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1 Introduction

Cursed equilibrium (CE) proposed by Eyster and Rabin (2005) is a leading behavioral

equilibrium concept that was developed to explain the “winner’s curse” and related

anomalies in applied game theory. The basic idea behind CE is that individuals do

not fully take account of the dependence of other players’ strategic actions on private

information. Cursed behavior of this sort has been detected in a variety of contexts.

Capen et al. (1971) first noted that in oil-lease auctions, “the winner tends to be

the bidder who most overestimates the reserves potential” (Capen et al. (1971), p.

641). Since then, this observation of overbidding relative to the Bayesian equilib-

rium benchmark, which can result in large losses for the winning bidder, has been

widely documented in laboratory auction experiments (Bazerman and Samuelson,

1983; Kagel and Levin, 1986; Kagel et al., 1989; Forsythe et al., 1989; Dyer et al.,

1989; Lind and Plott, 1991; Kagel and Levin, 2009; Ivanov et al., 2010; Camerer et al.,

2016). In addition, the neglect of the connection between the opponents’ actions and

private information is also found in non-auction environments, such as bilateral bar-

gaining games (Samuelson and Bazerman, 1985; Holt and Sherman, 1994; Carrillo and

Palfrey, 2009, 2011), zero-sum betting games with asymmetric information (Rogers

et al., 2009; Søvik, 2009), and voting and jury decisions (Guarnaschelli et al., 2000).

While CE provides a tractable alternative to Bayesian Nash equilibrium and

can explain some anomalous behavior in games with a winner’s-curse structure, a

significant limitation is that it is only developed as a strategic form concept for

simultaneous-move Bayesian games. Thus, when applying the standard CE to dy-

namic games, the CE analysis is carried out on the strategic form representation of

the game, implying that CE cannot distinguish behavior across dynamic games that

differ in their timing of moves but have the same strategic form. That is, players

are assumed to choose type-dependent contingent strategies simultaneously and not

update their beliefs as the history of play unfolds. A further limitation implied by the

strategic form approach is that CE and standard Bayesian Nash equilibrium make

identical predictions in games with a private-values information structure (Eyster and

Rabin (2005), Proposition 2). In this paper we extend the CE in a simple and natu-

ral way to multi-stage games of incomplete information. We call the new equilibrium

concept Cursed Sequential Equilibrium (CSE).
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In Section 2, we present the framework and our extension of cursed equilibrium

to dynamic games. We consider the framework of multi-stage games with observed

actions, introduced by Fudenberg and Tirole (1991b), where players’ private infor-

mation is represented by types, with the assumption that the set of available actions

is independent of their types at each public history. Our new solution concept is

in the same spirit of the cursed equilibrium—in our model, at each stage, players

will (partially) neglect the dependence of the other players’ behavioral strategies on

their types, by placing some weight on the incorrect belief that all types adopt the

average behavioral strategy. Specifically, at each public history, this corresponds to

the average distribution of actions given the current belief about others’ types at that

stage. Therefore, as players update their beliefs about others’ private information via

Bayes’ rule, but with incorrect beliefs about the other players’ behavioral strategies,

in later stages this can lead them to have incorrect beliefs about the other players’

average distribution of actions.

Following Eyster and Rabin (2005)’s notion of cursedness, we parameterize the

model by a single parameter χ ∈ [0, 1] which captures the degree of cursedness and

define fully cursed (χ = 1) CSE analogously to fully cursed (χ = 1) CE. Recall

that in a fully cursed (χ = 1) CE, each type of each player chooses a best reply

to expected (cursed) equilibrium distribution of other players’ actions, averaged over

the type-conditional strategies of the other players, with this average distribution

calculated using the prior belief on types. Loosely speaking, a player best responds

to the average CE strategy of the others. In a χ-CE, players are only partially cursed,

in the sense that each player best responds to a χ-weighted linear combination of the

average χ-CE strategy of the others and the true (type-dependent) χ-CE strategy of

the others.

The extension of this definition to multi-stage games with observed actions is

different from χ-CE in two essential ways: (1) the game is analyzed with behavioral

strategies; and (2) we impose sequential rationality and Bayesian updating. In a fully

cursed (χ = 1) CSE, (1) implies at every stage t and each public history at t, each type

of each player i chooses a best reply to the expected (cursed) equilibrium distribution

of other players’ stage-t actions, averaged over the type-conditional stage-t behavioral

strategies of other players, with this average distribution calculated using i’s current
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belief about types at stage t. That is, player i best responds to the average stage-

t CSE strategy of others. Moreover, (2) requires that each player’s belief at each

public history is derived by Bayes’ rule wherever possible, and best replies are with

respect to the continuation values computed by using the fully cursed beliefs about

the behavioral strategies of the other players in current and future stages.

A χ-CSE, for χ < 1, is then defined in analogously to χ-CE, except for using a

χ-weighted linear combination of the average χ-CSE behavioral strategies of others

and the true (type-dependent) χ-CSE behavioral strategies of others. Thus, similar to

the fully cursed CE, in a fully cursed (χ = 1) CSE, each player believes other players’

actions at each history are independent of their private information. On the other

hand, χ = 0 corresponds to the standard sequential equilibrium where players have

correct perceptions about other players’ behavioral strategies and are able to make

correct Bayesian inferences.1

After defining the equilibrium concept, in Section 3 we explore some general prop-

erties of the model. We first prove the existence of a cursed sequential equilibrium in

Proposition 1. Intuitively speaking, CSE mirrors the standard sequential equilibrium.

The only difference is that players have incorrect beliefs about the other players’ be-

havioral strategies at each stage since they fail to fully account for the correlation

between others’ actions and types at every history. We prove in Proposition 2 that

the set of CSE is upper hemi-continuous with respect to χ. Consequently, every limit

point of a sequence of χ-CSE points as χ converges to 0 is a sequential equilibrium.

This result bridges our behavioral solution concept with the standard equilibrium

theory. Finally, we also show in Proposition 4 that χ-CSE is equivalent to χ-CE for

one-stage games, demonstrating the connection between the two behavioral solutions.

In multi-stage games, cursed beliefs about behavioral strategies will distort the

evolution of a player’s beliefs about the other players’ types. As shown in Proposition

3, a direct consequence of the distortion is that in χ-CSE players tend to update their

beliefs about others’ types too passively. That is, there is some persistence in beliefs

in the sense that at each stage t, each χ-cursed player’s belief about any type profile is

1For the off-path histories, similar to the idea of Kreps and Wilson (1982), we impose the χ-
consistency requirement (see Definition 2) so the assessment is approachable by a sequence of totally
mixed behavioral strategies. The only difference is that players’ beliefs are incorrectly updated by
assuming others play the χ-cursed behavioral strategies. Hence, in our approach if χ = 0, a CSE is
a sequential equilibrium.
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at least χ times the belief about that type profile at stage t− 1. Among other things,

this implies that if the prior belief about the types is full support and χ > 0, the full

support property will persist at all histories, and players will (possibly incorrectly)

believe every profile of others’ types is possible at every history.

This dampened updating property plays an important role in our framework. Not

only does it contribute to the difference between CSE and the standard CE through

the updating process, but it also implies additional restrictions on off-path beliefs.

The effect of dampened updating is starkly illustrated in the pooling equilibria of

signaling games where every type of sender behaves the same everywhere. In this

case, Proposition 5 shows if an assessment associated with a pooling equilibrium is

a χ-CSE, then it also a χ′-CSE for all χ′ ≤ χ, but it is not necessarily a pooling

equilibrium for all χ′ > χ. This contrasts with one of the main results about CE,

that if a pooling equilibrium is a χ-CE for some χ, then it is a χ′-CE for all χ′ ∈ [0, 1]

(Eyster and Rabin (2005), Proposition 3).

This suggests that perhaps the dampened updating property is an equilibrium

selection device that eliminates some pooling equilibrium, but actually this is not a

general property. As we demonstrate later, the χ-CE and χ-CSE sets can be non-

overlapping, which we illustrate with a variety of applications. The intuition is that

in CSE, players generally do not have correct beliefs about the opponents’ average

behavioral strategies. The pooling equilibrium is just a special case where players

have correct beliefs.

In Section 4 we explore the implications of cursed sequential equilibrium with five

applications in economics and political science. Section 4.1 analyzes the χ-CSE of

signaling games. Besides studying the theoretical properties of pooling χ-CSE, we

also analyze two simple signaling games that were studied in a laboratory experiment

(Brandts and Holt, 1993). We show how varying the degree of cursedness can change

the set of χ-CSE in these two signaling games in ways that are consistent with the

reported experimental findings. Next, we turn to the exploration of how sequentially

cursed reasoning can influence strategic communication. To this end, we analyze the

χ-CSE for a public goods game with communication (Palfrey and Rosenthal, 1991;

Palfrey et al., 2017) in Section 4.2, finding that χ-CSE predicts there will be less

effective communication when players are more cursed.
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Next, in Section 4.3 we apply χ-CSE to the centipede game studied experimentally

by McKelvey and Palfrey (1992) where one of the players believes the other player

might be an “altruistic” player who always passes. This is a simple reputation-

building game, where selfish types can gain by imitating altruistic types in early

stages of the game. The public goods application and the centipede game are both

private-values environments, so these two applications clearly demonstrate how CSE

departs from CE and the Bayesian Nash equilibrium, and shows the interplay between

sequentially cursed reasoning and the learning of types in private-value models.

In strategic voting applications, conditioning on “pivotality”—the event where

your vote determines the final outcome—plays a crucial role in understanding equi-

librium voting behavior. To illustrate how cursedness distorts the pivotal reasoning,

in Section 4.4 we study the three-voter two-stage agenda voting game introduced by

Ordeshook and Palfrey (1988). Since this is a private value game, the predictions

of the χ-CE and the Bayesian Nash equilibrium coincide for all χ. That is, cursed

equilibrium predicts no matter how cursed the voters are, they are able to correctly

perform pivotal reasoning. On the contrary, our CSE predicts that cursedness will

make the voters less likely to vote strategically. This is consistent with the empirical

evidence about the prevalence of sincere voting over sequential agendas when inex-

perienced voters have incomplete information about other voters’ preferences (Levine

and Plott, 1977; Plott and Levine, 1978; Eckel and Holt, 1989).

Finally, in Section 4.5 we study the relationship between cursedness and epistemic

reasoning by considering the two-person dirty faces game previously studied by Weber

(2001) and Bayer and Chan (2007). In this game, χ-CSE predicts cursed players are,

to some extent, playing a “coordination” game where they coordinate on a specific

learning speed about their face types. Therefore, from the perspective of CSE, the

non-equilibrium behavior observed in experiments can be interpreted as possibly due

to a coordination failure resulting from cognitive limitations.

The cursed sequential equilibrium extends the concept of cursed equilibrium from

static Bayesian games to multi-stage games with observed actions. This generaliza-

tion preserves the spirit of the original cursed equilibrium in a simple and tractable

way, and provides additional insights about the effect of cursedness in dynamic games.

A contemporaneous working paper by Cohen and Li (2023) is closely related to our
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paper. That paper adopts an approach based on the coarsening of information sets

to define sequential cursed equilibrium (SCE) for extensive form games with per-

fect recall. The SCE model captures a different kind of cursedness2 that arises if

a player neglects the dependence of other players’ unobserved (i.e., either future or

simultaneous) actions on the history of play in the game, which is different from the

dependence of other players’ actions on their type (as in CE and CSE). In the ter-

minology of Eyster and Rabin (2005) (p. 1665), the cursedness is with respect to

endogenous information, i.e., what players observe about the path of play. The idea

is to treat the unobserved actions of other players in response to different histories

(endogenous information) similarly to how cursed equilibrium treats players’ types.

A two-parameter model of partial cursedness is developed, and a series of examples

demonstrate that for plausible parameter values, the model is consistent with some

experimental findings related to the failure of subjects to fully take account of un-

observed hypothetical events, whereas behavior is “more rational” if subjects make

decisions after directly observing such events. At a more conceptual level, our paper

is related to several other behavioral solution concepts developed for dynamic games,

such as agent quantal response equilibrium (AQRE) (McKelvey and Palfrey, 1998),

dynamic cognitive hierarchy theory (DCH) (Lin and Palfrey, 2022; Lin, 2022), and

the analogy-based expectation equilibrium (ABEE) (Jehiel, 2005; Jehiel and Koessler,

2008), all of which modify the requirements of sequential equilibrium in different ways

than cursed sequential equilibrium.

2 The Model

Since CSE is a solution concept for dynamic games of incomplete information, in

this paper we will focus on the framework of multi-stage games with observed actions

(Fudenberg and Tirole, 1991b). Section 2.1 defines the formal structure of multi-stage

games with observed actions, followed by Section 2.2, where the χ-cursed sequential

equilibrium is formally developed.

2We illustrate some implications of these differences in the application to signaling games in
Section 4.1. For a more detailed discussion of the differences between CSE and SCE, see Fong et al.
(2023).
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2.1 Multi-Stage Games with Observed Actions

Let N = {1, . . . , n} be a finite set of players. Each player i ∈ N has a type θi drawn

from a finite set Θi. Let θ ∈ Θ ≡ ×ni=1Θi be the type profile and θ−i ∈ Θ−i ≡ ×j 6=iΘj

be the type profile without player i. All players share a common (full support) prior

distribution F(·) : Θ → (0, 1). Therefore, for every player i, the belief of other

players’ types conditional on his own type is

F(θ−i|θi) =
F(θ−i, θi)∑

θ′−i∈Θ−i
F(θ′−i, θi)

.

At the beginning of the game, players observe their own types, but not the other

players’ types. That is, each player’s type is his own private information.

The game is played in stages t = 1, 2, . . . , T . In each stage, players simultaneously

choose actions, which will be revealed at the end of the stage. The feasible set of

actions can vary with histories, so games with alternating moves are also included.

Let Ht−1 be the set of all possible histories at stage t, where H0 = {h∅} and HT is

the set of terminal histories. Let H = ∪Tt=0Ht be the set of all possible histories of

the game, and H\HT be the set of non-terminal histories.

For every player i, the available information at stage t is in Ht−1×Θi. Therefore,

player i’s information sets can be specified as Ii ∈ Qi = {(h, θ) : h ∈ H\HT , θi ∈ Θi}.
That is, a type θi player i’s information set at the public history ht can be defined

as
⋃
θ−i∈Θ−i

(ht, θi, θ−i). With a slight abuse of notation, it will be denoted as (ht, θi).

For the sake of simplicity, we assume that, at each history, the feasible set of actions

for every player is independent of their type and use Ai(h
t−1) to denote the feasible

set of actions for player i at history ht−1. Let Ai = ×h∈H\HTAi(h) denote player i’s

feasible actions in all histories of the game and A = A1 × · · · × An. In addition, we

assume Ai is finite for all i ∈ N and |Ai(h)| ≥ 1 for all i ∈ N and any h ∈ H\HT .

A behavioral strategy for player i is a function σi : Qi → ∆(Ai) satisfying

σi(h
t−1, θi) ∈ ∆(Ai(h

t−1)). Furthermore, we use σi(a
t
i|ht−1, θi) to denote the probabil-

ity player i chooses ati ∈ Ai(ht−1). We use at = (at1, . . . , a
t
n) ∈ ×ni=1Ai(h

t−1) ≡ A(ht−1)

to denote the action profile at stage t and at−i to denote the action profile at stage t

without player i. If at is the action profile realized at stage t, then ht = (ht−1, at). Fi-

nally, each player i has a payoff function ui : HT×Θ→ R, and we let u = (u1, . . . , un)
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be the profile of payoff functions. A multi-stage game with observed actions, Γ, is

defined by the tuple Γ = 〈T,A,N,H,Θ,F , u〉.

2.2 Cursed Sequential Equilibrium

In a multi-stage game with observed actions, a solution is defined by an “assessment,”

which consists of a (behavioral) strategy profile σ, and a belief system µ. Since

action profiles will be revealed to all players at the end of each stage, the belief

system specifies, for each player, a conditional distribution over the set of type profiles

conditional on each history. Consider an assessment (µ, σ). Following the spirit of the

cursed equilibrium, for player i at stage t, we define the average behavioral strategy

profile of the other players as:

σ̄−i(a
t
−i|ht−1, θi) =

∑
θ−i∈Θ−i

µi(θ−i|ht−1, θi)σ−i(a
t
−i|ht−1, θ−i)

for any i ∈ N , θi ∈ Θi and ht−1 ∈ Ht−1.

In CSE, players have incorrect perceptions about other players’ behavioral strate-

gies. Instead of thinking they are using σ−i, a χ-cursed3 type θi player i would believe

the other players are using a χ-weighted average of the average behavioral strategy

and the true behavioral strategy:4

σχ−i(a
t
−i|ht−1, θ−i, θi) = χσ̄−i(a

t
−i|ht−1, θi) + (1− χ)σ−i(a

t
−i|ht−1, θ−i).

The beliefs of player i about θ−i are updated in the χ-CSE via Bayes’ rule, when-

ever possible, assuming other players are using the χ-cursed behavioral strategy rather

than the true behavioral strategy. We call this updating rule the χ-cursed Bayes’ rule.

Specifically, an assessment satisfies the χ-cursed Bayes’ rule if the belief system is de-

rived from the Bayes’ rule while perceiving others are using σχ−i rather than σ−i.

Definition 1. (µ, σ) satisfies χ-cursed Bayes’ rule if the following is applied to update

3We assume throughout the paper that all players are equally cursed, so there is no i subscript
on χ. The framework is easily extended to allow for heterogeneous degrees of cursedness.

4If χ = 0, players have correct beliefs about other players’ behavioral strategies at every stage.
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the posterior beliefs whenever
∑

θ′−i∈Θ−i
µi(θ

′
−i|ht−1, θi)σ

χ
−i(a

t
−i|ht−1, θ′−i, θi) > 0:

µi(θ−i|ht, θi) =
µi(θ−i|ht−1, θi)σ

χ
−i(a

t
−i|ht−1, θ−i, θi)∑

θ′−i∈Θ−i
µi(θ′−i|ht−1, θi)σ

χ
−i(a

t
−i|ht−1, θ′−i, θi)

.

Let Σ0 be the set of totally mixed behavioral strategy profiles, and let Ψχ be the

set of assessments (µ, σ) such that σ ∈ Σ0 and µ is derived from σ using χ-cursed

Bayes’ rule.5 Lemma 1 below shows that another interpretation of the χ-cursed Bayes’

rule is that players have correct perceptions about σ−i but are unable to make perfect

Bayesian inference when updating beliefs. From this perspective, player i’s cursed

belief is simply a linear combination of player i’s cursed belief at the beginning of

that stage (with χ weight) and the Bayesian posterior belief (with 1 − χ weight).

Because σ is totally mixed, there are no off-path histories.

Lemma 1. For any (µ, σ) ∈ Ψχ, i ∈ N , ht = (ht−1, at) ∈ H\HT and θ ∈ Θ,

µi(θ−i|ht, θi) = χµi(θ−i|ht−1, θi) + (1− χ)

[
µi(θ−i|ht−1, θi)σ−i(a

t
−i|ht−1, θ−i)∑

θ′−i
µi(θ′−i|ht−1, θi)σ−i(at−i|ht−1, θ′−i)

]

Proof. See Appendix A.

This is analogous to Lemma 1 of Eyster and Rabin (2005). Another insight

provided by Lemma 1 is that even if player types are independently drawn, i.e.,

F(θ) = Πn
i=1Fi(θi), players’ cursed beliefs about other players’ types are generally

not independent across players. That is, in general, µi(θ−i|ht, θi) 6= Πj 6=iµij(θj|ht, θi).
The belief system will preserve the independence only when the players are either

fully rational (χ = 0) or fully cursed (χ = 1).

Finally, we place a consistency restriction, analogous to consistent assessments in

sequential equilibrium, on how χ-cursed beliefs are updated off the equilibrium path,

i.e., when
∑

θ′−i∈Θ−i
µi(θ

′
−i|ht−1, θi)σ

χ
−i(a

t
−i|ht−1, θ′−i, θi) = 0.

Definition 2. (µ, σ) satisfies χ-consistency if there is a sequence of assessments

{(µk, σk)} ⊆ Ψχ such that limk→∞(µk, σk) = (µ, σ).

5In the following, we will use µχ(·) to denote the belief system derived under χ-cursed Bayes’ Rule.
Also, note that both σχ−i and µχ are induced by σ; that is, σχ−i(·) = σχ−i[σ](·) and µχ(·) = µχ[σ](·).
For the ease of exposition, we drop [σ] when it does not cause confusion.
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For any i ∈ N , χ ∈ [0, 1], σ, and θ ∈ Θ, let ρχi (hT |ht, θ, σχ−i, σi) be player i’s

perceived conditional realization probability of terminal history hT ∈ HT at his-

tory ht ∈ H\HT if the type profile is θ and player i uses the behavioral strategy σi

whereas perceives other players’ using the cursed behavioral strategy σχ−i. At every

non-terminal history ht, a χ-cursed player in χ-CSE will use χ-cursed Bayes’ rule (Def-

inition 1) to derive the posterior belief about the other players’ types. Accordingly,

a type θi player i’s conditional expected payoff at history ht is given by:

Eui(σ|ht, θi) =
∑

θ−i∈Θ−i

∑
hT∈HT

µi(θ−i|ht, θi)ρχi (hT |ht, θ, σχ−i, σi)ui(hT , θi, θ−i).

Definition 3. An assessment (µ∗, σ∗) is a χ-cursed sequential equilibrium if it satis-

fies χ-consistency and σ∗i (h
t, θi) maximizes Eui(σ∗|ht, θi) for all i, θi, h

t ∈ H\HT .

3 General Properties of χ-CSE

In this section, we characterize some general theoretical properties of χ-CSE. The first

result is the existence of the χ-CSE. The definition of χ-CSE mirrors the definition

of the sequential equilibrium by Kreps and Wilson (1982)—the only difference is that

players in χ-CSE update their beliefs by χ-cursed Bayes’ rule and best respond to

χ-cursed (behavioral) strategies. Therefore, one can prove the existence of χ-CSE in

a similar way as in the standard argument of the existence of sequential equilibrium.

Proposition 1. For any χ ∈ [0, 1] and any finite multi-stage game with observed

actions, there is at least one χ-CSE.

Proof. The proof follows a standard argument. See Appendix A for details.

Let Φ(χ) be the correspondence that maps χ ∈ [0, 1] to the set of χ-CSE. Propo-

sition 1 guarantees Φ(χ) is non-empty for any χ ∈ [0, 1]. Because χ-cursed Bayes’

rule changes continuously in χ, we can further prove in Proposition 2 that Φ(χ) is an

upper hemi-continuous correspondence.

Proposition 2. Φ(χ) is upper hemi-continuous with respect to χ.

Proof. The proof follows a standard argument. See Appendix A for details.
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As shown in Corollary 1, a direct consequence of upper hemi-continuity is that

every limit point of a sequence of χ-CSE when χ→ 0 is a sequential equilibrium. This

result bridges our behavioral equilibrium concept with standard equilibrium theory.

Corollary 1. Every limit point of a sequence of χ-CSE with χ converging to 0 is a

sequential equilibrium.

Proof. By Proposition 2, we know Φ(χ) is upper hemi-continuous at 0. Consider of

a sequence of χ-CSE. As χ→ 0, the limit point remains a CSE, which is a sequential

equilibrium at χ = 0. This completes the proof.

Finally, by a similar argument to Kreps and Wilson (1982), for any χ ∈ [0, 1],

χ-CSE is also upper hemi-continuous with respect to payoffs. In other words, our

χ-CSE preserves the continuity property of sequential equilibrium.

The next result is the characterization of a necessary condition for χ-CSE. As

seen from Lemma 1, players update their beliefs more passively in χ-CSE than in the

standard equilibrium—they put χ-weight on their beliefs formed in previous stage.

To formalize this, we define the χ-dampened updating property in Definition 4. An

assessment satisfies this property if at any non-terminal history, the belief puts at least

χ weight on the belief in previous stage—both on and off the equilibrium path. In

Proposition 3, we show that χ-consistency implies the χ-dampened updating property.

Definition 4. An assessment (µ, σ) satisfies the χ-dampened updating property if for

any i ∈ N , θ ∈ Θ and ht = (ht−1, at) ∈ H\HT ,

µi(θ−i|ht, θi) ≥ χµi(θ−i|ht−1, θi).

Proposition 3. χ-consistency implies χ-dampened updating for any χ ∈ [0, 1].

Proof. See Appendix A.

It follows that if assessment (µ, σ) satisfies the χ-dampened updating property,

then for any player i, any history ht and any type profile θ, player i’s belief about θ−i

is bounded by

χµi(θ−i|ht−1, θi) ≤ µi(θ−i|ht, θi) ≤ 1− χ
∑

θ′−i 6=θ−i

µi(θ
′
−i|ht−1, θi).
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One can see from this condition that when χ increases, the feasible range of µi(θ−i|ht, θi)
shrinks, and the restriction on the belief system becomes more stringent. Moreover,

if the history ht is an off-path history of (µ, σ), then this condition characterizes the

feasible set of off-path beliefs, which shrinks as χ increases.

An important implication of this observation is that Φ(χ) is not lower hemi-

continuous with respect to χ. The intuition is that for some χ-CSE that contains

off-path histories, the off-path beliefs to support the equilibrium might not be χ-

consistent for sufficiently large χ. In this case, the χ-CSE is not attainable by a

sequence of χk-CSE where χk converges to χ from above, causing the lack of lower

hemi-continuity.6

Lastly, another implication of χ-dampened updating property is that for each

player i, history ht and type profile θ, the belief µi(θ−i|ht, θi) has a lower bound that

is independent of the strategy profile. The lower bound is characterized in Corollary 2.

This result implies that when χ > 0, F(θ−i|θi) > 0 implies µi(θ−i|ht, θi) > 0 for all ht,

so that if prior beliefs are bounded away from zero, beliefs are always bounded away

from 0 as well. In other words, when χ > 0, because of the χ-dampened updating,

beliefs will always have full support even if at off-path histories.

Corollary 2. For any χ-consistent assessment (µ, σ), i ∈ N , θ ∈ Θ and ht ∈ H\HT ,

µi(θ−i|ht, θi) ≥ χtF(θ−i|θi)

Proof. See Appendix A.

If the game has only one stage, then the dampened updating property has no

effect, in which case χ-CSE and χ-CE are equivalent solution concepts. This is

formally stated and proved in Proposition 4.

Proposition 4. For any one-stage game and for any χ, χ-CSE and χ-CE are equiv-

alent.

Proof. For any one-stage game, the only public history is the initial history h∅. Thus,

in any χ-CSE, for each player i ∈ N and type profile θ ∈ Θ, player i’s belief about

6An example is provided in Section 4.1 (see Footnote 7).
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other players’ types at this history is

µi(θ−i|h∅, θi) = F(θ−i|θi).

Since the game has only one stage, the outcome is simply a1 = (a1
1, . . . , a

1
n), the action

profile at stage 1. Moreover, given any behavioral strategy profile σ, player i believes

a1 will be the outcome with probability

σi(a
1
i |h∅, θi)×

[
χσ̄−i(a

1
−i|h∅, θi) + (1− χ)σ−i(a

1
−i|h∅, θ−i)

]
.

Therefore, if σ is the behavioral strategy profile of a χ-CSE in an one-stage game,

then for each player i, type θi ∈ Θi and each a1
i ∈ Ai(h∅) such that σi(a

1
i |h∅, θi) > 0,

a1
i ∈ argmax

a1
′
i ∈Ai(h∅)

∑
θ−i∈Θ−i

F(θ−i|θi) × ∑
a1−i∈A−i(h∅)

[
χσ̄−i(a

1
−i|h∅, θi) + (1− χ)σ−i(a

1
−i|h∅, θ−i)

]ui(a
1′

i , a
1
−i, θi, θ−i),

which coincides with the maximization problem of χ-CE. This completes the proof.

From the proof of Proposition 4, one can see that in one-stage games players have

correct perceptions about the average strategy of others. Therefore, the maximization

problem of χ-CSE coincides with the problem of χ-CE. For general multi-stage games,

because of the χ-dampened updating property, players will update beliefs incorrectly

and thus their perceptions about other players’ future moves can also be distorted.

4 Applications

In this section, we will explore χ-CSE in five applications of multi-stage games with

observed actions, in order to illustrate the range of effects it can have and to show

how it is different from the χ-CE and sequential equilibrium.

Our first application is the sender-receiver signaling game, which is practically the

simplest possible multi-stage game. From our analysis, we will see both the theoretical

13



and empirical implications of our χ-CSE.

4.1 Pooling Equilibria in Signaling Games

We first make a general observation about pooling equilibria in multi-stage games.

Player j follows a pooling strategy if for every non-terminal history, ht, all types of

player j take the same action at+1
j ∈ Aj(ht). Conceptually, since every type of player j

takes the same action, players other than j cannot make any inference about j’s type

from j’s actions. A pooling χ-CSE is a χ-CSE where every player follows a pooling

strategy. Hence, every player has correct beliefs about any other player’s future move

because every type of every player chooses the same action.

Since in any pooling χ-CSE, players can correctly anticipate other players’ future

moves no matter how cursed they are, one may naturally conjecture that a pooling

χ-CSE is also a χ′-CSE for any χ′ ∈ [0, 1]. As shown by Eyster and Rabin (2005),

this is true for one-stage Bayesian games: if a pooling strategy profile is a χ-cursed

equilibrium, then it is also a χ′-cursed equilibrium for any χ′ ∈ [0, 1]. Surprisingly,

this result does not extend to multi-stage games. Proposition 5 shows if a pooling

behavioral strategy profile is a χ-CSE, then it remains a χ′-CSE only for χ′ ≤ χ,

which is a weaker result than Eyster and Rabin (2005).

This result is driven by the χ-dampened updating property which restricts the set

of off-path beliefs. As discussed above, when χ gets larger, the set of feasible off-path

beliefs shrinks, eliminating some pooling χ-CSE.

Proposition 5. A pooling χ-CSE is a χ′-CSE for χ′ ≤ χ.

Proof. See Online Appendix.

The proof strategy is similar to the one in Eyster and Rabin (2005) Proposition 3.

Given a χ-CSE behavioral strategy profile, we can separate the histories into on-path

and off-path histories. For on-path histories in a pooling equilibrium, since all types

of players make the same decisions, players cannot make any inference about other

players’ types. Therefore, for on-path histories, their beliefs are the prior beliefs,

which are independent of χ. On the other hand, for off-path histories, as shown in

Proposition 3, a necessary condition for χ-CSE is that the belief system has to satisfy
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the χ-dampened updating property. When χ gets larger, this requirement becomes

more stringent, and hence some pooling χ-CSE may break down.

Example 1 is a signaling game where the sender has only two types and two

messages, and the receiver has only two actions. This example demonstrates the

implication of Proposition 5 and shows the lack of lower hemi-continuity; i.e., it is

possible for a pooling behavioral strategy profile to be a χ-CSE, but not a χ′-CSE for

χ′ > χ. We will also use this example to illustrate how the notion of cursedness in

sequential cursed equilibrium proposed by Cohen and Li (2023) departs from CSE.

Example 1. The sender has two possible types drawn from the set Θ = {θ1, θ2}
with Pr(θ1) = 1/4. The receiver does not have any private information. After the

sender’s type is drawn, the sender observes his type and decides to send a message

m ∈ {A,B}, or any mixture between the two. After that, the receiver decides between

action a ∈ {L,R} or any mixture between the two, and the game ends. The game

tree is illustrated in Figure 1.
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Figure 1: Game Tree for Example 1

If we solve for the χ-CE of the game (or the sequential equilibria), we find that

there are two pooling equilibria for every value of χ. In the first pooling χ-CE, both

sender types choose A; the receiver chooses L in response to A and R at the off-

path history B. In the second pooling χ-CE, both sender types pool at B and the

receiver chooses R at both histories. By Proposition 3 of Eyster and Rabin (2005),

these two equilibria are in fact pooling χ-CE for all χ ∈ [0, 1]. The intuition is that
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in a pooling χ-CE, players are not able to make any inference about other players’

types from their actions because the average normal form strategy is the same as the

type-conditional normal form strategy. Therefore, their beliefs are independent of χ,

and hence a pooling χ-CE will still be an equilibrium for any χ ∈ [0, 1].

However, as summarized in Claim 1 below, the χ-CSE imposes stronger restric-

tions than χ-CE in this example, in the sense that when χ is sufficiently large, the

second pooling equilibrium cannot be supported as a χ-CSE. The key reason is that

when the game is analyzed in its normal form, the χ-dampened updating property

shown in Proposition 3 does not have any bite, allowing both pooling equilibria to

be supported as a χ-CE for any value of χ. Yet, in the χ-CSE analysis, the addi-

tional restriction of χ-dampened updating property eliminates some extreme off-path

beliefs, and hence, eliminates the second pooling χ-CSE equilibrium for sufficiently

large χ. For simplicity, we use a four-tuple [(m(θ1),m(θ2)); (a(A), a(B))] to denote a

behavioral strategy profile.

Claim 1. In this example, there are two pure pooling χ-CSE, which are:

1. [(A,A); (L,R)] is a pooling χ-CSE for any χ ∈ [0, 1].

2. [(B,B); (R,R)] with µ2(θ1|A) ∈
[

1
3
, 1− 3

4
χ
]

is a pooling χ-CSE if and only if

χ ≤ 8/9.

Proof. See Online Appendix.

From previous discussion, we know in general, the sets of χ-CSE and χ-CE are

non-overlapping because of the nature of sequential distortion of beliefs in χ-CSE.

Yet, a pooling χ-CSE is an exception. In a pooling χ-CSE, players can correctly

anticipate others’ future moves, so a pooling χ-CSE will mechanically be a pooling

χ-CE. In cases such as this, we can find that χ-CSE is a refinement of χ-CE.7

Remark. This game is useful for illustrating some of the differences between the

notions of “cursedness” in χ-CSE and the sequential cursed equilibrium ((χS, ψS)-

SCE) proposed by Cohen and Li (2023). The first distinction is that the χ and χS

7Note that the χ-CSE correspondence Φ(χ) is not lower hemi-continuous with respect to χ. To
see this, we consider a sequence of {χk} where χk = 8

9 + 1
9k for k ≥ 1. From the analysis of

Claim 1, we know [(B,B); (R,R)] 6∈ Φ(χk) for any k ≥ 1. However, in the limit where χk → 8/9,
[(B,B); (R,R)] with µ2(θ1|A) = 1/3 is indeed a CSE. That is, [(B,B); (R,R)] is not approachable
by this sequence of χk-CSE.
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parameters capture substantively different sources of distortion in a player’s beliefs

about the other players’ strategies. In χ-CSE, the degree of cursedness, χ, captures

how much a player neglects the dependence of the other players’ behavioral strategies

on those players’ (exogenous) private information, i.e, types, drawn by nature, and

as a result, mistakenly treats different types as behaving the same with probability

χ. In contrast, in (χS, ψS)-SCE, the cursedness parameter, χS, captures how much a

player neglects the dependence of the other players’ strategies on future moves of the

others, or current moves that are unobserved because of simultaneous play. Thus, it

is a neglect related to endogenous information. If player i observes a previous move

by some other player j, then player i correctly accounts for the dependence of player

j’s chosen action on player j’s private type, as would be the case in χ-CSE only at

the boundary where χ = 0.

In the context of pooling equilibria in sender-receiver signaling games, if χS = 1,

then in SCE the sender believes the receiver will respond the same way both on

and off the equilibrium path. This distorts how the sender perceives the receiver’s

future action in response to an off-equilibrium path message. In χ-CSE, cursedness

does not hinder the sender from correctly perceiving the receiver’s strategy since the

receiver only has one type. Take the strategy profile [(A,A); (L,R)] for example,

which is a pooling χ-CSE equilibrium for all χ ∈ [0, 1]. However, with (χS, ψS)-

SCE, a sender misperceives that the receiver, upon receiving the off-path message B,

will, with probability χS, take the same action (L) as when receiving the on-path

message A. If χS is sufficiently high, the sender will deviate to send B, which implies

that [(A,A); (L,R)] cannot be supported as an equilibrium when χS is sufficiently

large (χS > 1/3). The distortion induced by χS also creates an additional SCE

if χS is sufficiently large: [(B,B); (L,R)]. To see this, if χS = 1, then a sender

incorrectly believes that the receiver will continue to choose R if the sender deviates

to A, rather than switching to L, and hence B is optimal for both sender types.

However, [(B,B); (L,R)] is not a χ-CSE equilibrium for any χ ∈ [0, 1], or a χ-CE in

the sense of Eyster and Rabin (2005), or a sequential equilibrium.

In the two possible pooling equilibria analyzed in the last paragraph, the second

SCE parameter, ψS, does not have any effect, but the role of ψS can be illustrated in

the context of the [(B,B); (R,R)] sequential equilibrium. This second SCE parame-
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ter, ψS, is introduced to accommodate a player’s possible failure to fully account for

the informational content from observed events. The larger (1 − ψS) is, the greater

extent a player neglects the informational content of observed actions. Although the

parameter ψS has a similar flavor to 1 − χ in χ-CSE, it is different in a number of

ways. In particular this parameter only has an effect via its interaction with χS and

thus does not independently arise. In the two parameter model, the overall degree of

cursedness is captured by the product, χS(1− ψS), and thus any cursedness effect of

ψS is shut down when χS = 0. For instance, under our χ-CSE, the strategy profile

[(B,B); (R,R)] can only be supported as an equilibrium when χ is sufficiently small.

However, [(B,B); (R,R)] can be supported as a (χS, ψS)-SCE even when (1−ψS) = 1

as long as χS is sufficiently small. In fact, when χS = 0, a (χS, ψS)-SCE is equivalent

to sequential equilibrium regardless of the value of ψS.
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Figure 2: Game Tree for BH 3 and BH 4 in Brandts and Holt (1993)

Example 2. Here we analyze two signaling games that were studied experimentally

by Brandts and Holt (1993) (BH 3 and BH 4 ) and show that χ-CSE can help explain

some of their findings. In both Game BH 3 and BH 4, the sender has two possible

types {θ1, θ2} which are equally likely. There are two messages m ∈ {I, S} available

to the sender.8 After seeing the message, the receiver chooses an action from a ∈
8I stands for “Intuitive” and S stands for “Sequential but not intuitive”, corresponding to the

two pooling sequential equilibria of the two games.
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{C,D,E}. The game tree and payoffs for both games are summarized in Figure 2.

In both games, there are two pooling sequential equilibria. In the first equilibrium,

both sender types send message I, and the receiver will choose C in response to I

and D in response to S. In the second equilibrium, both sender types send message

S, and the receiver will choose D in response to I while choose C in response to S.

Both are sequential equilibria, in both games, but only the first equilibrium where

the sender sends I satisfies the intuitive criterion proposed by Cho and Kreps (1987).

Since the equilibrium structure is similar in both games, the sequential equilibrium

and the intuitive criterion predict the behavior should be the same in both games.

However, this prediction is strikingly rejected by the data. Brandts and Holt (1993)

report that in the later rounds of the experiment, almost all type θ1 senders send I

in Game BH 3 (97 %), and yet all type θ1 senders send S in Game BH 4 (100%). In

contrast, type θ2 senders behave similarly in both games—46.2% and 44.1% of type

θ2 senders send I in Games BH 3 and BH 4, respectively. Qualitatively speaking,

the empirical pattern reported by Brandts and Holt (1993) is that sender type θ1 is

more likely to send I in Game BH 3 than Game BH 4 while sender type θ2’s behavior

is insensitive to the change of games.

To explain this finding, Brandts and Holt (1993) propose a descriptive story based

on naive receivers. A naive receiver will think both sender types are equally likely,

regardless of which message is observed. This naive reasoning will lead the receiver to

choose C in both games. Given this naive response, a type θ1 sender has an incentive

to send I in Game BH 3 and choose S in Game BH 4. (Brandts and Holt (1993), p.

284 – 285)

In fact, their story of naive reasoning echoes the logic of χ-CSE. When the receiver

is fully cursed (or naive), he will ignore the correlation between the sender’s action

and type, causing him to not update the belief about the sender’s type. Proposition

6 characterizes the set of χ-CSE of both games. Following the previous notation, we

use a four-tuple [(m(θ1),m(θ2)); (a(I), a(S))] to denote a behavioral strategy profile.

Proposition 6. The set of χ-CSE of Game BH 3 and BH 4 are characterized as

below.

• In Game BH 3, there are three pure χ-CSE:
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1. [(I, I); (C,D)] is a pooling χ-CSE if and only if χ ≤ 4/7.

2. [(S, S); (D,C)] is a pooling χ-CSE if and only if χ ≤ 2/3.

3. [(I, S); (C,C)] is a separating χ-CSE if and only if χ ≥ 4/7.

• In Game BH 4, there are three pure χ-CSE:

1. [(I, I); (C,D)] is a pooling χ-CSE if and only if χ ≤ 4/7.

2. [(S, S); (D,C)] is a pooling χ-CSE if and only if χ ≤ 2/3.

3. [(S, S); (C,C)] is a pooling χ-CSE for any χ ∈ [0, 1].

Proof. See Online Appendix.

As noted earlier for Example 1, by Proposition 3 of Eyster and Rabin (2005),

pooling equilibria (1) and (2) in games BH 3 and BH 4 survive as χ-CE for all χ ∈
[0, 1]. Hence, Proposition 6 implies that χ-CSE refines the χ-CE pooling equilibria for

larger values of χ. Moreover, χ-CSE actually eliminates all pooling equilibria in BH

3 if χ > 2/3. Proposition 6 also suggests that for any χ ∈ [0, 1], sender type θ2 will

behave similarly in both games, which is qualitatively consistent with the empirical

pattern. In addition, χ-CSE predicts that a highly cursed (χ > 2/3) type θ1 sender

will send different messages in different games—highly cursed type θ1 senders will

send I and S in Games BH 3 and BH 4, respectively. This is consistent with the

empirical data.

4.2 A Public Goods Game with Communication

Our second application is a threshold public goods game with private information

and pre-play communication, variations of which have been studied in laboratory

experiments (Palfrey and Rosenthal, 1991; Palfrey et al., 2017). Here we consider the

“unanimity” case where there are N players and the threshold is also N .

Each player i has a private cost parameter ci, which is independently drawn from

a uniform distribution on [0, K] where K > 1. After each player’s ci is drawn, each

player observes their own cost, but not the others’ costs. Therefore, ci is player i’s
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private information and corresponds to θi in the general formulation.9 The game

consists of two stages. After the profile of cost parameters is drawn, the game will

proceed to stage 1 where each player simultaneously broadcasts a public message mi ∈
{0, 1} without any cost or commitment. After all players observe the message profile

from this first stage, the game proceeds to stage 2 which is a unanimity threshold

public goods game. Player i has to pay the cost ci if he contributes, but the public

good will be provided only if all players contribute. The public good is worth a unit

of payoff for every player. Thus, if the public good is provided, each player’s payoff

will be 1− ci.
If there is no communication stage, the unique Bayesian Nash equilibrium is that

no player contributes, which is also the unique χ-CE for any χ ∈ [0, 1]. In contrast,

with the communication stage, there exists an efficient sequential equilibrium where

each player i sends mi = 1 if and only if ci ≤ 1 and contributes if and only if all

players send 1 in the first stage.10 Since this is a private value game, the standard

cursed equilibrium has no bite, and this efficient sequential equilibrium is also a χ-CE

for all values of χ, by Proposition 2 of Eyster and Rabin (2005). In the following,

we demonstrate that the prediction of χ-CSE is different from CE (and sequential

equilibrium).

To analyze the χ-CSE, consider a collection of “cutoff” costs, {Cχ
c , C

χ
0 , C

χ
1 , . . . , C

χ
N}.

In the communication stage, each player communicates the message mi = 1 if and

only if ci ≤ Cχ
c . In the second stage, if there are exactly 0 ≤ k ≤ N players sending

mi = 1 in the first stage, then such a player would contribute in the second stage

if and only if ci ≤ Cχ
k . A χ-CSE is a collection of these cost cutoffs such that the

associated strategies are a χ-CSE for the public goods game with communication.

The most efficient sequential equilibrium identified above for χ = 0 corresponds to

cutoffs with C0
0 = C0

1 = · · · = C0
N−1 = 0 and C0

c = C0
N = 1.

There are in fact multiple equilibria in this game with communication. In order

to demonstrate how the cursed belief can distort players’ behavior, here we will focus

on the χ-CSE that is similar to the most efficient sequential equilibrium identified

9This application has a continuum of types. The framework of analysis developed for finite types
is applied in the obvious way.

10One can think of the first stage as a poll, where players are asked the following question: “Are
you willing to contribute if everyone else says they are willing to contribute?”. The message mi = 1
corresponds to a “yes” answer and the message mi = 0 corresponds to a “no” answer.

21



above, where Cχ
0 = Cχ

1 = · · · = Cχ
N−1 = 0 and Cχ

c = Cχ
N . The resulting χ-CSE is

given in Proposition 7.

Proposition 7. In the public goods game with communication, there is a χ-CSE

where

1. Cχ
0 = Cχ

1 = · · · = Cχ
N−1 = 0, and

2. there is a unique C∗(N,K, χ) ≤ 1 s.t. Cχ
c = Cχ

N = C∗(N,K, χ) that solves:

C∗(N,K, χ)− χ
[
C∗(N,K, χ)

K

]N−1

= 1− χ.

Proof. See Online Appendix.

To provide some intuition, we sketch the proof by analyzing the two-person game,

where the χ-CSE is characterized by four cutoffs {Cχ
c , C

χ
0 , C

χ
1 , C

χ
2 }, with Cχ

0 = Cχ
1 = 0

and Cχ
c = Cχ

2 . If players use the strategy that they would send message 1 if and only

if the cost is less than Cχ
c , then by Lemma 1, at the history where both players send

1, player i’s cursed posterior belief density would be

µχi (c−i|{1, 1}) =

χ ·
(

1
K

)
+ (1− χ) ·

(
1
Cχc

)
if c−i ≤ Cχ

c

χ ·
(

1
K

)
if c−i > Cχ

c .

Notice that cursedness leads a player to put some probability weight on a type

that is not compatible with the history. Namely, for χ-cursed players, when seeing

another player sending 1, they still believe the other player might have c−i > Cχ
c .

When χ converges to 1, the belief simply collapses to the prior belief as fully cursed

players never update their beliefs. On the other hand, when χ converges to 0, the

belief converges to 1/Cχ
c , which is the correct Bayesian inference.

Given this cursed belief density, the optimal cost cutoff to contribute, Cχ
2 , solves

Cχ
2 =

∫ Cχ2

0

µχi (c−i|{1, 1})dc−i.

Finally, at the first stage cutoff equilibrium, the Cχ
c type of player would be indifferent
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between sending 1 and 0 at the first stage. Therefore, Cχ
c satisfies

0 =

(
Cχ
c

K

){
−Cχ

c +

∫ Cχ2

0

µχi (c−i|{1, 1})dc−i

}
.

After substituting Cχ
c = Cχ

2 , we obtain the χ-CSE: Cχ
c = Cχ

2 = K−Kχ
K−χ .

From this expression, one can see that the cutoff Cχ
c (as well as Cχ

2 ) is decreasing

in χ and K. When χ → 0, Cχ
c converges to 1, which is the cutoff of the sequen-

tial equilibrium. On the other hand, when χ → 1, Cχ
c converges to 0, so there

is no possibility for communication when players are fully cursed. Similarly, when

K → 1, Cχ
c converges to 1, which is the cutoff of the sequential equilibrium, while

limK→∞C
χ
c = 1− χ.

These comparative statics results with respect to χ and K are not just a special

property of the N = 2 case, but hold for all N > 1. Furthermore, there is a similar

effect of increasing N that results in a lower cutoff (less effective communication).

These properties of C∗(N,K, χ) are summarized in Corollary 3.

Corollary 3. The efficient χ-CSE predicts the following comparative statics for all

N ≥ 2 and K > 1:

1. C∗(N,K, 0) = 1 and C∗(N,K, 1) = 0.

2. C∗(N,K, χ) is strictly decreasing in N , K, and χ for any χ ∈ (0, 1).

3. For all χ ∈ [0, 1], limN→∞C
∗(N,K, χ) = limK→∞C

∗(N,K, χ) = 1− χ.

Proof. See Online Appendix.

These properties are illustrated in Figure 3. The left panel illustrates the equi-

librium condition for C∗ in a graph where the horizontal axis is C ∈ [0, K]. We

can rewrite the characterization of C∗(N,K, χ) in Proposition 7 as a solution for

C to the following equation: 1−C
χ

= 1 −
[
C
K

]N−1
. The left panel displays the LHS

of this equation, 1−C
χ

, as the downward sloping line that connects the points (0, 1
χ
)

and (1, 0). The RHS is displayed for N = 2 and N = 3 by the two curves that

connect the points (0, 1) and (K, 0). The equilibrium, C∗(N,K, χ), is given by the

(unique) intersection of the LHS and RHS curves. It is easy to see from this graph
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Figure 3: (Left) Illustration of the χ-CSE equilibrium condition when K = 1.5 and
χ = 0.5. (Middle) The χ-CSE cutoff C∗(N,K, χ) for N = 2, 3 and for N →∞ when
K = 1.5. (Right) The χ-CSE cutoff C∗(N,K, χ) for K = 1.25, 1.5 and for K → ∞
when N = 2.

that C∗(N,K, χ) is strictly decreasing in N , K, and χ. When N increases, the RHS

increases for all C ∈ (0, K), resulting in an intersection at a lower value of C. When

K increases, again the RHS increases for all C ∈ (0, K), and also the intercept of

the RHS on the horizontal axis increases, leading to a similar effect; and when χ

increases, the intercept of the LHS on the horizontal axis decreases, resulting in an

intersection at a lower value of C. In addition, when N grows without bound, the

RHS approaches a constant function equal to 1 for C < K, resulting in a limiting

intersection at C∗(∞, K, χ) = 1−χ. This is illustrated in the middle panel of Figure

3, which graphs C∗(2, 1.5, ·), C∗(3, 1.5, ·), and C∗(∞, 1.5, ·). A similar effect occurs

for K → ∞, illustrated in the right panel of Figure 3, which displays C∗(2, 1.25, ·),
C∗(2, 1.5, ·), and C∗(2,∞, ·).

An interesting takeaway of this analysis is that in the public goods game with

communication, cursedness limits information transmission: χ-CSE predicts when

players are more cursed (higher χ), it will be harder for them to effectively com-

municate in the first stage for efficient coordination in the second stage. Moreover,

Corollary 3 shows this χ-CSE varies systematically with all three parameters of the

model : N,K, and χ. In contrast, in the standard χ-CE, players best respond to the

average type-contingent strategy rather than the average behavioral strategy. Since it
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is a private value game, players do not care about the distribution of types, only the

distribution of actions. Thus, the prediction of standard CE coincides with the equi-

librium prediction for all values of N,K, and χ. This seems behaviorally implausible

and is also suggestive of an experimental design that varies the two parameters N

and K, since the qualitative effects of changing these parameters are identified.

4.3 Reputation Building: The Centipede Game with Altru-

ists

T1 T2 T3 T4

P4P3P2P11 1 12 2

4, 1 2, 8 16, 4 8, 32

64, 16

Figure 4: Four-stage Centipede Game

In order to further demonstrate the difference between χ-CE and χ-CSE, in this

section we consider a variation of the centipede game with private information, as

analyzed in McKelvey and Palfrey (1992) and Kreps (1990). This game is an illustra-

tion of reputation-building, where a selfish player imitates an altruistic type in order

to develop a reputation for passing, which in turn entices the opponent to pass and

leads to higher payoffs.

There are two players and four stages, and the game tree is shown in Figure 4. In

stage one, player one can choose either Take (T1) or Pass (P1). If she chooses action

T1, the game ends and the payoffs to players one and two are 4 and 1, respectively.

If she chooses the action P1, the game continues and player two has a choice between

take (T2) and pass (P2). If he chooses T2, the game ends and the payoffs to players

one and two are 2 and 8, respectively. If he chooses P2, the game continues to the third

stage where player one chooses between T3 and P3. Similar to the previous stages, if

she chooses T3, the payoffs to players one and two are 16 and 4, respectively. If she

chooses P3, the game proceeds to the last stage where player two chooses between
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T4 and P4. If player two chooses T4 the payoffs are 8 and 32, respectively. If player

two alternatively chooses P4, the payoffs are 64 and 16, respectively.

There are two types of player one, selfish and altruistic. Selfish players are assumed

to have a utility function that is linear in their own payoff. Altruistic players are

assumed to have a utility function that is linear in the sum of the two payoffs. For

the sake of simplicity, we assume that player two has only one type, selfish. The

common knowledge probability that player one is altruistic is α. Player one knows

her own type, but player two does not. Therefore, player one’s type is her private

information. In the following, we will focus on the interesting case where α ≤ 1/7.11

Because this is a game of incomplete information with private values, the standard

χ-CE is equivalent to the Bayesian Nash equilibrium of the game for all χ ∈ [0, 1],

and yields the same take probabilities as the Bayesian equilibrium. Since altruistic

player one wants to maximize the sum of the payoffs, it is optimal for her to always

pass. The equilibrium behavior is summarized in Claim 2.

Claim 2. In the Bayesian Nash equilibrium, selfish player one will choose P1 with

probability 6α
1−α and choose T3 with probability 1; player two will choose P2 with

probability 1
7

and choose T4 with probability 1.

Proof. See Online Appendix.

It is useful to see exactly why, in this example (and more generally) the standard

χ-CE is the same as the perfect Bayesian equilibrium. In particular, why it is not the

case that cursed beliefs will change player two’s updating process after observing P1

at stage one. Belief updating is not a property of the standard χ-CE as the analysis

is in the strategic form, and thus is solved as a BNE of the game in the reduced

normal form.12 Table 1 summarizes the payoff matrices in the reduced normal form

of centipede game for selfish and altruistic type.

It is easily verified that at the Bayesian Nash equilibrium, selfish player one would

choose T1 with probability (1−7α)/(1−α) and choose P1T3 with probability 6α/(1−
α), while player two would choose T2 with probability 6/7.

11If α > 1/7, player two always chooses P2 in the second stage since the probability of encountering
altruistic player one is sufficiently high. Selfish player one would thus chooses P1 in the first stage
and choose T3 in the third stage.

12The analysis is similar for the unreduced normal form.
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Table 1: Reduced Normal Form Centipede Game Payoff Matrix

selfish (1− α) T2 P2T4 P2P4 altruistic (α) T2 P2T4 P2P4

T1 4, 1 4, 1 4, 1 T1 5, 1 5, 1 5, 1
P1T3 2, 8 16, 4 16, 4 P1T3 10, 8 20, 4 20, 4
P1P3 2, 8 8, 32 64, 16 P1P3 10, 8 40, 32 80, 16

To solve the standard χ-CE, let selfish player one choose T1 with probability p

and P1T3 with probability 1 − p. Let player two choose T2 with probability q and

P2T4 with probability 1− q. Notice that for player two, P2P4 is a dominated strategy

and given this, it is also sub-optimal for selfish player one to choose P1P3. In this

case, selfish player one would choose T1 if and only if

4 ≥ 2q + 16(1− q) ⇐⇒ q ≥ 6/7,

implying that selfish player one’s best response correspondence in the standard cursed

analysis coincides with the Bayesian Nash equilibrium analysis. On the other hand,

to solve for player two’s best responses we need to first solve for the perceived strategy.

When player two is χ-cursed, he would think that player one is using σχ1 (a|θ) where

a ∈ {T1, P1T3, P1P3} and θ ∈ {selfish, altruistic}. Player one’s true strategy is given

in Table 2.

Table 2: Player 1’s True Strategy

player one’s type
σ1(a|θ) selfish altruistic
T1 p 0
P1T3 1− p 0
P1P3 0 1

In this case, player one’s average strategy is simply:

σ̄1(T1) = (1− α)p, σ̄1(P1T3) = (1− α)(1− p), σ̄1(P1P3) = α.

By definition, σχ1 (a|θ) = χσ̄1(a) + (1− χ)σ1(a|s) and hence we can find that σχ1 (a|θ)
is given in Table 3.

From player two’s perspective, given any action profile, player two’s expected

27



Table 3: Cursed Perception of Player 1’s Strategy

player one’s type
σχ1 (a|θ) selfish altruistic
T1 p(1− χα) pχ(1− α)
P1T3 (1− p)(1− χα) (1− p)χ(1− α)
P1P3 χα 1− χ+ χα

payoff is not affected by whether player one is selfish or altruistic. Hence, player two

only cares about the marginal distribution of player one’s actions. In this case, χ-

cursed player two believes player one will choose a ∈ {T1, P1T3, P1P3} with probability

σ̄1(a). Therefore, it is optimal for player two to choose T2 if and only if

σ̄1(T1) + 8 [1− σ̄1(T1)] ≥ σ̄1(T1) + 4σ̄1(P1T3) + 32σ̄1(P1P3) ⇐⇒ p ≤ 1− 7α

1− α
,

implying player two’s best responses in the standard cursed analysis also coincides

with the Nash best responses. As a result, one concludes that standard χ-CE would

make exactly the same prediction as the Bayesian Nash equilibrium regardless how

cursed the players are.

In contrast, the χ-CSE will exhibit distortions to the conditional beliefs of player

two, given that player one has passed, because player two incorrectly takes into ac-

count how player one’s choice to pass depended on player one’s private information.

In particular, it is harder to build a reputation, since a selfish type will have to imitate

altruists in such a way that the true posterior on altruistic type conditional on a pass

is higher than in the perfect Bayesian equilibrium, because the updating by player two

about player one’s type is dampened relative to this true posterior due to cursedness.

This distorted belief updating will result in less passing by player one compared to

the Bayesian equilibrium. Formally, the χ-CSE is described in Proposition 8.

Proposition 8. In the χ-CSE, selfish player one will choose P1 with probability qχ1

and choose T3 with probability 1; player two will choose P2 with probability qχ2 and

choose T4 with probability 1 where

qχ1 =


[

7α−7αχ
1−7αχ

− α
]/

(1− α) if χ ≤ 6
7(1−α)

0 if χ > 6
7(1−α)

and,
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qχ2 =

1/7 if χ ≤ 6
7(1−α)

0 if χ > 6
7(1−α)

.

Proof. See Online Appendix.

In order to see how the cursedness affects the equilibrium behavior, here we focus

on the case of χ ≤ 6
7(1−α)

where selfish player one and player two will both mix at

stage one and two. Given selfish player one chooses P1 with probability qχ1 , by Lemma

1, we know when the game reaches stage two, player two’s belief about player one

being altruistic becomes

µχ = χα + (1− χ)

[
α

α + (1− α)qχ1

]
.

Here we see that when χ is larger, player two will update his belief more slowly.

Therefore, in order to maintain indifference at the mixed equilibrium, selfish player

one has to pass with lower probability so that P1 is a more informative signal to

player two. As a result, to make player two indifferent between T2 and P2, the

following condition must hold at the equilibrium:

µχ =
1

7
⇐⇒ qχ1 =

[
7α− 7αχ

1− 7αχ
− α

]/
(1− α).

To conclude this section, in Figure 5, we plot the probabilities of choosing P1 and

P2 at χ-CSE when there is a five percent chance that player one is an altruist (i.e.,

α = 0.05). From our analysis above, we can find that both the standard equilibrium

theory and χ-CE predict selfish player one chooses P1 with probability and player

two chooses P2 with probability 0.14. Moreover, these probabilities are independent

of χ. However, χ-CSE predicts when players are more cursed, selfish player one is less

likely to choose P1. When players are sufficiently cursed (χ ≥ 0.91), selfish player

one and player two will never pass—i.e., behave as if there were no altruistic players.

4.4 Sequential Voting over Binary Agendas

In this section, we apply the concept of χ-CSE to the model of strategic binary

amendment voting with incomplete information studied by Ordeshook and Palfrey
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Figure 5: χ-CSE of the centipede game with altruistic players (α = 0.05)

(1988). Let N = {1, 2, 3} denote the set of voters. These three voters will vote over

three possible alternatives in X = {a, b, c}. Voting takes place in a two-stage agenda.

In the first stage, voters vote between a and b. In the second stage, voters vote

between c and the majority rule winner of the first stage. The majority rule winner

of the second stage is the outcome.

Each voter i has three possible private-value types where Θ ∈ {θ1, θ2, θ3} is the

set of possible types. Each voter’s type is independently drawn from a common prior

distribution of types, p. In other words, the probability of a voter being type θk is

pk. Each voter’s type is their own private information. Each voter has the same

type-dependent payoff function, which is denoted by u(x|θ) for any x ∈ X and θ ∈ Θ.

We summarize the payoff function with the following table.

x

u(x|θ) a b c

θ1 1 v 0

θ θ2 0 1 v

θ3 v 0 1

Notice that v ∈ (0, 1) is a parameter that measures the intensity of the second
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ranked outcome relative to the top ranked outcome. This intensity parameter, v, is

assumed to be the same for all types of all voters. Because this is a game of private

values, the standard χ-CE and the Bayesian Nash equilibrium coincide.

We use a1
i (θ) to denote type θ voter i’s action at stage 1. As is standard in majority

voting games we will focus on the analysis of symmetric pure-strategy equilibria where

voters do not use weakly dominated strategies. In other words, we will consider

ati(·) = atj(·) for all i, j ∈ N , and will drop the subscript.

In this PBE (and χ-CE) all voters will vote sincerely in equilibrium except for

type θ1 voters at stage 1. To see this, first note that voting insincerely in the last

stage is dominated and thus eliminated, so all types of voters vote for their preferred

alternative on the last ballot. Second, voting sincerely in both stages is a dominant

strategy for a type θ2 voter, who prefers any lottery between b and c to either a or

c. Third, voting sincerely in both stages is also dominant for a type θ3 voter in the

sense that, in the event that neither of the other two voters are type θ3, then any

lottery between a and c is better than a vote between b and c since b (i.e., type θ3’s

least preferred alternative) will win.13

The PBE (and χ-CE) prediction about a type θ1 voter’s strategy at stage 1 is

summarized in the following claim.

Claim 3. The symmetric (undominated pure) PBE strategy for type θ1 voters in the

first stage can be characterized as follows.

1. a1(θ1) = b is a PBE strategy if and only if v ≥ p1
p1+p2

.

2. a1(θ1) = a is a PBE strategy if and only if v ≤ p1
p1+p3

.

Proof. See Ordeshook and Palfrey (1988).

Claim 3 shows that, if v is relatively large, only type θ1 voting sophisticatedly

for b instead of sincerely for a can be supported by a PBE. Conditional on being

pivotal, voting for b in the first stage guarantees an outcome of b and thus guarantees

getting v, while voting for a leads to a lottery between a and c. As a result, when v

is sufficiently high, a type θ1 voter will have an incentive to strategically vote for b to

avoid the risk of having c elected in the last stage.

13When there is another type θ3 voter, the first ballot does not matter since their most preferred
alternative c will always win in the second stage.
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The analysis of a cursed sequential equilibrium is different from the standard

cursed equilibrium in strategic form because the cursedness affects belief updating

over the stages of the game, and players anticipate future play of the game. Due to

the dynamics and the anticipation of future cursed behavior, such cursed behavior at

later stages of a game can feedback and affect strategic behavior earlier in the game.

In the context of the two-stage binary amendment strategic voting model, cursed

behavior and belief updating mean that voters in the first stage use the expected

cursed beliefs in the second stage to compute the continuation values in the two

continuation games of the second stage, either a vote between a and c or a vote

between b and c. Because they have a cursed understanding about the relationship

between types and the voting behavior in the first stage, this affects their predictions

about which alternative wins in the second stage, conditional on which alternative

wins in the first stage.

It is noteworthy that, given any χ ∈ [0, 1], all voters will still vote sincerely in

χ-CSE except for type θ1 voters at stage 1. As implied by Proposition 4, a voter in

the last stage would act as if solving a maximization problem of χ-CE but under an

(incorrectly) updated belief. Therefore, we can follow the same arguments as solving

for the undominated Bayesian equilibrium and conclude that type θ2 and θ3 voters

as well as type θ1 voters at stage 2 will vote sincerely under a χ-CSE.

Proposition 9 establishes that the set of parameters v and p that can support a

χ-CSE in which type θ1 voters vote sophisticatedly for b shrinks as χ increases.

Proposition 9. If a1(θ1) = b can be supported by a symmetric χ-CSE, then it can

also be supported by a symmetric χ′-CSE for all χ′ ≤ χ.

Proof. See Online Appendix.

The intuition behind strategic voting over agendas mainly comes from the in-

formation content of hypothetical pivotal events. However, a cursed voter does not

(fully) take such information into consideration, and thus becomes overly optimistic

about his favorite alternative a being elected in the second stage. Therefore, a type θ1

voter has a stronger incentive to deviate from sophisticated voting to sincere voting

in stage 1 as χ increases.

Interestingly, the set of v and p that can support a χ-CSE in which type θ1 voters
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vote sincerely for a does not necessarily expand as the level of cursedness becomes

higher, as characterized in Proposition 10.

Proposition 10. Given p and v ∈ (0, 1), there exists χ̃(p, v) such that

1. If v > p1
p1+p3

, then a1(θ1) = a is a χ-CSE strategy if and only if χ ≥ χ̃(p, v);

2. If v < p1
p1+p3

, then a1(θ1) = a is a χ-CSE strategy if and only if χ ≤ χ̃(p, v).

Proof. See Online Appendix.

Thus, Proposition 10 shows that, when χ is sufficiently large, there are some values

of (v, p) that cannot support sincere voting for type θ1 voters under PBE (and χ-CE)

but can support it under χ-CSE. Alternatively, there also exist some values of (v, p)

that can support sincere voting under PBE but fail to support it under χ-CSE when

χ is large.
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Figure 6: χ-CSE for Sophisticated (left) and Sincere (right) Voting When v = 0.7

To illustrate this, Figure 6 plots the set of p (fixing v = 0.7) that can support

a χ-CSE for type θ1 voters at stage 1 to vote sophisticatedly for b and sincerely

for a. The left panel of Figure 6 shows that a sophisticated voting χ-CSE becomes

harder to be supported as χ increases, as indicated by Proposition 9. For example,
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when p ≡ (p1, p2, p3) = (0.6, 0.3, 0.1), type θ1 voters will not vote for second preferred

alternative b if χ > 0.18.

On the other hand, the right panel of Figure 6 shows that, while type θ1 voters

who sincerely vote for a at stage 1 cannot be supported under PBE when p3 is large,

they may emerge in a χ-CSE with sufficiently high χ. Also note that when p2 is large,

sincere voting by type θ1 voters is no longer a χ-CSE with high χ. In such a sincere

voting equilibrium, a fully rational type θ1 voter knows there will be only one type

θ2 voter among the other two voters when being pivotal. As a result, whether to

sincerely vote for a is determined by the ratio of p1 to p3. When p3 is large, sincere

voting at stage 1 will likely lead to zero payoff for type θ1 voters and thus cannot be a

PBE strategy. However, cursed type θ1 voters will take the possibility of having two

type θ2 voters into account since they are not correctly conditioning on pivotality.

As a result, when p2 is large, sincere voting at stage 1 will likely lead to zero payoff

for type θ1 voters, and thus cannot be a χ-CSE strategy with high χ, while voting

sophisticatedly for b can likely secure a payoff of v.

4.5 The Dirty Faces Game

The dirty faces game was first described by Littlewood (1953) to study the relationship

between common knowledge and behavior.14 There are several different variants of

this game, but here we focus on a simplified version, the two-person dirty faces game,

which was theoretically analyzed by Fudenberg and Tirole (1991a) and Lin (2022)

and was experimentally studied by Weber (2001) and Bayer and Chan (2007).

Let N = {1, 2} be the set of players. For each i ∈ N , let xi ∈ {O,X} represent

whether player i has a clean face (O) or a dirty face (X). Each player’s face type

is independently and identically determined by a commonly known probability p =

Pr(xi = X) = 1 − Pr(xi = O). Once the face types are drawn, each player i can

observe the other player’s face x−i but not their own face.15 If there is at least one

player with a dirty face, a public announcement of this fact is broadcast to both

14The dirty faces game has also been reframed as the “cheating wives puzzle” (Gamow and Stern,
1958), the “cheating husbands puzzle” (Moses et al., 1986), the “muddy children puzzle” (Barwise,
1981) and (Halpern and Moses, 1990), and the “red hat puzzle” (Hardin and Taylor, 2008).

15To fit into the framework, each player’s “type” (their own private information) can be specified
as “other players’ faces.” That is, θi = x−i.
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players at the beginning of the game. Let ω ∈ {0, 1} denote whether there is an

announcement or not. If there is an announcement (ω = 1), all players are informed

there is at least one dirty face but not the identities. When ω = 0, it is common

knowledge to both players that their faces are clean and the game becomes trivial.

Hence, in the following, we will focus only on the interesting case where ω = 1.

There are a finite number of T ≥ 2 stages. In each stage, each player i simultane-

ously chooses si ∈ {U,D}. The game ends as soon as either player (or both) chooses

D, or at the end of stage T in case neither player has chosen D. Actions are revealed

at the end of each stage. Payoffs depend on own face types and action. If a player

chooses D, he will get α > 0 if he has a dirty face while receive −1 if he has a clean

face. We assume that

pα− (1− p) < 0 ⇐⇒ 0 < ᾱ ≡ α

(1− p)(1 + α)
< 1, (1)

where pα− (1− p) is the expected payoff of D when the belief of having a dirty face

is p. Thus, Assumption (1) guarantees it is strictly dominated to choose D at stage 1

when observing a dirty face. In other words, players will be rewarded when correctly

inferring the dirty face but penalized when wrongly claiming the dirty face.

The payoffs are discounted with a common discount factor δ ∈ (0, 1). To summa-

rize, conditional on reaching stage t, each player’s payoff function (which depends on

their own face and action) can be written as:

ui(si|t, xi = X) =

δt−1α if si = D

0 if si = U
and ui(si|t, xi = O) =

−δt−1 if si = D

0 if si = U.

Therefore, a two-person dirty faces game is defined by a tuple 〈p, T, α, δ〉.
Since the game ends as soon as some player chooses D, the information sets of

the game can be specified by the face type the player observes and the stage number.

Thus a behavioral strategy can be represented as:

σ : {O,X} × {1, . . . , T} → [0, 1],

which is a mapping from information sets to the probability of choosing D, where
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{O,X} corresponds to a player’s observation of the other player’s face.

There is a unique Nash equilibrium. When observing a clean face, a player would

immediately know his face is dirty. Hence, it is strictly dominant to choose D at stage

1 in this case. On the other hand, when observing a dirty face, because of Assumption

(1), it is optimal for the player to choose U at stage 1. However, if the game proceeds

to stage 2, the player would know his face is dirty because the other player would

have chosen D at stage 1 if his face were clean and the game would not have reached

stage 2. This result is independent of the payoffs, the timing, the discount factor, and

the (prior) probability of having a dirty face. The only assumption for this argument

is common knowledge of rationality.

Alternatively, when players are “cursed,” they are not able to make perfect infer-

ences from the other player’s actions. Specifically, since a cursed player has incorrect

perceptions about the relationship between the other player’s actions and their private

information after seeing the other player choose U in stage 1, a cursed player does

not believe they have a dirty face for sure. At the extreme when χ = 1, fully cursed

players never update their beliefs. In the following, we will compare the predictions

of the standard χ-CE and the χ-CSE. A surprising result is that there is always a

unique χ-CE, but there can be multiple χ-CSE.

For the sake of simplicity, we will focus on the characterization of pure strategy

equilibrium in the following analysis. Since the game ends when some player chooses

D, we can equivalently characterize a stopping strategy as a mapping from the ob-

served face type to a stage in {1, 2, . . . , T, T + 1} where T + 1 corresponds to the

strategy of never stopping. Furthermore, both χ-CE and χ-CSE will be symmetric

because if players were to stop at different stages, least one of the players would have

a profitable deviation. Finally, we use σ̂χ(x−i) and σ̃χ(x−i) to denote the equilibrium

stopping strategies of χ-CE and χ-CSE, respectively.

We characterize the χ-CE in Proposition 11. Since χ-CE is defined for simultane-

ous move Bayesian games, to solve for the χ-CE, we need to look at the corresponding

normal form where players simultaneously choose {1, 2, . . . , T, T + 1} given the ob-

served face type.

Proposition 11. The χ-cursed equilibrium can be characterized as follows.
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1. If χ > ᾱ, the only χ-CE is that both players choose:

σ̂χ(O) = 1 and σ̂χ(X) = T + 1.

2. If χ < ᾱ, the only χ-CE is that both players choosing

σ̂χ(O) = 1 and σ̂χ(X) = 2.

Proof. See Online Appendix.

Proposition 11 shows that χ-CE makes an extreme prediction—when observing

a dirty face, players would either choose D at stage 2 (the equilibrium prediction)

or never choose D. In addition, the prediction of χ-CE is unique for χ 6= ᾱ. As

characterized in Proposition 12, for extreme values of χ, the prediction of χ-CSE

coincides with χ-CE. But for intermediate values of χ, there can be multiple χ-CSE.

Proposition 12. The pure strategy χ-CSE can be characterized as follows.

1. σ̃χ(O) = 1 for all χ ∈ [0, 1].

2. Both players choosing σ̃χ(X) = T + 1 is a χ-CSE if and only if χ ≥ ᾱ
1

T+1 .

3. Both players choosing σ̃χ(X) = 2 is a χ-CSE if and only if χ ≤ ᾱ.

4. For any 3 ≤ t ≤ T , both players choosing σ̃χ(X) = t is a χ-CSE if and only if

(
1− κ(χ)

1− p

) 1
t−2

≤ χ ≤ ᾱ
1
t−1 where

κ(χ) ≡
[(1 + α)(1 + δχ)− αδ]−

√
[(1 + α)(1 + δχ)− αδ]2 − 4δχ(1 + α)

2δχ(1 + α)
.

Proof. See Online Appendix.
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Figure 7: χ-CE vs. χ-CSE When (α, δ, p, T ) =
(

1
4
, 4

5
, 2

3
, 5
)

Illustrative Example

In order to illustrate the sharp contrast between the predictions of χ-CE and χ-CSE,

here we consider an illustrative example where α = 1/4, δ = 4/5, p = 2/3 and the

horizon of the game is T = 5. As characterized by Proposition 11, χ-CE predicts

players will choose σ̂χ(X) = 2 if χ ≤ ᾱ = 0.6; otherwise, they will choose σ̂χ(X) = 6,

i.e., they never choose D when observing a dirty face. As demonstrated in the left

panel of Figure 7, χ-CE is (generically) unique and it predicts players will either

behave extremely sophisticated or unresponsive to the other’s action at all.

In contrast, as characterized by Proposition 12, there can be multiple χ-CSE. As

shown in the right panel of Figure 7, when χ ≤ ᾱ = 0.6, both players stopping at

stage 2 is still an equilibrium, but it is not unique except for very low values of χ.

For 0.168 ≤ χ ≤ 0.505, both players stopping at stage 3 is also a χ-CSE, and for

0.505 ≤ χ ≤ 0.6, there are three pure strategy χ-CSE where both players stop at

stage 2, 3, or 4, respectively.

The existence of multiple χ-CSE in which both players stop at t > 2 highlights a

player’s learning process in a multi-stage game, which does not happen in strategic

form cursed equilibrium. In the strategic form, a player has no opportunity to learn

about the other player’s type in middle stages. Thus, when level of cursedness is not
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low enough to support a χ-CE with stopping at stage 2, both players would never

stop. However, in a χ-CSE of the multi-stage game, a cursed player would still learn

about his own face being dirty as the game proceeds, even though he might not be

confident enough to choose D at stage 2. If χ is not too large, the expected payoff of

choosing D would eventually become positive at some stage before the last stage T .16

For some intermediate values of χ, there might be multiple stopping stages which

yield positive expected payoffs. In this case, the dirty faces game becomes a special

type of coordination games where both players coordinate on stopping strategies,

resulting in the existence of multiple χ-CSE.17

5 Concluding Remarks

In this paper, we formally developed Cursed Sequential Equilibrium, which extends

the strategic form cursed equilibrium (Eyster and Rabin, 2005) to multi-stage games,

and illustrated the new equilibrium concept with a series of applications. While

the standard CE has no bite in private value games, we show that cursed beliefs

can actually have significant consequences for dynamic private value games. In the

private value games we consider, our cursed sequential equilibrium predicts (1) under-

contribution caused by under-communication in the public goods game with commu-

nication, (2) low passing rate in the presence of altruistic players in the centipede

game, and (3) less sophisticated voting in the sequential two-stage binary agenda

game. We also illustrate the distinction between CE and CSE in some non-private

value games. In simple signaling games, χ-CSE implies refinements of pooling equi-

libria that are not captured by traditional belief-based refinements (or χ-CE), and

are qualitatively consistent with some experimental evidence. Lastly, we examine the

dirty face game, showing that the CSE further expands the set of equilibrium and

predicts stopping in middle stages of the game. We summarize our findings from

these applications in Table 4.

The applications we consider are only a small sample of the possible dynamic

16The upper bound of the inequality in Proposition 12 characterizes the stages at which stopping
yields positive expected payoffs.

17Note that players with low levels of cursedness would not coordinate on stopping at late stages
since the discount factor shrinks the informative value of waiting (i.e., both choosing U). This result
is characterized by the lower bound of the inequality in Proposition 12.
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Table 4: Summary of Findings in Section 4

Application Private Values χ-CE vs. BNE χ-CSE vs. χ-CE
Signaling Game No 6= χ-CSE ⊂ χ-CE

Public Goods Game Yes = 6=
Centipede Game Yes = 6=

Sequential Voting Game Yes = 6=
Dirty Faces Game Yes 6= 6=

games where CSE could be usefully applied. One prominent class of problems where

it would be interesting to study the dynamic effects of cursedness is social learn-

ing. For example, in the standard information cascade model of Bikhchandani et al.

(1992), we conjecture that the effect would be to delay the formation of an informa-

tion cascade because players will partially neglect the information content of prior

decision makers. Laboratory experiments report evidence that subjects underweight

the information contained in prior actions relative to their own signal (Goeree et al.,

2007). A related class of problems involves information aggregation through sequen-

tial voting and bandwagon effects (Callander, 2007; Ali et al., 2008; Ali and Kartik,

2012). A natural conjecture is that CSE will impede information transmission in

committees and juries as later voters will under-appreciate the information content of

the decisions by early voters. This would dampen bandwagon effects. The centipede

example we studied suggests that CSE might have broader implications for behav-

ior in reputation-building games, such as the finitely repeated prisoner’s dilemma or

entry deterrence games such as the chain store paradox.

The generalization of CE to dynamic games presented in this paper is limited in

several ways. First, the CSE framework is formally developed for finite multi-stage

games with observed actions. We do not extend CSE for games with continuous

types but we do provide one application that shows how such an extension is possi-

ble. However, a complete generalization to continuous types (or continuous actions)

would require more technical development and assumptions. We also assume that the

number of stages is finite, and extending this to infinite horizon multi-stage games

would be a useful exercise. Extending CSE to allow for imperfect monitoring in the

form of private histories is another interesting direction to pursue. The SCE approach

in Cohen and Li (2023) allows for cursedness with respect to both public and private
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endogenous information, which leads to some important differences from our CSE

approach. In CSE, we find that subjects are limited in their ability to make cor-

rect inferences about hypothetical events, but the mechanism is different from SCE,

which introduces a second free parameter that modulates cursedness with respect to

hypothetical events. For a more detailed discussion of these and other differences and

overlaps between CSE and SCE, see Fong et al. (2023).

As a final remark, our analysis of applications of χ-CSE suggests some interesting

experiments. For instance, χ-CSE predicts in the public goods game with commu-

nication, when either the number of players (N) or the largest possible contribution

cost (K) increases, pre-play communication will be less effective, while the prediction

of sequential equilibrium and χ-CE is independent of N and K. In other words, in

an experiment where N and K are manipulated, significant treatment effects in this

direction would provide evidence supporting χ-CSE over χ-CE. Also, χ-CSE makes

qualitatively testable predictions in the sequential voting games and the dirty faces

games, which have not been extensively studied in laboratory experiments. In the

sequential voting game, it would be interesting to test how sensitive strategic (vs.

sincere) voting behavior is to preference intensity (v) and the type distribution. In

the dirty faces game, it would be interesting to design an experiment to identify the

extent to which deviations from sequential equilibrium are related to the coordination

problem that arises in χ-CSE.
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Appendix A Omitted Proofs of Section 2 and 3

Proof of Lemma 1: By definition 1, for any (µ, σ) ∈ Ψχ, any history ht−1, any

player i and any type profile θ = (θi, θ−i),∑
θ′−i

µi(θ
′
−i|ht−1, θi)[χσ̄−i(a

t
−i|ht−1, θi) + (1− χ)σ−i(a

t
−i|ht−1, θ′−i)]

= χ

∑
θ′−i

µi(θ
′
−i|ht−1, θi)


︸ ︷︷ ︸

=1

σ̄−i(a
t
−i|ht−1, θi) + (1− χ)

∑
θ′−i

µi(θ
′
−i|ht−1, θi)σ−i(a

t
−i|ht−1, θ′−i)


︸ ︷︷ ︸

=σ̄−i(at−i|ht−1,θi)

= σ̄−i(a
t
−i|ht−1, θi).

Therefore, since (µ, σ) ∈ Ψχ, with some rearrangement, it follows that

µi(θ−i|ht, θi) =
µi(θ−i|ht−1, θi)σ

χ
−i(a

t
−i|ht−1, θ−i, θi)∑

θ′−i∈Θ−i
µi(θ′−i|ht−1, θi)σ

χ
−i(a

t
−i|ht−1, θ′−i, θi)

=
µi(θ−i|ht−1, θi)[χσ̄−i(a

t
−i|ht−1, θi) + (1− χ)σ−i(a

t
−i|ht−1, θ−i)]

σ̄−i(at−i|ht−1, θi)

= χµi(θ−i|ht−1, θi) + (1− χ)

[
µi(θ−i|ht−1, θi)σ−i(a

t
−i|ht−1, θ−i)∑

θ′−i
µi(θ′−i|ht−1, θi)σ−i(at−i|ht−1, θ′−i)

]
.

Proof of Proposition 1: The proof is similar to the proof for sequential equi-

librium and proceeds in three steps. First, for any finite multi-stage games with

observed actions, Γ, we construct an ε-perturbed game Γε that is identical to Γ but

every player in every information set has to play any available action with probability

at least ε. Second, we defined a cursed best-response correspondence for Γε and prove

that the correspondence has a fixed point by Kakutani’s fixed point theorem. Finally,
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in step 3, we use a sequence of fixed points in perturbed games, with ε converging to

0, where the limit of this sequence is a χ-CSE.

Step 1: Let Γε be a game identical to Γ but for each player i ∈ N , player i must play

any available action in every information set Ii = (θi, h
t) with probability at least ε

where ε < 1∑n
j=1 |Aj |

. Let Σε = ×nj=1Σε
j be set of feasible behavioral strategy profiles

for players in the perturbed game Γε. For any behavioral strategy profile σ ∈ Σε, let

µχ(·) ≡ (µχi (·))ni=1 be the belief system induced by σ via χ-cursed Bayes’ rule. That

is, for each player i ∈ N , information set Ii = (θi, h
t) where ht = (ht−1, at) and type

profile θ−i ∈ Θ−i,

µχi (θ−i|ht, θi) = χµχi (θ−i|ht−1, θi) +

(1− χ)

[
µχi (θ−i|ht−1, θi)σ−i(a

t
−i|ht−1, θ−i)∑

θ′−i∈Θ−i
µχi (θ′−i|ht−1, θi)σ−i(at−i|ht−1, θ′−i)

]
.

Notice that the χ-cursed Bayes’ rule is only defined on the family of multi-stage games

with observed actions. As σ is fully mixed, the belief system is uniquely pinned down.

Finally, let Bε : Σε ⇒ Σε be the cursed best response correspondence which maps

any behavioral strategy profile σ ∈ Σε to the set of ε-constrained behavioral strategy

profiles σ̃ ∈ Σε that are best replies given the belief system µχ(·).
Step 2: Next, fix any 0 < ε < 1∑n

j=1 |Aj |
and show that Bε has a fixed point by

Kakutani’s fixed point theorem. We check the conditions of the theorem:

1. It is straightforward that Σε is compact and convex.

2. For any σ ∈ Σε, as µχ(·) is uniquely pinned down by χ-cursed Bayes’ rule, it is

straightforward that Bε(σ) is non-empty and convex.

3. To verify that Bε has a closed graph, take any sequence of ε-constrained

behavioral strategy profiles {σk}∞k=1 ⊆ Σε such that σk → σ ∈ Σε as k →∞, and any

sequence {σ̃k}∞k=1 such that σ̃k ∈ Bε(σk) for any k and σ̃k → σ̃. We want to prove

that σ̃ ∈ Bε(σ).

Fix any player i ∈ N and information set Ii = (θi, h
t). For any σ ∈ Σε, recall that

σχ−i(·) is player i’s χ-cursed perceived behavioral strategies of other players induced

by σ. Specifically, for any type profile θ ∈ Θ, non-terminal history ht−1 and action

profile at−i ∈ A−i(ht−1),

σχ−i(a
t
−i|ht−1, θ−i, θi) = χσ̄−i(a

t
−i|ht−1, θi) + (1− χ)σ−i(a

t
−i|ht−1, θ−i).
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Additionally, recall that ρχi (·) is player i’s belief about the terminal nodes (conditional

on the history and type profile), which is also induced by σ. Since µχ(·) is continuous

in σ we have thaat σχ−i(·) and ρχi (·) are also continuous in σ.

We further define

SkIi ≡
{
σ′i ∈ Σε

i : σ′i( · |Ii) = σ̃ki ( · |Ii)
}
,SIi ≡ {σ′i ∈ Σε

i : σ′i( · |Ii) = σ̃i( · |Ii)} .

Since σ̃k ∈ Bε(σk), for any σ′i ∈ Σε
i , we can obtain that

max
σ′′i ∈SkIi

 ∑
θ−i∈Θ−i

∑
hT∈HT

µχi [σk](θ−i|ht, θi)ρχi (hT |ht, θ, σχ−i[σk], σ′′i )ui(h
T , θi, θ−i)


≥

∑
θ−i∈Θ−i

∑
hT∈HT

µχi [σk](θ−i|ht, θi)ρχi (hT |ht, θ, σχ−i[σk], σ′i)ui(hT , θi, θ−i).

By continuity, as we take limits on both sides, we can obtain that

max
σ′′i ∈SIi

 ∑
θ−i∈Θ−i

∑
hT∈HT

µχi [σ](θ−i|ht, θi)ρχi (hT |ht, θ, σχ−i[σ], σ′′i )ui(h
T , θi, θ−i)


≥

∑
θ−i∈Θ−i

∑
hT∈HT

µχi [σ](θ−i|ht, θi)ρχi (hT |ht, θ, σχ−i[σ], σ′i)ui(h
T , θi, θ−i).

Therefore, σ̃ ∈ Bε(σ), so by Kakutani’s fixed point theorem, Bε has a fixed point.

Step 3: For any ε, let σε be a fixed point of Bε and µε be the belief system induced

by σε via χ-cursed Bayes’ rule. We combine these two components and let (µε, σε)

be the induced assessment. We now consider a sequence of ε→ 0, where {(µε, σε)} is

the corresponding sequence of assessments.

By compactness and the finiteness of Γ, the Bolzano-Weierstrass theorem guar-

antees the existence of a convergent subsequence of the assessments. As ε → 0,

let (µε, σε) → (µ∗, σ∗). By construction, the limit assessment (µ∗, σ∗) satisfies χ-

consistency and sequential rationality. Hence, (µ∗, σ∗) is a χ-CSE. �

Proof of Proposition 2: To prove Φ(χ) is upper hemi-continuous in χ, consider

any sequence of {χk}∞k=1 such that χk → χ∗ ∈ [0, 1], and any sequence of CSE,

{(µk, σk)}, such that (µk, σk) ∈ Φ(χk) for all k. Let (µ∗, σ∗) be the limit assessment,

i.e., (µk, σk)→ (µ∗, σ∗). We need to show that (µ∗, σ∗) ∈ Φ(χ∗).

To simplify notation, for any player i ∈ N , any information set Ii = (ht, θi), any
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σ′i ∈ Σi, and any σ ∈ Σ, the expected payoff under the belief system µχ(·) induced

by σ is denoted as:

Eµχ[σ]

[
ui(σ

′
i, σ−i|ht, θi)

]
≡

∑
θ−i∈Θ−i

∑
hT∈HT

µχi (θ−i|ht, θi)ρχi (hT |ht, θ, σχ−i, σ′i)ui(hT , θi, θ−i).

Suppose (µ∗, σ∗) 6∈ Φ(χ∗). Then there exists some player i ∈ N , some information

set Ii = (ht, θi), some σ′i ∈ Σi, and some ε > 0 such that

Eµχ∗ [σ∗]

[
ui(σ

′
i, σ
∗
−i|ht, θi)

]
− Eµχ∗ [σ∗]

[
ui(σ

∗
i , σ

∗
−i|ht, θi)

]
> ε. (A)

Since µχ(·) is continuous in χ, it follows that for any strategy profile σ, σχ−i(·) and

ρχi (·) are both continuous in χ. As a result, there exists a sufficiently large M1 such

that for every k ≥M1,∣∣∣∣Eµχk [σk]

[
ui(σ

k
i , σ

k
−i|ht, θi)

]
− Eµχ∗ [σ∗]

[
ui(σ

∗
i , σ

∗
−i|ht, θi)

] ∣∣∣∣ < ε

3
. (B)

Similarly, there exists a sufficiently large M2 such that for every k ≥M2,∣∣∣∣Eµχk [σk]

[
ui(σ

′
i, σ

k
−i|ht, θi)

]
− Eµχ∗ [σ∗]

[
ui(σ

′
i, σ
∗
−i|ht, θi)

] ∣∣∣∣ < ε

3
. (C)

Therefore, for any k ≥ max{M1,M2}, inequalities (A), (B) and (C) imply:

E
µχk [σk]

[
ui(σ

′
i, σ

k
−i|ht, θi)

]
− E

µχk [σk]

[
ui(σ

k
i , σ

k
−i|ht, θi)

]
>
ε

3
,

implying that σ′i is a profitable deviation for player i at information set Ii = (ht, θi),

which contradicts (µk, σk) ∈ Φ(χk). Therefore, (µ∗, σ∗) ∈ Φ(χ∗), as desired. �

Proof of Proposition 3: Fix any χ ∈ [0, 1] and let (µ, σ) be a χ-consistent

assessment. We prove the result by contradiction. Suppose (µ, σ) does not satisfy

χ-dampened updating property. Then there exists i ∈ N , θ̃ ∈ Θ and a non-terminal

history ht such that µi(θ−i|ht, θ̃i) < χµi(θ−i|ht−1, θ̃i). Since (µ, σ) is χ-consistent,

there exists a sequence {(µk, σk)} ⊆ Ψχ such that (µk, σk) → (µ, σ) as k → ∞. By
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Lemma 1, we know for this i, θ̃ and ht,

µki (θ̃−i|ht, θ̃i) =χµki (θ̃−i|ht−1, θ̃i) + (1− χ)

[
µki (θ̃−i|ht−1, θ̃i)σ

k
−i(a

t
−i|ht−1, θ̃−i)∑

θ′−i
µki (θ

′
−i|ht−1, θ̃i)σk−i(a

t
−i|ht−1, θ′−i)

]
≥χµki (θ̃−i|ht−1, θ̃i).

As we take the limit k →∞ on both sides, we can obtain that

µi(θ̃−i|ht, θ̃i) = lim
k→∞

µki (θ̃−i|ht, θ̃i) ≥ lim
k→∞

χµki (θ̃−i|ht−1, θ̃i) = χµi(θ̃−i|ht−1, θ̃i),

which yields a contradiction. �

Proof of Corollary 2: We prove the statement by induction on t. For t = 1, by

Proposition 3,

µi(θ−i|h1, θi) ≥ χµi(θ−i|h∅, θi) = χF(θ−i|θi).

Next, suppose there is t′ such that the statement holds for all 1 ≤ t ≤ t′−1. At stage

t′, by Proposition 3 and the induction hypothesis, we can find that

µi(θ−i|ht
′
, θi) ≥ χµi(θ−i|ht

′−1, θi) ≥ χ
[
χt
′−1F(θ−i|θi)

]
= χt

′F(θ−i|θi).�
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Online Appendix: Omitted Proofs of Section 4

4.1 Pooling Equilibria in Signaling Games

Proof of Proposition 5

Let the assessment (µ, σ) be a pooling χ-CSE. We want to show that for any χ′ ≤ χ,

the assessment (µ, σ) is also a χ′-CSE. Consider any non-terminal history ht−1, any

player i, any ati ∈ Ai(ht−1) and any θ ∈ Θ. We can first observe that

σ̄−i(a
t
−i|ht−1, θi) =

∑
θ′−i

µi(θ
′
−i|ht−1, θi)σ−i(a

t
−i|ht−1, θ′−i)

= σ−i(a
t
−i|ht−1, θ−i)

∑
θ′−i

µi(θ
′
−i|ht−1, θi)


= σ−i(a

t
−i|ht−1, θ−i)

where the second equality holds because σ is a pooling behavioral strategy profile, so

σ−i is independent of other players’ types. For this pooling χ-CSE, let Gσ be the set

of on-path histories and G̃σ be the set of off-path histories. We can first show that

for every h ∈ Gσ, i ∈ N and θ ∈ Θ,

µi(θ−i|h, θi) = F(θ−i|θi).

This can be shown by induction on t. For t = 1, any h1 = (h∅, a
1) and any θ ∈ Θ, by

Lemma 1, we can obtain that

µi(θ−i|h1, θi) =χµi(θ−i|h∅, θi) + (1− χ)

[
µi(θ−i|h∅, θi)σ−i(a1

−i|h∅, θ−i)
σ̄−i(a1

−i|h∅, θi)

]
=χF(θ−i|θi) + (1− χ)F(θ−i|θi)

[
σ−i(a

1
−i|h∅, θ−i)

σ̄−i(a1
−i|h∅, θi)

]
︸ ︷︷ ︸

=1

=F(θ−i|θi).

Now, suppose there is t′ such that the statement holds for 1 ≤ t ≤ t′−1. At stage

t′ and ht
′
= (ht

′−1, at
′
) ∈ Gσ, by Lemma 1 and the induction hypothesis, we can again

1



obtain that the posterior belief is the prior belief

µi(θ−i|ht
′
, θi) =χµi(θ−i|ht

′−1, θi) + (1− χ)

[
µi(θ−i|ht

′−1, θi)σ−i(a
t′
−i|ht

′−1, θ−i)

σ̄−i(at
′
−i|ht

′−1, θi)

]

=χF(θ−i|θi) + (1− χ)F(θ−i|θi)

[
σ−i(a

t′
−i|ht

′−1, θ−i)

σ̄−i(at
′
−i|ht

′−1, θi)

]
︸ ︷︷ ︸

=1

=F(θ−i|θi).

Therefore, we have shown that players will not update their beliefs at every on-path

information set, so the belief system is independent of χ. Finally, for any off-path

history ht ∈ G̃σ, by Proposition 3, we can find that the belief system satisfies for any

θ ∈ Θ,

µi(θ−i|ht, θi) ≥ χµi(θ−i|ht−1, θi) ≥ χ′µi(θ−i|ht−1, θi),

implying that when χ′ ≤ χ, µ will still satisfy the dampened updating property.

Therefore, (µ, σ) remains a χ′-CSE. This completes the proof. �

Proof of Claim 1

First observe that after player 1 chooses B, it is strictly optimal for player 2 to choose

R for all beliefs µ2(θ1|B), and after player 1 chooses A, it is optimal for player 2 to

choose L if and only if

2µ2(θ1|A) + [1− µ2(θ1|A)] ≥ 4µ2(θ1|A) ⇐⇒ µ2(θ1|A) ≤ 1/3.

Equilibrium 1.

If both types of player 1 choose A, then µ2(θ1|A) = 1/4, so it is optimal for player

2 to choose L. Given a(A) = L and a(B) = R, it is optimal for both types of player

1 to choose A as 2 > 1. Hence m(θ1) = m(θ2) = A, a(A) = L and a(B) = R is a

pooling χ-CSE for any χ ∈ [0, 1].

Equilibrium 2.

In order to support m(θ1) = m(θ2) = B to be an equilibrium, player 2 has to

choose R at the off-path information set A, which is optimal if and only if µ2(θ1|A) ≥

2



1/3. In addition, by Proposition 3, we know in a χ-CSE, the belief system satisfies

µ2(θ2|A) ≥ 3

4
χ ⇐⇒ µ2(θ1|A) ≤ 1− 3

4
χ.

Therefore, the belief system has to satisfy that µ2(θ1|A) ∈
[

1
3
, 1− 3

4
χ
]
, which requires

χ ≤ 8/9.

Finally, it is straightforward to verify that for any µ ∈
[

1
3
, 1− 3

4
χ
]
, µ2(θ1|A) = µ

satisfies χ-consistency. Suppose type θ1 player 1 chooses A with probability p and

type θ2 player 1 chooses A with probability q where p, q ∈ (0, 1). Given this behavioral

strategy profile for player 1, by Lemma 1, we have:

µ2(θ1|A) =
1

4
χ+ (1− χ)

[
p

p+ 3q

]
.

In other words, as long as (p, q) satisfies

q =

[
4− 4µ− 3χ

12− 3χ

]
p,

we can find that µ2(θ1|A) = µ. Therefore, if {(pk, qk)} → (0, 0) such that

qk =

[
4− 4µ− 3χ

12− 3χ

]
pk,

then µk2(θ1|A) = µ for all k. Hence, limk→∞ µ
k
2(θ1|A) = µ, suggesting that µ2(θ1|A) =

µ is indeed χ-consistent. This completes the proof. �

Proof of Proposition 6

Here we provide a characterization of χ-CSE of Game 1 and Game 2. For the analysis

of both games, we denote µI ≡ µ2(θ1|m = I) and µS ≡ µ2(θ1|m = S).

Analysis of Game BH 3.

At information set S, given µS, the expected payoffs of C, D, E are 90µS, 30−15µS

and 15, respectively. Therefore, for any µS, E is never a best response. Moreover,

C is the best response if and only if 90µS ≥ 30 − 15µS or µS ≥ 2/7. Similarly, at

information set I, given µI , the expected payoffs of C, D, E are 30, 45 − 45µI and

3



15, respectively. Therefore, E is strictly dominated, and C is the best response if and

only if 30 ≥ 45− 45µI or µI ≥ 1/3. Now we consider four cases.

Case 1 [m(θ1) = I,m(θ2) = S]:

By Lemma 1, µI = 1−χ/2 and µS = χ/2. Moreover, since µI = 1−χ/2 ≥ 1/2 for

any χ, player 2 will choose C at information set I. To support this equilibrium, player

2 has to choose C at information set S. In other words, [(I, S); (C,C)] is separating

χ-CSE if and only if µS ≥ 2/7 or χ ≥ 4/7.

Case 2 [m(θ1) = S,m(θ2) = I]:

By Lemma 1, µI = χ/2 and µS = 1 − χ/2. Because µS ≥ 1 − χ/2 ≥ 1/2, it

is optimal for player 2 to choose C at information set S. To support this as an

equilibrium, player 2 has to choose D at information set I. Yet, in this case, type

θ2 player 1 will deviate to S. Therefore, this profile cannot be supported as an

equilibrium.

Case 3 [m(θ1) = I,m(θ2) = I]:

Since player 1 follows a pooling strategy, player 2 will not update his belief at

information set I, i.e., µI = 1/2. χ-dampened updating property implies χ/2 ≤ µS ≤
1−χ/2. Since µI > 1/3, player 2 will choose C at information set I. To support this

profile to be an equilibrium, player 2 has to choose D at information set S, and hence,

it must be the case that µS ≤ 2/7. Coupled with the requirement from χ-dampened

updating, the off-path belief has to satisfy χ/2 ≤ µS ≤ 2/7. That is, [(I, I); (C,D)]

is pooling χ-CSE if and only if χ/2 ≤ 2/7 or χ ≤ 4/7.

Case 4 [m(θ1) = S,m(θ2) = S]:

Similar to the previous case, since player 1 follows a pooling strategy, player 2

will not update his belief at information set S, i.e., µS = 1/2. Also, the χ-dampened

updating property suggests χ/2 ≤ µI ≤ 1 − χ/2. Because µS > 2/7, it is optimal

for player 2 to choose C at information set S. To support this as an equilibrium,

player 2 has to choose D at information set I. Therefore, it must be that µI ≤ 1/3.

Combined with the requirement of χ-dampened updating, the off-path belief has to

satisfy χ/2 ≤ µI ≤ 1/3. As a result, [(S, S); (D,C)] is a pooling χ-CSE if and only if

χ ≤ 2/3.
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Analysis of Game BH 4.

At information set I, given µI , the expected payoffs of C, D, E are 30, 45− 45µI

and 35µI . Hence, D is the best response if and only if µI ≤ 1/3 while E is the best

response if µI ≥ 6/7. For 1/3 ≤ µI ≤ 6/7, C is the best response. On the other

hand, since player 2’s payoffs at information set S are the same as in Game 1, player

2 will adopt the same decision rule—player 2 will choose C if and only if µS ≥ 2/7,

and choose D if and only if µS ≤ 2/7. Now, we consider the following four cases.

Case 1 [m(θ1) = I,m(θ2) = S]:

In this case, by Lemma 1, µI = 1 − χ/2 and µS = χ/2. To support this profile

to be an equilibrium, player 2 has to choose E and C at information set I and S,

respectively. To make it profitable for player 2 to choose E at information set I, it

must be that:

µI = 1− χ/2 ≥ 6/7 ⇐⇒ χ ≤ 2/7.

On the other hand, player 2 will choose C at information set S if and only if χ/2 ≥ 2/7

or χ ≥ 4/7, which is not compatible with the previous inequality. Therefore, this

profile cannot be supported as an equilibrium.

Case 2 [m(θ1) = S,m(θ2) = I]:

In this case, by Lemma 1, µI = χ/2 and µS = 1 − χ/2. To support this as an

equilibrium, player 2 has to choose D at both information sets. Yet, µS = 1− χ/2 >
2/7, implying that it is not a best reply for player 2 to choose D at information set

S. Hence this profile also cannot be supported as an equilibrium.

Case 3 [m(θ1) = I,m(θ2) = I]:

Since player 1 follows a pooling strategy, player 2 will not update his belief

at information set I, i.e., µI = 1/2. The χ-dampened updating property implies

χ/2 ≤ µS ≤ 1− χ/2. Because 1/3 < µI = 1/2 < 6/7, player 2 will choose C at infor-

mation set I. To support this profile as an equilibrium, player 2 has to choose D at

information set S, and hence, it must be the case that µS ≤ 2/7. Coupled with the re-

quirement of χ-dampened updating, the off-path belief has to satisfy χ/2 ≤ µS ≤ 2/7.

That is, [(I, I); (C,D)] is pooling χ-CSE if and only if χ/2 ≤ 2/7 or χ ≤ 4/7.

Case 4 [m(θ1) = S,m(θ2) = S]:
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Similar to the previous case, since player 1 follows a pooling strategy, player 2

will not update his belief at information set S, i.e., µS = 1/2. Also, the χ-dampened

updating property implies χ/2 ≤ µI ≤ 1 − χ/2. Because µS > 2/7, it is optimal for

player 2 to choose C at information set S. To support this as an equilibrium, player

2 can choose either C or D at information set I.

Case 4.1: To make it a best reply for player 2 to choose D at information set I, it

must be that µI ≤ 1/3. Combined with the requirement from χ-dampened updating,

the off-path belief has to satisfy χ/2 ≤ µI ≤ 1/3. As a result, [(S, S); (D,C)] is a

pooling χ-CSE if and only if χ ≤ 2/3.

Case 4.2: To make it a best reply for player 2 to choose C at information set I, it

must be that 1/3 ≤ µI ≤ 6/7. Combined with the requirement from χ-dampened

updating, the off-path belief has to satisfy

max

{
1

2
χ,

1

3

}
≤ µI ≤ min

{
6

7
, 1− 1

2
χ

}
.

For any χ ∈ [0, 1], one can find µI that satisfies both inequalities. Hence [(S, S); (C,C)]

is a pooling χ-CSE for any χ.

This completes the analysis of Game BH 3 and Game BH 4. �

4.2 A Public Goods Game with Communication

Proof of Proposition 7

To prove this set of cost cutoffs form a χ-CSE, we need to show that there is no

profitable deviation for any type at any subgame. First, at the second stage where

there are exactly 0 ≤ k ≤ N − 1 players sending 1 in the first stage, since no players

will contribute, setting Cχ
k = 0 is indeed a best response. At the subgame where all

N players send 1 in the first stage, we use µχi (c−i|N) to denote player i’s cursed belief

density. By Lemma 1, the cursed belief about all other players having a cost lower
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than c is simply:

F χ(c) ≡
∫
{cj≤c, ∀j 6=i}

µχi (c′−i|N)dc′−i

=

χ (c/K)N−1 + (1− χ) (c/Cχ
c )N−1 if c ≤ Cχ

c

1− χ+ χ (c/Cχ
c )N−1 if c > Cχ

c ,

and Cχ
N is the solution of the fixed point problem of Cχ

N = F χ(Cχ
N).

Moreover, in equilibrium, Cχ
c type of players would be indifferent between sending

1 and 0 in the communication stage. Thus, given Cχ
N , Cχ

c is the solution of the

following equation

0 =

(
Cχ
c

K

)N−1

[−Cχ
c + F χ(Cχ

N)] .

As a result, we obtain that in equilibrium, Cχ
c = Cχ

N = F χ(Cχ
N) ≤ 1 and denote this

cost cutoff by C∗(N,K, χ). Substituting it into F χ(c), gives:

C∗(N,K, χ)− χ
[
C∗(N,K, χ)

K

]N−1

= 1− χ.

In the following, we show that for any N ≥ 2 and χ, the cutoff C∗(N,K, χ) is unique.

Case 1: When N = 2, the cutoff C∗(2, K, χ) is the unique solution of the linear

equation

C∗(2, K, χ)− χ
[
C∗(2, K, χ)

K

]
= 1− χ ⇐⇒ C∗(2, K, χ) =

K −Kχ
K − χ

.

Case 2: For N ≥ 3, we define the function h(y) : [0, 1]→ R where

h(y) = y − χ
( y
K

)N−1

− (1− χ).

It suffices to show that h(y) has a unique root in [0, 1]. When χ = 0, h(y) = y−1 which

has a unique root at y = 1. In the following, we will focus on the case where χ > 0.

Since h(y) is continuous, h(0) = −(1 − χ) < 0 and h(1) = χ
[
1− (1/K)N−1

]
> 0,

there exists a root y∗ ∈ (0, 1) by the intermediate value theorem. Moreover, as we
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take the second derivative, we can find that for any y ∈ (0, 1),

h′′(y) = −
( χ

KN−1

)
(N − 1)(N − 2)yN−3 < 0,

implying that h(y) is strictly concave in [0, 1]. Furthermore, h(0) < 0 and h(1) > 0,

so the root is unique, as illustrated in the left panel of Figure 3. This completes the

proof. �

Proof of Corollary 3

By Proposition 7, we know the cutoff C∗(N,K, χ) ≤ 1 and it satisfies

C∗(N,K, χ)− χ
[
C∗(N,K, χ)

K

]N−1

= 1− χ.

Therefore, when χ = 0, the condition becomes C∗(N,K, 0) = 1. In addition, when

χ = 1, the condition becomes

C∗(N,K, 1)−
[
C∗(N,K, 1)

K

]N−1

= 0,

implying C∗(N,K, 1) = 0.

For χ ∈ (0, 1), to prove C∗(N,K, χ) is strictly decreasing in N , K and χ, we

consider a function g(y;N,K, χ) : (0, 1) → R where g(y;N,K, χ) = y − χ[y/K]N−1.

For any y ∈ (0, 1) and fix any K and χ, we can observe that when N ≥ 2,

g(y;N + 1, K)− g(y;N,K) = −χ
[ y
K

]N
+ χ

[ y
K

]N−1

> 0,

so g(·;N,K, χ) is strictly increasing in N . Therefore, the cutoff C∗(N,K, χ) is strictly

decreasing in N . Similarly, for any y ∈ (0, 1) and fix any N and χ, observe that when

K > 1,
∂g

∂K
= χ(N − 1)

(
yN−1

KN

)
> 0,

which implies that cutoff C∗(N,K, χ) is also strictly decreasing in K. For the com-
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parative statics of χ, we can rearrange the equilibrium condition where

1− C∗(N,K, χ)

χ
= 1−

[
C∗(N,K, χ)

K

]N−1

.

Since LHS is strictly decreasing in χ, the equilibrium cutoff is also strictly decreasing

in χ. Finally, taking the limit on both sides of the equilibrium condition, we obtain:

lim
N→∞

C∗(N,K, χ) = lim
K→∞

C∗(N,K, χ) = 1− χ.

This completes the proof. �

4.3 The Centipede Game with Altruistic Types

Proof of Claim 2

By backward induction, we know selfish player two will choose T4 for sure. Given

that player two will choose T4 at stage four, it is optimal for selfish player one to

choose T3. Now, suppose selfish player one will choose P1 with probability q1 and

player two will choose P2 with probability q2. Given this behavioral strategy profile,

player two’s belief about the other player being altruistic at stage two is:

µ =
α

α + (1− α)q1

.

In this case, it is optimal for selfish player two to pass if and only if

32µ+ 4(1− µ) ≥ 8 ⇐⇒ µ ≥ 1

7
.

At the equilibrium, selfish player two is indifferent between T2 and P2. If not, say

32µ+ 4(1−µ) > 8, player two will choose P2. Given that player two will choose P2,

it is optimal for selfish player one to choose P1, which makes µ = α and α > 1/7.

However, we know α ≤ 1/7 which yields a contradiction. On the other hand, if

32µ + 4(1 − µ) < 8, then it is optimal for player two to choose T2 at stage two. As

a result, selfish player one would choose T1 at stage one, causing µ = 1. In this

case, player two would deviate to choose P2, which again yields a contradiction. To

summarize, in equilibrium, player two has to be indifferent between T2 and P2, i.e.,
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µ = 1/7. As we rearrange the equality, we can obtain that

α

α + (1− α)q∗1
=

1

7
⇐⇒ q∗1 =

6α

1− α
.

Finally, since the equilibrium requires selfish player one to mix at stage one, selfish

player one has to be indifferent between P1 and T1. Therefore,

4 = 16q∗2 + 2(1− q∗2) ⇐⇒ q∗2 =
1

7
.

This completes the proof. �

Proof of Proposition 8

By backward induction, we know selfish player two will choose T4 for sure. Given

this, it is optimal for selfish player one to choose T3. Now, suppose selfish player one

will choose P1 with probability q1 and player two will choose P2 with probability q2.

Given this behavioral strategy profile, by Lemma 1, player two’s cursed belief about

the other player being altruistic at stage 2 is:

µχ = χα + (1− χ)

[
α

α + (1− α)q1

]
.

In this case, it is optimal for player two to pass if and only if

32µχ + 4(1− µχ) ≥ 8 ⇐⇒ µχ ≥ 1

7
.

We can first show that in equilibrium, it must be that µχ ≤ 1/7. If not, then it is

strictly optimal for player two to choose P2. Therefore, it is optimal for selfish player

one to choose P1 and hence µχ = α ≤ 1/7, which yields a contradiction. In the

following, we separate the discussion into two cases.

Case 1: χ ≤ 6
7(1−α)

In this case, we argue that player two is indifferent between P2 and T2. If not,

then 32µχ + 4(1−µχ) < 8 and it is strictly optimal for player two to choose T2. This

would cause selfish player one to choose T1 and hence µχ = 1− (1−α)χ. This yields
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a contradiction because

µχ = 1− (1− α)χ <
1

7
⇐⇒ χ >

6

7(1− α)
.

Therefore, in this case, player two is indifferent between T2 and P2 and thus,

µχ =
1

7
⇐⇒ χα + (1− χ)

[
α

α + (1− α)qχ1

]
=

1

7

⇐⇒ χ+
1− χ

α + (1− α)qχ1
=

1

7α

⇐⇒ α + (1− α)qχ1 = (1− χ)

/[
1

7α
− χ

]
⇐⇒ qχ1 =

[
7α− 7αχ

1− 7αχ
− α

]/
(1− α).

Since the equilibrium requires selfish player one to mix at stage 1, selfish player one

has to be indifferent between P1 and T1. Therefore,

4 = 16qχ2 + 2(1− qχ2 ) ⇐⇒ qχ2 =
1

7
.

Case 2: χ > 6
7(1−α)

In this case, we know for any qχ1 ∈ [0, 1],

µχ = χα + (1− χ)

[
α

α + (1− α)qχ1

]
≤ 1− (1− α)χ <

1

7
,

implying that it is strictly optimal for player two to choose T2, and hence it is strictly

optimal for selfish player one to choose T1 at stage 1. This completes the proof. �

4.4 Sequential Voting over Binary Agendas

Proof of Proposition 9

If a1(θ1) = b and all other types of voters as well as type θ1 at stage 2 vote sincerely,

voter i’s χ-cursed belief in the second stage upon observing a1
−i = (a, b) is
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µχi (θ−i|a1
−i = (a, b)) =


p1p3χ+ p1

p1+p2
(1− χ) if θ−i = (θ3, θ1)

p2p3χ+ p2
p1+p2

(1− χ) if θ−i = (θ3, θ2)

pkplχ otherwise.

As mentioned in Section 4.4, a voter would act as if he perceives the other voters’

(behavioral) strategies correctly in the last stage. However, misunderstanding the link

between the other voters’ types and actions would distort a voter’s belief updating

process. In other words, a voter would perceive the strategies correctly but form

beliefs incorrectly. As a result, the continuation value of the a vs c subgame to a

type θ1 voter is simply the voter’s χ-cursed belief, conditional on being pivotal, about

there being at least one type θ1 voter among his opponents. Similarly, the continuation

value of the b vs c subgame is equal to the voter’s conditional χ-cursed belief about

there being at least one type θ1 or θ2 voter among his opponents multiplied by v.

Therefore, the continuation values to a type θ1 voter in the two possible subgames of

the second stage are (let p̃2 ≡ p1
p1+p2

):

a vs c : χ
(
1− (1− p1)2

)
+ (1− χ)p̃2

b vs c :
(
1− p2

3χ
)
v

It is thus optimal for a type θ1 voter to vote for b in the first stage if

χ
(
1− (1− p1)2

)
+ (1− χ)p̃2 ≤

(
1− p2

3χ
)
v

⇐⇒ [2p1 − p2
1 − p̃2 + p2

3v]χ ≤ v − p̃2 (2)

Notice that the statement would automatically hold when χ = 0. In the following,

we want to show that given v and p, if condition (2) holds for some χ ∈ (0, 1], then

it will hold for all χ′ ≤ χ. As χ > 0, we can rewrite condition (2) as

2p1 − p2
1 − p̃2 + p2

3v ≤
v − p̃2

χ
. (2’)

Case 1: v − p̃2 < 0.

In this case, we want to show that voting b in the first stage is never optimal for
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type θ1 voter. That is, we want to show condition (2’) never holds for v < p̃2. To

see this, we can first observe that the RHS is strictly increasing in χ. Therefore, it

suffices to show

2p1 − p2
1 − p̃2 + p2

3v > v − p̃2.

This is true because

2p1 − p2
1 − p̃2 + p2

3v − (v − p̃2) = 2p1 − p2
1 − (1− p2

3)v

> 2p1 − p2
1 − (1 + p3)p1 = p1p2 ≥ 0

where the second inequality holds as v < p1
p1+p2

.

Case 2: v − p̃2 ≥ 0.

Since the RHS of condition (2’) is greater or equal to 0, it will weakly increase as

χ decreases. Thus, if condition (2’) holds for some χ ∈ (0, 1], it will also hold for all

χ′ ≤ χ. This completes the proof. �

Proof of Proposition 10

Assuming that all voters vote sincerely in both stages, voter i’s χ-cursed belief in the

second stage upon observing a1
−i = (a, b) is

µχi (θ−i|a1
−i = (a, b)) =


p1p2χ+ p1

p1+p3
(1− χ) if θ−i = (θ1, θ2)

p2p3χ+ p3
p1+p3

(1− χ) if θ−i = (θ3, θ2)

pkplχ otherwise.

Similar to the proof of Proposition 9, the continuation values to a type θ1 voter

in the two possible subgames of the second stage are (let p̃3 ≡ p1
p1+p3

):

a vs c : χ
(
1− (1− p1)2

)
+ (1− χ)p̃3

b vs c :
(
1− p2

3χ
)
v

13



Thus, it is optimal for a type θ1 voter to vote for a in the first stage if

χ
(
1− (1− p1)2

)
+ (1− χ)p̃3 ≥

(
1− p2

3χ
)
v

⇐⇒ χ
(
2p1 − p2

1 − p̃3 + p2
3v
)
≥ v − p̃3. (3)

Case 1: v − p̃3 > 0.

In this case, we want to show that given p and v, there exists χ̃ such that condition

(3) holds if and only if χ ≥ χ̃. Let τ ≡ 2p1 − p2
1 − p̃3 + p2

3v. If τ > 0, then condition

(3) holds if and only if χ ≥ χ̃ ≡ v−p̃3
τ

. On the other hand, if τ ≤ 0, condition (3) will

not hold for all χ ∈ [0, 1] and hence we can set χ̃ = 2.

Case 2: v − p̃3 ≤ 0.

In this case, we want to show that given p and v, there exists χ̃ such that condition

(3) holds if and only if χ ≤ χ̃. If τ < 0, then condition (3) holds if and only if χ ≤ v−p̃3
τ

where the RHS is greater or equal to 0. On the other hand, if τ ≥ 0, then condition

(3) will hold for any χ ∈ [0, 1] and hence we can again set χ̃ = 2. This completes the

proof. �

4.5 The Dirty Faces Game

Proof of Proposition 11

When observing a clean face, a player will know that he has a dirty face immediately.

Therefore, choosing 1 (i.e., choosing D at stage 1) when observing a clean face is a

strictly dominant strategy. In other words, for any χ ∈ [0, 1], σ̂χ(O) = 1.

The analysis of the case where the player observes a dirty face is separated into

two cases.

Case 1: χ > ᾱ

In this case, we show that σ̂χ(X) = T + 1 is the only χ-CE. If not, suppose

σ̂χ(X) = t where t ≤ T can be supported as a χ-CE. We can first notice that

σ̂χ(X) = 1 cannot be supported as a χ-CE because it is strictly dominated to choose

1 when observing a dirty face. For 2 ≤ t ≤ T , given the other player −i chooses
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σ̂χ(X) = t, we can find player −i’s average strategy is

σ̄−i(j) =


1− p if j = 1

p if j = t

0 if j 6= 1, t.

Therefore, the other player −i’s χ-cursed strategy is:

σχ−i(j|xi = O) =


χ(1− p) + (1− χ) if j = 1

χp if j = t

0 if j 6= 1, t,

and

σχ−i(j|xi = X) =


χ(1− p) if j = 1

χp+ (1− χ) if j = t

0 if j 6= 1, t.

In this case, given (player i perceives that) player −i chooses the χ-cursed strategy,

player i’s expected payoff to choose 2 ≤ j ≤ t when observing a dirty face is:

(1− p)
[
−δj−1χp

]
+ p

{
δj−1α [χp+ (1− χ)]

}
= pδj−1 [α− χ(1 + α)(1− p)]︸ ︷︷ ︸

<0⇐⇒ χ>ᾱ

< 0.

Hence, given the other player chooses t when observing a dirty face, it is strictly

dominated to choose any j ≤ t. Therefore, the only χ-CE is σ̂χ(X) = T + 1.

Case 2: χ < ᾱ

In this case, we want to show that σ̂χ(X) = 2 is the only χ-CE. If not, suppose

σ̂(X) = t for some t ≥ 3 can be supported as a χ-CE. We can again notice that since

when observing a dirty face, it is strictly dominated to choose 1, 1 is never a best

response. Given player −i chooses σ̂χ(X) = t, by the same calculation as in Case 1,

the expected payoff to choose 2 ≤ j ≤ t is:

pδj−1 [α− χ(1 + α)(1− p)]︸ ︷︷ ︸
>0⇐⇒ χ<ᾱ

> 0,
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which is decreasing in j. Therefore, the best response to σ̂χ(X) = t is to choose 2

when observing a dirty face. As a result, the only χ-CE in this case is σ̂χ(X) = 2.

This completes the proof. �

Proof of Proposition 12

When observing a clean face, the player would know that his face is dirty. Thus,

choosing D at stage 1 is a strictly dominant strategy, and σ̃χ(O) = 1 for all χ ∈ [0, 1].

On the other hand, the analysis for the case where the player observes a dirty face

consists of several steps.

Step 1: Assume that both players choosing D at some stage t̄. We claim that at

stage t ≤ t̄, the cursed belief µχ(X|t,X) = 1 − (1 − p)χt−1. We can prove this by

induction on t. At stage t = 1, the belief about having a dirty face is simply the prior

belief p. Hence this establishes the base case. Now suppose the statement holds for

any stage 1 ≤ t ≤ t′ (and t′ < t̄). At stage t′ + 1, by Lemma 1,

µχ(X|t′ + 1, X) = χµχ(X|t′, X) + (1− χ)

= χ
[
1− (1− p)χt′−1

]
+ (1− χ)

= 1− (1− p)χt′

where the second equality holds by the induction hypothesis. This proves the claim.

Step 2: Given the cursed belief computed in the previous step, the expected payoff

to choose D at stage t is:

µχ(X|t,X)α− [1− µχ(X|t,X)] =
[
1− (1− p)χt−1

]
α−

[
(1− p)χt−1

]
= α− (1− p)(1 + α)χt−1,

which is increasing in t. Notice that at the first stage, the expected payoff is α −
(1− p)(1 +α) < 0 by Assumption (1), so choosing U at stage 1 is strictly dominated.

Furthermore, the player would choose U at every stage when observing a dirty face
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if and only if

µχ(X|T,X)α− [1− µχ(X|T,X)] ≤ 0 ⇐⇒ α− (1− p)(1 + α)χT−1 ≤ 0

⇐⇒ χ ≥ ᾱ
1

T+1 .

As a result, both players choosing σ̃χ(X) = T + 1 is a χ-CSE if and only if χ ≥ ᾱ
1

T+1 .

Step 3: In this step, we show both players choosing σ̃χ(X) = 2 is a χ-CSE if and only

if χ ≤ ᾱ. We can notice that given the other player chooses D at stage 2, the player

would know stage 2 would be the last stage regardless of his face type. Therefore, it

is optimal to choose D at stage 2 as long as the expected payoff of D at stage 2 is

positive. Consequently, both players choosing σ̃χ(X) = 2 is a χ-CSE if and only if

µχ(X|2, X)α− [1− µχ(X|2, X)] ≥ 0 ⇐⇒ α− (1− p)(1 + α)χ

⇐⇒ χ ≤ ᾱ.

Step 4: Given the other player chooses σ̃χ(X) > t, as the game reaches stage t, the

belief about the other player choosing U at stage t is:

µχ(X|t,X)︸ ︷︷ ︸
prob. of dirty

[χµχ(X|t,X) + (1− χ)]

+ [1− µχ(X|t,X)]︸ ︷︷ ︸
prob. of clean

[χµχ(X|t,X)] = µχ(X|t,X).

Furthermore, we denote the expected payoff of choosing D at stage t as

E [uχ(D|t,X)] ≡ µχ(X|t,X)α− (1− µχ(X|t,X)) .

In the following, we claim that for any stage 2 ≤ t ≤ T − 2, given the other player

will stop at some stage later than stage t+ 2 or never stop, if it is optimal to choose
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U at stage t+ 1, then it is also optimal for you to choose U at stage t. That is,

E [uχ(D|t+ 1, X)] < δµχ(X|t+ 1, X)E [uχ(D|t+ 2, X)]

=⇒ E [uχ(D|t,X)] < δµχ(X|t,X)E [uχ(D|t+ 1, X)] .

To prove this claim, first observe that

E [uχ(D|t+ 1, X)] < δµχ(X|t+ 1, X)E [uχ(D|t+ 2, X)]

⇐⇒ (1 + α)µχ(X|t+ 1, X)− 1 < δµχ(X|t+ 1, X) [(1 + α)µχ(X|t+ 2, X)− 1] .

After rearrangement, the inequality is equivalent to

δχ [µχ(X|t+ 1, X)]2 +

[
δ(1− χ)− δ

1 + α
− 1

]
µχ(X|t+ 1, X) +

1

1 + α
> 0.

Consider a function F : [0, 1]→ R where

F (y) = δχy2 +

[
δ(1− χ)− δ

1 + α
− 1

]
y +

1

1 + α
.

Since µχ(X|j,X) = 1− (1− p)χj−1 is increasing in j, it suffices to complete the proof

of the claim by showing there exists a unique y∗ ∈ (0, 1) such that F is single-crossing

on [0, 1] where F (y∗) = 0, F (y) < 0 for all y > y∗, and F (y) > 0 for all y < y∗.

Because F is continuous and

• F (0) = 1
1+α

> 0,

• F (1) = δχ+
[
δ(1− χ)− δ

1+α
− 1
]

+ 1
1+α

= −α(1−δ)
1+α

< 0.

By intermediate value theorem, there exists a y∗ ∈ (0, 1) such that F (y∗) = 0.

Moreover, y∗ is the unique root of F on [0, 1] because F is a strictly convex parabola

and F (1) < 0. This establishes the claim.

Step 5: For any 3 ≤ t ≤ T , in this step, we find the conditions to support both

players choosing σ̃χ(X) = t as a χ-CSE. We can first notice that both players choosing

σ̃χ(X) = t is a χ-CSE if and only if

1. E [uχ(D|t,X)] ≥ 0
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2. E [uχ(D|t− 1, X)] ≤ δµχ(X|t− 1, X)E [uχ(D|t,X)].

Condition 1 is necessary because if it fails, then it is better for the player to

choose U at stage t and get at least 0. Condition 2 is also necessary because if the

condition doesn’t hold, it would be profitable for the player to choose D before stage

t. Furthermore, these two conditions are jointly sufficient to support σ̃χ(X) = t as a

χ-CSE by the same argument as step 3. From condition 1, we can obtain that

E [uχ(D|t,X)] ≥ 0 ⇐⇒ (1 + α)µχ(X|t,X)− 1 ≥ 0

⇐⇒ 1− (1− p)χt−1 ≥ 1

1 + α
⇐⇒ χ ≤ ᾱ

1
t−1 .

In addition, by the calculation of step 4, we know

E [uχ(D|t− 1, X)] ≤ δµχ(X|t− 1, X)E [uχ(D|t,X)] ⇐⇒ F (µχ(X|t− 1, X)) ≥ 0,

which is equivalent to

µχ(X|t− 1, X) ≤

[
1 + δ

1+α
− δ(1− χ)

]
−
√[

1 + δ
1+α
− δ(1− χ)

]2 − 4δχ
(

1
1+α

)
2δχ

=
[(1 + α)(1 + δχ)− αδ]−

√
[(1 + α)(1 + δχ)− αδ]2 − 4δχ(1 + α)

2δχ(1 + α)
≡ κ(χ).

Therefore, condition 2 holds if and only if

1− (1− p)χt−2 ≤ κ(χ) ⇐⇒ χ ≥
(

1− κ(χ)

1− p

) 1
t−2

.

In summary, both players choosing σ̃χ(X) = t is a χ-CSE if and only if

(
1− κ(χ)

1− p

) 1
t−2

≤ χ ≤ ᾱ
1
t−1 .

This completes the proof. �
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