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Abstract

We explore the twin questions of when and why the strategy method creates
behavioral distortions in the elicitation of choices in laboratory studies of sequen-
tial games. While such distortions have been widely documented, the theoreti-
cal forces driving these distortions remain poorly understood. In this paper, we
compare behavior in six optimally designed centipede games, implemented under
three different choice elicitation methods: the direct response method, the reduced
strategy method and the full strategy method. These methods elicit behavioral
strategies, reduced strategies, and complete strategies, respectively. We find signif-
icant behavioral differences across these elicitation methods—differences that can-
not be explained by standard game theory, but are consistent with the predictions
of the Dynamic Cognitive Hierarchy solution (Lin and Palfrey, 2024), combined
with quantal responses.
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The centipede game illustrates an important byproduct of experimentation:
Choosing a design disciplines theorizing because it forces one to be crystal

clear about the conditions under which theory is really expected to apply.

—Colin F. Camerer, Behavioral Game Theory (2003), p. 219

1 Introduction

A wide variety of sequential games—such as bargaining, dynamic contribution games, the
trust game, signaling games, sequential voting, and social learning—have been extensively
studied in laboratory experiments. Most experimental studies use what is known as the
direct response method, in which subjects play the game sequentially, following the exact
timing of moves specified in the theoretical model being investigated. However, this
approach to eliciting players’ strategies has a significant limitation—incompleteness. That
is, the direct response method often fails to elicit the complete strategy of each player.
Information about behavior at unreached information sets is missing. For example, in
the ultimatum game, if the first player offers $2 and the responder rejects the offer, the
experimenter obtains no information about how that responder would have responded to
all other possible offers. The responder’s strateqy is only partially elicited.

One way to resolve the incompleteness problem in the ultimatum game is to require
the responder to specify a conditional response to all possible offers at the same time the

proposer is choosing an offer.

This is an example of the strategy method, pioneered by
Selten (1967), where each player of the game simultaneously reports a conditional action
at each possible information set. The strategy method effectively converts any game in
extensive form into a simultaneous move game. This approach offers a methodological
advantage, as it enables the collection of more experimental data, particularly at histo-
ries that are only occasionally reached when the game is played sequentially. In many
applications, the elicitation procedure is simplified into the reduced strategy method by
collapsing outcome-equivalent strategies, as in the game’s reduced normal form.

The traditional justification for this experimental approach to studying behavior in
noncooperative games is that the set of Nash equilibrium outcomes is reduced normal form
inwvariant; i.e., if two games in extensive form share the same reduced normal form, then
the two games have the same set of Nash equilibrium outcomes. In fact, this property of
strategic invariance? has been invoked as a desired requirement for any set-valued solution

concept for noncooperative games (Kohlberg and Mertens, 1986). One could argue that,

n fact, such an experiment has been conducted by Oxoby and McLeish (2004), who refer to this
approach as the “strategy vector method.” They find no statistically significant difference between this
method and the direct response method.

2The concept of strategic equivalence is first proposed by Thompson (1952), who defines two games
as strategically equivalent if they share the same reduced normal form.



to the extent that experiments are designed to test Nash equilibrium predictions, this jus-
tification appears reasonable. However, if the goal is to understand behavioral deviations
from equilibrium in a sequential game, then this justification could be problematic be-
cause additional behavioral distortions may arise from eliciting strategic decisions using a
simultaneous move game, even if the simultaneous move game is strategically equivalent
to the sequential game.

In fact, such distortions attributable to these variations in elicitation procedures have
been observed, but when and how these behavioral distortions arise remain open ques-
tions. Brandts and Charness (2011) document some of the effects of the strategy method
by surveying 29 experimental studies of a wide range of noncooperative games that used
both the strategy method (either full or reduced) and the direct response method. The
survey offers some descriptive observations about regularities regarding whether differ-
ences were observed and the extent of those differences, but it provides no definitive
conclusion about the existence of a strategy method effect, as the evidence is mixed.?
The mixed findings highlight the need to organize and explain these diverse effects in a
rigorous theoretical framework that will enable experimenters to better understand the
“when” and “how” questions about behavioral distortions that arise from the use of the
strategy method to elicit choices in sequential games.

A theory that predicts the behavioral distortions caused by the use of the strategy
method must distinguish between two extensive games that share the same reduced nor-
mal form; that is, it must allow for violations of invariance under strategic equivalence.
To this end, the Dynamic Cognitive Hierarchy (DCH) solution developed by Lin and
Palfrey (2024) offers a promising theoretical framework. DCH can predict when and how
the strategy method distorts behavior, as it generates both qualitative and quantitative
predictions regarding violations of invariance under strategic equivalence.

The DCH solution belongs to the “level-k/cognitive hierarchy” family of models (e.g.,
Stahl and Wilson 1994, 1995; Nagel 1995; Costa-Gomes et al. 2001; Camerer et al. 2004),
which posit a hierarchical structure of strategic sophistication among players. Each player
is endowed with a level of sophistication and believes that all other players in the game
are less sophisticated. Unlike the standard level-k/cognitive hierarchy solution, which is
defined only for simultaneous move games, the DCH solution is defined for general games
in extensive form. Specifically, a DCH level-k player holds a prior belief about other
players’ sophistication levels based on the truncated true distribution of levels, conditional
on levels ranging from 0 to k-1, i.e., players have “truncated rational expectations.” These
beliefs are updated as the history of play unfolds. In the DCH solution, level-0 players are
non-strategic and are assumed to randomize uniformly at every information set. Players

with level £ > 1 sequentially best respond to their updated beliefs.

3 Among the 29 comparisons in Brandts and Charness (2011), 16 find no difference, four find differ-
ences, and nine report mixed evidence.



The DCH solution naturally extends the standard cognitive hierarchy solution to gen-
eral games in extensive form, and the violation of invariance under strategic equivalence
is a surprising theoretical property that emerges from this extension. That is, the DCH
solution may differ across games that share the same reduced normal form. Intuitively,
strategically equivalent games that share the same reduced normal form may differ in
sizes of their action sets across extensive-form representations. Since level-0 players in
DCH randomize uniformly, their behavior depends on the size of the action set, which in
turn influences the behavior of higher-level players. In summary, the key insight of DCH
is that behavioral distortions introduced by the strategy method arise from changes in the
number of available actions.*

The direction and magnitude of the violation predicted by DCH generally depend on
the game structure and the prior distribution of levels of sophistication. However, in a
broad class of “centipede games,” DCH makes a bold prediction about the direction of the
violation of invariance, making the centipede game an ideal experimental environment.
An extensive literature in experimental game theory has examined whether players can
reach the unique subgame perfect equilibrium, with both the direct response method and
the reduced strategy method being commonly adopted. The use of the strategy method
is justified by strategic equivalence and the uniqueness of the equilibrium. However, the
DCH solution predicts earlier taking under the direct response method than under the
reduced strategy method (Lin and Palfrey 2024, Theorem 1), a pattern consistent with
the strategy method effect observed in the centipede game experiment by Garcia-Pola
et al. (2020) at the aggregate level.?

Building on this result, the goal of this paper is to carefully test whether DCH can
serve as a theoretical foundation for understanding behavioral deviations from strategic
equivalence, using a fine-tuned centipede game experiment. To examine how the number
of available actions under different elicitation methods influences behavior, our experi-
ment employs a within-subject design consisting of three treatments, each implementing
the same centipede game using one of the three elicitation methods: the direct response
method, the reduced strategy method, and the full strategy method. This design allows
us to observe each subject’s behavior across all three different elicitation methods for the

same game, enabling us to measure behavioral differences at the individual level.

4On the other hand, the DCH solution is invariant between the extensive form and the corresponding
(non-reduced) normal form, implying no behavioral distortion from using the full strategy method. Our
experiment tests this prediction of a non-effect, in addition to testing DCH predictions about the direction
and magnitudes of distortions from using the reduced strategy method.

SGarcfa-Pola et al. (2020)’s centipede game experiment consists of four different centipede games,
each with a subgame perfect equilibrium that predicts termination at the first stage. To test for behavioral
distortions caused by the use of the strategy method, Garcia-Pola et al. (2020) compare behavior under
the direct response method and the strategy method using a between-subjects design. In three of the
four games, those for which the DCH predicts a strategy method effect, termination occurs earlier under
the direct response method. In the fourth game where no such effect is predicted, the strategy method
effect is not observed empirically.



Although DCH makes a clear qualitative prediction about the strategy method effect
in the centipede game, the magnitude of the treatment effect depends on both the payoff
parameters and the distribution of levels of sophistication, with the latter unknown to
the experimenter prior to data collection. Therefore, the main challenge of our experi-
mental design is to construct payoff structures that maximize the informativeness of the
experiment a priori. To address this, we adopt the “optimal design approach” developed
by Lin (2023) to select game parameters.’

The optimal design approach is a two-step procedure: first, we calibrate the distri-
bution of levels; then, treating this as the true distribution, we select centipede game
parameters that generate various magnitudes of the strategy method effects predicted by
DCH. Specifically, we begin by conducting a pilot experiment using four centipede games
theoretically examined by Lin and Palfrey (2024) and estimate the distribution of levels
based on the pilot data. To systematically search for the most informative game param-
eters, we compute the expected strategy method effects predicted by DCH across three
parameterized classes of centipede games: linear, exponential, and constant centipede
games,” based on the calibrated distribution. From each class, we select two games, one
predicted to exhibit a strong strategy method effect and one a weak effect, yielding six
centipede games in total.

With this high-powered experimental design, we first compare the distribution of ter-
minal nodes across the three different elicitation methods at the aggregate level and find
a significant strategy method effect. This effect is primarily driven by later termination
under the reduced strategy method, consistent with the predictions of DCH. Second,
leveraging the six different payoff configurations, we find that although the magnitudes
of the strategy method effects vary across games, but the quantitative patterns never
violate the prediction of DCH. In all six centipede games, the strategy method effects
occur in the direction predicted by DCH when comparing the reduced strategy method
with either the direct response or the full strategy method. When comparing the full
strategy method with the direct response method—where DCH predicts no effect—mno
significant difference is detected in five of the six games.

Although DCH successfully explains the qualitative patterns in the data, the relative
magnitudes of the strategy method effects within each class of centipede games do not
fully align with the predictions of the calibrated DCH. We hypothesize that these dis-
crepancies are driven by quantal responses, which can also lead to violations of invariance

under strategic equivalence. To disentangle the effect of quantal responses, we compare

6Tt is worth noting that the optimal design approach adopted in this paper does not refer to the one
commonly used in the statistical literature, which aims to maximize the determinant of the information
matrix. See Chapter 14 of Moffatt (2020) for more on optimal design in the statistical context and its
applications in risky lottery experiments.

"These classes are named according to the growth rate of the pie size and are the most commonly
studied centipede games in the literature.



DCH with two alternative behavioral models: the Agent Quantal Response Equilibrium
(AQRE; Mckelvey and Palfrey 1998) and a hybrid model, the Quantal Dynamic Cogni-
tive Hierarchy (QDCH; Lin 2023) solution. We structurally estimate these models and
find that QDCH not only provides a better fit to the data than the other models but also
successfully explains the relative magnitudes of the strategy method effects.

In short, despite the value of the strategy method in solving the incompleteness prob-
lem in experimental data collection, evidence suggests that studying behavior in sequen-
tial games by having subjects play a “strategically equivalent” simultaneous move game
can lead to distorted findings. In particular, we use the centipede game to demonstrate
that choice behavior elicited through the reduced strategy method asking players to make
(outcome-equivalent) decisions simultaneously can indeed be distorted, but in predictable
ways that are consistent with the predictions of DCH combined with logit quantal re-
sponse behavior.

The remainder of the paper is organized as follows. The next section reviews the
related literature. To clarify our terminology, Section 3 introduces the three elicitation
methods used in centipede games: the direct response method, the (full) strategy method,
and the reduced strategy method. It also provides an overview of the DCH strategy
method effect. Sections 4 describes the optimal selection of centipede games and the
experimental design. Section 5 presents the experimental results, and Section 6 compares

DCH with alternative behavior solution concepts. Finally, Section 7 concludes.

2 Related Literature

The centipede game was first introduced by Rosenthal (1981) to illustrate how counter-
intuitive backward induction can be in certain environments.® Since then, it has been
described by game theorists as a paradox of backward induction (Megiddo, 1986; Au-
mann, 1992; Reny, 1992; Ben-Porath, 1997), and several theories have been proposed to
explain why people deviate from the unique subgame perfect equilibrium.

McKelvey and Palfrey (1992) conducted the first centipede game experiment, demon-
strating that behavior is grossly inconsistent with the prediction of subgame perfect
equilibrium. This divergence from equilibrium behavior has been extensively replicated
across various environments, including games of different lengths (e.g., McKelvey and
Palfrey 1992 and Fey et al. 1996), different subject pools (e.g., Palacios-Huerta and Volij
2009; Levitt et al. 2011; Li et al. 2021 and Brocas and Carrillo 2025), different payoff
configurations (e.g., Fey et al. 1996; Zauner 1999; Kawagoe and Takizawa 2012; Healy
2017 and Garcia-Pola et al. 2020), and different numbers of players (e.g., Rapoport et al.
2003 and Bornstein et al. 2004).

8The name “centipede” was coined by Binmore (1987), referring to a 100-node variant.
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Although most centipede game experiments, following McKelvey and Palfrey (1992),
use the direct response method, there are a few notable exceptions. Nagel and Tang
(1998) was the first to implement the centipede game as a simultaneous move game
employing the reduced strategy method. While they observed similar deviation from the
immediately taking equilibrium found in McKelvey and Palfrey (1992), their experiment
was not designed to test for strategy method effects and did not collect data under the
direct response method. However, the authors themselves did conjecture the existence

of such an effect: *

‘...There might be substantial differences in behavior in the extensive
form game and in the normal form game...” (Nagel and Tang 1998, p. 357).

More recently, to explore the effect of using the strategy method in centipede game
experiments, Garcia-Pola et al. (2020) conduct a direct comparison between the direct-
response method and the strategy method—an experiment most closely related to ours.’
Both aim to examine whether the strategy method is behaviorally equivalent to the
direct response method in the centipede game, though we employ different experimental
design approaches. Garcia-Pola et al. (2020) conduct an exploratory experiment to detect
the existence of any strategy method effect. To enable a broad search and avoid spillover
effects across treatments, they implement four completely different centipede games using
a between-subject design. Their finding of a strategy method effect consistent with DCH
serves as the foundation for our experiment.

In contrast to Garcia-Pola et al. (2020), our goal is to test both the qualitative and
quantitative predictions of the strategy method effect as predicted by DCH. To achieve
this, we compare behavior across three different elicitation methods of the game and
systematically vary the payoff parameters. These design differences allow us to identify
when and how a strategy method effect occurs. Furthermore, our within-subject design
enables us to analyze the strategy method effect at the individual level. In this way,
our experiment complements Garcia-Pola et al. (2020), offering a more comprehensive
understanding of the behavioral distortions introduced by the use of the strategy method.

Furthermore, our finding of a violation of invariance under strategic equivalence con-
nects to recent developments in behavioral solution concepts and their applications. From
the perspective of standard game theory, reduced-normal-form invariance has long been
considered a desirable property. However, recent work in behavioral game theory has

shown that violations of this invariance are a common feature of several behavioral solu-

Tt is worth noting that Kawagoe and Takizawa (2012) also compare behavior under both methods
in the working paper version of their study. In their experiment, Kawagoe and Takizawa (2012) compare
the two methods using the exponential centipede game from McKelvey and Palfrey (1992) and the
constant centipede game from Fey et al. (1996), employing a within-subject design. They detect no
behavioral differences between the two methods. A plausible reason is that, in their comparison, the same
subjects experience one elicitation procedure followed immediately by the other using the same game,
potentially eliciting virtually identical behavior across both methods. By contrast, in each treatment of
our experiment, each subject plays six different games in randomized order, which effectively mitigates
potential spillover effects.



tion concepts, including the agent quantal response equilibrium (Mckelvey and Palfrey,
1998), the dynamic cognitive hierarchy solution (Lin, 2023; Lin and Palfrey, 2024), and
the cursed sequential equilibrium (Fong et al., 2025). Our findings in this paper provide
empirical support for this growing literature.

Lastly, our finding of behavioral distortions across different, yet strategically equiva-
lent, elicitation methods is important not only for behavioral game theory but also for the
field of mechanism design. Strategic equivalence is widely invoked in many institutional
settings where reduced normal form mechanisms are often implemented, rather than ex-
tensive form mechanisms, due to simplicity or practicality concerns. However, growing
evidence from various contexts suggests that different representations of a mechanism
can lead to different behavior—for example, sealed-bid auctions versus clock auctions
(Li, 2017), runoff elections versus contingent elections (Richie et al., 2023), and dynamic
versus static matching mechanisms (Gong and Liang, 2025). This paper contributes to
this literature by demonstrating both the empirical relevance and the predictive power

of the DCH violation of invariance under strategic equivalence.

3 The Dynamic Cognitive Hierarchy (DCH) Strat-
egy Method Effect in Centipede Games

In this section, we first define the three classes of centipede games: linear, exponential,
and constant. These are the most commonly studied classes in the literature and, more
importantly, can be parameterized using a small number of variables. Using these pa-
rameterizations substantially facilitate our search for optimally designed centipede games.
Second, we explain the differences between the direct response method, the reduced strat-
egy method, and the full strategy method in the context of centipede games. Third, we

provide an overview of the theoretical DCH strategy method effects in these games.

3.1 Three Classes of Centipede Games

1 P 2 P 3 P 4 P 5 P 6 P
‘ ‘ ‘ ‘ ‘ X7, Y

T T T T T T

X17}/1 X27}/2 X37}/3 X47}/;1 X57}/5 X6>}/6

Figure 1: The Generic Game Tree of a 6-Stage Centipede Game

The centipede game is a two-person sequential game in which Player 1, the first mover,

and Player 2, the second mover, alternate over a sequence of moves. At each turn, the

7



player whose move it is can either end the game by choosing to “take” and receive the
larger of the two payoffs or allow the game to continue by choosing to “pass.” When a
player passes, the larger payoff strictly increases and the difference between the larger and
smaller payoffs (weakly) increases. The game continues for 2D decision nodes (stages)
where D > 2, and we label the decision nodes by {1,2,...,2D}. Player 1 moves at odd
nodes and Player 2 moves at even nodes. If the game is ended by a player at stage
J < 2D, the payoffs are (X;,Y;). If no player ever takes, the payoffs are (Xaopi1,Yopi1).
The centipede games that are of interest have the property that X; increases over time,
and X; > Yj4 for j =1,...,2D, so that the unique Nash equilibrium outcome is (X, Y7).
The generic game tree of a 6-stage (the length implemented in our experiment) centipede
game is illustrated in Figure 1.

In this paper, we focus on three commonly adopted classes of centipede games: linear,

exponential and constant centipede games, which can be parameterized as follows.

1. Linear Centipede Games:

In a linear centipede game, the difference between the large and small payoffs is
normalized to 1 and remains constant. When a player chooses to pass, both the

large and small payoffs are increased by an amount 0 < ¢ < 1. Therefore,

(1+(—1)c, (j—1)c) ifjisodd

(X;,Y;) =
((J —1e, 14+ (5 — 1)0) if 7 is even.

2. Exponential Centipede Games:

In an exponential centipede game, the ratio between the large and the small payoffs
is equal to ¢ > 1 and does not change as the game progresses. As a player passes,
both the large and small (positive) payoffs are multiplied by 1 < 7 < ¢. To prevent
the payoffs from becoming explosively large in the later stages, we fix the multiplier

at m = 2 and vary the ratio ¢ in our experiment. Thus,

(=t 1) = (c- 2971, 2771) if j is odd

(7971, e = (2771, ¢- 271 if j is even.

(X;,Y;) =

3. Constant Centipede Games:

In a constant centipede game, the sum of the large and the small payoffs remains

the same at every stage. When a player passes, the smaller payoff is multiplied by



a factor 0 < ¢ < 1. As a result,

(X,.¥) (2—d~1 71 if jis odd
i) =

(Y 2 =71 if j is even.

Across all classes of centipede games, the unique Nash equilibrium outcome from the
perspective of standard game theory is for Player 1 to end the game at Stage 1. In what

follows, we introduce the three elicitation methods in our experiment.

3.2 Three Elicitation Methods

In this subsection, we describe the three elicitation methods using actual screenshots from

the experiment, shown in Figure 2.
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Figure 2: Screenshots of the Direct Response Method (top), Full Strategy Method (bot-
tom left) and Reduced Strategy Method (bottom right)

The top row of panels in Figure 2 show the screenshots for the direct response
method, which elicits the behavioral strategy by implementing the extensive-form game
tree. Under this method, at the beginning of a 6-stage centipede game, Player 1 decides
whether to stop or continue. If Player 1 chooses to stop, the game ends immediately, and
Player 2 does not have the opportunity to make a decision. Otherwise, the game proceeds
to the second stage, where Player 2 decides whether to stop or continue. If Player 2 also
chooses to continue, it becomes Player 1’s turn again, and so on.'°
In contrast, the full strategy method elicits the full strategy by converting the

sequential centipede game into a simultaneous move game. In a 6-stage centipede game,

10 A5 the game progresses to the next stage, earlier stages are shaded, and arrows are added to indicate
the flow of the game.



each player has three decision nodes and therefore eight possible strategies, as they can
choose either to stop or continue at each node. To elicit the full strategy, players are asked
to make a decision—stop or continue—at each of their decision nodes simultaneously, as
shown in the bottom left panel of Figure 2.

From an experimental implementation perspective, the full strategy method can be
unnecessarily complicated (and is therefore rarely used in the literature), as it requires
players to make decisions at every decision node—including those that cannot be reached
given their own earlier choices. For example, even if players choose to stop at Stage 1 (as
Player 1) and thereby ends the game, a complete strategy still requires players to specify
their hypothetical decisions at Stages 3 and 5.t

To this end, the reduced strategy method is more appealing, as it substantially
simplifies the elicitation task by asking players to simultaneously choose one of their a
reduced strategies. In the 6-stage centipede game example, each player has four reduced
strategies: taking at their first, second, or third decision node, or always passing. As
shown in the bottom right panel of Figure 2, the reduced strategy method converts the
sequential centipede game into a simultaneous move game in which all players simulta-
neously select one of the four reduced strategies.

From a game-theoretic perspective, the centipede game implemented under the three
elicitation methods constitutes three distinct, yet strategically equivalent, games. Some
traditional set-valued solution concepts for noncooperative games other than Nash equi-

2 However, in the cen-

librium fail to satisfy invariance under strategic equivalence.!
tipede games we study, all refinements of Nash equilibrium predict the same outcome—
termination at the first node—regardless of the elicitation method used. Therefore, any
differences observed between the three elicitation methods in the experiment cannot be
explained by standard game-theoretic solution concepts.

Departing from standard solution concepts, the DCH solution makes a clear qualita-
tive prediction about how behavior would differ across the three elicitation methods. In

the next subsection, we provide a brief overview of the DCH strategy method effect.

3.3 The DCH Framework and Strategy Method Effects

The DCH framework provides a behavioral solution concept that extends the cognitive
hierarchy framework of Camerer et al. (2004) from simultaneous-move games in strategic
form to general sequential games in extensive form. In this model, each player is endowed

with a level of sophistication k& € {0, 1,2, ...}, assumed to be drawn independently from

HThese strategies are also referred to as “cloned strategies” in Camerer et al. (2004).

12For example, Kohlberg and Mertens (1986) observe that many widely used refinements of Nash
equilibrium, including perfect equilibrium, proper equilibrium, sequential equilibrium, and essentially all
belief-based refinements such as the intuitive criterion, violate invariance under strategic equivalence.

10



a Poisson distribution with mean 7 > 0."* We denote f,(k) = e 77%/k! as the prior
probability of being assigned level & under Poisson(r).

Each player i with level £ > 0 has a prior belief about all other players’ levels and
these prior beliefs satisfy truncated rational expectations. Specifically, for any player ¢
and level £ > 0, a level k player ¢ believes all other players are at most level £ — 1, and

their prior belief about any other player j # ¢ being level « is

fr(x) ;if R <k

Zlnc;:lo fr(m

0 if Kk >k,

55 (k)

which is the lower truncation of the true prior distribution of levels. The underlying
assumption of this specification is that level-k type players have correct beliefs about the
relative proportion of players who are less sophisticated than themselves, while incorrectly
believing that other players of level K > k do not exist.

The DCH solution is defined as a level-dependent behavioral strategy profile such
that (1) level-0 players uniformly randomize at every history,'"* and (2) level k& > 0
players form posterior beliefs about other players’ levels via Bayes’ rule at every history
and sequentially best respond everywhere. The DCH solution can be solved recursively,
starting with the lowest level and iteratively working up to higher levels.

An important feature of the DCH solution is its violation of invariance under strategic
equivalence, since the DCH solution can differ between two games that share the same re-
duced normal form. The intuition behind this effect is that collapsing outcome-equivalent
strategies into structurally reduced strategies changes the cardinalities of the action sets.
Since level-0 players are assumed to randomize uniformly over all available actions, their
strategies are generally not outcome-equivalent when the number of available actions is
reduced. Hence, this property of DCH is referred to as the strategy reduction effect (Lin
and Palfrey, 2024). The strategy reduction effect on level-0 players then triggers a chain
reaction of indirect effects on the behavior of higher-level players.

The DCH solution makes a bold prediction about the strategy method effect in the
centipede game: players tend to choose to take earlier under the direct response method
than under the reduced strategy method, while their behavior remains the same between
the direct response method and the full strategy method. To illustrate the rationale
behind this prediction, consider the 6-stage centipede game. When choices are elicited
using the direct response method, DCH posits that level-0 players will take (or pass) with

a 50% chance at each stage. However, under the reduced strategy method, level-0 players

13Lin and Palfrey (2024) characterize the DCH solution for a general class of prior level distributions,
with the Poisson specification being a commonly assumed special case in the literature for estimation
purposes.

14Because uniform randomization is non-degenerate, a notable implication is that there is no off-path
event in the DCH solution.

11



uniformly randomize across four reduced strategies: taking at their first, second, or third
decision node, or always passing, leading level-0 players to choose each reduced strategy
with a probability of 1/4. In other words, level-O players’ behavior is not outcome-
equivalent between the direct response method and the reduced strategy method—they
tend to take later under the reduced strategy method. Since higher-level players never
rule out the possibility that the other player is level 0, the later taking behavior of level-0
players results in later taking behavior for all higher levels, as payoffs increase in the later
stages (Theorem 1 of Lin and Palfrey 2024).

Conversely, under the full strategy method, level-0 players uniformly randomize across
all pure strategies, which is outcome-equivalent to uniformly randomizing over the set
of actions at each history under the direct response method. Since DCH players with
level £ > 0 are forward-looking, as shown by Battigalli (2023), the DCH solution is
outcome-equivalent between games that share the same (non-reduced) normal form. In
other words, the DCH solution is normal form invariant (Proposition 1 of Battigalli
2023). This invariance implies that the full strategy method does not induce behavioral
distortions like those caused by the reduced strategy method.

DCH Strategy Method Effect: For any linear, exponential, or constant centipede

game in which the parameters satisfy a mild condition,> DCH predicts that

1. players tend to take earlier under the direct response method than under the reduced

strategy method;

2. players will behave the same under the direct response method and the full strategy
method.

As shown by Lin and Palfrey (2024), this prediction is robust to any prior distribution
of levels. However, the expected magnitude of the difference between the behavior elicited
under the direct response method and the reduced strategy method depends on both the
prior distribution of levels and the payoff structure. Therefore, we adopt an optimal design
approach to construct the payoff structure in order to maximize the informativeness of

the experiment.

4 Design Optimization and Implementation

The objective of this paper—and its key methodological innovation—is to use DCH as a

theoretical basis for rigorously developing a high-powered experimental design to system-

15Specifically, for linear centipede games, we require that the pie-size increment satisfies 1/3 < ¢ < 1.
If ¢ > 1, the unique equilibrium is for every player to always pass; if ¢ < 1/3, then all players with
level k£ > 0 will always take. Similarly, for constant centipede games, we require 0 < ¢ < 1. Lastly, for
exponential centipede games, we require that =1+v1+8c® W < 7 < ¢, which reduces to the condition ¢ > 2

when setting ™ = 2.

12



atically examine whether it can explain when and how the use of strategy method creates
distortions. We optimize the design by using the theory to carefully select two centipede
games from each of the three different classes of centipede games. In particular, we first
introduce the optimal design framework in detail in Section 4.1, and then describe our

design implementation and experimental procedures in Section 4.2.

4.1 The Optimal Design Framework

As discussed earlier, in all three classes of these games, the direction of the DCH strategy
method effects are unambiguous: players will take later if choices are elicited under the
reduced strategy method then either the direct response method or the full strategy
method; no such difference is predicted between the direct response method and the full
strategy method.

While these directional effects are unambiguous, the magnitude of these effects varies
widely depending on both the class of game and the exact payoff details. For this reason,
we employ an optimal design approach in order to choose payoffs parameters, one for
each class of game, that are predicted to give our experiment great power by inducing
relatively large strategy method effects. In addition, as a quasi-placebo test, we use the
same optimal design to identify payoff parameters that, according to the theory, should
not induce measurable strategy method effects, thereby enabling a testable comparative
static prediction about the magnitude of such effects.

Our optimal design approach comprises two steps: (1) model calibration and (2) opti-
mal selection of game parameters, with the specific procedures described below. Technical

details are relegated to Appendix A .4.

1. Model Calibration:
(a) We first conduct a small-scale centipede experiment to obtain a preliminary
dataset across a range of different parameters.
(b) Using this dataset, we estimate the distribution of levels among the players in
the population, assuming the data is generated by a Poisson DCH model.

2. Optimal Game Parameter Selection:

(a) Using the estimated Poisson parameter of the level distribution, we compute
the predicted magnitude of the strategy method effect for each of the three

classes of games, as a function of the single free parameter of that class.!®

16Recall that the free parameter is the rate of payoff growth for the linear games, the rate at which
the difference in payoffs between the two players increases for the constant games, and the ratio between
the large and small payoffs for the exponential games.
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(b) For each class of games, we select two payoff parameters for the experiment:
one in which the strategy method effect is predicted to be large, and one in

which it is predicted to be small.

Step 1: Model Calibration

Unlike other optimally design approaches that calibrate models using data from previ-
ously published studies by other researchers based on results under different procedures
and interfaces (e.g., Bland 2023; Lin 2023), we purposely obtain our pilot data under
the same experimental conditions as the actual experiment. Calibrating the model with
data collected in a virtually identical setting provides greater control and hence preci-
sion to estimating the theoretical parameters that are used to select the games, as these
parameters may be sensitive to the specific experimental procedures.!”

Two pilot sessions with a total of 16 participants were conducted at the Taiwan Social
Sciences Experimental Laboratory (TASSEL) at National Taiwan University using nearly
identical procedures to the fully-designed experiment.'® The pilot studies produced data
from four 6-stage linear centipede games (¢ = 0.4, 0.6, 0.75, and 0.9), theoretically
examined by Lin and Palfrey (2024), using two different elicitation methods—the reduced
strategy method and the direct response method—in a between-subjects design. That
is, each participant took part in only one of the two sessions and played four different
centipede games using only one of the two elicitation methods.

With the pilot data, we estimate the Poisson DCH model parameter 7, which is the
mean of the distribution of levels of sophistication. The estimation is conducted using
maximum likelihood estimation. Below, we briefly describe the construction of the log-
likelihood function; a detailed description of the estimation procedure is provided in
Appendix A.3.

For any participant i, let H; denote the set of histories that participant ¢ encountered
during the experiment.'® Assuming the prior distribution of levels follows a Poisson(7),
let 0% (a;|hi, ) denote the probability that a level-k player i chooses action a; at history
h; € H;. This is uniquely determined, as the DCH solution is unique. Furthermore, let
f(k|h;, 7) denote the posterior distribution of levels at history h;. The choice probability
for action a; at history h; predicted by DCH is then given by the aggregation of choice

"For DCH, the model parameter is the population distribution of sophistication levels.

18The pilot sessions were conducted during the COVID pandemic, when the TASSEL lab was one of
the few physical locations in the world where in-person experiments were still feasible, albeit under strict
social distancing restrictions.

19Tn the reduced strategy method session, H; is the set of empty histories for the four linear centipede
games. In contrast, in the direct response method session, H; is the set of decision nodes that participant
1 encountered across all four games.
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probabilities across all levels, weighted by the posterior distribution f(k|h;, 7):
D(a|hs, 7) = Zf k|hi, 7)o" (ag| hi, 7).

Accordingly, the log-likelihood function for DCH can be constructed by summing over all

participants ¢, all histories h;, and all actions a;:
In L(T ZZZl{az,h}ln D(a;|h;, 7)]

where 1{a;, h;} is an indicator function equal to 1 if participant ¢ chooses action a; at
history h;, and 0 otherwise.

This yields an estimate of 7 = 1.25 (Obs. = 120, S.E. = 0.157, log-likelihood =
—57.05)%° as the calibrated parameter for the DCH solution. Note that an implicit
assumption in our optimal design approach is that the distribution of levels does not
depend on the elicitation method. To test this assumption, we separately estimate the
parameter for each session and perform a likelihood ratio test. The null hypothesis is
not rejected (Likelihood ratio test: p-value = 0.26), suggesting that the assumption is

supported in our pilot data.

Step 2: Optimal Game Parameter Selection

With the calibrated DCH, the next step is to select one game with a large predicted
strategy method effect and one with a small effect within each class of games. To quantify
the magnitude of the strategy method effect, we use the expected sup-norm distance,
i.e., the maximum difference, between the CDFs of the terminal nodes under the reduced
strategy method and the direct response method, as predicted by the calibrated DCH.
We adopt the sup-norm distance as our metric because a theoretical result from Lin and
Palfrey (2024) implies a specific relationship between the CDFs generated by different
elicitation methods: the distribution of terminal nodes under the reduced strategy method
first-order stochastically dominates the distribution under the direct response method.
For each class of centipede games, we define Fr(c) and Fp(c) as the CDFs predicted
by the calibrated DCH for the reduced strategy method and the direct response method,
respectively, in the centipede game with parameter ¢. The sup-norm distance is thus a

function of the single free parameter, denoted by

S(¢) = |Fr(c) = Fp(¢)lo-

Figure 3 plots the sup-norm function for each class of centipede games. As shown in the

20To estimate the model, we cap the level at 10, as the proportion of levels above 10 is negligible.
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figure, for each class, there exists a narrow range of sweet spots for the parameter ¢ that

yields a large strategy method effect.

Linear Exponential Constant
0.5 0.5 0.5 ds

0.4 0.4 0.4

Sup-norm
Sup-norm
Sup-norm

02 02 25 02

0.1 0.1 0.1 04
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Figure 3: The Sup-norm Function S(c¢) for Linear (left) Exponential (middle) and Con-
stant (right) Centipede Games

Guided by the calibrated DCH, we select one payoff parameter that is a round number
and close to the theoretical maximum sup-norm, and another that yields a negligible
strategy method effect, for each class of games. For linear games, we select ¢ = 0.5 (small
effect) and ¢ = 0.8 (large effect); for exponential games, ¢ = 2.5 (small effect) and ¢ = 4
(large effect); and for constant games, ¢ = 0.4 (small effect) and ¢ = 0.8 (large effect).?!

The predicted sup-norm distances for the selected games are summarized in Table 1.

Table 1: The Predicted Sup-norm of the Selected Centipede Games

Linear Exponential Constant

c=0.5 ¢c=0.28 c=25 c¢=4 c=04 ¢=0.8

(small) (large) (small) (large) (small) (large)

Sup-norm  0.128  0.251f 0.188 0.251f 0.072  0.460f

1 indicates that the game is expected to yield statistically significant strategy
method effects under the Kolmogorov—Smirnov test at the 1% significance level,
given a sample of 192 participants.

In addition, given our sample size of 192 participants, the predicted sup-norm dis-
tances for all three large-effect games are expected to yield statistically significant strategy
method effects under the Kolmogorov—Smirnov test at the 1% significance level, whereas
the three small-effect games are not. Since the KS test is relatively low-powered, this con-

trast between large-effect and small-effect games further justifies our selection, as these

21The payoffs used in the experiment are rescaled to avoid decimal values and ensure comparability
across all six centipede games. See Figure A.1 in the appendix for the actual game trees implemented in
the experiment.
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games are expected to generate statistically distinguishable differences in the magnitude
of the strategy method effect.

Using the optimal design approach, we identify six centipede games: three that are
expected to generate large strategy method effects and three that are not. In the following,

we describe the implementation of this optimally designed experiment.

4.2 Design Implementation and Experimental Procedures

The laboratory experiment consists of three treatments, each implementing the six opti-
mally selected centipede games in one of three elicitation methods: the direct response
(DR) method, the full strategy (F'S) method and the reduced strategy (RS) method. To
avoid potential confounding effects from changes in visual display, we maintain a consis-
tent game tree format across all three treatments, varying only the ways for participants
to submit their decisions, exactly as shown in Figure 2.

We adopt a within-subject design in our laboratory experiment in order to stress test
the strategy method effect and maximize statistical power. Each participant therefore
plays all six optimally selected centipede games under all three elicitation methods. This
design enables us to observe how the same participant behaves when the choices are
elicited under different elicitation methods.

To mitigate potential spillover effects across treatments, participants do not receive
any feedback between games or treatments. However, under the direct response method,
participants inevitably learn the outcome of a game, as they make decisions only when
the game reaches their decision nodes. For this reason, the direct response method is
always conducted last.

Additionally, to counterbalance potential order effects between the full and the re-
duced strategy method treatments, we alternate the order of these two treatments (RF
Order and FR Order) across sessions. In the RF Order, participants first play the six
games under the reduced strategy method, followed by the full strategy method, and
finally the direct response method. In the FR Order, the sequence of the reduced and
full strategy methods is reversed.??

We conducted 16 sessions at the Social Science Experimental Laboratory (SSEL) at
the California Institute of Technology and the Experimental Social Science Laboratory
(ESSL) at the University of California, Irvine. Eight sessions were held at each labo-
ratory. The experiment was programmed with the oTree software (Chen et al., 2016).
Each session included 12 participants, for a total of 192 participants in our experimental
dataset. Half of the sessions were conducted using the RF Order, while the other half
under the FR Orders.

At the beginning of each session, participants were randomly assigned to the role of

22Robustness analysis in Appendix A.5 indicates no significant differences between the two orders.
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either a first mover or a second mover,?® and their roles remained unchanged throughout
the session.?* In each treatment of every session, all six optimally selected centipede games
were played once, and the sequence of games was randomized. Additionally, participants
were matched with a different opponent for each game within a treatment to prevent
any potential reputation-building effects.?® Furthermore, participants did not receive
any feedback after each game in the full strategy method and reduced strategy method
treatments, whereas they automatically learned the outcome of each game in the direct
response method treatment. A summary of all outcomes was provided to participants at
the end of the experiment. To prevent participants from making inferences about their
opponents’ actions based on their decision times, a 10-second delay was added at the
beginning of each game. This adjustment resulted in each session lasting approximately
75 to 90 minutes.

The participants were paid based on the payoffs (in “points”) they received throughout
the experiment. Three games (one from each treatment) were randomly selected for
payment. Including a show-up fee of USD $10, subject earnings averaged USD $26.36.%°

See Appendix A.1 for the experimental instructions.

5 Experimental Results

5.1 Data Description and Aggregate-Level Results

Before presenting the main results, we first summarize the number of observations at
various levels in Table 2. Recall that in the experiment, all 192 participants played six
centipede games under 3 elicitation methods, yielding 1,152 observations of strategies
(players x games) for each method. Under the direct response method, only 63% (730
out of 1,152) of the strategies elicited are uncensored reduced strategies.?” Furthermore,
under the direct response method, we obtain only 2,160 pass/take decision-node choices—
28% fewer than that inferred under the reduced strategy method (2,160 vs. 2,763) and

23Tn our instructions, first movers were referred to as “red participants” and second movers as “blue
participants.”

24Thus, each session consisted of six red participants and six blue participants.

25To implement this matching protocol, each participant was assigned a unique ID at the beginning of
each session. Specifically, the six red and six blue participants were randomly assigned IDs ranging from
“Red 1”7 to “Red 6” and “Blue 1” to “Blue 6,” respectively. In each game of each treatment, participants
were informed of their opponent’s ID and reminded that they had not previously been matched with this
opponent within the current treatment.

26The exchange rate was 1 point to USD $0.02. Final payments were rounded up to the nearest dollar.

2"The term uncensored reduced strategy for a player in the direct response treatment means that the
sequence of actions in the game unambiguously implies a unique reduced strategy for that player. For
example, if a game ends at the first node, we can infer the first mover’s reduced strategy unambiguously
(Stop at Stage 1), but we cannot infer the second mover’s reduced strategy. If the game ends at the
second node, we can infer the second mover’s reduced strategy but not the first mover’s strategy. Only
if the game continues all the way to the last node can we infer both players’ reduced strategy.
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60% fewer than under the full strategy method (2,160 vs. 3,456).

Table 2: Number of Observations at Various Levels and Analysis of Terminal Nodes

Direct Response Reduced Strategy Full Strategy

Method Method Method
# of Observations
Players x Games 1,152 1,152 1,152
Uncensored Reduced Strategies! 730 1,152 1,152
(Inferred) Decision-Node Choices? 2,160 2,763 3,456
Terminal Nodes® 576 576 576
Matching Pair-Specific Terminal Nodes
Mean 3.859 4.002 3.861
Standard Deviation (2.099) (2.051) (2.050)
Three-Way Friedman Test
p-value 0.005
Pairwise Signed-Rank Tests
vs. Full Strategy Method p-value 1.000 0.025 —
vs. Direct Response Method p-value — 0.044 1.000
L The “Uncensored Reduced Strategies” row represents the number of strategies that allow us to recover the reduced

strategies.

2 The “(Inferred) Decision-Node Choices” row represents the number of pass/take decisions, either directly observed
under the direct response method or inferred from strategies under the reduced or full strategy method.

3 The “terminal node” refers to the earliest stage at which a player chooses to take. If both players pass at all six
stages, the terminal node is coded as 7.

4 p-values are adjusted using the Bonferroni correction.

These findings highlight a key limitation of the direct response method: incomplete-
ness, especially in our within-subject experiment, where it yields significantly less data
from the same group of players. To enable a fair comparison across all three elicitation
methods, we therefore focus in this section on the analysis of terminal nodes—the only
outcome variable for which all three methods yield the same number of observations: 576
(96 pairs of players x 6 games).

Nonetheless, unlike in the direct response method, where terminal nodes are observed,
those under the reduced and full strategy methods must be inferred from strategies.
Moreover, the distribution of terminal nodes is sensitive to how players (and their strate-
gies) are paired. To address this, we fully leverage our within-subject, no-between-game-
feedback design to compute terminal nodes for the reduced and full strategy methods
by assuming that players are paired exactly as they were in the direct response method.
For example, if Ann and Bob are paired in game X under the direct response method,
we assume that Ann and Bob are paired in game X under the reduced and full strat-
egy methods when obtaining matching pair-specific terminal nodes. This construction
enables a clean analysis of strategy method effects by eliminating confounds arising from
different pairing realizations across elicitation methods.

Table 2 summarizes the matching pair-specific terminal node data under our construc-
tion. As a first cut at analyzing strategy method effects, we find that terminal nodes vary

significantly across elicitation methods, as indicated by the Friedman test, which tests the

19



null hypothesis that the distributions of terminal nodes are identical across treatments
(Friedman test: @@ = 10.628, p-value = 0.005). This result implies that behavior under
at least one elicitation method differs significantly from the others. In fact, the average
terminal node is 4.002 under the reduced strategy method, but 3.859 under the direct
response method and 3.861 under the full strategy method.

To further identify which pairs of elicitation methods differ significantly, we conduct
Wilcoxon signed-rank tests (Wilcoxon, 1945) to compare each pair of elicitation methods.
As shown in Table 2, games played using the reduced strategy method terminate signif-
icantly later than both the direct response method (signed-rank test: p-value = 0.044)
and the full strategy method (signed-rank test: p-value = 0.025). In contrast, there is
no significant difference between the direct response and full strategy methods. These

findings are consistent with the qualitative predictions of DCH.

Result 1 Games played using the reduced strateqy method terminate significantly later
than both the direct response method (signed-rank test: p-value = 0.044) and the full
strateqy method (signed-rank test: p-value = 0.025). There is no significant difference

between the direct response and full strategy methods.

The calibrated DCH makes clear predictions about the comparative statics of strategy
method effects across different game parameters. To test these predictions, we compare

terminal nodes under each elicitation method across games in the next section.

5.2 Game-Level Results

Overview of Strategy Method Effects Across Different Games

To provide an overview of strategy method effects across different games, Figure 4, its
corresponding Table A.2, and the cumulative distribution in Figure A.2 illustrate the
distributions of (inferred) terminal nodes under the three elicitation methods for all six
games. The results reveal substantial heterogeneity in strategy method effects across
different classes of games: the distributions of terminal nodes differ significantly across
methods in the Small Linear Game and in both the Small and Large Constant Games
(Friedman test: p-value = 0.040 for Small Linear; p-value < 0.001 for Small Constant;
p-value = 0.004 for Large Constant), but not in the remaining three game classes.
Building on these observations, we further decompose the observed strategy method
effects by conducting pairwise comparisons among the three elicitation methods within
each class of games. To summarize this analysis, Figure 5 plots the average terminal nodes
under each method. Each panel presents a specific pairwise comparison, and each point
represents the average terminal node for a game under the two corresponding methods.
This figure provides a clear visualization of strategy method effects, as any deviation from

the 45-degree line indicates the presence of such effects.
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Figure 4: Distribution of Terminal Nodes by Elicitation Method and Game. Each panel
reports the p-value from the Friedman test for the corresponding class of games. See
Table A.2 for the corresponding table.

We first compare the reduced strategy method with the direct response method (top
left panel of Figure 5) and with the full strategy method (bottom left panel). For both
comparisons, the DCH solution makes clear predictions: later termination should occur
under the reduced strategy method. Accordingly, DCH predicts that all points in these
two panels should lie above the 45-degree line, as the average terminal nodes under the
reduced strategy method are plotted on the y-axis, although points for the three small
games may not deviate significantly from the line.

From the top left panel, we observe that all points lie on or above the 45-degree line.
This suggests that the reduced strategy method leads to later termination compared to
the direct response method, consistent with the qualitative predictions of DCH. However,
both exponential games and both linear games do not deviate significantly from the 45-
degree line, whereas the two constant games lie significantly above it (signed-rank test:
p-value = 0.005 for Large Constant; p-value = 0.022 for Small Constant).

Furthermore, a similar pattern emerges when comparing the reduced strategy method
with the full strategy method. In the bottom left panel, we again observe that all points lie
on or above the 45-degree line. This pattern again aligns with the qualitative predictions
of DCH. Nevertheless, the Small Linear Game is the only one significantly above the
line (signed-rank test: p-value = 0.005), indicating later termination under the reduced

strategy method compared to the full strategy method.
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Lastly, when comparing the full strategy method to the direct response method, DCH
makes a null prediction—there should be no strategy method effect in any centipede
game. In other words, in the top right panel, DCH predicts that all points should lie
on the 45-degree line. The figure shows that five of the six centipede games indeed do
not deviate from this line, consistent with the DCH prediction. The only exception is
the Small Constant Game, where there is no behavioral difference between the full and
reduced strategy methods (signed-rank test: p-value = 0.374), but there is significant
later termination under the full strategy method compared to the direct response method
(signed-rank test: p-value = 0.001).

; Direct Response vs. Reduced Strategy Method ; Direct Response vs. Full Strategy Method

o
o

7% »

o
o

b »

w
w

Average Terminal Node under RS
N S

Average Terminal Node under FS
S

o
*
- IN)
o
*
*
+

2 3 4 5 6 7 2 3 4 5 6 7
Average Terminal Node under DR Average Terminal Node under DR

Full Strategy vs. Reduced Strategy Method

Large Linear
Small Linear
Large Exponential
Small Exponential
Large Constant
Small Constant

o

o
.
ce>PO®

w

Significance:
+ * p<0.05
**p<0.01

Average Terminal Node under RS
N >

2 3 4 5 6 7
Average Terminal Node under FS

Figure 5: Pairwise Comparison of Terminal Nodes Across Elicitation Methods. FEach
point represents the average terminal node for a given game, with standard error bars
overlaid. Stars indicate statistical significance based on two-sided signed-rank tests with
Bonferroni correction: * p < 0.05, ** p < 0.01. See Table A.1 for the corresponding table.

Result 2 Qwverall, the distributions of terminal nodes differ significantly across elicitation
methods in three centipede games (Small Linear, Small Constant, and Large Constant).

Moreover, pairwise comparisons of the elicitation methods reveal the following patterns.

e Direct Response Method vs. Reduced Strategy Method: There is significant
later termination under the reduced strateqy method in the Small and Large Constant

Games, with no significant differences in the other four games.
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o Full Strategy Method vs. Reduced Strategy Method: Significant later ter-
mination under the reduced strategy method is observed only in the Small Linear

Game, with no significant differences in the other games.

e Direct Response Method vs. Full Strategy Method: No significant differ-
ences are observed, except in the Small Constant Game—the only case that deviates

from the qualitative predictions of DCH.

Despite the high consistency between the observed strategy method effects and the
qualitative predictions of DCH, the relative magnitudes of these effects do not align with
the calibrated DCH. The calibrated model predicts that strategy method effects should
appear in all three Large Games but not in the Small Games, yet significant effects are
observed in two Small Games. These discrepancies are detectable only because we first
calibrate the model and obtain a quantitative benchmark. In what follows, we address

the puzzle of the relative magnitudes of strategy method effects.

Relative Magnitudes of Strategy Method Effects

The calibrated DCH predicts significantly later termination under the reduced strategy
method compared to the other two elicitation methods in all three Large Games. To
evaluate this prediction, we group the Large Linear, Large Exponential, and Large Con-
stant Games as those with large effects, and classify the remaining games as having small
effects. Due to the construction of our (inferred) terminal node data, for any terminal
node (and pair of players) observed under the direct response method, we also observe
the terminal nodes generated by the same pair under the other two elicitation methods.
Using this matched data, we compute the difference in terminal nodes for each pair of
players across any two elicitation methods. We denote the average difference in the Large
group of games by Ay, and in the Small group by Ag.

According to the predictions of the calibrated DCH, when comparing the reduced
strategy method with the direct response method (RS — DR), we should observe Ay, > 0
and Ag ~ 0. This implies that the difference A;, — Ag, which measures the relative
magnitude of the effect, should be positive. Similarly, because DCH makes the same
prediction for the comparison between the reduced and full strategy methods (RS — FS),
it predicts Ay > 0, Ag =~ 0, and hence A;, — Ag > 0. In contrast, for the comparison
between the full strategy method and the direct response method (FS — DR), DCH
predicts Ay ~ 0, Ag = 0, and therefore A;, — Ag =~ 0.

Table 3 summarizes the relative magnitudes across all pairs of elicitation methods.
As shown, the empirical patterns do not fully align with the predictions of the cali-
brated DCH. The null difference between the full strategy method and the direct response

method is consistent with the model. However, the comparisons involving the reduced
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Table 3: Relative Magnitudes of Strategy Method Effects (Grouped Under DCH)

A in Terminal Nodes

AL AS AL — AS
0.118 0.167 -0.049
RS — DR
p=0141 p=0044 p=00997
0.104 0.177 -0.073
RS — FS
p=0.106 p=0.031 p=0.700
0.014 -0.010 0.024
FS — DR

p=0.862 p=0.948 p=0.724

Statistical inferences are based on the signed-rank test,
with p-values reported below.

strategy method deviate significantly: for both RS—DR and RS—FS, we observe Ap =~ 0
(signed-rank test: p-value = 0.141 for RS —DR;; p-value = 0.105 for RS—FS) and Ag > 0
(signed-rank test: p-value = 0.044 for RS — DR; p-value = 0.031 for RS —FS), contrary to
the prediction of the calibrated DCH. In addition, the negative values of A; —Ag for both
comparisons—though not statistically significant—further diverge from the predictions
of the calibrated DCH.

To conclude, while the observed qualitative patterns in the data are mostly consistent
with DCH, the relative magnitudes of the strategy method effects do not align with the
calibrated DCH—specifically, the effects in the optimally selected large games are not
significantly larger than those in the quasi-placebo small games. This finding suggests
that the observed strategy method effect is not solely driven by DCH but is also influenced
by other behavioral forces that contribute to similar effects. Therefore, in the next section,
we explore two alternative behavioral models to assess whether they can better account

for the variation in relative magnitudes of elicitation effects across different games.

6 Alternative Behavioral Models

From the analysis in the previous section, we find that although the qualitative patterns
are generally consistent with DCH, the relative magnitudes of the strategy method effect
do not fully align with the predictions of the calibrated DCH. We conjecture that these
discrepancies are at least partly driven by stochastic choice, or quantal response effects,
which can also contribute to strategy method effects. These models of stochastic choice
relax the perfect best response assumption of Nash equilibrium and DCH with quantal

responses, whereby individuals choose higher expected payoff actions more frequently
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than lower expected payoff actions, but do not always choose the highest payoff action.
To decompose the strategy method effects of quantal response behavior and DCH,
we compare DCH with two specific behavioral models that incorporate stochastic choice:
the agent quantal response equilibrium (AQRE) of Mckelvey and Palfrey (1998) and the
quantal dynamic cognitive hierarchy (QDCH) solution, a hybrid model of DCH and logit
quantal responses introduced by Lin (2023) using structural estimation. We then revisit
our optimal design approach (hypothetically) under these alternative models to examine

how incorporating quantal responses could further refine our methodology.

6.1 Models with Quantal Responses
Agent Quantal Response Equilibrium (AQRE)

AQRE (Mckelvey and Palfrey, 1998) predicts strategy method effects in centipede games
in a somewhat different manner than the pure strategy reduction effect of DCH. Unlike
the DCH solution, AQRE is an equilibrium concept in which players are assumed to make
logit quantal responses (rather than best responses) to the equilibrium strategies of the
other players, at all histories. Specifically, for any player ¢ € N, any history h, and any
action a, the probability that player ¢ chooses action a in logit specification of AQRE is
given by:

e/\ﬂa

oi(alh) = Za’eA(h) Y

where A(h) is the set of available actions at history h, @, is the equilibrium (expected)
continuation value of choosing any a’ € A(h), and A € [0, 00) is the precision parameter.
When A\ = 0, players are completely insensitive to payoffs and uniformly randomize,
behaving similarly to level-0 players. As \ increases, players’ choices are closer to optimal.
In the limit as A — oo, players become fully rational and make best responses that
correspond to a sequential equilibrium of the game.

There are two distinct kinds of strategy method effects of AQRE in our 6-stage cen-
tipede games.

The first kind of effect arises because the different elicitation methods imply different
systems of equilibrium conditions that characterize the AQRE. In the direct response
method, AQRE is a profile of behavioral strategies (conditional take probabilities). Since
each player has three information sets, each with a binary choice this implies that the
(logit) AQRE is the solution to a system of 6 nonlinear equations. In contrast, under
the full strategy method?® each player has 8 possible strategies so AQRE is characterized
by a system of 16 nonlinear equations—specifically, the choice probabilities of the eight

full strategies for each player. Finally, under the reduced strategy method, each player

28Gince the centipede game under both the full and reduced strategy methods is a static game, AQRE
reduces to the QRE of the corresponding strategic form game McKelvey and Palfrey (1995).
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has only 4 strategies, so AQRE is computed as the solution to a smaller system of 8
nonlinear equations with only eight choice probabilities of the four reduced strategies
for each player. This difference affects the implied conditional take probabilities at each
stage, leading to different distributions over terminal nodes. For instance, when A = 0, the
probability the game is terminated at the first node under both the full strategy method
and the direct response method is 1/2, while under the reduced strategy method, it is
1/4. Thus for very low values of A\ = 0 this first kind of elicitation effect is similar®® to
the strategy reduction effect in DCH.

The second kind of strategy method effect in AQRE is completely different from the
strategy reduction effect, and arises because the direct response method elicits action
choices sequentially, so the AQRE analysis for the direct response method is carried
out separately for each history, exploiting the timing structure inherent in the extensive
form. Specifically, in AQRE players quantal respond to the expected continuation values
conditional on reaching an information set rather than ex ante expected payoffs, and the
latter are deflated by the probability of reaching the information set. For example, in our
centipede games, the probability of reaching the last node of the game is very low. As a
result, the last mover may find the ex ante expected payoff difference between choosing
strategies that take or pass at that node to be very small, and hence, the probability
of them choosing an ex ante strategy that (suboptimally) passes at the last node can
be quite large. In contrast, the expected payoft difference between taking and passing
conditional on reaching the last node is large, so the AQRE probability of passing at the
last node is much lower. This feeds back into the expected continuation values of taking
and passing at earlier nodes, which generally leads to earlier termination if the game
is played sequentially than if it is played simultaneously according to either of the two
strategy methods.?

For these reasons, AQRE makes different predictions than DCH regarding the mag-
nitude of strategy method effects, where the differences depend on the logit response

parameter and the payoff function.

Quantal Dynamic Cognitive Hierarchy (QDCH) Solution

The QDCH proposed by Lin (2023) is a stochastic extension of DCH that replaces best
responses with logit quantal responses at all histories, while retaining the non-equilibrium
cognitive hierarchy of beliefs. Specifically, QDCH is a two-parameter model in which

7 > 0 represents the mean of the Poisson prior distribution of levels, and A € [0, 00) is

291t is similar, but not identical to the DCH strategy reduction effect when A > 0, since logit response
do not result in uniform randomization. Unlike the strategy reduction effect in DCH which predicts no
elicitation effect between the full strategy method and the direct response method, AQRE differentiates
between the two for all A > 0,

39For a more detailed discussion of AQRE strategy method effects in centipede games see Chapter 3
of Goeree et al. (2016).
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the precision parameter for logit quantal responses.®!

It is worth noting that QDCH includes the DCH solution as a boundary case, as QDCH
converges to DCH when A — co. However, AQRE is not nested within QDCH, even when
T — 00 (i.e., when all players have infinitely high levels of sophistication). This distinction
arises because DCH and QDCH are non-equilibrium models, where players believe others
are strictly less sophisticated than they are, whereas AQRE is an equilibrium model
defined as a fixed point.

Although QDCH and AQRE are non-nested models, they share the feature that the
solution can differ even across games with the same (non-reduced) normal form due to
the nature of logit quantal responses. In other words, logit quantal responses can change
the original DCH strategy method effect, causing QDCH to yield different predictions
across all three elicitation methods. The expected magnitude of these strategy method

effects again depends on both the model parameters and the payoff structure.

6.2 Structural Estimation and Model Comparison

To systematically compare DCH with AQRE and QDCH, we estimate these models using
maximum likelihood estimation. The construction of their likelihood functions is provided

in Appendix A.3. The estimation results and model comparisons are presented in Table 4.

Table 4: Estimation Results and Model Comparisons Across Treatments and Pooled Data

Reduced Strategy Method Full Strategy Method Direct Response Method Pooled Data
QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE
T 3.637 1.250 — 7.318 1.121 — 3.528 1.236 — 4.033 1.250 —
S.E.  (0.243) (0.036) — (1.665)  (0.027) — (0.667)  (0.060) — (0.350)  (0.013) —
A 0.017 — 0.015 0.021 — 0.019 0.018 — 0.013 0.019 0.015
S.E.  (0.001) — (0.001) (0.002) — (0.002) (0.007) — (0.001) (0.002) (0.001)
LL -1166 -1311 -1194 -1786 -1939 -1789 -920 -1009 -975 -3927 -4270 -3986
A% 12.4% 2.4% 8.6% 0.2% 9.7% 6.0% 8.7% 1.5%
LRT 290.9 — 306.1 — 178.1 — 686.1 —
Vuong — 5.688 — 1.271 — 5.538 4.347

p-value < 0.001 < 0.001 < 0.001 0.204 < 0.001 < 0.001 < 0.001 < 0.001

1 The estimations for the reduced and full strategy method treatments are based on 1,152 choices of reduced strategies and complete strategies, respectively.
The estimation for the direct response method treatment is based on 2,160 (binary) decision-node choices.

2 A% indicates the percentage improvement in likelihood relative to QDCH.

3 For the Vuong test of the direct response method treatment, we account for the interdependence of decision-node choices by conducting the test on the
576 observations of terminal nodes.

Intuitively speaking, QDCH relaxes two key requirements of the standard subgame
perfect equilibrium: (1) perfect best response and (2) mutual consistency of beliefs. In
comparison, DCH retains theif former but relaxes the latter, replacing it with dynamic

cognitive hierarchy beliefs, whereas AQRE maintains mutual consistency and replaces

31'We assume that all levels k& > 0 share the same precision parameter .
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best response with quantal responses. Therefore, the comparison between QDCH and
DCH identifies the effect of stochastic choice, while the difference between QDCH and
AQRE captures the effect of relaxing mutual consistency.

From Table 4, we first observe that incorporating quantal responses into the DCH
solution significantly improves model fit: QDCH fits the data better than DCH in all
elicitation methods and in the pooled data. Since QDCH and DCH are nested, we
conduct likelihood ratio tests (LRTs) and find that QDCH fits the data significantly
better in the pooled data (LRT: p-value < 0.001). In fact, LRTs yield p-values < 0.001
in each elicitation method as well. These results indicate that stochastic choice plays a
significant role in the behavior of subjects in centipede games.

Given this observation, a natural next question is whether quantal response is the
driving mechanism behind the observed violation of invariance under strategic equiva-
lence. To investigate this, we compare QDCH and AQRE using the Vuong test (Vuong,
1989), as they are non-nested models, and find that QDCH fits the pooled data signif-
icantly better than AQRE (V' = 4.347, p-value < 0.001). Combined with the earlier
finding that QDCH fits the data significantly better than DCH, we conclude that both
the dynamic cognitive hierarchy model of beliefs and quantal response jointly contribute
to the observed strategy method effect.

While both DCH and quantal responses partially account for the observed strategy
method effect in the pooled data, we find that the relative strength of these two effects
varies across elicitation methods. To quantify this, we compute the improvement in
likelihood scores of DCH and AQRE relative to QDCH. As shown in Table 4, incorporat-
ing quantal responses into DCH results in a substantial improvement in log-likelihood,
ranging from 8.6% to 12.4% across treatments.

Compared to the effect of quantal response, the DCH mechanism exhibits greater vari-
ation across treatments. In both the reduced strategy method and direct response method
treatments, the log-likelihood of QDCH is significantly higher than that of AQRE—by
2.4% (V = 5.688, p-value < 0.001) and 6.0% (V = 5.540, p-value < 0.001), respec-
tively. However, in the full strategy method treatment, the likelihood scores of AQRE
and QDCH are nearly identical (V' = 1.271, p-value = 0.204), suggesting that the effect

of quantal response dominates the DCH mechanism under this elicitation method.??

Result 3 QDCH fits the data better than both DCH and AQRE across all treatments,
highlighting the significance of quantal response effects, while the relative strength of quan-

tal response effects varies across treatments.

It is worth noting that in the pooled data, the estimated value of 7, the average level of
sophistication in the population, under DCH is 1.25 (S.E. = 0.013), which coincides with

32We report estimates for each class of centipede games separately in Tables A.8, A.9 and A.10 and
find that Result 3 is robust across all classes of centipede games.
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the estimate of 7 from the pilot data. While our estimate falls within the range of regular
7 values (between 1 and 2) estimated by Camerer et al. (2004), we hypothesize that
the close estimate between the pilot and main sessions arises from the use of a virtually
identical setting in the pilot, which enables a precise estimate of the true distribution of
levels.

Finally, it is instructive to revisit the pilot data using QDCH and to evaluate whether
a calibration of the QDCH model from that data would predict the observed relative
magnitudes of the strategy method effect within each class of games.>> The Appendix
A.4.3 presents the calibration of QDCH on the pilot data, in exactly the same way as
described for DCH in Section 4.1. The QDCH calibrated model parameters are: 7 = 2.60
and A = 0.05 (Obs. = 120, S.E. of # = 0.76, S.E. of A = 0.01, log-likelihood = —45.29).
We then compute the CDFs predicted by the calibrated QDCH for each class of games
under the three elicitation methods, and calculate the sup-norm distances between these
distributions. These are also reported in the Appendix (Table A.5). The calibrated
QDCH predicts: (1) no significant difference between the direct response method and the
full strategy method across all six games; and (2) the magnitudes of the strategy method
effects are larger in the Small Linear game and the Large Constant game than in the
other four.

To evaluate this prediction of the QDCH calibration, we reproduce the analysis of
the relative magnitudes of the effects in Table 3 but instead group the Small Linear
game (¢ = 0.5) and the Large Constant game (¢ = 0.8) as games with large effects, and
classifying the remaining four games as games with small effects. Table A.6 shows that,
for the comparison between the direct response method/full strategy method and the
reduced strategy method, the strategy method effects are significantly stronger in the
small linear game and the large constant game than in the other four games, consistent
with the qualitative prediction of the calibrated QDCH.

7 Concluding Remarks

We conclude by highlighting the key motivation of this paper: to understand when and
how the use of the strategy method introduces behavioral distortions to choice behavior
in sequential games. Due to the incompleteness problem, the question of how to reliably
collect behavioral data at rarely observed information sets has long been an important
question in experimental methodology. The strategy method pioneered by Selten (1967)
offers a novel and promising approach to solve the incompleteness problem: to elicit
choices in a sequential game, the experimenter can instead implement a strategically

equivalent simultaneous move game, allowing experimenters to observe the action choices

33Section A.4.3 of the Appendix provides additional details and discussion of this QDCH calibration
exercise.
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of subjects even at off-path information sets. However, the questions of when and why
choices elicited via the strategy method can create behavioral distortions compared with
standard (direct response) elicitation methods is not well understood and remains an
important open questions. In a partial answer to these questions, this study demonstrates
that the strategy method induces predictable behavioral distortions—ones that align with
the predictions of the Dynamic Cognitive Hierarchy (DCH) solution proposed by Lin and
Palfrey (2024).

The centipede game is an ideal environment for our experiment because DCH makes
a clear qualitative prediction: the reduced strategy method should induce later taking
compared to both the direct response and full strategy methods. This is an unusually
strong prediction, as it does not rely on any free parameters in the model or on the specific
payoff structure of the centipede game. More importantly, it is scientifically important:
any significant deviation in the opposite direction would falsify the theory. Thus, our
finding that none of the observed strategy method effects produce significant differences
that run counter to this prediction lends support for the rationale of DCH.

Not only does DCH make unambiguous qualitative predictions about the effects of
the strategy method, but it further implies that the expected magnitudes of such effects
will depend on the specific payoff details of the game and the distribution of levels of
sophistication. Hence, designing informative payoff parameters is crucial, as one might
otherwise fail to detect statistically significant strategy method effects if they are not
properly chosen. This is particularly challenging in our experiment because the distri-
bution of levels is unknown prior to the experiment, and the most informative payoff
parameters depend on that distribution.

To address this challenge, we adopt an optimal design approach developed by Lin
(2023) to select the payoff parameters for the games used in the experiment. This ap-
proach is a two-step procedure: first, we calibrate the distribution of levels using small-
scale pilot data; treating this calibrated distribution as the true one, we then select a
mix of games expected to generate large and small effects—serving as our diagnostic and
quasi-placebo games, respectively.

We find that although the directions of the observed strategy method effects are
consistent with DCH, their relative magnitudes deviate from the calibrated DCH pre-
dictions. Specifically, we observe significant strategy method effects in two of the three
quasi-placebo games (linear and constant games), and null effects in two of the three di-
agnostic games (linear and exponential games). These results suggest that the observed
strategy method effects cannot be fully explained by DCH alone.

Motivated by this finding, we further examine whether stochastic choice, in the form of
logit quantal responses, can account for the relative magnitudes of the observed strategy
method effects, as the (Agent) Quantal Response Equilibrium also predicts differences

between the direct response, full strategy, and reduced strategy methods, but in different
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ways than DCH. The QDCH model is also useful since it combines the essential elements
of AQRE and DCH. We find that QDCH significantly outperforms the other two models
in terms of model fit, and accounts for the observed relative magnitudes of the elicitation
effects. Taken together, these findings suggest that the use of the (reduced) strategy
method can lead to significant behavioral distortions—distortions that are predictable
under DCH with quantal responses.

As a final remark, although this paper presents the optimal design approach as tailored
to DCH, its two-step procedure is essentially a general recipe for designing theory-testing
experiments—particularly when the theory involves free parameters that must be esti-
mated ez post from the data. This approach enables experimenters to design highly
informative experiments without shooting in the dark, allowing for the testing of theoret-
ical predictions that depend on unknown parameters. The detection of strategy method
effects in this paper is just one of many potential applications of the optimal design

approach.

References

AumMmANN, R. J. (1992): “Irrationality in Game Theory,” in Economic Analysis of Mar-
kets and Games: Essays in Honor of Frank Hahn, The MIT Press, 214-227.

BarTiGALLl, P. (2023): “A Note on Reduced Strategies and Cognitive Hierarchies in
the Extensive and Normal Form,” IGIER Working Paper.

BEN-PORATH, E. (1997): “Rationality, Nash Equilibrium and Backwards Induction in

Perfect-Information Games,” Review of Economic Studies, 64, 23—46.

BINMORE, K. (1987): “Modeling Rational Players: Part 1,” Economics € Philosophy, 3,
179-214.

BranD, J. R. (2023): “Optimizing Experiment Design for Estimating Parametric Models

in Economic Experiments,” SSRN Electronic Journal.

BORNSTEIN, G., T. KUGLER, AND A. ZIEGELMEYER (2004): “Individual and Group
Decisions in the Centipede Game: Are Groups More “Rational” Players?” Journal of
Experimental Social Psychology, 40, 599-605.

BRrRANDTS, J. AND G. CHARNESS (2011): “The Strategy Versus the Direct-Response

Method: A First Survey of Experimental Comparisons,” Fzperimental Economics, 14,
375-398.

Brocas, I. AND J. D. CARRILLO (2025): “Why Do Children Pass in the Centipede
Game? Cognitive Limitations v. Risk Calculations,” Games and Economic Behavior,
150, 295-311.

31



CAMERER, C. F. (2003): Behavioral Game Theory: Experiments in Strategic Interaction,

Princeton University Press.

CAMERER, C. F., T.-H. Ho, AND J.-K. CHONG (2004): “A Cognitive Hierarchy Model
of Games,” Quarterly Journal of Economics, 119, 861-898.

CHEN, D. L., M. SCHONGER, AND C. WICKENS (2016): “oTree—An Open-Source
Platform for Laboratory, Online, and Field Experiments,” Journal of Behavioral and

Ezxperimental Finance, 9, 88-97.

Costa-GOMES, M., V. P. CRAWFORD, AND B. BROSETA (2001): “Cognition and

Behavior in Normal-Form Games: An Experimental Study,” Econometrica, 69, 1193—
1235.

FEY, M., R. D. MCKELVEY, AND T. R. PALFREY (1996): “An Experimental Study of
Constant-Sum Centipede Games,” International Journal of Game Theory, 25, 269—-287.

Fong, M.-J., P.-H. LiN, AND T. R. PALFREY (2025): “Cursed Sequential Equilib-

rium,” American Economic Review, 115, 2616-58.

GARrcia-Pora, B., N. IRIBERRI, AND J. KOVAR{K (2020): “Non-Equilibrium Play in
Centipede Games,” Games and Economic Behavior, 120, 391-433.

GARrcfa-Pora, B., N. IRIBERRI, AND J. KOVAR{K (2020): “Hot Versus Cold Behavior

in Centipede Games,” Journal of the Economic Science Association, 6, 226—238.

GOEREE, J. K., C. A. Horr, AND T. R. PALFREY (2016): Quantal Response Equilib-

rium: A Stochastic Theory of Games, Princeton University Press.

GoONG, B. AND Y. LIANG (2025): “A Dynamic Matching Mechanism for College Ad-
missions: Theory and Experiment,” Management Science, 71, 4396-4412.

HearLy, P. J. (2017): “Epistemic Experiments: Utilities, Beliefs, and Irrational Play,”
Working Paper, Ohio State University.

KAWAGOE, T. AND H. TAKIZAWA (2012): “Level-k Analysis of Experimental Centipede
Games,” Journal of Economic Behavior €& Organization, 82, 548-566.

KOHLBERG, I. AND J.-F. MERTENS (1986): “On the Strategic Stability of Equilibria,”
Econometrica, 1003-1037.

LeviTT, S. D., J. A. L1sT, AND S. E. SADOFF (2011): “Checkmate: Exploring Back-

ward Induction among Chess Players,” American Economic Review, 101, 975-990.

L1, S. (2017): “Obviously Strategy-Proof Mechanisms,” American Economic Review,
107, 3257-3287.

32



L1, Z., P.-H. LiN, S.-Y. KoNG, D. WANG, AND J. DUFFY (2021): “Conducting Large,
Repeated, Multi-Game Economic Experiments Using Mobile Platforms,” PloS ONE,
16, e0250668.

LiN, P.-H. (2023): “Cognitive Hierarchies in Multi-Stage Games of Incomplete Informa-
tion: Theory and Experiment,” arXww preprint arXiv:2208.11190035.

LiN, P.-H. AND T. R. PALFREY (2024): “Cognitive Hierarchies for Games in Extensive
Form,” Journal of Economic Theory, 220, 105871.

McKELVEY, R. D. AND T. R. PALFREY (1992): “An Experimental Study of the Cen-
tipede Game,” Fconometrica, 803-836.

2

——— (1995): “Quantal Response Equilibria for Normal Form Games,” Games and

Economic Behavior, 10, 6-38.

McKELVEY, R. D. aAND T. R. PALFREY (1998): “Quantal Response Equilibria for

Extensive Form Games,” Ezperimental Economics, 1, 9—41.
MEGIDDO, N. (1986): Remarks on Bounded Rationality, Citeseer.

MorrATT, P. (2020): Ezxperimetrics: FEconometrics for Experimental Economics,
Bloomsbury Publishing.

NAGEL, R. (1995): “Unraveling in Guessing Games: An Experimental Study,” American
Economic Review, 85, 1313-1326.

NAGEL, R. AND F. F. TaNG (1998): “Experimental Results on the Centipede Game

in Normal Form: An Investigation on Learning,” Journal of Mathematical Psychology,
42, 356-384.

OxoBY, R. J. AND K. N. McLEIsH (2004): “Sequential Decision and Strategy Vector
Methods in Ultimatum Bargaining: Evidence on the Strength of Other-Regarding
Behavior,” Economics Letters, 84, 399-405.

PALACIOS-HUERTA, I. AND O. VoL (2009): “Field Centipedes,” American Economic
Review, 99, 1619-1635.

RapopPORT, A., W. E. STEIN, J. E. PARCO, AND T. E. NicHOLAS (2003): “Equi-

librium Play and Adaptive Learning in a Three-Person Centipede Game,” Games and
Economic Behavior, 43, 239-265.

RENY, P. J. (1992): “Rationality in Extensiv-Form Games,” Journal of Economic Per-
spectives, 6, 103—118.

33



RicHIE, R., J. SEITZ-BROWN, AND L. KAUFMAN (2023): “The Case for Instant Runoff
Voting,” Constitutional Political Economy, 34, 367-377.

ROSENTHAL, R. W. (1981): “Games of Perfect Information, Predatory Pricing and the
Chain-Store Paradox,” Journal of Economic Theory, 25, 92-100.

SELTEN, R. (1967): “Strategiemethode zur Erforschung des Eingeschrinkt Rationalen
Verhaltens im Rahmen eines Oligopolexperimentes (The Strategy Method as an In-
strument for the Exploration of Limited Rationality in Oligopoly Game Behavior),”
in Beitrage zur Fxperimentellen Wirtschaftsforschung, ed. H. Sauermann, Tubingen:
Mohr, 136-168.

STAHL, D. O. AND P. W. WILSON (1994): “Experimental Evidence on Players’ Models
of Other Players,” Journal of Economic Behavior € Organization, 25, 309-327.

——— (1995): “On Players’ Models of Other Players: Theory and Experimental Evi-

dence,” Games and Economic Behavior, 10, 218-254.

THOMPSON, F. (1952): “Equivalence of Games in Extensive Form,” RM 759, RAND

Corporation.

Vuonag, Q. H. (1989): “Likelihood Ratio Tests for Model Selection and Non-Nested
Hypotheses,” Econometrica, 307-333.

WILCOXON, F. (1945): “Individual Comparisons by Ranking Methods,” Biometrics Bul-
letin, 1, 80-83.

ZAUNER, K. G. (1999): “A Payoff Uncertainty Explanation of Results in Experimental
Centipede Games,” Games and Economic Behavior, 26, 157-185.

34



A Appendix

A.1 Experimental Instructions (RF Order)3!

General Instructions

Thank you for participating in the experiment. You are about to take part in a decision-
making experiment, in which your earnings will depend partly on your decisions, partly

on the decision of others, and partly on chance.

The entire session will take place through computer terminals, and all interactions be-
tween participants will be conducted through the computers. Please turn off your mobile
devices and do not talk or in any way try to communicate with other participants during

the session.

The main task of the experiment consists of three parts, each containing six rounds.
Before each part of the main task, you will be asked to complete some comprehension
questions. If you have any questions, please raise your hand and the question will be

answered so that everyone can hear.

In this experiment, you will earn “points” in each round, and your earnings will be
determined by the number of points you earn throughout the three parts of the main
task. Each point has a value of $0.02. That is, every 100 points generates $2 in earnings
for you. In addition to your earnings from decisions, you will receive a show-up fee of
$10. At the end of the experiment, your earnings will be rounded up to the nearest dollar

amount. All your earnings will be paid in cash privately at the end of the experiment.

Main Task — General Description

Roles and Groups

All participants will be randomly divided into two groups, the RED group and the BLUE
group, with equal probability. Before you start making decisions, you will be informed

whether you are in the RED group or in the BLUE group. If you are in the RED group,

34This appendix provides the experimental instructions for the RF Order; the instructions for the FR
Order and the pilot sessions are available upon request. The only difference between the RF and FR
Orders lies in the sequence in which the instructions are presented. In the RF Order, the instructions
are given in the sequence as shown in this appendix. In contrast, in the FR order, participants first read
the instructions for Main Task—Part Two, which is renamed as “Main Task—Part One,” followed by
the instructions for Main Task—Part One, which is renamed as “Main Task—Part Two.” Additionally,
in the FR Order, the last sentence of the current Main Task—Part One is changed to “Now, please click
‘Next’ to proceed to the third part of the experiment.” Similarly, the last sentence of the current Main
Task—Part Two is changed to “Now, please click ‘Next’ to proceed to the second part of the experiment.”
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you will be called a RED participant; if you are in the BLUE group, you will be called a

BLUE participant. You will remain in the same group for the entire experiment.

The main task of the experiment consists of three parts, each containing six rounds. In
each round, you will be randomly matched with an opponent from the other group.
Furthermore, in each round, you will only be matched with a participant who has not
been matched with you previously within the same part. In other words, you will be

matched with each participant at most once in each part.
Decisions

Every round in the experiment has the same format, as represented in Figure 1.

1 2 3 4 5 6
- - R R N . X7
- - - - T Y7
X1 X2 X3 X4 X5 X6
Y1 Y2 Y3 Y4 Y5 Y6
Figure 1

In each round, there are six circles labeled as “decision node 1”7 to “decision node 6”7 from
left to right. The figure should be read from left to right, as indicated by the directions
of the arrows. The “points” you and the other participant can earn are represented by

X and Y, and colored according to their group colors.

Throughout these instructions, X and Y are just placeholders. In the actual rounds, all

payoffs will be positive integer values.

At each node, the participant with the same color as the node can decide to either
“Continue” or “Stop.” In summary, the outcome of a round is determined by the following

rules:

e The participant who chooses “Stop” in an earlier node ends the round, and the
round ends at the node where this participant chooses “Stop.” Participants receive

the corresponding payoffs at this node.

e If both participants choose “Continue” throughout the entire round, the round will

end at the last node (decision node 6). The corresponding payoffs are (X7, Y7).
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Below, we provide a detailed description.

As shown in Figure 2, if the RED participant chooses “Stop” at decision node 1, the
RED participant receives X1, the BLUE participant receives Y1, and this round ends.

1 2 3 4 5 6
R R N N - . X7
i i i i T Y7
X1 X2 X3 X4 X5 X6
Y1 Y2 Y3 Y4 Y5 Y6
Figure 2

If the RED participant chooses “Continue,” this round proceeds to decision node 2.

As shown in Figure 3, if the BLUE participant chooses “Stop” at decision node 2,
the RED participant receives X2, the BLUE participant receives Y2, and this round ends.

1 2 3 4 5 6
R R N - N . X7
i i i - i T Y7
X1 X2 X3 X4 X5 X6
Y1 Y2 Y3 Y4 Y5 Y6
Figure 3

If the BLUE participant chooses “Continue,” this round proceeds to decision node 3.

As shown in Figure 4, if the RED participant chooses “Stop” at decision node 3, the
RED participant receives X3, the BLUE participant receives Y3, and this round ends.
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Figure 4

If the RED participant chooses “Continue,” this round proceeds to decision node 4.

As shown in Figure 5, if the BLUE participant chooses “Stop” at decision node 4,
the RED participant receives X4, the BLUE participant receives Y4, and this round ends.

1 2 3 4 5 6
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i - " - " T Y7
X1 X2 X3 X4 X5 X6
Y1 Y2 Y3 Y4 Y5 Y6
Figure 5

If the BLUE participant chooses “Continue,” this round proceeds to decision node 5.

As shown in Figure 6, if the RED participant chooses “Stop” at decision node 5, the
RED participant receives X5, the BLUE participant receives Y5, and this round ends.

1 2 3 4 5 6
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Y1 Y2 Y3 Y4 Y5 Y6
Figure 6

If the RED participant chooses “Continue,” this round proceeds to decision node 6.
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As shown in Figure 7, if the BLUE participant chooses “Stop” at decision node 6,
the RED participant receives X6, the BLUE participant receives Y6, and this round ends.

1 2 3 a4 5 6
- - - - N . X7
i i i i " T Y7
X1 X2 X3 X4 X5 X6
Y1 Y2 Y3 Y4 Y5 Y6
Figure 7

As shown in Figure 8, if the BLUE participant chooses “Continue” at decision node
6, the RED participant receives X7, the BLUE participant receives Y7, and this round

ends.

1 2 3 4 5 6
. S N . . X7
- - . . Y7
X1 X2 X3 X4 X5 X6
Y1 Y2 Y3 Y4 Y5 Y6
Figure 8

Payment

e At the end of the experiment, the computer will randomly select one round from

each part, and all participants will be paid according to the selected rounds.

e You will be paid based on your choices and the choices made by the participant

matched with you in the selected rounds.

Reminder

The experiment has 3 parts and each part has 6 rounds. In each part, you will be matched

with each participant at most once.

Main Task — Part One
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In each round of this part, you and the other participant you are matched with will make

decisions simultaneously, and both of your earnings are determined by your choices.

If you are in the RED group, you will make your decisions on the following screen, where

you choose between four rectangles corresponding to four choices: “Stop 1,” “Stop 3,”

”

“Stop 5” and “Always Continue,” as shown in Figure 9.
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Figure 9

If you are in the BLUE group, you will make your decisions on the following screen, where
you choose between four rectangles corresponding to four choices: “Stop 2,” “Stop 4,”

“Stop 6” and “Always Continue,” as shown in Figure 10.
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Figure 10

In summary, the outcome of a round is determined by the following rules:

e The participant who chooses “Stop” in an earlier node ends the round, and the
round ends at the node where this participant chooses “Stop.” Participants receive

the corresponding payoffs at this node.
e If both participants choose “Always Continue,” the corresponding payoffs are (X7,
YT7).

Note that at the beginning of each round, there is a 10-second delay before you can

submit your decisions.
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Now, please click “Next” to proceed to the first part of the experiment.

Main Task — Part Two

In each round of this part, you and the other participant you are matched with will make

decisions simultaneously, and both of your earnings are determined by your choices.

If you are in the RED group, you will make your decisions on the following screen. At each
node of your color, you choose between two rectangles corresponding to either “Stop”

or “Continue” at the given node, as shown in Figure 11.
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Figure 11

If you are in the BLUE group, you will make your decisions on the following screen.
At each node of your color, you choose between two rectangles corresponding to either

“Stop” or “Continue” at the given node, as shown in Figure 12.
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Figure 12

In summary, the outcome of a round is determined by the following rules:

e The participant who chooses “Stop” in an earlier node ends the round, and the

round ends at the node where this participant chooses “Stop.” Participants receive

the corresponding payoffs at this node.

e If both participants choose “Continue” at every decision node, the corresponding

payoffs are (X7, YT).
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Note that at the beginning of each round, there is a 10-second delay before you can

submit your decisions.

Now, please click “Next” to proceed to the second part of the experiment.

Main Task — Part Three

In each round of this part, you and the other participant you are matched with will
make decisions sequentially starting from decision node 1, and both of your earnings

are determined by your choices.

As shown in Figure 13, if the RED participant chooses “Stop” at decision node 1,
the RED participant receives X1, the BLUE participant receives Y1, and this round ends.

1 2 3 4 5 6
i R R g g - X7
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X1 X2 X3 X4 X5 X6
Y1 Y2 Y3 Y4 Y5 Y6
Figure 13

If the RED participant chooses “Continue,” this round proceeds to decision node 2.

As shown in Figure 14, if the BLUE participant chooses “Stop” at decision node
2, the RED participant receives X2, the BLUE participant receives Y2, and this round

ends.

1 2 3 4q 5 6
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Figure 14

If the BLUE participant chooses “Continue,” this round proceeds to decision node 3.
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As shown in Figure 15, if the RED participant chooses “Stop” at decision node 3,
the RED participant receives X3, the BLUE participant receives Y3, and this round ends.

1 2 3 4q 5 6
N R R - X7
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X3 X4 X5 X6
Y3 Y4 Y5 Y6
Figure 15

If the RED participant chooses “Continue,” this round proceeds to decision node 4.

As shown in Figure 16, if the BLUE participant chooses “Stop” at decision node
4, the RED participant receives X4, the BLUE participant receives Y4, and this round

ends.
5 6
R & X7
g g T Y7
X4 X5 X6
Y4 Y5 Y6

Figure 16

If the BLUE participant chooses “Continue,” this round proceeds to decision node 5.

As shown in Figure 17, if the RED participant chooses “Stop” at decision node 5,
the RED participant receives X5, the BLUE participant receives Y5, and this round ends.
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Figure 17
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If the RED participant chooses “Continue,” this round proceeds to decision node 6.

As shown in Figure 18, if the BLUE participant chooses “Stop” at decision node
6, the RED participant receives X6, the BLUE participant receives Y6, and this round

ends.
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Figure 18

As shown in Figure 19, if the BLUE participant chooses “Continue” at decision node
6, the RED participant receives X7, the BLUE participant receives Y7, and this round

ends.

Figure 19

Note that at the beginning of each round, there is a 10-second delay before you can

submit your decisions.

Now, please click “Next” to proceed to the third part of the experiment.

A.2 Additional Tables and Figures

This appendix includes two additional tables and two additional figures that supplement
the analysis in the main text. Figure A.1 displays the six game trees implemented in the
experiment. Figure A.2 presents the CDF's of terminal nodes across the three elicitation
methods. Lastly, Tables A.1 and A.2 provide summary and test statistics for these

distributions of terminal nodes, forming the foundation of Figure 5 and 4, respectively.
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(a) Small Linear Game (¢ = 0.5) (b) Large Linear Game (¢ = 0.8)
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(c¢) Small Exponential Game (¢ = 2.5) (d) Large Exponential Game (c = 4)
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(e) Small Constant Game (¢ = 0.4) (f) Large Constant Game (c = 0.8)

Figure A.1: The Six Optimally Selected Centipede Games Used in the Experiment. Pay-
offs are expressed in “points,” which were converted to monetary rewards at an exchange
rate of 1 point = USD $0.02.
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Figure A.2: CDFs of Terminal Nodes for All Games and Elicitation Methods

Table A.1: Mean Terminal Nodes and Signed-Rank Tests in Figure 5

Linear Exponential Constant

(c=0.5) (¢=08) (¢=25) (¢c=4) (¢=04) (c=0.8)

Panel A. Mean Terminal Nodes Across Elicitation Methods

Direct Response Method 4.604 5.396 5.365 4.646 1.229 1.917
(1.765) (1.544) (1.284)  (1.315)  (0.467) (0.898)

Reduced Strategy Method — 4.906 5.375 5.385 4.698 1.406 2.240
(1.627) (1.715) (1.278)  (1.174)  (0.811) (0.997)

Full Strategy Method 4.312 5.490 5.344 4.510 1.510 2.000
(1.710) (1.541) (1.171)  (1.422)  (0.890) (1.109)

Panel B. Pairwise Signed-Rank Tests p-Values

DR vs. RS 0.365 1.000 1.000 1.000 0.022 0.005
DR vs. FS 0.486 1.000 1.000 1.000 0.001 1.000
FS vs. RS 0.005 1.000 1.000 0.502 0.374 0.119

L The standard deviations are reported in parentheses.
2 The bottom three rows report two-sided signed-rank test p-values, adjusted using the Bonferroni correction.
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Table A.2: Empirical Terminal Node Frequencies and Friedman Tests in Figure 4

Friedman Eliciting Terminal Node Frequencies
p-values  Methods 1 2 3 4 ) 6 7
Linesr DR 0.094 0.073 0.073 0.115 0.312 0.208 0.125
(c=0.5) 0.040 RS 0.083 0.010 0.052 0.177 0.271 0.260 0.146
FS 0.062 0.104 0.188 0.104 0.312 0.104 0.125
Linear DR 0.031 0.042 0.042 0.094 0.260 0.240 0.292
(c=08) 0.836 RS 0.083 0.021 0.031 0.052 0.177 0.385 0.250
FS 0.031 0.052 0.042 0.021 0.271 0.292 0.292
. DR 0.021 0.010 0.062 0.083 0.302 0.354 0.167
Exponential
(c=25) 0.692 RS 0.031 0.021 0.021 0.052 0.354 0.375 0.146
FS 0.000 0.042 0.042 0.083 0.312 0.406 0.115
. DR 0.021 0.062 0.073 0.229 0.396 0.146 0.073
Exponential
(c= 1) 0.716 RS 0.021 0.042 0.062 0.219 0427 0.208 0.021
FS 0.042 0.062 0.083 0.281 0.271 0.208 0.052
Constant DR 0.792 0.188 0.021 0.000 0.000 0.000 0.000
(c=04) 0.000 RS 0.719 0.219 0.021 0.021 0.021 0.000 0.000
FS 0.625 0.302 0.052 0.000 0.010 0.000 0.010
Constant DR 0.365 0.427 0.146 0.052 0.010 0.000 0.000
(c=08) 0.004 RS 0.208 0.458 0.271 0.031 0.021 0.000 0.010

FS 0.365 0.417 0.135 0.052 0.010 0.010 0.010

The column “Friedman p-values” reports the p-values from Friedman tests, which test the null hypoth-
esis that the distributions of terminal nodes are identical across the three elicitation methods.

A.3 Estimation Details for AQRE and QDCH

This appendix describes the estimation procedures for AQRE and QDCH. Since DCH is
nested within QDCH, the estimation procedure for DCH is a special case of estimating
QDCH, which we discuss at the end.

Data Before we dive into the estimation procedure, we first describe the observed data
under each elicitation method. Under the full strategy method, each player in each game
is asked to submit one of eight full strategies, corresponding to choosing either take (7")
or pass (P) at each of their own decision nodes. Thus, each player’s action set under the

full strategy method is:
{r171, TTP, TPT,TPP,PTT,PTP,PPT,PPP}.

In contrast to the full strategy method, under the reduced strategy method, each player

in each game is asked to submit one of four (structurally) reduced strategies. Since
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each player has three decision nodes and the game ends as soon as someone chooses to
take, each player’s reduced strategy corresponds to taking at their first, second, or third

decision node, or never taking. The action set is thus given by:
{T,PT,PPT,PPP}.

Lastly, under the direct response method, the centipede game is played sequentially
in its extensive form. As a result, we observe only the pass/take choices at the decision

nodes along the realized histories.

Estimation for Logit-AQRE The logit-AQRE is defined as the solution to a system
of nonlinear equations where all players make logit quantal responses. Specifically, for
any history h and any action a available at h, the probability of choosing a in logit-AQRE

is given by:
Aiia

xa
Dweam) €

where A(h) is the set of available actions at history h, @, is the equilibrium (expected)

oi(alh) =

continuation value of choosing any a’ € A(h), and A € [0, 00) is the precision parameter.

For each participant i, let H; denote the set of histories (or centipede games) that
participant ¢ encountered during the experiment. When the centipede game is played
under the full or reduced strategy method, the only history is the empty history, and
the logit-AQRE reduces to the logit-QRE, which specifies the choice probabilities over
all eight full strategies or all four reduced strategies for both Player 1 and Player 2,
respectively. Yet when the game is played under the direct response method, there are
six histories, corresponding to six terminal nodes.

We use A(a;lh;, A) to denote the choice probability of action a; at history h;. This
represents the probability of choosing a full or reduced strategy a; when the game is played
under the full or reduced strategy method, respectively; and the probability of choosing
a; € {P,T} under the direct response method. Accordingly, the log-likelihood function
for logit-AQRE can be constructed by summing over all participants ¢, all histories h;,

and all actions a;:
I LAQRE () = 575N 1{ay, b} InfA(a i, A)]
7 h2 a;

where 1{a;, h;} is an indicator function equal to 1 if participant i chooses action a; at

history h;, and 0 otherwise.

Estimation for QDCH The Quantal Dynamic Cognitive Hierarchy (QDCH) Solution
is a natural extension of DCH which assumes all strategic levels of players make quantal

responses instead of best responses. Therefore, QDCH is a two-parameter model where
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A € [0, 00) is the precision parameter and the distribution of levels follows a Poisson(r).

We use 6% (a;|hi, 7, \) to denote the probability that a level-k player i chooses action
a; at history h; € H;. This is uniquely determined, as the QDCH solution is unique.
Furthermore, let f(k|h;, 7, A) denote the posterior distribution of levels at history h;.
The choice probability for action a; at history h; predicted by QDCH is then given by the

aggregation of choice probabilities across all levels, weighted by the posterior distribution

f(k|hi, T, N):

Q(ailhi,T; >\) = Zf(k’hluTa )‘)&f(az‘hla7—7 )\>
k

Consequently, the log-likelihood function for QDCH can be constructed by summing over

all participants ¢, all histories h;, and all actions a;:

In LQDCH (- 3y = Z S5 1{a bk m[Qaslhi, 7 V)]

i

where 1{a;, h;} is an indicator function equal to 1 if participant ¢ chooses action a; at
history h;, and 0 otherwise.

Note that DCH is nested in QDCH, as QDCH converges to DCH as A — oo. Moreover,
when estimating QDCH using the main data we cap the level at 50 to ensure more precise
estimation. When estimating the pilot data, we cap the level at 10 since the proportion

of levels above 10 is negligible.

Computing Standard Errors We compute standard errors for the estimates using
1,000 bootstrap replications. For the data from the full and reduced strategy methods,
each replication resamples the observed full and reduced strategies with replacement from
the original data, respectively. For the direct response method, due to the incomplete
elicitation of strategies, each replication resamples the observed terminal nodes with
replacement. We then recover the decision node choices from the terminal nodes to
perform maximum likelihood estimation.

To avoid convergence to local maxima, we estimate the original model parameters
using a global search procedure. However, due to computational constraints, performing
a global search in each of the 1,000 bootstrap replications is infeasible. Instead, for each
replication, we apply a standard optimization procedure using the globally estimated
original parameters as initial values. The bootstrap standard errors are then computed
as the standard deviations of the resulting estimates across replications. As a result, the

reported standard errors are conservative estimations, as they may be overestimated.
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A.4 Optimal Design Details

This appendix provides details of our optimal design procedure. Section A.4.1 presents
the analysis of our pilot data. Section A.4.2 then offers a detailed description of the opti-
mal game selection procedure, along with a robustness analysis of our selection. Finally,
Section A.4.3 revisits our optimal design approach using the Quantal Dynamic Cognitive

Hierarchy (QDCH) solution.

A.4.1 Pilot Data Analysis

Table A.3: Mean Terminal Nodes and DCH Estimation Results from the Pilot Data

irect Response educe rategy Pooled Data

Method Method
Panel A. Mean Terminal Nodes*
Linear (¢ = 0.40) 4.00 5.25 4.63
Linear (¢ = 0.60) 6.50 5.25 5.88
Linear (¢ = 0.75) 6.25 5.75 6.00
Linear (¢ = 0.90) 6.50 5.75 6.13
Panel B. Structural Estimation of DCH
T 1.14 1.75 1.25
S.E. (0.19) (0.37) (0.16)
Observations? 88 32 120
Log-Likelihood -32.71 -23.72 -57.05
Likelihood Ratio Test3 — — 1.24
p-value — — 0.26

I Each treatment included eight participants, and each participant played each game once.
Therefore, there are only four observations of (inferred) terminal nodes per game in each
treatment.

2 The estimation for the direct response method treatment is based on 88 decision-node
choices, while the estimation for the reduced strategy method treatment is based on 32
choices of reduced strategies.

2-We perform a likelihood ratio test to evaluate the null hypothesis that the estimated 7
values from both treatments are equal.

Table A.3 summarizes the analysis of our pilot experiment. Panel A reports the
mean (inferred) terminal nodes for each treatment and for the pooled data. Since each
treatment included only eight participants, and each participant played each game once,
there are just four observations of terminal nodes per game in each treatment. As a
result, no statistical tests are conducted due to the limited sample size.

Furthermore, we calibrate DCH using maximum likelihood estimation, following the
procedure described in Section 4.1 and Appendix A.3. Panel B of Table A.3 reports the

20



results, including estimates based on the pooled data and those from each treatment.

Our optimal design approach implicitly assumes that the distribution of levels is in-
dependent of the elicitation method. To test this assumption, we estimate the parameter
separately for each treatment and conduct a likelihood ratio test of the null hypothe-
sis that the estimated 7 values are equal across treatments. As shown in Panel B of
Table A.3, the null is not rejected (Likelihood ratio test: X%U = 1.24, p-value = 0.26),
suggesting that this assumption is supported by our pilot data.

A.4.2 Robustness of Optimal Game Selection

The goal of our optimal design approach is to select two games from each class: one
expected to exhibit a large strategy method effect, as predicted by the calibrated DCH,
and another with a small effect to serve as a quasi-placebo. In this appendix, we demon-
strate the robustness of our game selection by showing that (1) the predicted strategy
method effects for the selected games remain stable across a range of 7 values around
the estimated 7 = 1.25, and (2) the games selected for large effects are expected to yield
statistically significant differences between elicitation methods. Finally, we describe how
we rescale the payoff parameters when implementing these games in the experiment to

ensure stable expected earnings across all games.

A.4.2.1 Sensitivity Analysis with Respect to 7

Since we calibrate DCH using small-scale pilot data, our estimates of the sweet spots
that generate large strategy method effects may lack precision. To assess the robustness
of our game selection, given our estimate of 7 = 1.25 with a standard error of 0.16, we
plot the sup-norm functions for 7 = 1 and 7 = 1.5 (for each class of games), which are
approximately 1.68 standard errors from 7. As we show below, the games selected for

large effects indeed yield large strategy method effects at these alternative values of 7.

Linear Centipede Games Figure A.3 plots the sup-norm function S(c) for linear
games under three values of 7: 1, 1.25, and 1.5. For the linear game with a smaller
predicted strategy method effect, we select ¢ = 0.5 to yield more rounded payoffs, thereby
enhancing comprehensibility. As shown in the figure, ¢ = 0.5 consistently produces small
effects across all three values of 7. In contrast, for the linear game with a larger predicted
effect, we choose ¢ = 0.8, which offers reasonably rounded payoffs and stable predicted

magnitudes of the strategy method effect across these values of 7.

51



Linear (T=1) Linear (T=1.25) Linear (T=1.5)

0.5 0.5 0.5

04 04 0.4

0.8

T 0.8 T
0.2 0.2 0.2
0.5

0.1 0.1 0.1

Sup-norm
Sup-norm
Sup-norm

0.5

0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C C C

Figure A.3: The sup-norm function S(c) for linear games at 7 = 1 (left), 7 = 1.25
(middle), and 7 = 1.5 (right).

Exponential Centipede Games For exponential games, recall that we set the mul-
tiplier m = 2 to prevent payoffs from becoming excessively large in the later stages.
Figure A.4 plots the sup-norm function S(c) for exponential games under three values of
7: 1, 1.25, and 1.5. For the exponential game with a smaller predicted strategy method
effect, we select ¢ = 2.5 due to budget constraints—even though a larger value, such as
c = 5.5, yields a slightly more stable magnitude of the effect. For the game with a larger
predicted strategy method effect, we select ¢ = 4. Although ¢ = 3.5 is slightly more
stable across values of 7, we choose ¢ = 4 for its comparability with prior literature (e.g.,
McKelvey and Palfrey, 1992; Garcia-Pola et al., 2020).
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Figure A.4: The sup-norm function S(c) for exponential games at 7 = 1 (left), 7 = 1.25
(middle), and 7 = 1.5 (right).

Constant Centipede Games Figure A.5 displays the sup-norm function S(c¢) for
constant games under each of the three values of 7: 1, 1.25, and 1.5. As shown in the
figure, the sup-norm is (almost) monotonically increasing in ¢ across these values of 7.
This implies that DCH predicts larger effects in games with higher values of ¢. To avoid
selecting a large game too close to the boundary, we choose ¢ = 0.8. Similarly, for the

small game, we select ¢ = 0.4, which yields reasonably rounded payoffs while remaining
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well within the interior of the parameter space.
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Figure A.5: The sup-norm function S(c) for constant games at 7 = 1 (left), 7 = 1.25
(middle), and 7 = 1.5 (right).

A.4.2.2 Statistical Significance of Selected Games

In this appendix, we assess whether our selected large and small games are sufficiently
different such that the large games are expected to yield statistically significant effects,
while the small games are not. We use the two-sample Kolmogorov—Smirnov (KS) test as
our benchmark because its test statistic is based on the sup-norm and, more importantly,
it serves as a conservative benchmark due to its low power.

The expected sup-norm predicted by the calibrated DCH for each game is reported in
Table A.4. We then compute the expected p-values of the two-sample KS test using these
predicted sup-norms and a planned sample size of 192 participants, yielding 96 terminal
nodes per game under each elicitation method. Specifically, the p-values are calculated
as follows:

p=2 Z(—l)j’1 exp(—2j2)%)  where X = /488,

Jj=1

35 used in the two-

S denotes the expected sup-norm, and 48 is the effective sample size
sample KS test. Based on this calculation, all large games are expected to yield significant
elicitation method effects at the 1% level, while the small games are not significant, as
reported in Table A .4.

To compare these predictions with the experimental data from the main sessions,
we compute the empirical sup-norm between the terminal node CDFs under the direct
response and reduced strategy methods. The (inferred) terminal nodes for the reduced
strategy method are calculated by assuming that players are paired exactly as they were

in the direct response method. The sup-norm for each game, along with the corresponding

35Let n and m be the sample sizes of the two distributions. The effective sample size for the two-sample

. nm . o aa . ; e i 96X96
KS test is 27, Given n =m = 96 in our experiment, the effective sample size is 96106 — 18-
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Table A.4: Predicted vs. Empirical Sup-norms and KS Test p-values (DR vs. RS)

Linear Exponential Constant
c=05 ¢c=038 c=25 c=4 c=04 ¢c=038
(small) (large) (small) (large) (small) (large)

Sup-norm (Direct Response vs. Reduced Strateqy Methods)
Predicted 0.128  0.251 0.188  0.251 0.072  0.460
Empirical  0.094  0.104 0.052  0.052 0.073  0.156

Kolmogorov-Smirnov Test p-value
Predicted 0.413 0.005f 0.068  0.005 0.966 0.000f
Empirical  0.796 0.678 1.000 1.000 0.962 0.192

1 indicates that the game is expected to yield statistically significant strategy method
effects under the Kolmogorov—Smirnov test at the 1% significance level, given a sam-
ple of 192 participants.

p-value from the two-sample KS test, is reported in Table A.4. From the table, we can
find that despite the model predictions, the realized differences are smaller in magnitude

and statistically indistinguishable, given the limited power of the two-sample KS test.

A.4.2.3 Rescaling the Payoffs

When implementing these optimally designed games, we rescale the payoffs to eliminate
decimal numbers and reduce potential cognitive burdens for participants. Specifically,
for constant games, we multiply all payoffs by 250 to ensure that each payoff is at least
one point. Under this transformation, the total payoff for both players in each constant
game is 500 points. Our goal is then to rescale the payoffs in the other four games so
that expected earnings are comparable across all games.

For linear games, we rescale the payoffs using the transformation f(x) = 100z + 50,
so that in the small linear game, the total payoff at the fourth terminal node is exactly
500 points. Lastly, for exponential games, to prevent payoffs from exploding in the later
stages, we apply a more conservative rescaling by multiplying the payoffs by 4, resulting
in a total payoff of approximately 500 points at the sixth terminal node of the small
exponential game. The final game trees after rescaling are shown in Figure A.1.

In short, we rescale the payoffs to ensure that expected earnings are comparable across
all games. Since only one game from each treatment is randomly selected for payment,
this rescaling effectively reduces the variance in realized payments. Moreover, because the
logit quantal response precision parameter A is sensitive to the scale of payoffs, rescaling

also ensures that the estimated A\ comparable across different families of games.
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A.4.3 QDCH Calibration

In this section, we assess how much incorporating quantal responses into the DCH solution
improves our optimal design approach and predictions about the relative magnitudes of
the strategy method effect. Specifically, we calibrate QDCH on the pilot data to generate
qualitative predictions for the relative magnitudes of the strategy method effect across
our six optimally selected centipede games. This exercise is to evaluate the out-of-sample
predictability of QDCH using the pilot data as training data.

Following the same calibration procedure on the pilot data, we calibrate QDCH with
7 =260 and A = 0.05 (Obs. = 120, S.E. of 7 = 0.76, S.E. of A = 0.01, log-likelihood
= —45.29). Using these estimates, we compute the CDFs predicted by the calibrated
QDCH for each class of games under the three elicitation methods, and then calculate
the sup-norm distances between these distributions. The sup-norm functions are shown in
Figure A.6, and the sup-norm distances for the selected games are reported in Table A.5.

In general, the predictions of QDCH vary across the three elicitation methods due to
the effect of quantal responses. Accordingly, Table A.5 reports the pairwise sup-norm
distances between the distributions under each method. From the table, we can first see
that despite the presence of quantal response effects, the calibrated QDCH, like DCH,
does not predict any significant difference between the direct response method and the

full strategy method.

Linear Exponential Constant
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Figure A.6: The sup-norm function S(c) for linear (left), exponential (middle), and
constant (right) centipede games, based on predictions from the calibrated QDCH.

However, QDCH makes strikingly different qualitative predictions compared to DCH
when comparing the direct response and full strategy methods to the reduced strategy
method. Rather than predicting stronger strategy method effects in all three Large games,
as DCH does, the calibrated QDCH qualitatively predicts that the strategy method effects
in the Small Linear game (¢ = 0.5) and the Large Constant game (¢ = 0.8) are stronger

than those in the remaining four games.

QDCH Strategy Method Effect: The calibrated QDCH predicts that
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Table A.5: The Predicted Sup-norm of the Selected Centipede Games by QDCH

Linear Exponential Constant
c=05 ¢c=08 c=25 c=4 c=04 ¢c=038
(small) (large) (small) (large) (small) (large)

Sup-norm (RS vs. DR) 0.265"  0.046 0.151  0.043 0.065 0.3167
Sup-norm (RS vs. FS) 0.430"7  0.143 0.118  0.166 0.091 0.367
Sup-norm (FS vs. DR)  0.198 0.097 0.192  0.203 0.026  0.051

t indicates that the game is expected to yield statistically significant strategy method effects under
the Kolmogorov—Smirnov test at the 1% significance level, given a sample of 192 participants.

1. there is no significant difference between the direct response method and the full

strateqy method across all siz games;

2. the differences between the direct response method/full strategy method and the re-
duced strategy method are larger in the Small Linear game and the Large Constant

game than in the other four games.

To evaluate this prediction, we reproduce the analysis of the relative magnitudes
of the effects in Table 3 by grouping the Small Linear game (¢ = 0.5) and the Large
Constant game (¢ = 0.8) as games with large effects, denoted Large®, and classifying the
remaining four games as games with small effects, denoted Small?. We then compute the
mean differences in terminal nodes between elicitation methods for both groups, denoted
A% and Ag, and use A% — Ag as a measure of the relative magnitude of the strategy
method effects. These quantities are reported in Table A.6.

From Table A.6, we first observe that, when comparing the full strategy method to
the direct response method, neither ACL), Ag, nor A% — A? differs significantly from
zero, consistent with the prediction of QDCH. Furthermore, when comparing the re-
duced strategy method with the direct response method/full strategy method, we find
significant strategy method effects in the Large® games, but not in the Small? games.
More importantly, the relative magnitudes of these effects differ significantly across the
two groups of games: A% — Ag = 0.255 for the RS vs. DR comparison (rank-sum test,
p-value = 0.057) and A% — Ag = 0.414 for the RS vs. FS comparison (rank-sum test,
p-value = 0.003), consistent with the qualitative predictions of the calibrated QDCH.
These findings indicate that the relative magnitudes of the observed strategy method
effects align with the predictions of the calibrated QDCH.

Result A.1 For the comparison between the direct response method/full strategy method
and the reduced strategy method, the strategy method effects are significantly stronger in
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Table A.6: Relative Magnitudes of Strategy Method Effects (Grouped Under QDCH)

A in Terminal Nodes

A7 A AF - A%
0.312 0.057 0.255

RS — DR
p=0003 p=035  p=0.057
0.417 0.003 0.414

RS - FS
p=0000 p=0681  p=0.003
-0.104 0.055 -0.159

FS - DR

p=0440 p=0488  p=0.255

Statistical inferences of A9 and Ag are based on the
signed-rank test, while those of A% — Ag are based on
the rank-sum test, with p-values reported below.

the small linear game and the large constant game than in the other four games, consistent
with the qualitative prediction of the calibrated (QDCH.

A.5 Additional Robustness Analyses
A.5.1 Order Effect

An important robustness check in our within-subject design is to assess whether the
sequence in which the elicitation methods were implemented had any influence on partic-
ipants’ behavior. In the experiment, we deliberately alternated the order of the two
strategy-method treatments across sessions—full strategy (FS) and reduced strategy
(RS)—while consistently implementing the direct response (DR) treatment last. This
design choice was intended to avoid feedback contamination: no feedback was provided
between games or between the first two treatments, and the direct response was placed
at the end because sequential play inherently reveals the outcome to participants.

To evaluate whether there is any significant order effect, we compare the distribu-
tions of terminal nodes between the FR and RF Orders within each elicitation method.
Table A.7 reports the corresponding results. The “FR Order” and “RF Order” columns
display the mean terminal nodes and their standard deviations (in parentheses) for the
FS-then-RS and RS-then-FS sessions, respectively. We use the rank-sum test to assess
whether the distributions of terminal nodes differ significantly across the two orders for
each elicitation method; the resulting p-values are reported in the “p-values” columns.

As shown in the “Pooled Data” row of Table A.7, there is no compelling evidence that

the terminal node distributions differ significantly between the two ordering conditions
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Table A.7: Comparison Between the FR Order and the RF Order

Direct Response Method Reduced Strategy Method Full Strategy Method

Mean Terminal Nodes FR Order RF Order p-values FR Order RF Order p-values FR Order RF Order p-values

Pooled Data 3.812 3.906 0.653 4.056 3.948 0.543 3.851 3.872 0.918
(2.110) (2.084) (2.011) (2.085) (2.026) (2.070)

Small Linear 4.604 4.604 0.940 4.917 4.896 0.946 4.167 4.458 0.412
(1.717) (1.811) (1.525) (1.723) (1.783) (1.620)

Large Linear 5.271 5.521 0.618 5.667 5.083 0.407 5.562 5.417 0.918
(1.655) (1.414) (1.296) (2.009) (1.353) (1.706)

Small Exponential 5.292 5.438 0.933 5.562 5.208 0.208 5.417 5.271 0.578
(1.485) (1.039) (1.059) (1.443) (1.115) (1.220)

Large Exponential 4.604 4.688 0.760 4.625 4.771 0.468 4.479 4.542 0.657
(1.350) (1.277) (1.130) (1.212) (1.354) (1.485)

Small Constant 1.167 1.292 0.282 1.396 1.417 0.852 1.521 1.500 0.655
(0.373) (0.538) (0.729) (0.886) (0.790) (0.979)

Large Constant 1.938 1.896 0.727 2.167 2.312 0.575 1.958 2.042 0.814
(0.876) (0.918) (0.874) (1.102) (1.020) (1.190)

L The standard deviations are reported in parentheses.
2 The statistical inference is based on the rank-sum test between the two orders.

for any of the three elicitation methods. When we further disaggregate the analysis to the
game level, the conclusion remains unchanged. The second part of Table A.7 reports the
corresponding p-values from the rank-sum tests, which remain statistically insignificant
across all games and elicitation methods. These results indicate that the terminal node
distributions are statistically indistinguishable between the two orders. Thus, we conclude

that there is no significant order effect.

Result A.2 There is no statistically significant difference between the FR and RF orders.

A.5.2 Robustness Analysis for Structural Estimation

As a robustness analysis, we disaggregate the structural estimation in Section 6 by differ-
ence classes of games to examine whether our main findings persist across different payoff
structures (Tables A.8, A.9, and A.10, respectively). Across all game classes, we find
that incorporating quantal responses into DCH (i.e., QDCH) continues to substantially
improve model fit. QDCH consistently yields higher likelihood scores than DCH across
all elicitation methods and in the pooled data. Likelihood ratio tests confirm that this
improvement is statistically significant in all classes (p-values < 0.001), indicating that
the quantal response effect is robust across different game structures.

Next, we assess whether the observed deviations from strategic equivalence are pri-
marily driven by the quantal response component or the DCH mechanism by comparing
QDCH with AQRE using the Vuong test. For linear games, QDCH significantly outper-
forms AQRE across all treatments as well as in the pooled data (pooled p-value < 0.001).
For exponential games, the pattern is similar: QDCH outperforms AQRE in both the
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reduced and direct response treatments and in the pooled data (pooled p-value < 0.001),
although the difference is not statistically significant under the full strategy method (p-
value = 0.539). This suggests that the DCH mechanism may play only a limited role
under the full strategy method for exponential games. For constant games, QDCH also
outperforms AQRE in the pooled data (pooled p-value < 0.001), but the difference is less
pronounced than in the other game classes. In fact, QDCH and AQRE differ significantly
at the 1% level only in the pooled data.

Overall, the analysis confirms the robustness of our main conclusions. Both the quan-
tal response and DCH mechanisms contribute to the strategy method effect, though their
relative importance varies across game structures and elicitation methods. Quantal re-
sponses consistently lead to substantial improvements in model fit, whereas the influence
of the DCH mechanism appears more context-dependent—stronger in linear games and

weaker in constant games.

Table A.8: Estimation Results and Model Comparisons for Linear Games

Reduced Strategy Method Full Strategy Method Direct Response Method Pooled Data
QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE

T 1.741 0.665 3.100 0.875 2.544 1.042 2.363 0.875
SE. (0.222) (0.084) (0.379)  (0.034) (0.297)  (0.079) — (0.175)  (0.025) —

A 0.026 — 0.014 0.046 — 0.027 0.032 — 0.019 0.040 — 0.019
S.E.  (0.004) — (0.001) (0.005) — (0.001) (0.003) — (0.001) (0.003) — (0.001)
LL -398 -444 -425 -496 -618 -518 -360 -419 -386 -1283 -1488 -1359
A% 11.6% 6.8% 24.6% 4.4% 16.4% 7.2% 16.0% 5.9%
LRT 93.3 243.7 117.9 — 411.1 —

Vuong — 3.425 — 2.389 — 3.167 — 4.406
p-value < 0.001 < 0.001 < 0.001 0.017 < 0.001 0.002 < 0.001 < 0.001

L The estimations for the reduced and full strategy method treatments are based on 384 choices of reduced and complete strategies, respectively. The
estimation for the direct response method treatment is based on 920 decision-node choices.

2- A% indicates the percentage improvement in likelihood relative to QDCH.

3- For the Vuong test of the direct response method treatment, we account for the interdependence of decision-node choices by conducting the test on
the 192 observations of terminal nodes.
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Table A.9: Estimation Results and Model Comparisons for Exponential Games

Reduced Strategy Method Full Strategy Method Direct Response Method

Pooled Data
QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE

T 4.754 1.828 7.037 1.303 4.561 1.485 5.218 1.584
SE.  (0.197) (0.347) (2.819)  (0.087) (0.295)  (0.101) (0.214)  (0.098)

A 0.012 — 0.011 0.019 — 0.017 0.015 0.012 0.017 — 0.014
S.E.  (0.002) (0.001) (0.002) — (0.001) (0.001) (0.001) (0.001) — (0.001)
LL -393 -453 -400 -469 -533 -470 -341 -380 -371 -1229 -1374 -1257
A% 15.3% 1.8% 13.6% 0.2% 11.4% 8.8% 11.8% 2.3%
LRT 118.9 126.7 76.6 — 290.3

Vuong 3.670 — 0.614 5.218 — 3.781
p-value < 0.001 < 0.001 < 0.001 0.539 < 0.001 < 0.001 < 0.001 < 0.001

- The estimations for the reduced and full strategy method treatments are based on 384 choices of reduced and complete strategies, respectively. The
estimation for the direct response method treatment is based on 938 decision-node choices.

2 A% indicates the percentage improvement in likelihood relative to QDCH.

3- For the Vuong test of the direct response method treatment, we account for the interdependence of decision-node choices by conducting the test on the
192 observations of terminal nodes.

Table A.10: Estimation Results and Model Comparisons for Constant Games

Reduced Strategy Method

Full Strategy Method

Direct Response Method

Pooled Data

QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE QDCH DCH AQRE

T 3270 2.176 — 1.043  0.666 — 7.870  1.228 — 2731 1.235
SE.  (0.342) (0.333) — (0.364)  (0.200) — (5.187)  (0.504) — (0.240)  (0.076)

A 0.020 — 0.022 0.031 0.010 0.008 0.008 0.016 0.012
SE.  (0.002) — (0.001)  (0.012) (0.001)  (0.003) (0.001)  (0.001) (0.001)
LL  -346 -381 -353 -761 771 767 -180 -204 -180 -1302  -1374 -1338
A% 101%  2.0% 1.3%  0.8% 13.3%  0.0% 5.5% 2.8%
LRT 71.0 — 20.3 — 48.7 — 142.3

Vuong 2.140 1.823 0.427 4.829
p-value <0.001  0.032 <0.001  0.068 <0.001  0.670 <0.001  <0.001

- The estimations for the reduced and full strategy method treatments are based on 384 choices of reduced and complete strategies, respectively. The
estimation for the direct response method treatment is based on 302 decision-node choices.
2- A% indicates the percentage improvement in likelihood relative to QDCH.

3- For the Vuong test of the direct response method treatment, we account for the interdependence of decision-node choices by conducting the test on
the 192 observations of terminal nodes.
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