using the cutpoints
(
cjt

(
lhk

t

))
j≤k,l

hkt
∈[0,1]

the value functions

Qk
(
lhk

t

)
, V k

(
c, lhk

t

)
can be derived.16 In this way we can characterize all continuation games

in all histories, for all k ≤ m and l ∈ [0, 1]. In Section 4.2 we complete the analysis of the

equilibria for finite n by studying when they lead to success.

4.1 Characterization and existence

Consider first the value of an uncommitted player who contributes at hk
t . Note that when

we are missing k > 1 contributors, for an uncommitted player, there are n− 1− (m− k) =

14As for the case with k = 1, we are slightly abusing notation here to keep it simple. For a given lower
bound l and number of missing volunteers k, both Qk(l) and V k(c, l) may directly depend on ht as well,
since, with the possibility of multiple equilibria, the equilibrium that is played in a continuation game can
depend on payoff irrelevant elements of the history. Omitting this information is without loss of generality
when, as we will do here, we characterize the properties of an equilibrium in a continuation game for given
continuation values.

15In general, for a given lower bound l and number of missing volunteers k, ck(lht) also depends on ht

since ht may determine how the others play in the presence of multiple equilibria. We omit the dependence
on ht for simplicity when it does not generate confusion.

16Note that for any t > 0, given the threshold at t − 1, i.e. lhk
t
= c(hk

t ), the posterior at hk
t is uniquely

defined as the truncated distribution F̃ (c; lht
), as defined in Section 2.
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n− 1−m+k other uncommitted players in the game. Hence, the value for an uncommitted

player with cost c who contributes at history hk
t is:[

V k
]+

(c, lhk
t
) = v

∑n−1−m+k

j=k−1
B
(
j, n− 1−m+ k, F̃ (ck(lhk

t
); lht)

)
(8)

+e−γ∆
∑k−2

j=0
B
(
j, n− 1−m+ k, F̃ (ck(lhk

t
); lht)

)
Qk−j−1(ck(lhk

t
))− c.

The first term on the right hand side of (8) is the probability the group reaches success at t

times the prize v; the second term collects the probabilities that an insufficient number j < k

of players volunteers times the discounted expected continuation value for a contributor,

e−γ∆Qk−j−1(ck(lhk
t
)); the third term is the cost of contributing.

The function Qk−j−1
(
ck(lhk

t
)
)
used in (8) does not depend on the type of the agent, but

it depends on ck(lhk
t
) because ck(lhk

t
) becomes the minimal type at t + 1. One can simplify[

V k
]+

(c, lhk
t
) by adding and subtracting v times the probability the game does not end at t

to obtain:

[
V k
]+

(c, lhk
t
) = v − c− e−γ∆

∑k−2

j=0

 (
v

e−γ∆ −Qk−j−1(ck(lhk
t
))
)

· B
(
j, n− 1−m+ k, F̃ (ck(lhk

t
); lht)

)  (9)

Consider next the expected continuation payoff of an uncommitted agent of type c does

not contribute at history hk
t . Similarly as in (9), we can derive it as:

[
V k
]−

(c, lhk
t
) = v − e−γ∆

∑k−1

j=0

 (
v

e−γ∆ − V k−j(c, ck(lhk
t
))
)

· B
(
j, n− 1−m+ k, F̃ (ck(lhk

t
); lht)

)  (10)

There are now two possibilities. The first case arises if the equilibrium cutoff is a corner

solution in which ck(lhk
t
) = lhk

t
and all types c ≥ lhk

t
choose not to contribute. This is possible

only if
[
V k
]+

(lhk
t
, lhk

t
) ≤

[
V k
]−

(lhk
t
, lhk

t
), which (as it can be easily verified from (9) and (10))

is equivalent to e−γ∆Qk−1(lhk
t
) ≤ lhk

t
. When this condition is satisfied, even a player of type

lhk
t
(the lowest possible cost at hk

t ) is unwilling to commit if no other player with a higher cost

will ever contribute.17 Indeed, if this player contributes alone, then the discounted benefit is

e−γ∆Qk−1(lhk
t
) and the cost is lhk

t
. On the other hand, if this condition is not satisfied, then

any player of type close to lhk
t
is willing to contribute even if s/he expects no participation

from the other players at t, in the hope that other players will continue contributing in

history hk−1
t+1 in which the missing contributors are k − 1.

17Strictly speaking, we have a corner solution if
[
V k
]+

(lhk
t
, lhk

t
) <

[
V k
]−

(lhk
t
, lhk

t
). The properties of a

PBE when type lhk
t
is indifferent between contributing or not are the same as when the inequality is strict.

16



The other possibility is that we have an interior solution with ck(lhk
t
) > lhk

t
. In this case

the threshold ck(lhk
t
) is given by an indifference equation similar to the indifference condition

for the volunteer’s dilemma in equation (2):[
V k
t

]+
(ck(lhk

t
), lhk

t
) =

[
V k
]−

(ck(lhk
t
), lhk

t
) (11)

For any hk
t , the right and left hand side of (11) are defined as functions of exclusively the

cutpoints ck(lhk
t
) for histories in which k contributors are missing. These cutpoints can be

found solving (11) for any hk
t . After some algebra, these conditions can be written as:

ck(lhk
t
) = e−γ∆

∑k−1

j=0

 (Qk−j−1
(
ck(lhk

t
)
)
− V k−j(ck(lhk

t
), ck(lhk

t
))
)

·B
(
j, n− 1−m+ k, F̃ (ck(lhk

t
); lht)

)  . (12)

where, by convention, we define Q0 (·) = v/e−γ∆. The system of equations defined in (12)

characterizes ck(lhk
t
) in the same way as condition (3) defined the cutpoints in the case with

k = 1.18 It also has a similar interpretation. The left hand side is the cost of contributing

by the cutpoint type ck(lhk
t
); the right hand side is the net expected discounted utility of

contributing: the difference between the utility after contributing minus the continuation in

the absence of a contribution (i.e., V k−j(ck(lhk
t
), ck(lhk

t
))). In order to prove existence of a

PBE, in Theorem 2 below we prove that a fixed-point of (12) exists for any hk
t , a step that

will be discussed below.

Once we have the cutpoints for all continuation games when k contributors are missing,

we can close the circle and define an equilibrium in all continuation games up to k = mn.

Given the cutpoints ck(lhk
t
) defined above we can indeed define the expected continuation

payoffs at history hk
t to all the players as a function of lhk

t
. The payoff to a player who has

contributed in previous periods does not depend on the player’s cost, c, and is given by:19

Qk(lhk
t
) = v−e−γ∆·

∑k−1

j=0

[( v

e−γ∆
−Qk−j(ck(lhk

t
))
)
B
(
j, n−m+ k, F̃ (ck(lhk

t
); lht)

)]
. (13)

Using (9),(10) and (13), we can finally obtain V k(c, lhk
t
), which is equal to

[
V k
]+

(c, lhk
t
) for

c ≤ ck(lhk
t
), and equal to

[
V k
]−

(c, lhk
t
) otherwise. With this, we have all the ingredients

to complete the induction argument. Using Qj(lhj
t
) and V j(c, lhj

t
) for j ≤ k we can now

obtain ck+1(lhk+1
t

), and then Qj(lhj
t
) and V j(c, lhj

t
) for j ≤ k + 1. We can therefore obtain

cj(l), Qj(l), and V j(c, l) for j ≤ mn, which fully characterizes the equilibrium. At each

generic history, hk
t , and lower bound on types lhk

t
, the cutpoints in state k evolve according

18One can verify that, for k = 1 (the dynamic volunteers dilemma), equation (12) reduces to equation (3).
19To find (13) we first write Qk(lhk

t
) in terms of expected payoffs then, as we did for (9) and (10), we

rewrite it by adding and subtracting v times the probability the game does not ends at t.
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to ckt = ck(lhk
t
) where lhk

t
= ckt−1, where c

k
t−1 = cj(lhj

t−1
) for some j ≥ k and history hj

t−1. The

game is initialized at the history, hm
1 , where lhm

1
= 0.

We now have a full characterization of the equilibria.

Theorem 1. A symmetric PBE is characterized by a monotonically increasing sequence of

cutpoints ct = ck(lhk
t
) for k ≤ m and t = 0, ...,∞, where ck(lhk

t
) is inductively defined by

(9), (10), (12) and (13) as described above. For each k we have ct−1 ≤ ct < v for each

t = 1, ...,∞. Furthermore if ct = ct−1 for any t, then cτ = ct−1 for all τ > t.

Proof . Given the analysis above, we only need to prove that ckt < v. To see this, note that

the right hand side of (12) is always strictly less than v since

e−γ∆
(
Qk−j−1

(
ck(lhk

t
)
)
−
[
V k−j

]+
(ck(lhk

t
), ck(lhk

t
))
)
≤ e−γ∆

(
Qk−j−1

(
ck(lhk

t
)
))

< v.

So we have that ck(lhk
t
) < v for any lhk

t
< v. It follows that ct = ck(ct−1) < v. ■

We complete the analysis proving the existence of a PBE.

Theorem 2. A symmetric Perfect Bayesian Equilibrium exists.

Proof: See the discussion below. Details are provided in the online appendix. ■

To understand this result, consider (12). As discussed above, all continuation functions

defining the right hand side are defined by the induction step. It is however the case that the

value of the right hand side of (12) does not only depend on the cutpoint at t, i.e. ck(lhk
t
).

The reason is that at t+1 the lower bound has moved to ck1 = ck(lhk
t
), so the other players use

the strategy ck2 = ck(ck(lhk
t
)) = ck(ck1). If at t+ 1 we have an interior solution,

[
V k
]+

(ck1, c
k
1)

can be written as:[
V k
]+

(ck1, c
k
1) = v ·

∑n−1−m+k

j=k−1
B
(
j, n− 1−m+ k, F̃ (ck2; c

k
1

)
+e−γ∆ ·

∑k−2

j=0
B
(
j, n− 1−m+ k, F̃ (ck2; c

k
1)
)
Qk−j−1(ck2)− c,

so ck1 depends on ck2. Analogously, ck2 is itself a function of ck3, and so on. This implies

that (12) defines ck1 as a function of all equilibrium cutoffs that follows it along the “worst

history” in which there are no additional contributors. When condition (12) is required for

all histories hk
t , it defines the equilibrium cutoffs

(
ckj
)∞
j=1

as a fixed-point of a correspondence

that maps the sequence of cutoffs to itself. To prove existence, we proceed as follows. We

first define an auxiliary truncated game in which the players give up and stop contributing if

there are T attempts at which no player contributes (for some finite T > 0). We then show

that, in this game, equilibrium cutpoints
(
cT,kj

)T
j=1

exist and are defined as fixed points of
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a condition similar to (12). Finally, we prove that as T → ∞, these cutpoints converge to

a limit
(
ckj
)∞
j=1

that is an equilibrium of the original game. A key step to prove that the

truncated game has a fixed-point is to show that the set of continuation values, and thus the

right hand side of (12), is a non-empty, convex-, closed- valued and upper-hemicontinuous

correspondence in ck(lhk
t
). We can prove this with an inductive argument over k. To this

goal, note that Section 3.1 established, by construction, the existence of a unique PBE for

any lower bound on types l when only one contributor is needed. Moreover, we showed that

the associated value functions Q1(l) and V 1(c, l) are continuous both in l and c for any c ≥ l.

For the induction hypothesis, assume that, for all j = 1, ..., k − 1, the set of continuation

value functions Qj(l) and V j(c; l) corresponding to a PBE in the continuation game is non-

empty, convex-, closed- valued and upper-hemicontinuous in lhj
t
. Using this property, we can

prove that the the set of continuation value functions at k, Qk(l) and V k(c; l) are non empty,

convex valued and upper-hemicontinuous in l.

4.2 Participation and comparative statics

In the previous section we mentioned that it is possible the equilibrium cutoff gets stuck,

implying contributions stop after some history reached with positive probability in equilib-

rium (and this possibility has to be contemplated in the characterization). We however did

not prove such an event occurs in equilibrium. Indeed, the following result shows that, while

the probability of success is always strictly positive in every equilibrium, the probability of

prematurely getting stuck is also strictly positive in equilibrium:

Theorem 3. For any n > 2, for any 1 < m < n, and for all ∆ > 0 and γ ∈ (0, 1), in every

symmetric equilibrium:

1. The probability of success is strictly positive.

2. There are no interior equilibria: in every equilibrium, there is a positive probability of

reaching an effectively terminal history hk
t with ck(lhk

τ
) = lhk

t
< v for all τ ≥ t.

Proof: Part (1): A sufficient condition for the probability of success to be strictly positive

is that cm(0) > 0, since the probability of success would then be bounded below by 1 −
(1− F (cm(0)))n > 0. First, notice that we already proved that c1(0) > 0. We now proceed

by induction on the number of volunteers that are needed. Assume that for all j = 2, ...,m−1,

cj(0) > 0 in every equilibrium and therefore Qj(0) > 0 for j = 2, ...,m−1. Now suppose that

there is some equilibrium of the (n,m, γ,∆, v) game in which the probability of success is 0.
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This implies that cm(0) = 0 and hence [V m]+ (0, 0) = 0. But [V m]+ (0, 0) ≥ e−γ∆Qm−1(0)v >

0, a contradiction. Hence, cm(0) > 0 in every equilibrium, so the probability of success is

strictly positive in all equilibria.

Part (2) Suppose by way of contradiction that there exists an equilibrium that contains

a sequence {cmτ }∞τ=1 with limτ→∞ cmτ = cm∞ = v. (If not, then the result is proved.) This is

the sequence of equilibrium cutpoints along those histories where no player has contributed

up to period τ . Along such a sequence, it must be that cmτ − cmτ−1 → 0. Hence:

F̃ (cmτ ; c
m
τ−1) →

F (cmτ )− F
(
cmτ−1

)
1− F (v)

→ 0

It follows that:

lim
τ→∞

cmτ = e−γ∆ lim
τ→∞

∑m−1

j=0

[(
Qm−j−1 (cmτ )− V m−j(c; cmτ )

)
B
(
j, n− 1, F̃ (cmτ ; c

m
τ−1)

)]
→ e−γ∆

(
Qm−1 (v)− V m(c; v)

)
= 0 < v, a contradiction.

The last step follows from the fact that if the lower bound on types is v, then the expected

probability that an active player contributes is zero, so Qm−1 (v) = V m(c; v) = 0. ■

Since no player with a cost c > v would find it optimal to contribute, the highest possible

probability of success achievable is pn = 1− [1− F (v)]n. We use this benchmark to evaluate

the performance of an equilibrium in a dynamic collective action game. We define a group

to be constrained -successful if, in all equilibria, there will be at least m contributors by some

finite date t whenever there are at least m players with cost c < v. That is, limt→∞ ckt = v,

so a group is constrained-successful if the probability of success in all equilibria is pn.
20 The

following corollary follows immediately from Theorem 3:

Corollary 1. If m > 1 then the group is not constrained-successful, and the probability

of success is strictly less than pn in all symmetric equilibria: types with sufficiently low

c contribute in early periods, but there is a positive probability of reaching an effectively

terminal history hk
t with k < m and lhk

t
< v.

The main implication of Corollary 1 is that the dynamic process of contributing is prob-

abilistic: the process starts for sure, and players contribute with positive probability in early

periods; the final outcome, however, depends on the dynamics of participation which in turn

depends on the realization of types. With positive probability the required threshold m is

20Being constrained-successful does not imply that the equilibrium is efficient. An equilibrium is efficient
if the sum of the costs is lower than nv. When m is finite or when we have a threshold mn that depends on
n but such that mn/n → α < 1, this condition is always satisfied for n sufficiently large. But these efficient
equilibria are unachievable in a honest and obedient mechanism with no transfers.
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Figure 2: Equilibrium dynamics of cutpoints for m = 1 (red) and m = 2 (blue).
n = 3, v = 0.8, n = 3, e−γ∆ = 0.8, F Uniform.

reached and the public good is obtained; but with strictly positive probability the process

gets “stuck”. This finding shows that the general dynamic collective action problem with

m > 1 is fundamentally different than the dynamic Volunteer’s dilemma with m = 1 (in dis-

crete or continuous time as in Bliss and Nalebuff [1984]). It also illustrates a sharp contrast

with the multi-person war of attrition studied by Bulow and Klemperer [1999]. In all these

cases, the probability the efficient allocation is reached equals 1.

Figure 2 displays the equilibrium dynamics for a very simple example (n = 3, v = 0.8,

n = 3, e−γ∆ = 0.8, F Uniform) to illustrate some of the key differences in the evolution of

equilibrium cutpoints between m = 1 and m > 1. The horizontal axis is the period number,

with cutpoints on the vertical axis.

The solid red upward sloping curve marks the sequence of cutpoints for each period

for the war of attrition model (m = 1), along the path where there has not yet been a

contribution. The initial cutpoint is approximately 0.2 and increases each period after that,

until a contribution is made.

The solid and dashed blue curves mark the history-dependent sequence of cutpoints for

m = 2. The key difference to note is that the initial cutpoint of 0.34 is much higher (by

more than 60%) than the initial cutpoint for m = 1. If there are zero contributions in
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the first period, the game is effectively over, since the equilibrium cutpoints never increase

again, as indicated by the solid blue line. The higher period 1 cutpoint is needed to support

an equilibrium for two reasons, first to reduce the probability of immediate and complete

failure (which doesn’t happen if m = 1), and second to significantly increase the probability

of success. These two reasons are complementary, since the second is needed to induce more

members to be willing to take the risk of making an initial contribution. The dashed blue line

shows the evolution of cutpoints following a single contribution in period 1, and corresponds

to the the m = 1 equilibrium with an initial lower bound is 0.34. Another reason that the

initial cutpoint for m = 1 is lower than the initial cutpoint for m = 2 is that the dynamic

free riding problem is lessened with m > 1, due to the threat of immediate failure. One can

interpret this as a bandwagon effect, since an early contribution increases the likelihood of

future contributions.

Equation (12) and, more generally, the characterization of Theorem 1 allow us to com-

pute the equilibria and evaluate the ex ante expected utility to the players as we vary the

parameters. The equilibrium ex ante expected value to a member of the group of size, n, for

given parameters γ,∆, v,m, F is defined as:

En(γ,∆, v,m, F ) =

1∫
0

V m(c, 0|γ,∆, v, n)dF (c).

Figures 3 and 4 illustrate how En varies with n, fixing m = 2 and F Uniform. Group

size is on the horizontal axis with En on the vertical axis. Figure 3 illustrates how En varies

with v with a given discount factor e−γ∆ = 0.8. Figure 4 illustrates how En varies with the

discount factor, e−γ∆ for v = 0.65. In both cases, when there are multiple equilibria, we

select the equilibrium with the highest cut-offs.

An increase in n leads to a higher (and earlier) probability of success and hence a higher

ex ante per capita value of the game. Moreover, in the examples of Figures 3 and 4, En

converges rapidly to the fully efficient ex ante value for any v and e−γ∆, so in the limit,

E∞ = v. We will characterize the exact conditions for this property in the next section,

which is independent of v or e−γ∆, but instead exclusively depends on the speed with which

the share of required volunteers m/n converges to zero.

The comparative statics of changing v are perhaps unsurprising: an increase in v is

associated with higher utility. The comparative statics of changing the discount factor are

more complicated than the effect of changing v. Increasing the discount factor leads to

greater cost efficiency, but exacerbates the adverse incentive to delay contributions. So, an

increase in patience, e−γ∆, results in more delay, a lower probability of success, and lower ex
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Figure 3: Ex ante discounted value, En.
v = 0.5, 0.7, 0.9, m = 2, n ≤ 400, and e−γ∆ = 0.8, F Uniform..

ante group value. The examples of Figures 3 and 4 suggest that for any positive discount

factor and any n, the players would be better off in a static game where they could commit

to immediate termination after a single period (corresponding to e−γ∆ = 0). While this is

true in the example, it is not generally the case that the delay costs of dynamic free riding

outweigh the coordination benefits from coordination benefits of information transmission.

If mn grows at the same rate as n (as opposed to this example, where mn = 2 for all n),

then for sufficiently large n the probability of success in the static game is exactly 0, while

the probability of success in the dynamic game is strictly positive. We discuss this result in

Section 6.3.

We conclude this section with an additional comment on the comparative statics prop-

erties of the equilibria. In Section 3, we showed that when only one volunteer is needed

(i.e., m = 1), a unique symmetric PBE exists. This allowed for clean comparative statics

results concerning the equilibrium cut points (see Section 3.3). However, this is no longer

the case when more than one volunteer is needed. For example, consider the case where F

is uniformly distributed in [l, 1], v = 0.3, n = 3, m = 2, e−γ∆ = 0.8 and l = 0.05. In this

case, we have a PBE in which (12) admits a unique solution: the initial equilibrium cutpoint

is c0(n) = 0.095. If we increase the number of players from n = 3 to n′ = 5, we have two

interior equilibria, c0(n
′) = 0.053 and c′0(n

′) = 0.109; and a corner equilibrium in which no

player volunteers, c′′0(n
′) = l. It is therefore possible that an increase of n from 3 to 5 is
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Figure 4: Ex ante discounted value, En.
v = 0.65, m = 2, n ≤ 400, e−γ∆ = 0, 0.2, 0.8, 0.95, F Uniform.

associated to a decrease of the cutpoint at t = 0 from c0(n) = 0.095 to c0(n
′) = 0.053 or

c′′0(n
′) = 0.05; or that it is associated to an increase from c0(v) = 0.095 to c′0(v

′) = 0.109.

To understand why the cutpoints for volunteering may not be monotonic in n when more

than one volunteer is needed, compare the cases of m = 1 and m = 2. In the m = 1

case, an increase in n does not affect the expected utility of volunteering: it remains v,

regardless of the number or behavior of other players. The only effect of increasing n, ceteris

paribus, is a higher probability that someone other than player i volunteers, thereby reducing

the probability that i is pivotal. This unambiguously lowers the equilibrium cutpoint for

volunteering.

Now, consider the m = 2 case. If player i volunteers while no other player does, the value

of volunteering for i, net of the realized cost ci, is equal to the value of a passive player in

the continuation game with n − 1 active players where only one volunteer is needed. It is

easy to prove that an increase in n increases i’s expected value in this continuation game,

since when n is larger, the expected wait in the continuation game is smaller. This generates

two opposing effects. On the one hand, a larger n increases the probability that i’s action is

superfluous (i.e., more than two other players volunteer), which, as in the m = 1 case, pushes

the cutpoint downward. On the other hand, it also raises the expected value of volunteering

in the event in which no other player volunteers, which pushes the cutpoint upward. These

conflicting forces explain why cutpoints may not be monotonic in n when m > 1.
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5 Large groups

We next turn to an analysis of the properties of the PBE and welfare as n → ∞. In the

continuous time model of the war of attrition with mn = 1 by Bliss and Nalebuff [1984], the

equilibrium is asymptotically efficient as n → ∞. Large numbers, therefore, eliminate the

free rider problem in a collective action.21 In this section we study the welfare properties

of our more general environment in which mn contributions are needed. In collective action

problems with large groups is natural to assume that mn is larger than one, and indeed that

it grows with n. In these cases, we will show that the existence of an efficient equilibrium

critically depends on the relative speed with which mn grows with n.

As previously defined, the share of required contributors is αn = mn/n. For any sequence

{α′
n}∞n=1, we say that αn converges to zero slower (resp., faster or at the same rate) than α′

n

if limn→∞(αn/α
′
n) = ∞ (resp., limn→∞(αn/α

′
n) = 0, or limn→∞(αn/α

′
n) = l for some finite

l). For future reference, for two sequences an, bn with an → 0, bn → 0, we write an ≻ bn if

limn→∞
bn
an

= 0, and an ≺ bn if limn→∞
an
bn

= 0.

In the following, we maintain the assumption that limn→∞ αn < F (v), so achieving group

success with the minimum threshold is always ex ante efficient as n → ∞. In the first best,

the expected per capita utility, as n → ∞, is W ∗
n = v − E

[∑mn

j=1 c
[j](n)/n

]
, where c[j](n)

is the jth lowest cost with n samples from F (c). Note that when αn → 0, then W ∗
n → v

as n → ∞; when αn → α < F (v), then we still have W ∗
n → W ∗ ≥ v − F−1 (α) > 0 as

n → ∞. It is also immediate to see that if mn > 1, then efficiency is not guaranteed by large

numbers, since equilibria with arbitrarily low probability of success are possible for any n if

∆ is sufficiently large, even if mn is constant.

As anticipated in the introduction, the key threshold for efficiency is the speed at which

n−1/3 converges to zero: if αn ≺ n−1/3, then we there is a sequence of equilibria that achieves

asymptotic efficiency; if αn ≻ n−1/3, then the expected utility converges to zero in all equi-

libria. Before we formally prove the results, it is useful to discuss intuitively the reason the

cube root of 1/n plays such a key role in the characterization and why this threshold stems

from fundamental features of the strategic interaction.

Suppose for simplicity that types are uniformly distributed in [0, 1], and consider a se-

quence of equilibria converging to a limit in which success is achieved with no delay. A

necessary condition for this to happen is that for large n the first period cutoff for par-

21The same is true in the all pay auction model by Bulow and Klemperer [1999] in which m > 1, but
fixed. The existence of an asymptotically efficient equilibrium is also the typical result in the literature with
perfect information (see Marx and Matthews [2000] and Battaglini et al. [2014] for instance).
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ticipation, c∗1,n, is sufficiently high that the at least αnn members have a cost less than or

equal to c∗1,n with probability close to 1. This, in turn, requires that c∗1,n converges to zero

slower or at the same rate as αn as n → ∞ (hence, c∗1,n ≿ αn), otherwise, with probability

close to 1, the share of volunteers would fall short of the requirement. The cutoff type c∗1,n,

moreover, must be on the order of the expected benefit of contributing, i.e. the probability

for an individual player to affect the decision in the first period, which can be shown to be

proportional to B(αnn, n, c
∗
1,n), the binomial probability of αnn contribution out of n trials

when the probability of an individual contribution is c∗1,n.
22 If c∗1,n does not converge to zero

at the same rate as B(αnn, n, c
∗
1,n), then an agent with cost c∗1,n would not be indifferent,

thereby contradicting the assumption that c∗1,n represents a suitable cutoff value. Putting

this all together gives:

αn ≾ c∗1,n ≃ B(αnn, n, c
∗
1,n) ≾ B(αnn, n, αn) ≃

1
√
αnn

, (14)

where in the last step we use the well known facts that B(αnn, n, c
∗
1,n) is maximized at

c∗1,n = αn, and that B(αnn, n, αn) is on the order of 1/
√
αnn for large n. But condition (14)

cannot hold if αn/ (1/n)
1/3 → ∞, since in this case αn converges to zero slower than 1/

√
αnn

as n → ∞.

Note that this argument only establishes this rate of convergence as a necessary condition

for instant success: not that it is a necessary and sufficient condition for efficiency. To prove

the result, in Theorem 4 of Section 5.1 we show that there is guaranteed to exist a sequence of

PBEs for which the probability of being pivotal converges to zero at the rate of B(αnn, n, αn)

whenever αn ≺ n−1/3, which in turn implies instant success with probability 1 in the limit.

In Theorem 5 of Section 5.2, we prove that the expected utility converges to zero in all

equilibria if αn ≻ n−1/3.

5.1 A possibility result

The following theorem establishes an asymptotic efficiency result for large populations for the

case in which αn converges to zero sufficiently fast, showing that there is always a sequence

of equilibria such that the benchmark W ∗
n is asymptotically achieved as n → ∞. To prove

this result we rely on the characterization of symmetric equilibria of the previous section.

22Indeed, a contribution may be beneficial even if the agent is not pivotal at t = 1, since it changes the
state at which the game is played in the following periods. A key step in our analysis is to show that, in any
sequence of equilibria converging to a limit efficient equilibrium, these expected benefits have only a second
order effect, and can thus be ignored in this discussion.
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We can, therefore, not only prove that asymptotic efficiency is achievable in equilibrium, but

also that it can be achieved with symmetric equilibria.

We start from a preliminary lemma that is useful to prove the result, but has independent

interest. Define cmn,1(0) to be the initial cutpoint in a symmetric equilibrium at the start of

the game with n members, where t = 1, k = m and l = 0. The lemma shows that, for any

sequence of symmetric equilibria, the share of players who volunteer in the first period, i.e.

F
(
cmn,1(0)

)
, converges to zero at the same speed or slower than αn = mn/n if mn diverges at

infinity slower than n2/3. We have:

Lemma 4. If mn ≺ n2/3, then for any sequence of symmetric equilibria, we have

limn→∞ F (cmn
n,1(0))/

(
mn

n

)
> 1..

Proof. A proof outline is as follows (see the appendix for the complete argument).

Step 1. We first find that if mn ≺ n2/3 then F [vB(mn−1,n−1,αn)]
αn

→ ∞. To establish this

property, we use Stirling’s approximation of B (mn − 1, n− 1, αn) and the fact that, in the

neighborhood of 0, F (c) is an approximately a linear function of c.

Step 2. From Theorem 3, any period 1 equilibrium cutpoint must be positive, i.e., cmn
n,1(0) >

0, and hence is given by (12) evaluated at k = mn and l = 0:

cmn
1,n(0) = e−γ∆

∑mn−1

j=0

[
B (j, n− 1, F (cmn

n (0)))

·
(
Qmn−j−1 (cmn

n (0))− [V mn−j]
+
(cmn

n (0), cmn
n (0))

) ]
. (15)

The maximal fixed-point consistent with equation (15) can be bounded below by cmn
n (0)

defined as follows:

cmn
n (0) = max

c∈[0,1]

[
c|c ≤ e−γ∆

∑mn−1

j=0
B (j, n− 1, F (c)) [Qmn−j−1 (c)−

[
V mn−j

]+
(c, c)]

]
.

(16)

Let Zmn
n (c) be the expression in the right hand side of the inequality in (16):

Zmn
n (c) = e−γ∆

∑mn−1

j=0
B (j, n− 1, F (c)) [Qmn−j−1 (c)−

[
V mn−j

]+
(c, c)] (17)

In the appendix we show that, for any period 1 cutpoint c ≥ L · αn with L > 1, Zmn
n (c)

is bounded below by a function zmn
n (c) = ξ · B (mn − 1, n− 1, F (c)), where ξ is a positive

constant. A key step in finding the lower bound is the observation that if c ≥ L · αn we

can ignore the payoffs obtained in all histories in which j < mn − 1 players contribute:

this implies that we can ignore all the terms in the summation in (17), except for the term

with j = mn − 1. This step would be obvious if Qmn−j−1 (c) ≥ [V mn−j]
+
(c, c) for all j,

implying that all the terms are non-negative. While this property may seem intuitive, it
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is not automatically satisfied.23 To bypass this complication, in the proof, we show that

the expected utility of a player conditioning on fewer than mn − 1 volunteers out of the

remaining players is negligible relative to B (mn − 1, n− 1, F (c)) if c ≥ L · αn, so that (17)

can be bounded below by ξ ·B (mn − 1, n− 1, F (c)) for a given positive constant ξ ∈ (0, 1).

Step 3. We conclude the proof by showing that Steps 1 and 2 imply that, for all sufficiently

large n, F (cmn
1,n(0)) ≥ Lmn

n
for some factor L > 1, where L may depend on γ∆. To this goal

we use the lower bound (17) to show that (16) has a fixed point in the set (L · αn, 1). The

logic of this step will be illustrated below using Figure 5. ■

We now use the above lemma to show that the equilibrium is successful in the first period

with probability approaching 1 as n → ∞ if mn ≺ n2/3. Define Pn to be the group’s ex ante

probability of success, and EUn to be the ex ante utility of a player. We have:

Theorem 4. If αn converges to zero faster than the cube root of 1/n, then for all γ,∆ > 0

there is a sequence of symmetric equilibria in which limn→∞ EUn(c) = v for all c ∈ (0, 1).

Proof. See appendix.

The key passage in proving Theorem 4 is Step 3 of Lemma 4, where we show that:

lim
n→∞

F (cmn
n,1(0))/

(mn

n

)
≥ L > 1. (18)

This proves that as n grows, the expected fraction of members who activate in the first

period becomes strictly larger than the required threshold for success, i.e. αn. Theorem 4

follows using this property and Chebyshev’s inequality: it shows that, as n → ∞ , the share

of players willing to contribute is larger than αn with probability converging to 1 (and it is

comprised only of types with cost arbitrarily close to zero).

The logic of Step 3 of Lemma 4 can be explained using Figure 5, where, for the purpose of

this discussion we assume that the right hand side of (16) and (17) are continuous functions

23The first term, Qmn−j−1 (c), is the expected utility of a passive player when the other players contribute
knowing that the lower bound on types is c and mn − j − 1 volunteers are missing. The second term is the
expected utility of an active player, say player i, when the lower bound on types is c and mn− j are missing,
but player i plans to contribute for sure. The second term therefore includes the cost of contribution −ci,
which the first term does not include. Moreover, since player i contributes for sure, in the second term, the
missing volunteers for success are effectively only mn − j − 1. These observations therefore would suggest
that the second term should be smaller. However, in the second term, the other players volunteer as if there
are mn − j missing volunteers because they do not know i’s intention to contribute for sure. If the fact that
they are marginally more distant from success (mn − j instead of mn − j − 1 missing volunteers) induces
players −i to volunteer with higher probability, then the higher probability of success may compensate for
the fact that player i has to contribute ci.
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of c.24 The solid curve represents Zmn
n (c). Condition (16) admits a fixed point larger than

F−1 (L · αn) if the solid curve evaluated at F−1 (L · αn) is above the 45o line: in this case

it admits an intersection on the right of F−1 (L · αn), since this curve converges to zero as

c → 1.25 By Step 2 of Lemma 4, we can bound the solid curve below by zmn
n (c), which is

illustrated by the dashed curve. Hence, a sufficient condition for (18) is that zmn
n (c) evaluated

at F−1 (L · αn) is above the 45o line: in this case the dashed curve intersects the 45o line on

the right of F−1 (L · αn) since this curve converges to zero as c → 1, and a fortiori so does

the solid line (thus implying the existence of a fixed-point cmn
n,1(0) > F−1 (L · αn)). The key

condition therefore is that zmn
n (F−1 (L · αn)) > F−1 (L · αn), or:

ξB (mn − 1, n− 1, L · αn)

F−1 (L · αn)
> 1 (19)

To see that this is the case, note that using Stirling’s approximation, we have:

ξB (mn − 1, n− 1, L · αn)

F−1 (L · αn)
≃ ξf(0)

L
·

√
1

2π · α3
n (1− αn)n

When αn → 0 faster than the cube root of 1
n
, the denominator of the right hand side

converges to zero, so (19) is guaranteed for sufficiently large n.

5.2 An impossibility result

We have proven above that if αn converges to zero faster than the cube root of n, then the

equilibrium payoff in the most efficient PBE converges to the efficient allocation: immediate

success with probability 1. The next result shows that the cube root of n is the critical

dividing threshold between complete efficiency and complete failure in large groups: if αn

converges to zero slower than the cube root of n, then in all equilibria—both symmetric

and asymmetric—the expected utility of every type of every player converges to zero. In an

asymmetric equilibrium, players may adopt different cutpoints, (c∗1 (ht) , ..., c
∗
n (ht)), where

player i′s cutpoint c∗n (ht) may depend on the identity of the past contributors, not just their

numbers. We have:

24In general, Zmn
n (c) and zmn

n (c) are correspondences in c, since we might have multiple equilibria, and thus
multiple continuation value functions for each c. In Theorem 3 we however show that the set of continuation
values defines a non empty, convex valued, upper hemicontinuous correspondence in c. These properties are
sufficient for the argument outlined here to go through.

25Note that in Figure 5, Zmn
n (c) has a positive intersection at c = 0. This reflects the fact that the

expected benefit of contributing for a c = 0 type is positive even if no other player contributes (recall that,
in Zmn

n (c), c is the cutoff adopted by the other players). In this case when mn > 1, although success would
be impossible in the current period, it may move the game to a state in which success will be more likely in
the future.
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Figure 5: Condition (15) and the existence of an asymptotically efficient equilibrium.

Theorem 5. If αn converges to zero slower than the cube root of 1/n, then, for all γ,∆ > 0,

in every sequence of PBE, both symmetric and asymmetric, we have limn→∞EUn(c) = 0 for

all c ∈ (0, 1).

Proof. See the appendix.

The idea behind the proof of Theorem 5 is to prove that for any PBE of the dynamic

collective action game we can define a Honest and Obedient mechanism (Myerson 1982) of

a related static contribution game that generates the same expected payoffs.26 This implies

that the supremum of the payoffs achievable in a PBE can be bounded above by the maximal

payoff achievable in the best static Honest and Obedient mechanism. As proven in Battaglini

and Palfrey (2024), the per capita payoff in the best Honest and Obedient mechanism of the

static game converges to zero as n → ∞ if αn/
3
√

1/n → ∞. Since the payoff of a player in

any PBE is non-negative, this implies that the per capita payoff in a PBE converges to zero

as well if αn/
3
√

1/n → ∞ as n → ∞.

This idea can be interpreted in terms of the revelation principle. In the revelation prin-

ciple it is shown that for any mechanism, there is a direct mechanism with the same payoffs

for the players: the game forms associated to the mechanisms differ in terms of the players’

action space; but they share the same outcome space and utility functions. Here, the dy-

namic game has a very different outcome space and thus different preferences over it than

26The related static contribution game is the same contribution game as the game described in Section
2.1, but there is only one period, after which if success was not reached no player can no longer contribute.
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the corresponding static game: in the latter, the outcome is just a vector of activated play-

ers (and the associated success/failure of the common project); in the dynamic game, the

outcome is a distribution over time of activated players evaluated over time.

As observed in the introduction, Ausubel and Deneckere [1989a, 1989b] previously char-

acterized the equilibria of a two-person, dynamic bargaining game with one-sided private

information in terms of the allocation achievable through a direct IC, IR mechanism, under

the assumption that agents are sufficiently patient. This important result, however, does

not extend to more general games with multilateral private information. The key distinc-

tion is that with one-sided private information, only the agent possesses private information.

When the agent receives a recommendation from the mechanism, the agent’s information

set remains unchanged. In contrast, in a model with multilateral incomplete information,

the agent must update beliefs about the types of other agents after any recommendation,

as the recommendation depends on the information collected by the mechanism. This belief

updating is precisely what is incorporated into the Obedience constraint. The Obedience

constraint is key for the result, since it is the reason why the expected utility converges

to zero in the best direct HO-mechanism when αn/
3
√

1/n → ∞ as n → ∞. Efficient out-

comes are indeed possible in the best IC and IR (but not Obedient) mechanism even when

αn/
3
√

1/n → ∞ as n → ∞.

To see why any PBE of the dynamic game defines an equivalent static HO mechanism,

consider here, for the sake of the argument, an equilibrium in which the cutoffs (cτ (c))
∞
τ=1

depend only on the realized types c (so there is no other public signal observed by the

players).27 Note that, because we are allowing for asymmetric equilibria, here cτ (c) =

{cτ,1(c), ..., cτ,n(c)}, where cτ,i(c) is player i’s cutpoint at τ when the type profile is c. Even

if we fix the PBE, this sequence is stochastic since it depends on the realized profile of

types c. But, for a given PBE and a given c, it is deterministic.28 Given a realized profile

of individual costs, c, these cutoffs define S(c), i.e. the first period in which there are m

volunteers (which may be never); Ti(c), the first period in which player i volunteers (i.e. the

first t in which ct,i(c) ≥ci); It(c), the set of volunteers up to and including period t; and

kt(c) is the number of missing volunteers for success at the end of t.

A static mechanism can be defined as a function µ : [0, 1]n → ∆2I , mapping the set of

27Given a type profile c, and ignoring here for simplicity the public signals, the equilibrium cutoff strategy
c(ht) defines a unique history ht(c), describing the sets of volunteers in all periods τ ≤ t. The cutpoint at t
can therefore be written as ct(c) = c (ht(c).

28In the presence of public signals, the sequence may also depend on the realization of the signals, which
determines the continuation equilibrium that is chosen. See the proof of Theorem 6 in the appendix for
details.
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profiles of types to a distribution over the set of players who are asked to contribute. To see

that a vector of cutoffs (cτ (c))
∞
τ=1 define such a mechanism, consider the following multi-step

algorithm. When profile c is reported, in Step 1 all individuals i with a type below c1,i(c)

are asked to volunteer (i.e., the set I1(c)). If there are at least m such individuals, i.e.,

k1(c) = 0 and S(c) = 1, then the public good is provided and the algorithm stops without

proceeding to Step 2. In this case, S(c) = 1 and µDYN
I1(c)

(c) = 1 (we denote by µDYN
g (c) the

probability a group g is asked to volunteer when the profile is c). If k1(c) > 0, i.e., S(c) > 1,

then with probability 1− e−γ∆ the algorithm also stops without proceeding to Step 2 (and

the public good is not provided). In this case, S(c) > 1 and µDYN
I1(c)

(c) = 1 − e−γ∆. With

probability e−γ∆, instead, the algorithm proceeds to Step 2. In Step 2, all individuals i with

a type in the interval (c1,i(c), c2,i(c)] are also asked to volunteer and the process continues.

In general, at any Step t at which the algorithm has not yet stopped, individuals i with a

type in the interval (ct−1,i(c), ct,i(c)] are asked to volunteer. If there are at least kt−1(c) such

individuals, i.e., kt(c) = 0 and S(c) = t, then the public good is provided in Step t and the

algorithm stops selecting It(c) without proceeding to step t+ 1. If kt(c) > 0, i.e., S(c) > t,

then with probability 1 − e−γ∆ the algorithm also stops without proceeding to step t + 1

(and the public good is not provided), and with probability e−γ∆ the algorithm proceeds to

step t+ 1. The algorithm described above defines the following static mechanism:

µDYN
g (c) =


∑

{τ |Iτ (c)=g }
(
1− e−γ∆

)
e−γ∆(τ−1) |g| < m

e−γ∆(S(c)−1) if |g| ≥ m and g = IS(c)(c)
0 else

(20)

which mimics the discounting in the dynamic game by randomly stopping the algorithm

with probability 1−e−γ∆ after any step at which the threshold m has not yet been achieved.

The proof is completed by showing that µDYN
g (c) is Honest and Obedient mechanism.

This fact is intuitive. By construction, the static mechanism asks a player to contribute

if and only if the player is in an event that mimics an history in which the player finds it

optimal to contribute in the dynamic game. The event “mimics” such an history in the sense

that conditioning on such an event, the player has a the same posterior on the other players

types as after such an history. It follows therefore that if the static mechanism is not honest

and obedient, then we would have a deviation in the PBE, a contradiction.
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6 Extensions and variations

6.1 Dynamic collective action with high value (v ≥ 1)

Up to this point we assumed v < 1. If v ≥ 1, then it is common knowledge that all players

would willingly participate if they are pivotal. This has a number of implications, which

we explain here. First, there exist asymmetric equilibria that achieve success instantly: in

equilibrium, at t = 1 a subset of exactly m members participates, regardless of their private

cost, and the remaining n−m members free ride. Of course, this requires some coordination

device among the players. If such coordination devices are not readily available, then we

are back to characterizing the symmetric PBE of the game. In this high value case, results

are not entirely negative. For symmetric PBE, we have the following results. We extend

Theorem 3 to the high-value case as follows:

Theorem 3′. If v ≥ 1 then for all n > 2, for all 1 < m < n, and for all ∆ > 0 and

γ ∈ (0, 1), in every symmetric equilibrium:

1. The probability of success is strictly positive.

2. There exists a minimum value threshold, 1 < v∗(n,m, γ,∆) < ∞, such that all

equilibria are interior iff v > v∗(n,m, γ,∆) , and success is achieved with probability 1.

3. For all v ∈ [1, v∗(n,m, γ,∆)], there is at least one equilibrium in which there is a

positive probability of reaching an effectively terminal history hk
t with ck(lhk

τ
) = lhk

t
< v for

all τ ≥ t.

Proof: See the online appendix. ■

The proof of part (1) is the same as in Theorem 3. Part (2) is proved by induction. A

detailed proof is in the online appendix, which we sketch here. When m = 1, all equilibria

are interior by Lemma 2 for all v, (2) therefore holds for m = 1. The properties of the

interior equilibrium when k = 1 moreover guarantee that we have e−γ∆Q1(l)− l > 0 for any

l ∈ [0,min{v, 1}]. For the induction hypothesis, assume that for all j = 1, ..., k − 1 there

exists a v∗k−1(n, j, γ,∆) < ∞ such that l ∈ [0,min{v, 1}] implies that in every equilibrium,

cj(l) > l and e−γ∆Qj (l)− l > 0, if and only if v > v∗k−1(n, j, γ,∆). The next step of the proof

is to show that the induction hypothesis implies the existence of a v∗k(n, k, γ,∆) > 1 such

that l ∈ [0,min{v, 1}] implies that in every equilibrium, ck(l) > l and e−γ∆Qk (l) − l > 0 if

and only if v > v∗k(n, k, γ,∆). This requires some care since Qk (l) is typically a complicated

function of l for k > 1. This argument allows us to conclude that for any k ≤ m, a player

with type close to l finds it optimal to contribute, even if s/he expects all other active players

not to contribute.
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Part (3) of Theorem 3′ can be seen as the residual case and follows as a corollary to Part

(2). If v ≤ v∗(n,m, γ,∆), then there is a history with positive probability at which if a player

expects no other player to contribute, then s/he does not find it optimal to contribute as

well: thus we have an equilibrium in which players stop contributing. This in itself, however,

does not imply that there is no interior equilibrium in which success is eventually achieved

since the payers’ decisions to contribute may be strategic complements, implying that we

could have additional equilibria in which participation is stimulated by the expectation that

other players contribute with positive probability. As shown in Theorem 3, however, this is

impossible if v < 1.

Theorems 3 and 3′ highlight the fact that, except when v is very high, there is uncertainty

regarding whether the group can get stuck at an effectively terminal history where no player

is willing to contribute anymore, or, alternatively, the cutpoints continually increase in all

periods. However it leaves open two issues. First, it is possible that for all k < m we have

ckt > ckt−1, but ckt → ck∞ < 1. In this case, the equilibrium is interior but the project may

still remain unrealized even if all types are below v. The second question concerns the size

of v∗(n,m, γ,∆). Should we expect v∗(n,m, γ,∆) to be close to 1, at least when players are

patient (i.e., γ,∆ → 0)? The following proposition addresses the first issue.

Proposition 1. If v > v∗(n,m, γ,∆), then the group is constrained-successful, i.e., pn =

1 − [1− F (v)]n = 1 in all symmetric equilibria. If v ∈ [1, v∗(n,m, γ,∆)], then the group is

constrained successful in any interior equilibrium.

Proof: The proof shows that ckt → ck∞ = v in any interior equilibrium. See the online

appendix for details. ■

The next result addresses the second issue, the size of v∗(n,m, γ,∆). We have:

Proposition 2. For any n > 2, for any 1 < m < n, and for all ∆ > 0 and γ ∈ (0, 1):

v∗(n,m, γ,∆) ≥ 2 for any n, m, γ and ∆.

Proof: See the online appendix for details. ■

This result tells us that even if v ∈ [1, 2], where it is common knowledge that all players

desire the public good even if their participation is required to get it, the dynamic process of

participation is probabilistic, and a strictly positive probability of failure is unavoidable. This

is true even if the group is large, the threshold is small, and even if the players are arbitrarily

patient. The inability of a group to reach success does not depend on the frequencies of

interaction ∆, so it remains true even in the limit as ∆ → 0.

For large groups v∗(n,m, γ,∆) grows without bound. Specifically, we have:
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Proposition 3. If mn > 1, then lim∆→∞ v∗(n,mn, γ,∆) = ∞

Proof: See the online appendix for details. ■

It is important to note that Proposition 3 does not preclude the possibility that even if ∆

is large, there can be efficient or approximately efficient equilibria in the limit. In particular,

it is easy to see that Theorem 4 holds for all v > 0, including for the high value case.

6.2 Random thresholds

In the preceding analysis we have assumed the agents play a simple threshold public good

game in which the public good is obtained by the group if and only if there are at least

mn contributors. It is easy to consider extensions in which success is determined under

alternative, less stylized rules. A natural case to consider is when the realization of the

public good depends on the number of contributors in a probabilistic way. As an illustration,

consider here the case in which at t the public good is realized with probability ξ(kt) if

contributors up to t are kt, where ξ(·) is a non-decreasing function with ξ(kt) = 0 if kt <

⌈θmn⌉, ξ(kt) > 0 for kt ∈
[
⌈θmn⌉ ,

⌈
θnmn

⌉)
, and ξ(kt) = 1 if kt ≥

⌈
θmn

⌉
for θ ∈ (0, 1)

and θn ∈
(
1, n

mn

)
(here ⌈x⌉ is the smallest integer that is not smaller than x). This implies

that the players are uncertain about the minimal number of volunteers that are required for

success which may take values from ⌈θmn⌉ to
⌈
θnmn

⌉
.

It is not difficult to see that the characterization of the equilibrium, the existence proof

and the limit results of Section 4 all generalize to this more complex environment. The

equilibrium conditions are qualitatively similar to (8), (10) and (12), although now they

are complicated by the fact that for any kt ∈
[
⌈θmn⌉ ,

⌈
θnmn

⌉)
success is probabilistic.

Consider now the limit results presented in Section 5. A simple argument shows that, in

this case too, a sufficient condition for the existence of a limit efficient equilibrium is that

αn = mn/n converges to zero sufficiently fast, faster than the cube root of 1/n; the fact that

the probability of success is lower than one for kt ∈
[
⌈θmn⌉ ,

⌈
θnmn

⌉)
is completely irrelevant.

To see this, let ξ∗ = minkt∈[⌈θmn⌉,⌈θnmn⌉) ξ(kt), which is strictly positive by assumption.

Consider a modified game in which the value of the public good is v′ = vξ∗ > 0, and

the probability of success is 1 for kt ≥
⌈
θnmn

⌉
. This gives a game similar to the games

studied in the previous sections, in which an asymptotically efficient equilibrium exists if

αn/
3
√

1/n → 0. But the incentives to contribute in the original game with probabilistic

success are even higher than in this modified game, since in the modified game we assume

the value of the public good v′ and the probability of success are always lower than in the

original game: thus a limit efficient equilibrium must exists in the game with probabilistic
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success. To show the impossibility of an equilibrium with positive payoff in the limit when

αn/
3
√

1/n → ∞, the analysis is similar. We can now define a modified game in which the

threshold for success is at mn = ⌈θmn⌉ and ξ(kt) = 1 if kt ≥ ⌈θmn⌉. The preceding analysis

shows that all PBE generate zero utility in the limit in this game; thus it can be shown that

the same must be true in the game with probabilistic public good, since in this game the

expected utility of contributing is always strictly lower.

6.3 Other extensions

In the online supplementary appendix of this paper we present three additional extensions

that further explore the robustness of the model and the possibility of alternative dynamic

mechanisms to improve group success. First we show that the basic model can be extended

to allow for environments in which there is aggregate uncertainty about the distribution of

types. Second, we show how the analysis can be extended to incorporate non stationary

environments, in which the cost of inaction for a group increases over time, as it might occur

in environmental problems.

Third, we explore whether it might be beneficial for the group to self-impose a deadline,

so that the group only has T periods to achieve success. We show that committing to such

deadlines can be counter-productive: for any deadline T there exists a group size n(T ) such

that all groups larger than n(T ) completely fail, in the sense that the only equilibrium involves

no member ever participating, even those with arbitrarily low costs. A notable implication

of this result is that when mn grows at the speed of n, the static one-shot game leads to

zero probability of success for large enough n. Therefore, in such environments, the dynamic

game leads to better outcomes in terms of welfare than the static game. I.e., the benefits

of information transmission and coordination from the equilibrium dynamics outweighs the

delay costs of dynamic free riding. This contrasts with the example in Section 4.2 of the

paper, where welfare is higher in the static game than the dynamic game when mn is a fixed

constant that does not increase with n. An interesting conjecture is that dynamics produce

welfare gains (losses) relative to the static game when the free riding problem is more (less)

severe, where more severe corresponds to environments where mn grows faster than speed

of n2/3.

7 Conclusions

Collective action problems arise when a group’s collective goal can only be achieved if at

least some fraction of its members engage in a costly action to help the group succeed.
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We study the equilibrium properties of collective action problems when decisions are taken

dynamically over a potentially long horizon, delay is costly, and members have heterogeneous

and privately known preferences.

We present two categories of characterization results. The first half of the paper char-

acterizes the properties of dynamic equilibrium, as well as providing efficiency results, for

any fixed group size and any fixed participation threshold for group success. The simplest

such case is known as the volunteers dilemma, or bystander intervention problem, where

exactly one member must undertake the action - to rescue a drowning swimmer, or call 911

to report an accident or ongoing violent crime. This also happens to be the only case that

had been analyzed as a dynamic stochastic game with incomplete information (Bliss and

Nalebuff, 1984). Our first finding establishes that the dynamic volunteers dilemma is a very

special case: except in the limit with arbitrarily large groups, the equilibrium properties of

the dynamic version of this game do not extend to the more general, and arguably more

realistic, case where group success requires the action of more than one member.

In the volunteers dilemma case where only one member is needed, the group always

succeeds as long as at least one member of the group has an action cost that is less than the

benefit of success. But if group success requires the coordinated action of multiple members,

this is no longer true. In this more complicated environment, a member who contemplates

taking an action early on faces a real risk that their action will be useless because there

will never be a sufficient number of members who decide to activate at later dates. In fact,

we show that in such environments, while there will always be a positive probability of

success, there is also always a positive probability that the dynamic process of accumulating

more activists and getting closer to the goal can fizzle out. In that case, all members who

have activated lose out and nobody benefits. The possibility of such failure always exists

unless it is common knowledge that every group member would be willing to activate if

pivotal. Hence, there are two sources of inefficiency: delay (time is costly); and the positive

probability that the goal is not achieved but many members suffer their action cost.

Our second category of results explores the efficiency properties of dynamic equilibrium

in large groups. For these results, we allow both the group size as well as the required

threshold to grow without bound and obtain a characterization of efficiency in the limit,

which depends on the relative rate at which the threshold grows relative to the group size.

If the fraction of members required for the threshold converges to zero very fast as group

size increases –at a rate faster than the cube root of the inverse of the group size– then there is

always a limiting equilibrium where the goal is instantly achieved with probability 1. There
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is no delay and full efficiency is achieved. The volunteers dilemma is a special case of this.

On the other hand, if the fraction of members required for the threshold converges to

zero at a rate slower than the cube root of the inverse of the group size, then in every limiting

equilibrium the probability of group success is 0 and action fizzles out immediately. A special

case of this arises if a constant fraction of group size is required. Thus, in both cases, delay

costs disappear, as does the deadweight loss incurred when some group members’ action

costs are wasted. The only efficiency issue in the limit is the probability of group success,

which is either 0 or 1.

In collective action problems, bandwagon effects are key, and their role in the equilibrium

dynamics warrant further study. We do not have detailed results in the form of the finer

properties of equilibrium in our model, but this is a useful direction to pursue. If a protest

movement or petition drive catches on quickly and exhibit heavy participation from the

outset, this early activity snowballs and encourage others to join in because the prospects

of success are higher. On the flip side, if there are only a handful of visible activists in the

early stages, then other who were sitting on the sidelines might decide to just forget about

it and the movement would fizzle out.
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Appendix

Proof of Lemma 1: We proceed in two steps.

Step 1. We first prove that the expected continuation value of a player who does not volun-

teer is convex in c and admits right and left derivatives, respectively denoted ∂r [V 1]
−
(c, h1

t )/∂c
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and ∂l [V 1]
−
(c, h1

t )/∂c, with ∂d [V 1]
−
(c, h1

t )/∂c > −e−γ∆ for d = r, l. Consider any history

h1
t in which only one volunteer is missing for success, and denote h1

t+j any history following

h1
t in which there is no volunteer from t to t+ j. Let β(h1

t ) be the probability that there is

at least 1 volunteer at history h1
t . Define W 1,λ(c, h1

t ) to be the expected value to a player of

type c at h1
t who does not volunteer at t, but instead volunteers after λ ∈ [1,∞) periods (if

there is not a volunteer before):

W 1,λ(c, h1
t ) =

∑λ−1

τ=0
e−γ∆τ ·

[∏τ

j=0

[
1− β(h1

t+j−1)
]]

β(h1
t+τ )v

+e−γ∆·λ ·
∏λ

j=0

[
1− β(h1

t+j−1)
]
· (v − c) (21)

where we define by convention β(h1
t−1) = 0. Note that all these expressions are linear in c

and ∂W 1,λ(c, h1
t )/∂c > −e−γ∆ > −1. The value for a player who does not volunteer at h1

t is:

[V 1]
−
(c, h1

t ) = maxλW
1,λ(c, h1

t ), which is convex in c and so admits right and left derivatives

with ∂d [V 1]
−
(c, h1

t )/∂c > −e−γ∆ for d = r, l.

Step 2. Note that at h1
t , the expected utility of a type c who volunteers at t is [V 1]

+
(c, h1

t ) =

v − c. Suppose now a type c(h1
t ) is indifferent between volunteering or not, so:

v − c(h1
t ) =

[
V 1
]−

(c(h1
t ), h

1
t ) (22)

Consider a type c′ > c(h1
t ) with ∆c = c′ − c(h1

t ). We have:

v − c′ = v − c(h1
t )−∆c =

[
V 1
]−

(c(h1
t ), h

1
t )−∆c

<
[
V 1
]−

(c(h1
t ), h

1
t )− e−γ∆∆c <

[
V 1
]−

(c′, h1
t )

where in the second we use (22), and in the last inequality we use the convexity of [V 1]
−
(c′, h1

t ).

The proof that c′ < c(h1
t ) implies v − c > [V 1]

−
(c′, h1

t ) is analogous. ■

Proof of Lemma 2: Note that c(ht) ∈ [lht , v) and suppose to the contrary that c(ht) = lht in

the PBE, i.e., no member will activate in period t. This implies V −(c, ht) > V +(c, ht) for all

c(ht) ∈ (lht , v). If no member activates in period t, then it must be that no member activates

in period t+1 as well: if a member with cost c ∈ [lht , v) were using a strategy to activate in

period t+1 and the member knows that no member is activating in period t, then their payoff

in the continuation game is V −(c, ht) = e−γ∆(v − c) < v − c = V +(c, ht), a contradiction. It

follows that if no player volunteers at t, V −(c, ht) = 0 < v− c = V +(c, ht), implying again a

contradiction. We conclude that at t the probability a player volunteers is strictly positive.

To prove that limt→∞ c(ht) = v, suppose to the contrary that limt→∞ c(ht) = c < v. Then

limt→∞ V −(c, ht) = 0 < V +(c, ht) = v − c > 0, a contradiction. ■

Proof of Lemma 3: We proceed in three steps.
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Step 1. Lemma 1 already established that there is a unique PBE when k = 1, which is in

cutoff strategies. In that equilibrium, for any history at which k = 1, the value for an active

player who volunteers is [V 1]
+
(c, h1

t ) = v−c, which is linear in c with ∂ [V 1]
+
(c, h1

t )/∂c = −1.

The proof of Lemma 1 also established that [V 1]
−
(c, h1

t ) is piecewise linear, convex and hence

admits right and left derivatives ∂r [V 1]
−
(c, h1

t )/∂c and ∂l [V 1]
−
(c, h1

t )/∂c, both bounded

below by −e−γ∆ > −1.

Step 2. At any history hk
t , the continuation value of a player who has previously committed

(i.e. Qk(lhk
t
)) does not depend on his/her own type c; it depends only of the behavior of

the other players. It follows that the value of an active player at hk
t , with cost c, who

volunteers at hk
t , i.e.

[
V k
]+

(c, hk
t ), is linear in c with ∂

[
V k
]+

(c, hk
t )/∂c = −1. We now

proceed by induction. Assume that, for all κ = 1, ..., k − 1, [V κ]− (c, hκ
t ) is convex in c, with

∂d [V κ]− (c, hκ
t )/∂c ≥ −e−γ∆ for d = l, r. (Step 1 established this property for κ = 1.) We

need to prove that the same is true for
[
V k
]−

(c, hk
t ).

To see this, first observe that [V κ] (c, hκ
t ) = max

{
[V κ]+ (c, hκ

t ), [V
κ]− (c, hκ

t )
}

for any

κ < k. Since [V κ]+ (c, hκ
t ) is linear in c and [V κ]− (c, hκ

t ) is convex in c , then [V κ] (c, hκ
t ) is

convex in c for all κ < k. Define ϑ(hk
t ) to be the probability of having at least one volunteer

at hk
t . Define Φ

k(c, hk
t ) to be the expected utility of a type c player at history hk

t conditioning

on at least one volunteer at history hk
t . Because of the properties of [V κ] (c, hκ

t ) for κ < k

proven above, Φk(c, hk
t ) is convex in c and ∂dΦk(c, hk

t )/∂c ≥ −e−γ∆ for any d = l, r. Finally,

define W k,λ(c, hk
t ) to be the value of a player of type c at hk

t who does not volunteer at t,

but volunteers instead after at most λ ∈ [1,∞) periods in which there is no other volunteer,

if there is no volunteer before. We can write:

W k,λ(c, hk
t ) =

∑λ−1

τ=0
e−γ∆τ ·

[∏τ

j=0

[
1− ϑ(hk

t+j−1)
]]

· ϑ(hk
t+τ ) · Φk(c, hk

t+τ )

+e−γ∆·λ ·
[∏λ

j=0

[
1− ϑ(hk

t+j−1)
]
)
]
·
[
V k
]+

(c, hk
t+λ) (23)

where ϑ(hk
−1) = 0 by convention. Since Φk(c, hk

t+τ ) and
[
V k
]+

(c, hk
t ) are convex ∀τ =

1, ..., λ − 1, W k,λ(c, h1
t ) is convex. And by the same argument as before, this also im-

plies that ∂dW k,λ(c, hk
t )/∂c ≥ −e−γ∆ for any d = l, r. Finally, note that

[
V k
]−

(c, hk
t ) =

maxλW
k,λ(c, hk

t ). It follows that
[
V k
]−

(c, hk
t ) is convex in c and ∂d

[
V k
]−

(c, hk
t )/∂c ≥

−e−γ∆ for d = l, r.

Step 3. Assume now a type c(hk
t ) is indifferent between volunteering or not at history

hk
t . That is:

[
V k
]+

(c(hk
t ), h

k
t ) =

[
V k
]−

(c(hk
t ), h

k
t ). Consider a type c′ > c(hk

t ) with ∆c =
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c′ − c(hk
t ). We have:[

V k
]+

(c′, hk
t ) =

[
V k
]+

(c(hk
t ), h

k
t )−∆c =

[
V k
]−

(c(hk
t ), h

k
t )−∆c

<
[
V k
]−

(c(hk
t ), h

k
t )− e−γ∆∆c <

[
V k
]−

(c′, hk
t )

where in the first equality we use the linearity of
[
V k
]+

(c′, hk
t ), in the second equality we

use the indifference condition, in the third (inequality) we use the induction hypothesis, and

finally in the last inequality we use the convexity of
[
V k
]−

(c′, hk
t ). The proof that c

′ < c(hk
t )

implies
[
V k
]+

(c′, hk
t ) >

[
V k
]−

(c′, hk
t ) is analogous. ■

Proof of Lemma 4: We proceed in three steps.

Step 1. We first prove that if mn ≺ n2/3 then F [vB(mn−1,n−1,αn)]
αn

→ ∞, where αn = mn/n.

To establish this property, note that we can write:

B (mn − 1, n− 1, αn) =

(
n− 1

mn − 1

)[(αn)
αn (1− αn)

(1−αn)
]n

αn

≃ 1√
2παn(1− αn)n

by Stirling’s formula. Furthermore, F is approximately uniform in the neighborhood of 0,

and vB (mn − 1, n− 1, αn) → 0, so:

F [vB (mn − 1, n− 1, αn)]

αn

≃ f(0) · vB (mn − 1, n− 1, αn)

αn

≃ vf(0)√
2π
(

mn

n2/3

)3
(1− mn

n
)

which diverges to infinity if mn ≺ n2/3. This implies F [vB(mn−1,n−1,Lαn)]
Lαn

→ ∞ ∀L > 1.

Step 2. Recall from Theorem 3 that in every equilibrium the cutpoint at the initial period

t = 1 is strictly positive, and hence is given by (13) in the paper evaluated at k = mn and

l = 0:

cmn
1,n(0) = e−γ∆

∑mn−1

j=0
B (j, n− 1, F (cmn

n (0)))

[
Qmn−j−1 (cmn

n (0))

− [V mn−j]
+
(cmn

n (0), cmn
n (0))

]
. (24)

The maximal fixed-point consistent with (24) can be bounded below by cmn
n (0) defined as

follows:

cmn
n (0) = max

c∈[0,1]

[
c|c ≤ e−γ∆

∑mn−1

j=0
B (j, n− 1, F (c)) [Qmn−j−1 (c)−

[
V mn−j

]+
(c, c)]

]
(25)

For any arbitrary constant L > 1, define ĉLn by F
(
ĉLn
)
= Lmn

n
for n large enough so that

Lmn

n
< 1. That is, given L, ĉLn is a hypothetical cutpoint with the property that the expected

fraction of types lower than or equal to ĉLn is greater than the required threshold fraction by
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a factor of L > 1.

We next show that if we choose a sufficiently large (but still finite) value of L then there

will exist a critical group size nL such that for n > nL:

Ψmn,n

(
ĉLn
)

≡ e−γ∆
∑mn−1

j=0
B
(
j, n− 1, F

(
ĉLn
)) [(

Qmn−j−1
(
ĉLn
)
−
[
V mn−j

]+
(ĉLn , ĉ

L
n)
)]
(26)

> ςB
(
mn − 1, n− 1, F (ĉLn)

)
. (27)

where ς is a strictly positive number that does not depend on n. Notice that Ψmn,n

(
ĉLn
)
is

the right hand side of (24) evaluated at ĉLn .

From the definition of ĉLn we have:

B
(
mn − 2, n− 1, F

(
ĉLn
))

B (mn − 1, n− 1, F (ĉLn))
=

mn

n−mn

1− F (ĉLn)

F (ĉLn)
=

n
L
−mn

n−mn

→ 1

L

as n → ∞. Similarly, one obtains, for j = 2, ...,mn − 1:
B(mn−1−j,n−1,F(ĉLn))
B(mn−1,n−1,F (ĉLn))

→
(
1
L

)j
as

n → ∞. So, for large values of L, the probability of exactly j volunteers, conditional on

having less than or equal to mn − 1 volunteers becomes highly concentrated on j = mn − 1.

Define B
L

j as the probability of exactly j ≤ mn − 1 volunteers, conditional on having

less than or equal to mn − 1 volunteers, when the cutpoint is ĉLn : B
L

j =
B(j,n−1,F(ĉLn))∑mn−1

k=0 B(k,n−1,F (ĉLn))
.

Hence, we have

1 =
∑mn−1

j=0
B

L

j =
∑mn−1

j=0

B
(
j, n− 1, F

(
ĉLn
))∑mn−1

k=0 B (k, n− 1, F (ĉLn))
(28)

=
∑mn−1

j=0

B
(
j, n− 1, F

(
ĉLn
))

B (mn − 1, n− 1, F (ĉLn))
·
B
(
mn − 1, n− 1, F

(
ĉLn
))∑mn−1

k=0 B (k, n− 1, F (ĉLn))
(29)

→
∑mn−1

j=0

(
1

L

)j

B
L

mn−1 = B
L

mn−1

(1− ( 1
L
)mn)

1− 1
L

. (30)

This implies that there is a nL sufficiently large such that for n > nL:

B
L

mn−1 >
1

1 + ϵ

1− 1
L

1−
(
1
L

)mn
(31)

for all ϵ > 0. That is, B
L

mn−1 approaches 1 for large L.

Next observe that:

Ψmn,n

(
ĉLn
)

= e−γ∆
∑mn−1

j=0
B
(
j, n− 1, F

(
ĉLn
)) [

Qmn−j−1
(
ĉLn
)
−
[
V mn−j

]+
(ĉLn , ĉ

L
n)
]

≥ e−γ∆
(
1− e−γ∆

)
vB
(
mn − 1, n− 1, F

(
ĉLn
))

− e−γ∆
∑mn−2

j=0
B
(
j, n− 1, F

(
ĉLn
))

v
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since for all c: e−γ∆
[
Q0 (c)− [V 1]

+
(c, c)

]
= v − e−γ∆ [V 1]

+
(c, c) ≥

(
1− e−γ∆

)
v, and

e−γ∆
[
Qmn−j−1 (c)− [V mn−j]

+
(c, c)

]
≥ −e−γ∆v for j = 0, ...mn − 2. Substituting the in-

equality (31), it follows that for n > nL:

Ψmn,n

(
ĉLn
)
≥
∑mn−1

j=0
vB
(
j, n− 1, F

(
ĉLn
))

·


(
1− e−γ∆

)
1

1+ϵ

1− 1
L

1−( 1
L)

mn

−e−γ∆

(
1− 1

1+ϵ

1− 1
L

1−( 1
L)

mn

)


for all ϵ > 0. For any discounting parameters γ∆, we can choose value of L large enough so

that: (
1− e−γ∆

) 1− 1
L

1−
(
1
L

)mn
> e−γ∆

(
1−

1− 1
L

1−
(
1
L

)mn

)
⇔

1− 1
L

1−
(
1
L

)mn
> e−γ∆ (32)

since the right hand side of the first line in (32) is strictly less than 1 and the left hand side

converges to 1 as L increases. It follows that for such values of L we have: for n > nL

Ψmn,n

(
ĉLn
)
≥
(
1− e−γ∆

)
v

1− 1
L

1−
(
1
L

)mn
B
(
mn − 1, n− 1, F

(
ĉLn
))

=
ς

1−
(
1
L

)mn
B
(
mn − 1, n− 1, F

(
ĉLn
))

> ςB
(
mn − 1, n− 1, F

(
ĉLn
))

for all n > nL, where ς =
(
1− e−γ∆

)
v(1− 1

L
) is the desired strictly positive constant.

Step 3. From the definition of ĉLn = F−1(Lmn

n
) and Step 1, we have that for n sufficiently

large:

ρL,n < F [vB (mn − 1, n− 1, ρL,n)] ⇔ ĉLn < vB
(
mn − 1, n− 1, F (ĉLn)

)
(33)

⇔ F−1
(
L
mn

n

)
= ĉLn ≤ max

c∈[0,1]
[c |c ≤ Ψmn,n (c) ] = cmn

n (0) (34)

where ρL,n = Lαn, and therefore: F (cmn(0)) > Lmn

n
.

Note now that, as proven in Theorem 2 in the online appendix, the set of possible

continuation values is a non empty, closed valued and upperhemicontinuous correspondence

in c, so Ψmn,n (c) has these properties as well. Let φmn,n
(c) and φmn,n (c) be the the minimal

and maximal values that can be assumed by Ψmn,n (c) in equilibrium. Since Ψmn,n (1) = 0 < 1

and we have just proven above there is a cmn(0) such that Ψmn,n (c
mn(0)) ≥ cmn(0), there

must be a cmn
1,n(0) ≥ F−1(Lmn

n
) such that φ

mn,n

(
cmn
1,n(0)

)
≥ cmn

1,n(0) and φ
mn,n

(
cmn
1,n(0)

)
≤

cmn
1,n(0). Since, as also proven in Theorem 2 in the online appendix, the set of continuation

value functions is convex valued in c, we must also have that cmn
1,n(0) ∈ Ψmn,n

(
cmn
1,n(0)

)
. We

conclude that cmn
1,n(0) solves (24) and satisfies F

(
cmn
1,n(0)

)
≥ Lmn

n
. ■

Proof of Theorem 4: We proceed in two steps.
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Step 1. Consider the case in which mn → ∞ as n → ∞ but mn ≺ n2/3. The case in

mn → m, a constant, is analogous and omitted for brevity (details are provided in the online

appendix). We now prove that in this case, limn→∞
F (cmn

n,1 (0))

αn
→ L > 1, where L is either

bounded but strictly larger than 1 or infinite (and as, defined in the text, αn = mn/n).

Since
F (cmn

n,1 (0))

αn
≥ 1 by Lemma 4, assume by way of contradiction that

F (cmn
n,1 (0))

αn
→ 1. As in

Step 1, a standard approximation gives us: B(αnn − 1, n − 1, F (cmn
n,1(0))) ≃

√
1

2παn(1−αn)n
.

Similarly as in Step 1, by the definition of cmn
n,1(0)) and the fact that mn ≺ n2/3, for large

n, we have: 1 ≥ f(0)B(mn−1,n−1,F (cmn
n,1 (0)))

cmn
n,1 (0)

≃
√

1
2π(αn)

3(1−αn)n
→ ∞, a contradiction. We must

therefore have that in equilibrium:
F(cmn

n,1 (0)))
αn

→ L > 1, with L possibly arbitrarily large.

Step 3. We now prove that the probability of success in the first period converges to 1.

Define for convenience here, ζn =
F (cmn

n,1 (0))

αn
. Note that the probability of failure in the first

period is equal to the probability that the number of volunteers in period 1, j, is less than or

equal to αnn agents, which using Chebyshev’s inequality can be bounded above as follows:

Pr (j ≤ αnn) ≤ Pr

[∣∣∣∣ jn − F
(
cmn
n,1(0)

)∣∣∣∣ ≥ αn(ζn − 1)

]
≤


√

ζn(1− F
(
cmn
n,1(0)

)
)

√
nαn(ζn − 1)

2

(35)

The result follows since ζn → L > 1, so

(√
ζn(1−F(cmn

n,1 (0)))√
nαn(ζn−1)

)2

= limn→∞
1

mn

L
(L−1)2

= 0. ■

Proof of Theorem 5: We proceed in two parts.

Part 1. We first prove that for any PBE, possibly asymmetric, there is a payoff equivalent

(static) Honest and Obedient (HO) direct mechanism that achieves an expected utility for

each type that is equal to that type’s expected payoff in the PBE. To this goal, first recall

that an HO direct mechanism is an activity function µ : [0, 1]n → ∆(2I), that maps each

profile of types, c, to a probability distribution over subgroups of agents who volunteer. Note

that for any history ht with kht = k and lht = l and public signals θt = (θ1, ..., θt), the PBE

cutpoint at that history can be written as a function c(ht) = {c1(ht), ..., cn(ht)}, where ci(ht)

is the cutpoint of player i. For any profile of types c = (c1, ...cn), vector of signals θt, a PBE

defines a deterministic sequence of ct(c,θt) = {ct,1(c,θt), ..., ct,n(c,θt)}, where ct,i(c,θt) is the

cutpoint of agent i in period t given the history generated in correspondence to a realized

profile c = (c1, ...cn), and a vector of signals θt up to t. At t = 1, c1(c,θ1) = c(h1), where h1 is

just the realization of the public signal at t = 1, i.e. θ1. Given the realization of types c and

θ2, c1(c,θ1) defines a unique history h2(c,θ2) in which the set of players who participate at 1

is given by the players with type ci ∈ [0, c1,i(c,θ1)] and the public signals are θ2. Suppose we

have defined the history up to t. Then the cutpoints at t are given by ct(c,θt) = c (ht(c,θt)).

Next, define a direct HO mechanism as follows. Denote kt(c,θt) as the number of missing
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volunteers at the end of period t after history ht(c,θt). For any profile c and correspond-

ing PBE thresholds, (ct(c,θt))
∞
t=0, define Ti(c, θ) for each i as the period at which i would

volunteer in the PBE when the profile of types is c, if there is such a period. That is:

Ti(c, θ) = min {t|ct,i(c,θt) ≥ ci} if ∃t such that ct,i(c,θt) ≥ ci

= ∞ otherwise

where θ = (θτ )∞τ=1; and let S(c, θ) denote the period at which the game ends with success if

there is ever success at c. That is:

S(c, θ) = min {t|kt(c,θt) = 0} if ∃t such that kt(c,θt) = 0

= ∞ otherwise

Denote by It (c, θ) = {i|Ti(c, θ) ≤ t} the set of agents who have activated up to and

including t. We can now define the activity function µDYN for a static mechanism as follows,

where, for each subset of agents, g ⊆ I, µDYN
g (c) specifies the probability that only the

agents in g are activated when the reported cost profile is c:

µDYN
g (c) =


∫
θ

[∑
{τ |Iτ (c,θ)=g }

(
1− e−γ∆

)
e−γ∆(τ−1)

]
dΠ(θ) |g| < m∫

θ

[
1{θ|IS(c,θ)(c,θ)=g} · e−γ∆(S(c,θ)−1)

]
dΠ(θ) for |g| ≥ m

(36)

where Π (θ) is the distribution of the public signals; and 1{θ|IS(c,θ)(c,θ)=g} is the indicator

function equal to 1 when θ is such that IS(c,θ)(c, θ) = g, and zero otherwise.

The activity function for the static mechanism, µDYN
g (c), is constructed from the PBE

by the following multi-step algorithm. When profile c is reported, in Step 1 all individuals

i with a type below c1,i(c, θ1) = ci(h1(c,θ1)) are asked to volunteer (i.e., the set I1(c, θ)). If

there are at least m such individuals, i.e., k1(c,θ1) = 0 and S(c) = 1, then the public good is

provided and the algorithm stops without proceeding to Step 2. In this case, S(c, θ) = 1 and

µDYN
I1(c,θ)

(c) = 1. If k1(c,θ1) > 0, i.e., S(c, θ) > 1, then with probability 1− e−γ∆ the algorithm

also stops without proceeding to Step 2 (and the public good is not provided). In this case,

S(c, θ) > 1 and µDYN
I1(c,θ)

(c) = 1 − e−γ∆, as in (36). With probability e−γ∆, instead, the

algorithm proceeds to Step 2. In Step 2, a public signal θ2 is drawn; the vector of cutpoints

c2(c, θ2) = {c2,1(c, θ2), ..., c2,n(c, θ2)} is determined; and an individual i with a type in the

interval (c1,i(c, θ1), c2,i(c, θ2)] is asked to volunteer and the process continues. In general, at

any step t at which the algorithm has not yet stopped, any individual i with a type in the

interval (ct−1,i(c,θt−1), ct,i(c,θt)] is asked to volunteer. If there are at least kt−1(c, θt) such

individuals, i.e., kt(c, θt) = 0 and S(c, θ) = t, then the public good is provided in Step t and

the algorithm stops selecting It(c, θ) without proceeding to Step t + 1. If kt(c, θt) > 0, i.e.,
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S(c, θt) > t, then with probability 1− e−γ∆ the algorithm also stops without proceeding to

step t + 1 (and the public good is not provided), and with probability e−γ∆ the algorithm

proceeds to step t + 1. In all cases, the probabilities are given at each step by (36). Thus,

the static mechanism mimics the discounting in the dynamic game by randomly stopping

the algorithm with probability 1− e−γ∆ after any step at which the threshold m has not yet

been achieved.

From the above construction of µDYN
g , we can represent the probability of success and

that a player i is asked to volunteer by:

P (c) =

∫
θ

e−γ∆(S(c,θ)−1)dΠ(θ) , Ai(c) =

∫
{θ|S(c,θ)≥Ti(c,θ)}

e−γ∆(Ti(c,θ)−1)dΠ(θ)

where P (c) is the probability of obtaining the public good at profile c, and Ai(c) is the

probability that i is asked to volunteer at c. The expected utility for an individual with type

c at profile c = (c, c−i) is Ui(c) = vP (c) − ciAi(c). This is exactly equal to the expected

utility for an individual with type ci at profile c in the corresponding PBE of the dynamic

game. We only need to prove that this direct mechanism is Honest and Obedient (Myerson,

1982). We need to show that every type c is weakly better off reporting c and obeying all

recommendations, than they would be reporting c and disobeying some recommendations

or reporting c′ ̸= c and then following some optimal strategy in terms of obedience/non-

obedience of the subsequent recommendation. Suppose there is a player i of type c who

is strictly better off reporting to be a type c′ > c. The analysis of the case in which i

reports be a type c′ < c is analogous and omitted. There are two cases, corresponding to

the two information sets in which i can find himself/herself: when the recommendation is to

volunteer; and when it is to not volunteer.

Case 1. Consider first the case in which the recommendation is to volunteer. We prove here

that reporting c′ > c and obeying to a recommendation to volunteer is not a strictly optimal

deviation for an agent i. The proof that reporting c′ > c and disobeying to a recommendation

to volunteer is not a strictly optimal deviation is similar and omitted (details are available

in the online appendix). We first observe that if by reporting c′ the recommendation is to

volunteer, then the same recommendation must be received by reporting c. Since c′ has

received a recommendation to volunteer, it must be that c−i is such that ct,i (c
′, c−i, θt) ≥ c′

for some some t ≤ S(c, θ) and a sequence of cutoffs ct,i (c
′, c−i, θt) corresponding to a sequence

of public signals θt, followed in a PBE with positive probability. Let t′ be the smallest period

in which ct′,i (c
′, c−i, θt′) ≥ c, then c ∈ It′ (c

′, c−i, θ). Note, moreover, that by definition

ct′′,i (c
′, c−i, θt′′) < c for all t′′ < t′, and ct′,i (c̃, c−i, θt′) is the same if c̃ = c′ or c̃ = c,

so ct′,i (c
′, c−i, θt′) = ct′,i (c, c−i, θt′) and It′ (c

′, c−i, θ) = It′ (c, c−i, θ). Since t′ ≤ t, we have
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It′ (c, c−i, θ) = It′ (c
′, c−i, θ) ⊆ It (c

′, c−i, θ): we conclude that a recommendation to volunteer

to a type c′, implies the same recommendation to a player who reports to be a type c as

well. When the recommendation is to volunteer and the player obeys, then reporting c′ > c

cannot be strictly superior than reporting c.

Case 2. The case in which the recommendation is to abstain in analogous to the cases above.

Details are in the online appendix. Since there is no scenario in which the player finds it

strictly optimal to report to be a type c′ > c, we conclude that the player is never strictly

better off by reporting c′ > c, no matter what obedience policy s/he follows afterwards.

Part 2. From Part 1 we know that the expected utility in the PBE is equal to the expected

utility in a specific direct, static mechanism that is honest and obedient. Battaglini and

Palfrey (2024) have proven that the expected utility of a player in the best direct, static

mechanism that is honest and obedient converges to 0 as n → ∞ when mn ≻ n2/3, i.e. when

αn/
3
√

1/n → ∞ (See Theorem 4). The same must be true in the PBE. ■
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