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Abstract

We study a standard collective action problem in which successful achievement of a group

interest requires costly participation by some fraction of its members. How should we model

the internal organization of these groups when there is asymmetric information about the

preferences of their members? How effective should we expect it to be as we increase the group’s

size n? We model the organization as an honest and obedient communication mechanism and

obtain three main results: (1) For large n it can be implemented with a very simple mechanism

that we call the Volunteer Based Organization. (2) The limit probability of success as n goes to

infinity in the optimal honest and obedient mechanism is no better than an unorganized group,

which is not generally true if obedience is replaced by the usual (weaker) requirement of interim

individual rationality. (3) In spite of this asymptotic equivalence, an optimal organization

provides substantial gains when the probability of success converges to zero, because it does so

at a much slower rate than an unorganized group. Because of this, significant probabilities of

success are achievable with simple honest and obedient organizations even in very large groups.
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1 Introduction

Collective action is one of the most basic and ubiquitous forms of strategic interaction in
societies. Examples of collective action problems range from the case of private citizens
banding together in public demonstrations; to dissatisfied workers participating in union
activities; to voters bearing up against bad weather to cast their ballots; to community
members donating their time to organize charity or cultural events. At a more macro level,
the choices by countries contemplating to join an international environmental agreement also
constitute a collective action problem. These are all instances of environments in which a
common goal can be achieved by a community, but only if a sufficiently large number of its
members are willing to make individual contributions, thus overcoming the incentives to free
ride. There are many concrete examples testifying that societies are indeed able to partially
solve collective action problems; theories of voluntary behavior and free riding, however, find
hard to explain significant levels of individual participation, except assuming that citizens
like it or feel morally obliged to it.

In his seminal work, Mancur Olson [1965] provided a taxonomy of the factors determining
success of collective action, and highlighted the presence of an organization as a key factor.
This observation is intuitive, but it opens up practical and theoretical questions that, as
we will argue, have not yet been fully explored in the literature. A first set of questions is
positive: what type of organizations should we plausibly expect in collective action prob-
lems, and how effective should we expect them to be? A second related set of questions is
normative: how do empirically plausible organizations compare to the theoretically optimal
organization? To what extent can the presence of an organization (plausible or even optimal)
explain the observed effectiveness of collective action even with a large number of agents?
Understanding these questions is important to make sense of the limits and opportunities of
collective action and may provide normative insights to improve it.

In this paper we make progress on these issues by studying the effectiveness of organiza-
tions in a classic threshold contribution game, widely studied in economics, biology, political
science and sociology. In the game, a group of n agents pursue a collective goal that, if
achieved, generates a benefit v per agent. The goal is achieved if at least a mn out of n
agents choose to make a personal contribution.1 The cost of a personal contribution is pri-
vate information to each agent: it is independently distributed across agents according to
some commonly known distribution, F (c). The agents may or may not have an organization
to coordinate individual decisions, and the organization may be strong (allowing for transfers
and/or some form of coercion) or, more plausibly, weak (no transfers and no coercion). We
ask how the probability of success changes as n increases, depending on (1) the rate of in-
crease in mn, (2) whether or not there is an organization, and (3) whether the organization,
if it exists, is strong or weak. We also ask under what conditions the group of agents will
endogenously form an organization.

1Classic contributions are Palfrey and Rosenthal [1984] in economics and Diekmann [1985] in sociology,
who coined the term the “volunteer’s dilemma” for the special case in which mn = 1. A survey of the work
using these games in biology is presented by Archetti and Scheuring [2012]. Applications to environmental
economics include, for example, Tavoni et al. [2011] and Barrett et al [2014]. Recent contributions in
economics included Harrington [2011], Bergstrom [2017], Battaglini and Benabou [2003], Battaglini [2017],
Bergstrom and Leo [2020], Nöldeke and Peña (2020), Dziuda et al. [2021], among others.
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Our analysis produces four new theoretical insights. As a preliminary step, we first
revisit the equilibrium analysis without an organization when the threshold mn is a general
increasing function of n. Our first finding is that, even without an organization and with
a threshold mn that grows to infinity, failure of collective action is not inevitable: the key
factor is the rate of increase of mn versus n. Perhaps surprisingly, we show that, regardless
of the shape of F (c), success is achieved with probability converging to one if mn grows at
a rate slower than n2/3; success is instead impossible if n grows faster than n2/3. When mn

grows faster than n2/3, moreover, there is a critical group size, nU , such that the probability of
success falls precipitously from a strictly positive success probability to becomes exactly zero
for n ≥ nU . Collective action, therefore, does not require an organization to be successful if
mn grows sufficiently slowly; but it can be really valuable otherwise.

The other three main findings address the questions of how and to what extent the per-
formance of collective action can be improved by an organization. The key issue here is how
to model an organization. The standard approach in mechanism design theory has focused
on the study of optimal organizations with transfers that are Bayesian incentive compatible
(IC) and interim individually rational (IR), what we refer to as strong mechanisms.2 This
approach, through the (IC) constraint, captures the problem of honestly aggregating the
dispersed private information regarding the agents’ types; it also partially captures, through
the IR constraint, a moral hazard problem at the interim stage by guaranteeing a mini-
mal expected utility to all types. In most environments of interest, however, this approach
bypasses the moral hazard problem faced by the group, since some types might choose to
disobey a recommendation by the mechanism if carrying out the recommendation would not
be optimal. In the standard Bayesian mechanism design problem, a direct mechanism maps
each reported profile of types to an allocation and a payment to or from each agent, which
is then imposed on all agents even if the allocation/payment makes some agents worse off
at the reported type profile. In contrast, in a collective action problem, a mechanism lacks
the power to simply impose the outcome on all agents, and can only suggest recommended
(i.e., not imposed) actions, one for each agent (“go protest”, “sign a petition”, “volunteer”,
“do nothing”, etc.). The final outcome ultimately depends on the individual willingness of
each agent to voluntarily carry out these recommendations.

To clarify this point with an example, consider a community asking for volunteers to
organize an event. The event requires at least 3 out of 10 agents to spend one afternoon
at the community center and yields a value v = 0.5 per person if the quota is met. If the
support of F is [0, 1], then a simple (IC) and (IR) mechanism can achieve the goal with
probability 1 using a simple random mechanism:3 just randomly and anonymously select 3
agents and ask them to volunteer. This is (IC), since the information on the types is not
used; and it is (IR) since the interim expected cost, 0.3c, is lower than the benefit, v, even for
the highest type (0.3 < 0.5). The problem with this mechanism is that it violates the moral
hazard (obedience) constraint: no type c > 0.5 would agree to volunteer if asked.4 In such a

2An exception is Dixit and Olson [2000], as we will discuss below.
3This mechanism is also optimal under some weak conditions as we will see in Section 3. This fact is

however irrelevant for the present discussion.
4This random mechanism is also ex post IR, since outcomes do not depend on the profile of types. All

types are willing to participate, even after conditioning on the entire type profile.
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situation one must add an obedience constraint, requiring that the agents asked to volunteer
find it optimal to carry out the mechanism’s recommendation. We refer to mechanisms that
also satisfy obedience and no transfers as weak mechanisms.

This distinction between (IC) and (IR) mechanisms and honest and obedient mechanisms
was not especially important for limiting results with large groups in the early literature that
assumed constant returns to scale; i.e., the cost of the common project grows linearly with
the number of agents. In that case, the limit probability of success is zero even if we ignore
the obedience constraint (Rob [1989], Mailath and Postlewaite [1990], Ledyard and Palfrey
[1994, 1999]). If one generalizes the constant returns assumption, however, the distinction
becomes important. As we are able to show, when mn grows slower than n, even if at a
speed arbitrarily close to n, then optimal (IC) and (IR) mechanisms achieve a probability
one of success for a large enough n even if we adopt a simple random mechanism with no
transfers as outlined before. Such mechanisms, however, violate the obedience constraint, as
explained in the example above. It therefore becomes important to understand what can be
achieved with an honest and obedient mechanism.

Our second theoretical contribution is to show that a simple class of honest and obedient
mechanisms that we call Volunteer Based Organizations (VBO) is asymptotically optimal.
The mechanism is a simple extension of the random mechanism described above. In a VBO,
agents are asked to report whether they are willing to be activated (volunteers) or not (free
riders). If the number of agents who state they are willing to be volunteers is lower than
mn, then no agent is asked to be active and the group fails, but wastes no cost of action by
any agent. If the number of volunteers is greater than or equal to mn, then the collective
goal is achieved by randomly and anonymously selecting mn volunteers. These volunteers
are willing to follow the recommendation because they know that exactly mn− 1 volunteers
will also carry out similar recommendations. Free riders are never asked to be active.

In our third theoretical result we use the previous characterization to explore the limits
of optimal honest and obedient organizations. This allows us to extend the negative limit
results of the previous literature: i.e., that the limit probability of success in an optimal (IC)
and (IR) with constant returns to scale is zero, both with an organized and unorganized
group (Rob [1989], Mailath and Postlewaite [1990], Ledyard and Palfrey [1994, 1999, 2002]).
We show that with honest and obedient mechanisms the limiting probability of success is
the same with an organized and an unorganized group for any rate of growth of mn: as with
the Bayesian Nash equilibrium for unorganized groups, the optimal honest and obedient
mechanism achieves a limiting success probability equal to 1 if mn grows at a rate slower
than n2/3; and it achieves a limit probability equal to 0 if it grows faster than n2/3. An
implication of this result is that the probability of success converges to zero even if the total
group benefit is strictly greater than the maximum possible total cost, a case in which, as
we will show, strong mechanisms are successful with probability one even with no transfers.

So is there any value in having an organization? The fourth lesson from our analysis
is that organizations are indeed very useful, and that focusing only on limit results for
infinite-sized groups misses an important part of the problem. We show that even when mn

grows faster than n2/3, the limit probability of success in a honest and obedient organization
converges to zero at a rate that is infinitely slower than without an organization (which
indeed achieves exactly zero probability after a finite threshold, n).
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Taken together these results confirm and sharpen Olson’s intuition for the importance
of organizations for collective action, and also highlight important limitations to the power
of organizations. Simple forms of cooperation such as a VBO, however, are approximately
optimal for finite n and can provide an effective institution for group success for large groups,
at least on the order of thousands of members, even in environments where the limiting
probability of success with extremely large groups approaching infinity would be zero. This
observation may help explain why numerous cases of successful collective action have been
documented, even if collective action is not a panacea for all social problems.

Regarding the limitations to the power of weak organizations, our n → ∞ results have
implications about solving collective action problems in very large societies, for example
on the scale of nation states with tens of millions of citizens. An extremely large society,
even one that is ideally organized in a way that respects honesty and obedience constraints,
will perform no better in providing public goods than an identical society operating under
autarky, with no organization at all. Voluntary behavior, even if guided by a perfectly
designed organization to coordinate activity, is not sufficient to provide a satisfactory solution
to collective action problems for arbitrarily large societies. In these cases, what is required is
the establishment of institutions (e.g., a government) that are enabled with the authority of
ex post coercive powers to implement and enforce individual compliance with the outcomes
imposed by a strong mechanism.

These implications are confirmed and strengthened when we endogenize the formation
of an organization, as we do in Section 6. That analysis suggests that even when successful
collective action is only possible with an organization, we should observe the formation of
organizations only for values v larger than a threshold v(n), increasing in n.

1.1 Related literature

Olson [1965] was arguably the first to highlight the importance of an organization in solv-
ing collective action problems, providing a first informal description of the features of an
organization useful to solve them.5 Formal analysis of this issue, however, had to wait for
the development of the theory of optimal mechanisms in Bayesian environments. Our work
follows this tradition, departing from it in two ways: first, because we assume no transfers;
second, and most importantly, because we require the optimal mechanism to be honest and
obedient as discussed above. Most previous theoretical research on optimal mechanisms for
public good provision in Bayesian environments consider only strong organizations, which
allow unlimited side payments and interim individual rationality constraints, ignoring the
obedience constraint (Mailath and Postlewaite [1990], [1989], Ledyard and Palfrey [1994],
[1999], [2002], Hellwig [2003]).6 As far as we know, the problem of optimal public goods
mechanisms in Bayesian environments that satisfy obedience has never been studied. The

5Other factors for the success of collective action that have been emphasized by Olson [1965] and the
following literature include the cohesiveness of the preferences of the group’s members, the elasticity of their
cost function as a function of the contributions, and the degree of excludability of the common goal’s benefits.
Important works on these dimensions see Chamberlin [1974], and more recently Esteban and Ray [2001].

6Other research on Bayesian mechanism design with public goods analyzes “super-strong” organizations
that require incentive compatibility, but allow for unlimited side payments and no participation constraints
(d’Aspremont and Gerard-Varet [1979], Cremer and McLean [1985], d’Aspremont, Cremer, and Gerard-Varet
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first three groups of authors have presented negative results of strong organizations assuming
constant returns to scale, showing that limit probabilities converge to zero with or without
an optimal (IC) and interim (IR) mechanism. Hellwig [2003] has shown that with increasing
returns, limit probabilities equal to 1 are feasible with an optimal (IC) and (IR) mechanism
with unlimited transfers, indeed always achieved when the demand for the public good is
bounded above. When we consider honest and obedient mechanism, results are very differ-
ent, both with constant returns and without. Allowing for increasing returns, we extend the
insight that organizations are not useful in the limit, since we show with (HO) mechanisms
they can only obtain the same limit probabilities of success than unorganized groups as
n→∞: with sufficiently increasing returns, however, this probability may be one both with
and without an organization, a case that we precisely characterize. With constant returns,
we also show that the failure of organizations in the limit is a more severe phenomenon than
previously believed, since it extends to cases in which the total societal value of the collective
action goal is strictly higher than the cost of achieving success in the worst case scenario, i.e.
vn > mnc, where c is the maximum possible cost. In contrast, success is guaranteed with
strong organizations in this worst case.7

Following Olson [1965], a significant literature has also studied organizations for collective
action from a positive perspective, providing empirical studies of the type of organizations
that emerge in concrete examples, both using case studies (Ostrom [1990], for instance)
and laboratory experiments (De Kragt et al [1983], Braver and Wilson [1986], Palfrey and
Rosenthal [1991], Ostrom and Walker [1991], Ostrom et al. [1992], Palfrey et al. [2017] among
others). Several of these experimental papers study public good games similar to ours, by
allowing players to communicate before the contribution stage and ruling out coercion, and
report the endogenous emergence of mechanisms similar to the VBO mechanism that we
show to be asymptotically optimal.

2 The Collective Action Model

2.1 Setup

A group with n members, I = {1, 2, ..., n}, desires an outcome generating a total value of
Wn, with each member in the group receiving a personal, direct benefit of v = Wn/n ∈ (0, 1)
which is independent of n.8 The policy is obtained if and only if at least mn > 1 out of the

[1990], Ledyard and Palfrey [1999], [2002]).
7The limits of organizations for collective action are also explored by Dixit and Olson [2000], who focus

on the the study of incentives to join organized groups. They take a cooperative perspective, assuming that
organizations achieve the efficiency frontier through Coaseian bargaining; agents, however, have incentives
to stay out, free riding on those who join the organization (for a similar approach in a dynamic setting, see
also Battaglini and Harstad [2016]). Passarelli and Tabellini [2017] present a model of political unrest that
incorporates psychological rewards for activism. Besides the contributions cited above, moreover, a recent
significant literature has studied the limits of organizations in Bayesian mechanisms. See, for example, Healy
[2010], Goldlucke and Troger [2020], and Bierbrauer and Hellwig [2016] and Bierbrauer and Winkelmann
[2020].

8It is straightforward to extend the analysis to the case in which we have a value vn depending on on n
and vn → v as n→∞.
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n ≥ mn members of the group are active. The fraction of agents that are required to be
active for success is denoted by αn = mn/n ∈ (0, 1).

Different members have different activity costs, and we denote by ci the cost of being
active for member i. Member i’s payoff is given by:

ui = 0 if i is not active and fewer than mn members are active

= v if i is not active and at least mn members are active

= −ci if i is active and fewer than mn members are active

= v − ci if i is active and at least mn members are active

Costs are i.i.d. and distributed in [0, c] according to a distribution F (c) with density f(c).
We normalize without loss of generality c = 1 > v and assume 0 < f(c) < f for some bound
f <∞ and all c ≥ 0.9

We do not need to assume that mn is monotonic in n, though typically we expect it to
be non decreasing with mn → ∞ as n → ∞.10 We refer to the case in which mn = αn
for some fixed constant α ∈ (0, 1) as the constant returns to scale case, since it represents
a situation in which the fraction of active members required for success, mn/n, is constant
in n (or equivalently converges to a constant). We refer to the case in which mn/n → 0 as
the increasing returns to scale case, since in this case the average cost of the common goal
declines in n.

There are two basic forms of organization of the group. The first is no organization
at all. In this case each member decides to be active or to free ride independently, given
rational expectations about the other members activity decisions. This corresponds to a
pure voluntary participation game with a threshold.

The second form is an organized group. We are interested in studying the benefits from
organizing even when the organization has very limited tools at its disposal. To this end,
we assume that the organization cannot directly observe the types of its members, it cannot
exert any form of coercion on the members’ actions and it cannot even commit to monetary
transfers. We refer to such organizations as weak organizations. The organized group can
only design an optimal communication mechanism. In such a mechanism, group members
send messages to the mechanism, then the mechanism sends each member a recommended
action, and then each member independently chooses an action. While the set of such
mechanisms can be very large, Myerson [1982] has shown that the characterization of the set
of all Bayesian Nash equilibria of all such communication mechanisms can be accomplished by
considering only honest and obedient direct communication mechanisms.11 In Section 2.2.1
below we provide a formal characterization of this class of mechanisms and its relationship
to the class of incentive compatible and individually rational mechanisms.

In Section 6 we describe a stronger form of organization in which only incentive com-
patibility and interim individual rationality is required. This class of mechanism is a useful

9The analysis directly extends to more general environments. We discuss alternative assumptions about
the cost distribution in Section 7.

10We give an example in the next section of a case where mn is a constant for all n→∞.
11This set is closely related to the set of correlated Bayesian equilibrium outcomes of the game.
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benchmark since the previous literature has focused on these mechanisms in the form pre-
sented here or in close variants (Rob [1989], Mailath and Postlewaite [1990], Ledyard and
Palfrey [1994, 1999, 2002] and Hellwig [2003]). We refer to these as strong organizations.

2.2 Weak Organizations: Honest and Obedient Communication
Mechanisms

In the absence of monetary transfers, a direct communication mechanism is fully character-
ized by a mapping from the set of possible type profiles into the set of probability distribu-
tions over the subsets of I, µ : [0, 1]n → ∆

(
2I
)
, where we call µ either the mechanism or

the activity function, ∆2I is the set of probability distributions over subsets of I, and we
denote by µg(c) the probability the activity function selects subset g ⊆ I of the group to be
active at type profile c. Members independently report their types to the mechanism; given
the messages c the mechanism selects a coalition g to activate according to µg(c) and sends
the corresponding recommended action to each member; then each member observes their
own recommendation and decides whether to comply.

In the following it is sometimes useful to denote a coalition g ⊆ I as an n-dimensional
vector of zeros and ones, in which the ith component, gi, is equal to 1 if i ∈ g and equal to
0 if i /∈ g. In this notation (g−i, 0) is a coalition with g−i that excludes i; and (g−i, 1) is the
coalition of g−i plus i. We denote |g| =

∑
i gi.

Define Ii = {g ⊆ I|i ∈ g} as the subsets of I containing i and define Imn = {g ⊆ I|
|g| ≥ mn} as the set of subsets containing at least mn members. Given an activity function,
µ, the probability i is active at type profile c is given by Ai(c;µ) =

∑
g∈Ii µg(c), and the

probability that enough members are active so the group is successful is given by P (c;µ) =∑
g∈Im µg(c). A mechanism is balanced if and only if, for all c, µg(c) > 0 ⇔ |g| = mn. A

mechanism has undercontribution at c if µg(c) > 0 for some |g| < mn and a mechanism has
overcontribution at c if µg(c) > 0 for some |g| > mn. Thus a mechanism is balanced if and
only if it never has overcontribution or undercontribution.

For any mechanism µ define its reduced form mechanism by the functions pi(ci) =
Ec−i [P ((ci, c−i);µ)] and ai(ci) = Ec−i [Ai(ci, c−i);µ)], which are, respectively the expected
probability of success and the expected probability i is active, condition on i’s cost. We
assume, without loss of generality, that the mechanism is symmetric, i.e., for any i, j ∈ I,
c ∈ [0, 1], pi(c) = pj(c) and ai(c) = aj(c).

12 To simplify notation, we drop the mem-
ber subscripts and simply write these reduced form functions as p : [0, 1] → [0, 1] and
a : [0, 1] → [0, 1]. We call a reduced form mechanism, (p, a), feasible if and only if there
exists an activity function µ that generates (p, a). Given any activity function, µ, the interim
expected utility for type c who reports to be a type c′ is denoted by U(c′, c) = vp(c′)− ca(c′)
with U(c) ≡ U(c, c).

In Myerson [1982] a coordination mechanism is honest and obedient (HO) if it provides

12To see that the restriction to symmetric mechanisms is without loss of generality, consider any honest and
obedient asymmetric mechanism, µ. For any permutation, ρ, of the member indices, define the mechanism µρ
by pi(c;µρ) = pρ(i)(c;µ) and ai(c;µρ) = aρ(i)(c;µ). Now define the symmetric mechanism, µ, by uniformly
randomizing among all possible such permutations. Linearity of the member utility function will guarantee
that µ is also honest and obedient, and it generates the same total surplus as µ.
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incentive to reveal the true type and to follow the recommendations of the mechanism. Define
χ(g) as the success indicator function when a coalition g ⊆ I is activated: so χ(g) = 1 if
|g| ≥ mn and χ(g) = 0 if |g| < mn. Given this, the utility for agent i, with cost type c, when
the activated coalition is g can be written as:

uig(c) =

{
vχ(g)− c if g ∈ Ii
vχ(g) if g /∈ Ii

Using this notation, condition (HO) requires:

U(c) = Ec−i

[∑
g⊆I

µg (c, c−i)u
i
g (c)

]
≥ Ec−i

[∑
g⊆I

µg (c′, c−i)u
i
g−i,δi(gi)

(c)

]
(HO)

for any i = 1, ..., n, c, c′ ∈ [0, 1], and any function δi(gi) mapping gi to {0, 1}. If we fix
δi (gi) = gi, (HO) implies the standard interim incentive compatibility condition:

U(c) ≥ U(c′, c) = Ec−i

[∑
g⊆I

µg (c′, c−i)u
i
g(c)

]
(IC)

for any c, c′ ∈ [0, 1].

If we fix ci = c, (HO) implies the following interim moral hazard condition (IMH):

Ec−i

[∑
g⊆I

µg (c, c−i)u
i
g (c)

]
≥ max

δi
Ec−i

[∑
g⊆I

µg (c, c−i)u
i
g−i,δi(gi)

(c)

]
(IMH)

This inequality states that members find it optimal to follow the mechanism’s recommen-
dation on the equilibrium path in which types are truthfully revealed. Condition (HO)
however also rules out joint deviations, in which a member misreports his/her type and then
disobeys to the recommendation that follows the misreport.

Condition (IMH) has two implications. First, since the right hand side is non negative
and the left hand side is U(c) = Ec−i [U(c, c−i)], IMH implies interim individual rationality
(INTIR):

U(c) = Ec−i [U(c, c−i)] ≥ 0 (INTIR)

It follows that an (HO) mechanism is also an (IC) and (INTIR) mechanism. Second, (IMH)
implies:

c > v ⇒ a(c) = 0 (1)

since U((g−i, 0) , c) > U((g−i, 1) , c) for any g−i if c > v. Condition (1) is not required in an
(IC) and (INTIR) mechanism, so an (IC) and (INTIR) mechanism is not generally an (HO)
mechanism (as we will see in Section 3.2).13

13An alternative assumption for the participation constraint is ex post individual rationality (EXIR). It is
interesting to note that (EXIR) implies neither (IMH) nor (HO). An example is presented in Section 3.2,
where we show conditions under which the optimal (IC) and (INTIR) mechanism is (EXIR), but fails (IMH)
and (HO).
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3 Two Benchmarks

Before characterizing optimal HO mechanisms, it is natural to consider two polar bench-
marks. The first is completely unorganized groups, which provides a lower bound on the
success of HO mechanisms. While HO mechanisms correspond to the set of all correlated
Bayesian equilibria of the game, completely unorganized groups have no means of communi-
cation so the equilibrium outcomes correspond to the set of symmetric uncorrelated Bayesian
equilibria. Thus, the gains from HO organizations can be measured in terms of the improve-
ment over the best symmetric Bayesian equilibrium for unorganized groups. We show that
this lower bound is essentially complete failure, unless the returns to scale are sufficiently
high. With constant returns to scale or sufficiently small returns to scale, no member every
participates and the group never succeeds except for groups with very few members.

The second benchmark is strong organizations, which relaxes two of the constraints im-
posed by HO mechanisms, monetary transfers and obedience, with the latter constraint
replaced with interim individual rationality (INTIR). It is a natural benchmark because it
corresponds to the standard approach taken in the public good mechanism design literature
(Mailath and Postlewaite [1990], Ledyard and Palfrey [1994, 1999], Hellwig [2003]). We show
that under fairly weak conditions, the optimal mechanism succeeds 100% of the time.

3.1 Unorganized groups

For an unorganized group, the payoff function and distribution of costs described above define
a Bayesian game where each member simultaneously choose to be active or not. We consider
only symmetric equilibria of the game. The symmetry assumption reflects the idea that an
asymmetric equilibrium implicitly requires some degree of organization or communication.

3.1.1 Equilibrium with unorganized groups

Denote by p the probability a member is active in the voluntary contribution game. Given
any value of p ∈ [0, 1], each member has a best reply that is characterized by a cutpoint,
ĉUn (p), with the property that member i is active if and only if ci ≤ ĉUn (p). If success requires
at least mn of the n members to be active, then an equilibrium cutpoint must satisfy:

ĉUn (p) = vB(mn − 1, n− 1, p), (2)

where B(mn − 1, n − 1, p) ≡
(
n−1
mn−1

)
(p)mn−1 (1− p)n−mn is the probability of being pivotal.

In equilibrium, it must be that p coincides with the probability a member has ci ≤ ĉUn (p),
which is simply equal to F

(
ĉUn (p)

)
. Hence the following condition is necessary and sufficient

for cUn to be an equilibrium cutpoint:

cUn = vB(mn − 1, n− 1, F (cUn )). (3)

An equilibrium exists, trivially, because cUn = 0 is always a solution to equation (3) when
mn > 1. It is possible there are also equilibria with cUn ∈ (0, v). In all the analysis that follows,
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cUn always refers to the largest solution to equation 3: this is without loss of generality since
we just intend to find an upper bound to the effectiveness of unorganized groups.

An unorganized group succeeds with positive probability only if there is a strictly pos-
itive solution cUn . Given a cUn > 0 and associated pUn > 0, the equilibrium probability an
unorganized group is successful is:

PU
n (pUn , αn) =

n∑
k=mn

B(k, n, pUn ) (4)

It is relatively straightforward to see that in the case with constant returns to scale, i.e.
mn = αn for some α ∈ (0, 1), large groups completely fail for sufficiently large n, in the sense
that no member is ever active, including members with arbitrarily small costs: formally,
there is a finite nU such that pUn = cUn = 0 for all n > nU . To see this point, suppose for
simplicity that F is uniform in [0, 1], consider any cUn ∈ (0, v] and multiply both sides of

equation (3) by 1−cUn
vcUn

and substitute αn = mn to obtain:

1− cUn
v

=

(
(1− α)n+ 1

αn− 1

)(
n− 1

αn− 2

)(
cUn
)αn−2 (

1− cUn
)(1−α)n+1

(5)

The left hand side of equation (5) is greater than or equal to 1−v
v

for all n and the right
hand side converges to

(
1−α
α

)
B(αn − 2, n − 1, cUn ) which converges to 0. Hence there exists

nU such that for all n > nU the only solution to equation (3) is cUn = 0.14

3.1.2 Unorganized Equilibrium in Large Groups: The effect of returns to scale

While it is natural to assume that mn increases in n, it is also natural to expect that it grows
slower than n. This opens the question of whether and to what extent an unorganized group
can achieve success if mn grows sufficiently slow. The following example shows that at least
in the polar extreme case where mn is constant in n, group success is achieved in the limit.
This is a particularly extreme example of increasing returns to scale of activism, in which
the ratio of required participation to population, mn/n declines at the speed of 1/n.

Example 1. The Volunteer’s dilemma: Assume F (c) is uniform in [0, 1] and consider
the so called “volunteer’s dilemma,” in which only 1 volunteer is required, regardless of group
size, so mn = 1.15 Will the group be able to send 1 volunteer as n→∞? It is straightforward
to see that the answer is yes. From equation (3), a cutpoint equilibrium solves: cUn =

v
(
1− cUn

)n−1
which has a unique positive solution cUn for all n, with limn→∞ c

U
n = 0. The

probability of success, from equation 4 is:

PU
n = 1−

(
1− cUn

)n
= 1−

(
cUn
v

) n
n−1

14This is stated and proved more generally as Theorem 1 of the next section.
15The volunteer’s dilemma is not consistent with our assumption that mn > 1, which is assumed to hold

throughout the rest of the paper, but it is an illustrative boundary case. The argument presented here
generalizes to the case in which mn is constant and equal to any integer M > 1.
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Figure 1: Intuition for equilibria with positive limit probability of success in unorganized
groups: v = .6, n = 10, 60, mn = d.5n.6e.

so limn→∞ P
U
n = 1−

(
limn→∞ cUn

v

)
= 1. �

Can the logic of the volunteer’s dilemma be generalized to the more realistic case in which
mn grows without bound? We say that mn grows slower (resp., faster) than a sequence sn,
i.e. mn ≺ sn (resp., mn � sn) if mn/sn → 0 (resp. mn/sn → ∞). We say that mn grows
at the same speed as sn, i.e. mn ' sn if mn/sn → ρ for some finite ρ > 0.16 The following
theorem establishes that, independently of the shape of F , there is an equilibrium in which
unorganized groups are successful with probability 1 in the limit as n → ∞ if mn ≺ n2/3,
and are completely unsuccessful in the limit in all equilibria if mn � n2/3.17

Theorem 1. With an unorganized group, for all v ∈ (0, 1):

1. if mn ≺ n2/3 then limn→∞ P
U
n = 1.

2. if mn � n2/3 then there exists nU such that the unique equilibrium is cUn = 0 for all
n > nU , and hence PU

n = 0 for all n > nU

Theorem 1 shows that we do not need constant returns for a group to fail in large finite
groups; when the rate of growth of mn is sufficiently high, i.e. mn � n2/3, the probability

16We will also use the notation mn � sn (resp. mn � sn) for the case in which mn does not grow slower
(resp. faster) than a sequence sn.

17All omitted proofs in the paper are presented in the appendix.
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of success in the unorganized group collapses to exactly zero for all sufficiently large n. The
result is stronger than a limiting result: failure always occurs with large finite unorganized
groups. Perhaps more significantly, however, the theorem also shows that the negative results
on collective action cannot generalize to all cases in which mn grows slower than n. Even
with no organization the group can achieve a limit success probability of 1; but the no
organization case can be seen as a trivial (HO) mechanism, so full success is also possible in
the limit in an optimal HO mechanism when mn ≺ n2/3.

Figure 1 illustrates part 1 of Theorem 1, the case where mn ≺ n2/3. The diagonal in the
figure is the left hand side of equation (3), and the two single-peaked curves show the right
hand side of equation (3), for v = .6, mn = .5n.6, F uniform, and two different group sizes,
n = 10, 60. An unorganized group equilibrium is any value of c where the single peaked curve
intersects the diagonal. An increase in n has two effects on the right hand side of equation
(3). First, it pushes the peak down, since the probability of exactly mn − 1 active agents
goes down: this makes it harder to have a positive intersection. Second, since mn ≺ n, it
shifts the peak of the curve to the left since the share of required active agents αn = mn/n
is also reduced. As n increases, the probability of success remains bounded above zero and
eventually converges to 1 as long the sequence of intersections cn remains sufficiently higher
than the sequence of thresholds αn (i.e., F (cn) > αn). From Figure 1 we can see that a
necessary condition for this is that for all n sufficiently large the right hand side of equation
(3), evaluated at αn, is higher than the 45o degree line, so higher than F−1(αn),18 i.e.:

vB(mn − 1, n− 1, αn)

F−1(αn)
≥ 1. (6)

When this is the case, then the highest intersection point, cn, remains on the right of the
threshold αn. The proof of Theorem 1 uses Stirling’s approximation formula to show that,
for any choice of F , a necessary and essentially sufficient condition for this to happen is that
mn increases at a rate slower than n2/3. In that case the left hand side of (6) diverges to
infinity; when mn increases at a rate faster than n2/3, the left hand side converges to zero
so the probability of success also converges to zero, violating (6). Referring back to Figure
1, mn ≺ n2/3 ensures that the second effect of increasing n (shifting the peak to the left)
dominates the first effect (shifting the peak down).

The logic behind the “magic number” 2/3 in Theorem 1 can be heuristically explained
as follows. Let us first see why, when mn � n2/3, the expected share of volunteers in
equilibrium F (cUn ) falls short of the threshold αn for all n sufficiently large, thus leading to
a limit probability of success equal to zero. As n → ∞, cUn → 0, so F (cUn ) ' f(0)cUn . We
therefore have αn ≤ F (cUn ) only if:

mn

n
= αn ≤ F (cUn ) ' f(0)cUn = vf(0)B(mn − 1, n− 1, F

(
cUn
)
) (7)

where the last equality follows from the equilibrium condition for cUn . Since B(mn − 1, n −
1, F

(
cUn
)
) is maximized at the value of c such that F (c) = (αn − 1/n) /(1 − 1/n) ' αn, in

18The function of cn F (vB(αnn− 1, n− 1, cn)) has a maximum at cn = (αnn− 1) /(n− 1) < αn, and it
is increasing (resp. decreasing) in c for c < (αnn− 1) /(n− 1) (resp., c > (αnn− 1) /(n− 1)).
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the limit B(mn−1, n−1, F
(
cUn
)
≤ B(mn−1, n−1, αn), so (7) is implied by vf(0) ·B(αnn−

1, n− 1, αn)/αn ≥ 1. The binomial probability of αnn− 1 successes converges to zero at the
slowest rate when the probability of success is αn, and this rate is on the order of 1/

√
αnn.

This implies that:

B(αnn− 1, n− 1, F
(
cUn
)
) � B(αnn− 1, n− 1, αn) ' m−1/2n ,

where � here means that the right hand side converges to zero at the same or slower
rate than the left hand side. A necessary condition for (7) therefore is that mn

n
con-

verges to zero faster than m
−1/2
n , but this condition cannot hold if mn � n2/3. When

mn ≺ n2/3, we have αn < F (vB(mn − 1, n− 1, αn)) for all n sufficiently large. Since
F (vB(mn − 1, n− 1, 1)) = 0 < 1, continuity implies that there is a solution cUn > αn for all
n sufficiently large. Indeed, the proof of Theorem 1 establishes that this solution remains
sufficiently larger than αn, so that the probability of success converges to 1. When instead
mn � n2/3, then αn > F (vB(mn − 1, n− 1, αn)) for all n sufficiently large. Again, the proof
of Theorem 1 establishes that the only solution of cUn = vB(mn− 1, n− 1, F (cUn )) is actually
zero in this case for n sufficiently large, so that the probability of success is 0 for n sufficiently
large.

3.2 Strong Organizations

The standard Bayesian mechanism design approach to study collective action and public good
provision is to characterize the optimal direct mechanism allowing for monetary transfers,
requiring incentive compatibility (IC) and interim individually rationality (INTIR), see Rob
[1989], Mailath and Postlewaite [1990] and Ledyard and Palfrey [1994, 1999]. We refer to
a mechanism with transfers requiring (IC) and (INTIR) as a strong organization, since in
both cases it needs to satisfies weaker constraints than in the weak organization defined in
2.2.1, and thus they can achieve more.

The best (IC) and (IR) mechanism can be characterized as the solution of the following
maximization problem, where the interim expected monetary payment of type c is denoted
by t(c) = Ec−i [t

i(c, c−i)]:

max
p,a

∫ 1

0
U(c)dF (c) (8)

s.t. vp(c)− ca(c)− t(c) ≥ vp(c′)− ca(c′)− t(c′) ∀c, c′ ∈ [0, 1]

vp(c)− ca(c)− t(c) ≥ 0 ∀c ∈ [0, 1]

p, a, t feasible

where the first constraint is the (IC) constraint, the second is the (INTIR) constraint and
the third is the feasibility constraint discussed in Section 2 with the additional feasibility
condition that monetary transfers balance:

∑n
i=1 t

i(c) = 0 for all c. Following standard
methods, the (IC) constraint is equivalent to requiring U ′(c) = −a(c) and a(c) is non-
increasing. Substituting (IC) into the objective function and simplifying gives:

13



max
p(0),a(·)

{
vp(0)−

∫ 1

0

a(c)
1− F (c)

f(c)
dc

}
(9)

s.t. U ′(c) = −a(c), a(c) ∈ [0, 1] and non-increasing,

U(c) ≥ 0 ∀c ∈ [0, 1] , and p, a, t feasible

To solve (9), consider a relaxed version in which we ignore the (INTIR) constraint. In
the appendix, we prove that when F (c) satisfies the Monotone Hazard Rate Assumption
(MHRA) the optimal way to solve this relaxed problem is to keep a(c) flat. Intuitively,
when F (c) satisfies MHRA, then in the objective function a(c) is weighted by an increasing

function, −
[
1−F (c)
f(c)

]
. In this case, if a(c) is strictly decreasing, then it is optimal to shift

the probability of activation a(c) from lower to higher values of c. Since a(c) must be non-
increasing, the best way to do it satisfying feasibility is to keep a(c) and (by incentive
compatibility) p(c) constant: an(c) = an and pn(c) = pn. In the absence of INTIR, it is
efficient for the group to always be successful as long as mn

n
· E(c) < v, we have pn = 1 and

an is chosen to be the smallest possible, so an = mn
n

for all c. The solution of the relaxed
problem is implemented (without any need to report types) by simply selecting exactly mn

agents at random to be active. We call this the random mechanism. This mechanism is also
a solution to the full problem with INTIR (9) as long as mn

n
· 1 < v which guarantees that

INTIR is not violated for the highest cost type, c = 1. With constant returns to scale this
holds for all n if α < v. With increasing returns, it holds as long as n is sufficiently large
(n ≥ n∗ = min{n|mn

n
< v}).

Theorem 2. For all v ∈ (0, 1):

1. If mn ≺ n, then there exists a critical group size, n∗, such that for n > n∗ the random
mechanism satisfies (IC) and (INTIR) and achieves a probability of success equal to 1.
If F satisfies (MHRA), the random mechanism is optimal.

2. if mn = αn and α < v, then, for all n, the random mechanism satisfies (IC) and
(INTIR) and achieves a probability of success equal to 1. If F satisfies (MHRA), the
random mechanism is optimal.

Theorem 2 is relevant for two reasons. First, because it shows that the optimal (IC)
and (IR) mechanism generally violates obedience. This is can be seen from the fact that it
requires all types to be active with positive probability, but this directly violates (1) since
no type with c > v would find it optimal to be active. The mechanism satisfies (INTIR)
since the probability of being activated is small, so v

(
1− αn cv

)
> 0 even if c > v; but this

only guarantees interim participation in the mechanism, not that a type c > v will obey
a recommendation to be active. Second, Theorem 2 is relevant because it highlights the
need to study more realistic, honest and obedient mechanisms: by ignoring moral hazard,
the optimal mechanism achieves complete success as n → ∞. In order to understand why
collective action can only be partially successful in more realistic environments, we need to
integrate the obedience constraint into the analysis of the optimal mechanism.
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Note that the monotone hazard rate assumption in Theorem 2 is used only for the
characterization of the shape of the optimal mechanism, not for the substantive result that
there is an (IC) and (INTIR) mechanism that achieves success with probability one for n
large when mn ≺ n.

Note also that Theorem 2 is not in conflict with the main result in Mailath and Postlewaite
[1990] where it was shown that the probability of success converges to zero in the best (IC)
and (INTIR) mechanisms (even allowing for monetary transfers).19 That earlier result relied
on an assumption that the total benefit of success, nv, is strictly lower than the cost of
obtaining it in the worst case scenario where all members have cost equal to 1.20 In our
setting, this assumption reduces to to v < mn/n = αn, which is not satisfied for large n
when mn ≺ n, nor for the case of constant returns if v ∈ (α, 1). Requiring v < αn for all n is
essentially the same as assuming constant returns to scale with α = lim infn→∞ αn. Indeed,
there are many situations in which it natural to assume v > αn, such as situations where the
“sacrifice” of a small share of population is all that is needed to guarantee group success. As
we will see in the next two sections, with honest and obedient mechanisms, v > αn does not
imply success even though strong organizations with sufficiently many members will succeed
with probability 1. The failure or success of collective action in HO mechanisms with large
n depend only on the returns to scale and is the same for all v ∈ (0, 1).

The observation that when we relax that assumption then the collective good can be
financed in an (IC) and (INTIR) mechanism with monetary transfers is not completely new,
as it was previously made by Hellwig [2003] in a more general environment in which the
public good can be chosen as a continuous variable. Theorem 2 differs from Hellwig’s result
in two ways: it shows that unlimited monetary transfers are not necessary, and it provides
a full characterization of the optimal mechanism, even for large but finite n, as a simple
random mechanism.

4 The Volunteer Based Organization (VBO)

As discussed in the previous section, strong mechanisms that only require (IC) and (INTIR)
are not a good description of organizations for collective action because they ignore the
obedience constraint, implicitly allowing the mechanism to coerce high cost members to be
activated, or alternatively for all members to commit ex ante to obey any recommendation.
An optimal strong organization, moreover, cannot explain collective action as an empirical
phenomenon, since it either predicts complete success of any group when mn ≺ n or if
mn = αn and α < v, or complete failure otherwise. The result for the other benchmark,
unorganized groups, is as negative as the results from strong organizations are positive.
Unorganized groups suffer complete failure, even in relatively small groups, except for the
case where returns to scale are very high.

19The random mechanism that succeeds with probability one does not use transfers. Hence, the gain from
strong mechanisms is entirely due to the violation of obedience. The considerable group benefits from a
strong organization are achieved via ex post coercion - by sacrificing the sovereignty of individual high-cost
members of the group.

20Formally, the key assumption in Mailath and Postlewaite [1990] is assumption (iv) in their Theorem 2.
Translating it to our notation, it is equivalent to requiring that there exists ε > 0 such that nv + nε < nαn.

15



The key question then is: Where does the performance of optimal HO mechanisms fall
in the very wide range between these two benchmarks? What type of HO organization is
optimal and what type should one expect to see in practice? In this section we identify a
simple and natural communication mechanism called a Volunteer Based Organization (VBO).
In a VBO, which is obviously honest and obedient, members self-identify as either volunteers
(low-cost) or free riders (high-cost) and the mechanism coordinate the activity of volunteers
in order to activate a minimal coalition for success if there are enough self-reported volunteers.
It turns out that the VBO is an approximately optimal HO mechanism for large n, as we
show in this section.

4.1 Unique Honest and Obedient VBO

In a VBO each member reports his or her type: if the reported type is higher than some
threshold cOn > 0, the agent is excused and not asked to be active, irrespective of what the
other members report; if the type is less than or equal to cOn , then the agent is deemed a
volunteer and is activated with positive probability, determined by the following rule. If
the number of volunteers is greater than mn, then a coalition of exactly mn volunteers is
randomly selected and activated, resulting in group success. If the number of volunteers
is fewer than mn, then no volunteer is activated and the group is unsuccessful. In case
the group activates mn volunteers, then all volunteers have the same probability of being
included. Using the notation introduced in Section 2.2 a VBO is defined formally as follows:21

Definition 1. For any c ∈ [0, 1] and any profile of types, c, let k(c;c) = |{j ∈ I|cj ≤ c}|. For
any given mn and n, a simple VBO mechanism is defined by a volunteer cutoff cOn ∈ (0, v)
such that (1) Ai(c) = 0 for all c and for all i such that ci > cOn ; (2) k(c;cOn ) < mn ⇒ P (c) = 0
and Ai(c) = 0 for all i; (3) k(c;cOn ) ≥ mn ⇒ P (c) = 1 and Ai(c) = mn

k(c;cOn )
for all i such

that ci ≤ cOn .

We first establish some properties of the VBO mechanism. The following result charac-
terizes the unique incentive compatible V BO. Define the function:

Yn(c) =
vB(mn − 1, n− 1, F (c))∑n−1
k=mn−1

mn
k+1

B(k, n− 1, F (c))
(10)

Proposition 1. For any v, mn and n:

1. The function Yn is strictly decreasing in c and has a unique fixed point cOn ∈
(
cUn , v

)
.

2. A VBO is Honest and Obedient if and only it has the volunteer cutoff cOn that satisfies
cOn = Yn(cOn ).

21The definition requires cOn > 0. If cOn were exactly equal to 0, then IC implies no restriction on cost
reports: all types are indifferent between all cost reports, including reporting c′ = 0. Choosing cOn is obviously
never optimal.
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Condition (10) provides a simple way to compute the equilibrium threshold cOn and char-
acterize its qualitative properties. Proposition 1 also makes clear why it is natural to refer to
such a mechanism as “volunteer based”. The honest and obedient VBO can be implemented
as a simple modification of the participation game with an unorganized group. In this im-
plementation, each member is asked to choose to be either a “volunteer” or a “free rider”.
The group is successful if the number of volunteers is greater than or equal to mn, in which
case exactly mn of them are randomly selected to be active. If the number of volunteers is
less than mn, then no member is activated.

Volunteers are always willing to follow a recommendation to be active, since they have
types ci ≤ cOn < v and they know that, conditional on receiving such a recommendation, the
mechanism has also activated exactly mn − 1 other volunteers so they are pivotal. At the
interim stage, however, an agent might still have an incentive to misreport, since it would
prefer some other agent to be called in case of k ≥ mn + 1. The cost of misreporting as a
free rider is that indeed that there are exactly mn− 1 volunteers in the rest of the group, so
the misreport would be pivotal in inducing the group’s failure. The expected value of this
cost is vB(mn − 1, n− 1, F

(
cOn
)
), pretty much the same as in the unorganized group in (3).

The critical difference for the organized group is that volunteers are not called to action
indiscriminately, but only if they are needed, and never in excess. These qualifications are
reflected in the denominator of (10), which is, instead, simply equal to 1 for unorganized
groups. Hence cOn > cUn , and the probability that a member volunteers is F (cOn ) > F (cUn ).
Therefore, there are three improvements of the VBO relative to an unorganized group: (1)
nobody contributes if the threshold is not reached; (2) no more than mn members contribute;
and (3) the threshold is reached more often because F (cOn ) > F (cUn ).

4.2 The performance of VBO in large groups: The effect of re-
turns to scale

Condition (10) establishes that for any finite n, the VBO outperforms an unorganized group
by a combination of eliminating waste and increasing the equilibrium probability of group
success. We might expect that the presence of an organization that allows for coordination,
increases the probability of success, and eliminates wasteful participation makes it possible to
achieve higher limit probabilities of success in large group, at least for some parametrizations.
However, as we show below this conjecture is incorrect: the limiting performance of the VBO
is the same as the limiting performance of unorganized groups.

To evaluate how a group performs using the honest and obedient VBO when n is large
requires evaluating how the solution to condition (10), cOn , converges as n → ∞. The next
result has important implications for the probability of success of the organized group and
the welfare of its members.

Proposition 2. With an organized group using the honest and obedient VBO, then for all
v < 1 we have that:

� If mn = αn then cO∞ ≡ limn→∞ c
O
n > 0.

� If mn ≺ n then cO∞ = 0 and limn→∞ F
(
cOn
)
/αn ≥ 1.
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The first bullet point proves that the share of volunteers is always strictly positive in a
VBO with constant returns: this implies that the probability of success in a VBO, PO

n , is
positive with constant returns for any finite n. In contrast, pU = F (0) = 0 for large enough
finite unorganized groups, so the relative success of the VBO compared to unorganized groups
is infinite for large enough finite groups. The intuition for the fact that limn→∞ c

O
n > 0 is

that the numerator and the denominator of the ratio on the right hand side of (10) both
converge to zero at the same rate and indeed the ratio is strictly positive in the limit. The
following result highlights this property, but qualifies it showing that this is not enough to
guarantee positive probability of success for the VBO in the limit:

Corollary 1. With an organized group using the honest and obedient VBO and constant
returns (i.e. mn = αn), then there exists nU(α, v) such that for all n > nU(α, v), PU

n /P
O
n = 0.

Despite this, we have that PO
∞ ≡ limn→∞ P

O
n = 0.

The second point of Proposition 2 is that, when mn ≺ n, then, while the equilibrium
participation rate converges to zero as n → ∞, it does so at the same (or slower) rate
as the threshold fraction αn, since limn→∞(F

(
cOn
)
/αn) ≥ 1. If limn→∞(F

(
cOn
)
/αn) > 1,

then obviously PO
∞ = 1, but if limn→∞(F

(
cOn
)
/αn) = 1, then it depends on exactly how

F
(
cOn
)
/αn converges to 1. If F

(
cOn
)
/αn converges from below and convergence is slow,

then the probability that the number of volunteers passes the threshold converges to zero;
if convergence is fast or F

(
cOn
)
/αn converges from above, then the probability of success

of the group will be strictly positive even for an arbitrary large number of activists. Does
the fact that cOn remains bounded or converges to zero at the same speed of αn imply that
if mn ≺ n we can we can get strictly positive probability of success even with large or
arbitrarily large groups, and/or we can achieve a higher limit probability of success than
without an organization? The answer is no: the conditions for the limiting probability of
success for a VBO in large groups are exactly the same as the result for unorganized groups.

Theorem 3. With an organized group using the honest and obedient VBO, then for all
v ∈ (0, 1):

� If mn ≺ n2/3, then limn→∞ P
O
n = 1, so limn→∞

PUn
POn

= 1.

� If mn � n2/3, then limn→∞ P
O
n = 0, but there is a nU such that for all n > nU , PUn

POn
= 0.

As we will show in the next section, Theorem 3 holds generally for all HO mechanisms.
Surprisingly, the limit probability of success is the same with a VBO or in an unorganized
group. When mn ≺ n2/3, a limit probability of success is 1, but this was also true for an
unorganized group; when mn � n2/3, the limit probability of success is zero with a VBO, once
again, just as in an unorganized group. With a VBO, however, the probability of success is
positive for any n even when mn � n2/3, a feature that is not shared by the equilibrium in an
unorganized group (where the probability is exactly zero after a finite n), so for sufficiently

high n, as highlighted by the second bullet, PUn
POn

= 0. This can imply a significant benefit of
adopting a simple VBO compared to having an unorganized group. As we will show in the
next section where we quantify by numerical methods the success probability in a VBO, for
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reasonable parameter values groups with VBO can achieve high probabilities of success even
for large groups, even if mn � n2/3.

It is useful to go over the intuition of Theorem 3 since, suitably generalized, it will
also help with understanding the extension to general HO mechanisms in the next section.
The expected share of volunteers does not fall short of the threshold for success only if
αn ≤ F

(
cOn
)
. Since cOn → 0, we have F

(
cOn
)
' f(0)cOn , implying:

αn
f(0)

. cOn = Y (cOn ) ≤ Y (F−1(αn)) =
vB(αnn− 1, n− 1, αn)

an(αn)

where an(αn) =
∑n−1

k=αnn−1
αnn
k+1

B(k, n − 1, αn) and . denotes that the left-hand side con-

verges to a value less than or equal to the right-hand side. The second inequality, Y (cOn ) ≤
Y (F−1(αn)) follows from the fact that, Y (·) is a decreasing function, by Proposition 1.
Hence:

an(αn) . vf(0) · B(αnn− 1, n− 1, αn)

αn
(11)

If mn � n2/3, we know from the proof of Theorem 1 that the right hand side of (11)
converges to zero. Condition (11), therefore, implies that aOn (αn) must also converge to zero.
It is however intuitive to see that this is impossible. Note that an(αn) is the probability that
a volunteer is activated when the threshold used by the other members for volunteering is
αn. But when this is the case, for large n there will be a share of volunteers roughly equal
to αn. In this case, the probability that a volunteer is activated cannot be arbitrarily small
since, even conditioning on having at least a share αn of volunteers, the share of volunteers
will almost surely be only marginally greater than αn, the minimal requirement for success.

4.3 The value of a VBO with finite n

While the limit probability of success is the same for a VBO and an unorganized group, the
VBO mechanism has three improvements of the VBO relative to an unorganized group: (1)
nobody contributes if the threshold is not reached; (2) no more than mn members contribute;
and (3) the threshold is reached more often because because cOn > cUn . These properties
have an immediate positive impact on the willingness to volunteer, which leads to a higher
probability of success of the group. On the other hand, cUn = 0 for finite sized unorganized
groups. As a result a VBO performs infinitely better than an unorganized group, as shown
earlier.

The following result confirms these results, and shows that limit results understate the
potential value of a VBO, because whenmn � n2/3 the the limit probability with an organized
group converges to zero slowly. The next result bounds below this rate of convergence. We
say that P ∗n converges at a strictly slower rate than exponential if P ∗n/e

−γn → ∞ for any
γ > 0. We have:

Proposition 3. For any mn � n2/3, PO
n converges to zero at a rate that is strictly slower

than exponential.

The example illustrates how this slow rate of convergence implies that a VBO can lead
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to group success with high probability, even for medium and large sized groups, while unor-
ganized groups are unsuccessful.

Example 2: Comparison of VBO and Unorganized groups v = 0.8, mn = 0.2nβ,
F ∼ U [0, 1].

In this example, we compare the equilibrium in the VBO mechanism and the equilibrium
for the unorganized group for different group sizes and different rates of increase in mn. From
Proposition 1, the organized group’s optimal threshold satisfies: cOn = Yn(cOn , αn, v) where
we make explicit the dependence of Yn on αn, v for convenience:

Yn(cOn , αn, v) = v
B(mn − 1, n− 1, cOn )∑n−1

k=mn−1
mn
k+1

B(k, n− 1, cOn )
. (12)

With no organization the equilibrium condition is: cUn = Zn(cUn , αn, v), where:

Zn(cUn , αn, v) = vB(mn − 1, n− 1, cUn ) (13)

Figure 2: Comparison of VBO mechanism (solid curves) and unorganized group equilibrium
(dashed curves). v = 0.8, mn = .2nβ, F(c) Uniform. Left Panel: Equilibrium cutpoints.
β = 1. Equilibrium cutpoints are located at the intersection of each curve (n = 10 (black)
and n = 80 (gray)) with the diagonal. Right Panel: Probability of success. n = 10, ..., 10000,
β = .65 (top curve), .80 (middle curve), .85 (bottom curve).

The equilibrium probabilities of success for the unorganized and organized groups are,
respectively:

PU
n (cUn , αn) =

n∑
k=mn

B(k, n, cUn ) and PO
n (cOn , αn) =

n∑
k=mn

B(k, n, cOn )

The left hand panel of Figure 2 illustrates the cOn = Yn(cOn , αn, v) and cUn = Zn(cUn , αn, v)
equilibrium conditions for groups with 10 and 80 members, with v = 0.8, mn = 0.2n, and
F ∼ U [0, 1]. The downward sloping solid black curve is Y10(c, 0.2, 0.8) and the downward
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sloping solid gray curve is Y80(c, 0.2, 0.8), corresponding to the right-hand side of equation 12
for the VBO. The respective equilibrium cutpoints, cO10 and cO80, are given by the intersection
of these two Y (·) curves with the diagonal (black). The black dashed single-peaked curve is
Z10(c, 0.2, 0.8), and cU10 is given by the highest intersection of this curve with the diagonal.
The gray dashed single-peaked curve is Z80(c, 0.2, 0.8), which does not intersect the diagonal
at any positive value, so the unique equilibrium for the unorganized group is cU80 = 0, with
zero participation.22

The right hand panel of Figure 2 illustrates the equilibrium probability of success for
organized (solid curves) and unorganized groups (dashed curves) for group sizes up to 10, 000,
with v = 0.8, F ∼ U [0, 1], and mn = .2nβ for and three values of β < 1. One can see that for
β = .65 < 2/3, both unorganized and organized group can achieve success with probability
that is high even for small groups and converges to 1. For β > 2/3, instead the probability of
success converges to zero, and groups without an organization fail completely after reaching
a threshold size that is decreasing in β. In contrast, organized groups obtain much higher
probability of success and this success declines slowly in group size. For β = 0.85, while the
probability of success in a VBO eventually converges toward zero as n→∞, the probability
of success is more than 20% even for groups with more than 10, 000 members. In contrast, for
unorganized groups and β = 0.85, the probability of success is exactly zero for all n ≥ 200.
This illustrates the importance of considering finite n even when the limit probability of
success is 0.

5 Asymptotic optimality of the VBO

The previous section illustrated a group of large finite size can achieve significant (albeit
imperfect) levels of success even when n is large by organizing with a very simple honest and
obedient mechanism. Theorem 3 established that the advantage of the VBO is not in the
limit probability of success that can be achieved with infinitely large groups, which is equal
to the limit probability obtainable without an organization. However, this leaves open the
possibility that there is an even better (HO) mechanism that achieves higher probability of
success than in an unorganized group, even in the limit, and a positive limiting probability
even when mn � n2/3.

In this section we prove two key results that demonstrate that the limiting result in
Theorem 3 applies not only to VBO but to all HO mechanisms. First, we formalize the
optimization problem for HO mechanisms. Second, we show that, exactly like the VBO,
the optimal HO has a limiting probability of success equal to 0 if mn � n2/3, and equal to
1 if mn ≺ n2/3. Thus Theorem 3 holds for any HO mechanism (including the unorganized
group, the VBO, and the optimal HO mechanism).

22Since m > 1, there is always a solution at cU∗ = 0. When n is sufficiently small, there are can also be
positive equilibrium cutpoints for the unorganized group.
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5.1 Optimal HO Mechanisms

Formally, the optimal HO mechanism is defined as the solution a∗(c), p∗(c) of the following
problem:23

max
a(c), p(c)

∫ 1

0
U(c)dc (14)

s.t.(HO) and a(c), p(c) is feasible.

where (HO) is the honest and obedient constraint specified in Section 2.2. As discussed in
Section 2, the (HO) constraint implies (IC), (INTIR) and Condition (1). In the following we
will first study the solution of a relaxed problem in which only (IC) and (1) are considered,
we will then prove that this solution satisfies the omitted constraints and thus solves (14).
By standard methods one can rewrite the problem as:

max
p(0)∈[0,1],a(c)∈[0,1]

{
vp(0)−

∫ 1

0

a(c)
1− F (c)

f(c)
dc

}
(15)

s.t. U ′(c) = −a(c) with a(c) non-increasing

a(c) = 0 for c > c∗, where c∗ = min {c ≤ v |vp(c)− ca(c) ≤ vp2}
and p, a feasible

where p2 is the (constant) expected probability of success for all types c > c∗. In (15) we
derived the objective function using the (IC) constraint in a similar way as in (9). The
constraints in the second line of (15) is a monotonicity constraint implied by IC, also present
in (9); the constraint in the third line follows from (1) and incentive compatibility, and it
is new to (15).24 Note that in the problem above we have no (IR) constraint; IR, however,
follows from the monotonicity of U(c) and the definition of c∗.25

The HO optimization problem in (15) appears to be very similar to the problem in (9) for
strong organizations. In fact, the objective functions are identical, the only difference being
the new c∗ constraint, which replaces INTIR. We showed earlier that the optimal strong
mechanism for any mn ≺ n can be easily characterized when n is large by observing that one
can improve the objective function in (9) without violating the constraints by “flattening”
the mechanism, i.e. by making the mechanism less sensitive to an agent’s type c. If n is
sufficiently large, then the optimal mechanism flattens the mechanism completely, the group
is always successful, and all types are asked to be activated with positive probability and
randomly selected with the same probability: p(c) = 1 and a(c) = αn. IC is trivially satisfied,
and INTIR is satisfied for n large since the probability of being activated, αn, converges to
zero so is eventually smaller than any v > 0.

The same logic cannot be applied to (15). Here too, the objective function (which is the
same in (9) and (15)) improves if we “flatten” the mechanism; however, now flattening the
mechanism may affect the obedience constraint. To see this note that a mechanism in which

23Whenever it does not create confusion, as here and when we take n as given, we omit the subscript n in
the equilibrium variables a∗n(c), p∗n(c), c∗n.

24See the proof of Proposition 5 for the details on how it follows from (1) and incentive compatibility.
25Indeed, U(c) ≥ U(c∗) ≥ vp2 ≥ 0 for all c ∈ [0, c∗].
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all types are activated with positive probability is certainly impossible, since no type with c >
v will ever accept to be activated even if it is interim individually rational (INTIR) to commit
to participate in the mechanism. In the optimal (HO) mechanism there will necessarily be
a maximal type c∗n < v < 1, who is indifferent between volunteering and free riding. By
flattening the mechanism, we now necessarily require higher expected participation from this
type c∗n which would break that indifference. Having a flatter mechanism therefore involves
a trade off: on the one hand, for a given c∗n, it improves the objective function since it relaxes
the (IC) constraint; on the other hand, however, it may imply lower participation, in the
form of a lower c∗n. Hence the shape of the mechanism could depend on the trade-off between
the benefit of keeping the volunteer cutoff high (a higher c∗n), which produces a larger pool
of volunteers, and keeping the mechanism flat, which relaxes incentive compatibility.

5.2 Optimal HO Mechanisms for large groups

In this section, we show that the performance of an optimal HO mechanism is no better
than the performance of the VBO in the limit as n→∞. Thus, in the limit, with infinitely-
sized groups, voluntary organizations for collective action accomplish nothing relative to
unorganized groups.

The result is established in three steps. First, define a mechanism as binary, if it allows the
agents to send at most two messages (volunteer or not volunteer); and define a mechanism
as binary HO, if it is honest and obedient (HO) and binary. We show that the optimal
binary HO mechanism is a straightforward generalization of the VBO. Second, we show
that the optimal binary HO mechanism has the same limiting performance as the optimal
HO mechanism, as n → ∞. Third, we show that the optimal binary HO mechanism has a
limiting probability of success equal to 0 if mn � n2/3, and equal to 1 if mn ≺ n2/3.

5.2.1 Optimal Binary HO Mechanisms: The Generalized VBO

For the first step, we introduce a class of mechanisms that generalizes the VBO. A generalized
VBO is defined by a threshold kGn ≥ mn and a volunteer cutoff cGn . A kGn -generalized VBO
with a threshold kGn greater than or equal to mn works as follows. If there are more than
kGn volunteers, then the mechanism selects and activates exactly mn volunteers, each with
equal probability, thus guaranteeing that the group succeeds. If there are fewer than kGn
volunteers, then the mechanism selects 0 volunteers and the group fails. If there are exactly
kGn volunteers, then the mechanism selects and activates exactly mn volunteers with some
probability qkGn ∈ (0, 1] and selects exactly 0 volunteers with probability 1− qkGn . Thus, the
simple VBO analyzed above corresponds to the special case kGn = mn and qkGn = 1. The
random mechanism that in Section 3.2 we showed solves problem (8) for the best (IC) and
(IR) mechanism when n is large can also be seen as a VBO with kGn = mn, qkGn = 1 and
cGn = 1.
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Definition 2. For any c ∈ [0, 1] and any profile of types, c, let k(c;c) = |{j ∈ I|cj ≤ c}|. For
any given mn and n, a generalized VBO mechanism is defined by a volunteer cutoff cGn ∈ (0, v)
and a critical mass threshold kGn ≥ mn, such that (1) Ai(c) = 0 for all c and for all i such that
ci > cGn ; (2) k(c;cGn ) < kGn ⇒ P (c) = 0 and Ai(c) = 0 for all i; (3) k(c; cGn ) = kGn ⇒ P (c) = 1
and Ai(c) = mn

k(c;cGn )
for all i such that ci ≤ cGn ; (4) k(c; cGn ) = kGn ⇒ P (c) = qkGn ∈ (0, 1] and

Ai(c) = qkGn
mn

k(c;cGn )
for all i such that ci ≤ cGn

The following proposition establishes that the optimal binary HO mechanism is a gener-
alized VBO.

Proposition 4. For any v ∈ (0, 1),mn and n, there exists cbn ∈ (0, 1), kbn ≥ mn, and qbn such
that a kbn-generalized VBO mechanism with volunteer cutoff cbn and critical mass threshold
kbn is an optimal honest and obedient binary mechanism.

Proof: The proof is carried out in two steps. In Step 1, we establish that the optimal
binary mechanism is non-wasteful, meaning that it only activates 0 or mn agents. In Step 2,
we show that if the optimal binary mechanism activates mn agents with positive probability
with k volunteers, then it must activate mn agents with probability one when there are more
than k volunteers. This implies that the optimal binary mechanism is characterized by a
threshold kbn as specified in Definition 1. See the appendix for details. �

One might conjecture that the unique VBO characterized by equation 10 would be the
optimal honest and obedient binary mechanism; i.e., the group succeeds if and only if there
are enough volunteers (at least mn). Using a higher threshold than mn seems wasteful and
is ex post suboptimal since it implies that there are events in which the group fails even
thought the number of volunteers is known (by the mechanism) to exceed the minimum
number required for success. However, in principle, it could be ex ante optimal for the
mechanism to commit to failure in some such events (e.g., kGn = mn + 1) in order to create
better incentives for the agents to self identify as volunteers and more generally relax the
(HO) constraint. This could happen if increasing kGn above mn leads to a higher volunteer
cutoff, cGn .

5.2.2 Asymptotic Optimality of Generalized VBO mechanisms

In an optimal binary mechanism, the mechanism does not use detailed information regarding
the type of the agent, just whether the agent is willing to be a volunteer. The optimal binary
mechanism is therefore asymptotically optimal if the best HO mechanism also does not use
detailed information regarding the types c and instead treats all low cost member (volunteers)
approximately the same and treats all high cost members (free riders) essentially the same.
The following lemma establishes this property:

Lemma 1. Let a∗n(c), p∗n(c) be an optimal honest and obedient mechanism. For any two types
c′ and c′′ with c′′ > c′ > 0, p∗n(c′)− p∗n(c′′)→ 0 and a∗n(c′)− a∗n(c′′)→ 0 as n→∞.

To see the intuition of this result, note that by IC, p∗n(c) is non-increasing in c, so
p∗n(c′) ≤ p∗n(c ≤ c′) and p∗n(c′′) ≥ p∗n(c ≥ c′′), where p∗n(c ≤ c′) and p∗n(c ≥ c′′) are the interim
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probabilities of success conditioning on, respectively, c ≤ c′ and c ≥ c′′. Then we have,

p∗n(c ≤ c′) = τ0,n−1P
n
B + (1− τ0,n−1)P n

0

where τ0,n−1 is the probability that, out of the remaining n− 1 agents, there is at least one
type c̃ ≥ c′′, P n

B is the expected probability of success conditioning on the presence of at least
a type c̃ ≥ c′′ and a type c̃ ≤ c′, and P n

0 is the expected probability of success conditioning
on the presence of at least a type c̃ ≤ c′ and the absence of a type c̃ ≥ c′′. Similarly, we have:

p∗n(c ≥ c′′) = τ1,n−1P
n
B + (1− τ1,n−1)P n

1

where τ1,n−1 is the probability that, out of the remaining n− 1 agents, there is at least one
type c̃ ≤ c′, and P n

1 is the expected probability of success conditioning on the presence of at
least a type c̃ ≥ c′′ and the absence one type c̃ ≤ c′. But then we have:

0 ≤ p∗n(c′)− p∗n(c′′) ≤ (τ0,n−1 − τ1,n−1)P n
B + (1− τ0,n−1)P n

0 − (1− τ1,n−1)P n
1

As n→∞, both τ0,n−1 and τ1,n−1 converge to 1. Since P n
0 , P n

1 and P n
B are all bounded, we

have that for any ε > 0, there is a nε such that p∗n(c′)− p∗n(c′′) < ε for all n > nε.
26

An implication of Lemma 1 is that when n is large the optimal mechanism is characterized
by a c∗n such that for c > c∗n, the required participation a∗n(c) is zero; and for c ≤ c∗n, partici-
pation is a non-increasing function which is approximately flat, even when the probability of
success converges to a positive value. The next result shows that the utility obtained in such
a mechanism converges to the utility that can be obtained in a binary mechanism. This
fact combined with Proposition 4 implies that the optimal VBO is asymptotically optimal.
Let V G

n and V ∗n be the expected welfare generated in, respectively, the optimal binary HO
mechanism (generalized VBO) and in the optimal (HO) mechanism when the number of
agents is n. Putting this all together, we have:

Proposition 5. limn→∞ V
G
n = limn→∞ V

∗
n .

This proposition allows us to rule out situations in which the limit probability of success
is positive in the optimal (HO) mechanism, but is zero in the optimal VBO. An implication
of this is that whenever the limit probability of the optimal VBO converges to zero, then it
converges to zero in every honest and obedient mechanism. We will use this fact in the next
section to show that the limit probability in the best HO mechanism is the same as in the
unorganized case.

5.2.3 The irrelevance of organizations in the limit as n→∞

In our earlier analysis of the simple VBO mechanism (Theorem 3), we proved that in the limit
large groups succeed with probability 1 if mn ≺ n2/3 and large groups fail with probability 1
if mn � n2/3. However that left open the question of whether the optimal honest an obedient
mechanism might succeed with positive probability for some values of mn � n2/3. Since the
simple VBO is not necessarily optimal, it could be the case that the optimal mechanism does

26A complete proof is in the appendix.
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much better than a simple VBO in large groups. In this section, we prove that the limiting
properties of the simple VBO are shared by the optimal honest and obedient mechanism.

Let P ∗n denote the probability of success in the optimal honest and obedient mechanism
as a function of n, for a given threshold mn and value v. We have:

Theorem 4. For any v ∈ (0, 1):

� If mn ≺ n2/3, then limn→∞ P
∗
n = limn→∞ P

G
n = limn→∞ P

O
n = limn→∞ P

U
n = 1.

� If mn � n2/3, then limn→∞ P
∗
n = limn→∞ P

G
n = limn→∞ P

O
n = limn→∞ P

U
n = 0.

Proof: The first bullet point follows immediately, since the VBO achieves success with
probability 1 in the limit and is approximately optimal. The second bullet point is proved
in two steps. The first step establishes that if mn � n2/3, then the probability of success in
the generalized VBO converges to zero, again using Stirling’s approximation of the binomial
distribution as in the proofs of Theorems 1 and 3. The second step applies Proposition 5 to
show that the probability of success in the optimal HO mechanism also converges to zero.
See the appendix for details. �

We conclude this section discussing three implications of Theorem 4. The first implica-
tion, which we view as positive, is that a very simple and natural HO mechanism - the VBO -
is approximately optimal. Furthermore, as illustrated in Section 4.3, the VBO produces large
gains over unorganized groups in finite groups, even when n is large. Thus, the free rider
problem can be significantly (though not entirely) mitigated by voluntary organizations that
do not require coercion or taxes. The second implication is that the moral hazard problem
is much worse than one might have thought for extremely large groups, i.e., in the limit. If
mechanisms must satisfy honesty and obedience and operate voluntarily without coercion,
then in the limit case of arbitrarily large groups such organizations are no more successful
than unorganized groups. When mn � n2/3, this occurs even if the total benefit is strictly
higher than the total cost in the worst scenario in which ci = 1 for all players. In contrast,
strong organizations that allow for coercion and taxes/transfers (or even only coercion) will
always achieve success as long as the total benefit for society Vn = nv is larger than the cost
in the worst case scenario in which ci = 1 for all i ∈ I, regardless of the returns to scale.
In our environment this situation arises when αn < v, so it holds for large groups if there
are any positive returns to scale and in all groups if there are constant returns to scale and
α < v; in other environments, such a situation would arise, for example, when total demand
for a public good is bounded above (Hellwig [2003]). Hence, a third implication is that for
extremely large groups (call them societies), overcoming the free rider problem requires some
form of coercion or taxation, except in those cases where the free rider problem disappears
so fast (mn ≺ n2/3) that no organization whatsoever is needed for success to be achieved.
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6 Endogenous organizations: when do groups choose

to organize?

The key insight in Olson [1965] is that we should expect successful collective action only
when the free rider problem is not too severe: that is, for a given value v of the public good,
when the number of interested agents n is not too large; or for a given n, when the value
of the public good v is sufficiently large.27 These observations motivate his claim that small
groups with strong individual incentives will be much more effective than large groups in
which individuals have weak incentives.

The results obtained above have implications that relate to these conjectures and also
some additional insights about when one might expect successful groups to arise endoge-
nously. On the one hand, the marginal impact of v or n on the probability of success
depends on whether the group is organized or not and the extent to which the underlying
technology displays increasing returns to scale: for example, without an organization, the
marginal impact of v and n is exactly zero when n is large; it is positive only with an orga-
nization. So we cannot understand the true impact of individual preferences and the size of
the population without first specifying their impact of the presence and quality of a group’s
organization.

On the other hand, whether the group might become organized or not depends on the
underlying fundamentals of the economy, thus on v and n as well. We can evaluate the
importance of these variables for the success of a group only when we include in the analysis
their impact on the presence and effectiveness of an organization. To explore this idea, in this
section we capitalize on the previous analysis to endogenize the presence of an organization
and study how its endogeneity affects the impact of v and n on the ultimate success of a
group.

We model the process of formation of an organization in a stylized, yet general way.
Suppose the agents composing a group evaluate the opportunity of establishing an organiza-
tion ex ante, before they know their individual costs of activism c. A VBO is formed if the
increase in expected utility with the organization is larger than a given organizational fixed
cost, κ: ∆V ∗n = V O

n − V U
n ≥ κ(n), where V O

n and V U
n are, respectively, the expected utilities

with and without an organization; and κ(n) is the per person cost of forming and operating
an organization with these n agents. We assume κ(2) > 0, and limn→∞ κ(n) = κ > 0.28

27See the discussion in chapters 1-2 in Olson [1965].
28This simple model is intended capture a variety of environments. Consider these two polar examples.

First, assume perfect substitutability and that there is an elite of l ≤ n agents each of whom can form the
organization paying a fixed cost κ̂. The organization is created if at least one member of the elite pays
the cost; if the organization is formed, the members of the elite capture a share υ ≤ 1 of the total surplus
n∆V ∗. In this case, there is an equilibrium in which each member of the elite pays the cost with probability
φ < 1 and the condition for the establishment is ∆V ∗ ≥ κ with κ = κ̂/ [nB(0, l − 1, φ)υ]. The elite members
internalize only a share of the benefit because they themselves may face a free rider problem. Second, assume
perfect complementarity in the technology for the formation of the organization, so that each member of
the elite needs to pay a cost κ̂. In this case the organization forms if and only if ∆V ∗ ≥ κ is satisfied with
κ = κ̂/nυ as described in the main text.
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The expected utility in a VBO with cut off cOn can be written as:

V O
n = v

[
F
(
cOn
)
p1,n(cOn ) + (1− F

(
cOn
)
)p2,n(cOn )

]
− F

(
cOn
)
E
(
c; cOn

)
a∗n, (16)

where p1,n(cOn ) and p2,n(cOn ) are the probability of success for an agent, conditioning on being
a volunteer and on not being a volunteer; and E (c; c′) is the expected c, conditioning on not
being larger than c′. In a VBO, we must have cOn a

∗
n = v(p1,n(cOn ) − p2,n(cOn )), the expected

utility with an optimal organization can therefore be written as:

V O
n = v

 F
(
cOn
)(

1− E(c;cOn )
cOn

)
B(mn − 1, n− 1, F

(
cOn
)
)

+
∑n−1

j=mn
B(j, n− 1, F

(
cOn
)
)

 (17)

Following similar steps, the expected utility without an organization can be written as:

V U
n = v

 F
(
cUn
)(

1− E(c;cUn )
cUn

)
B(mn − 1, n− 1, F

(
cUn
)
)

+
∑n−1

j=mn
B(j, n− 1, F

(
cUn
)
)

 (18)

The effect of n on ∆V ∗n is complicated by the fact that n indirectly affects the thresholds for
equilibrium participation cOn and cUn . Still, from the continuity of the functions in the square
parentheses with respect to cOn and cUn , and the fact that we know for n large enough cUn = 0
and cOn → 0+, we can deduce the no organization will ever be formed for arbitrarily large
groups:29

Proposition 6. There is a nκ > 0 such that a VBO is formed only if n ≤ nk.

A similar discontinuity as highlighted above is generated by a change in v if we keep
n constant. Again, signing the comparative statics in full generality is difficult because it
involves evaluating how the mechanism cutoff for volunteers, cOn , changes relative to cUn as
we change v. However, the effect can easily be signed when n is sufficiently large. We have:

Proposition 7. There is a n∗ > 0 such that for any n > n∗, ∆V ∗n is strictly increasing in
v, so an organization is formed only if v is larger than a threshold v∗n.

Propositions 6 and 7 are interesting because they suggests why the two factors highlighted
by Olson (size and individual incentives) matter for a group’s effectiveness. It is not just
that as n increases or v decreases, we have a more severe free rider problem that depresses
the probability of success. If it were only for this, the probability of success would change
very little. A more important point is that the group organizes only for n ≤ nκ and this
has important implications for effectiveness.30 As n passes nκ, effectiveness collapses to
almost zero, since without an organization the probability of success is extremely small
and insensitive of v and n. Proposition 6 also explains why we should expect a dichotomy

29Note that the fact that cUn and cOn converge to zero does not imply the terms in parenthesis converge to
zero; indeed, as we know form Theorem 3, they both converge to zero if mn � n2/3 and to one if mn ≺ n2/3.

30The size threshold, nκ, as well as the value threshold, v∗n, both vary with the returns to scale. In
principle, nκ could be quite large.
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of organizations: the small, organized, and effective groups on the one hand; and large,
unorganized, and ineffective group on the other hand. What creates the dichotomy is the
decision to organize that transform a continuous effect in a discrete drop in effectiveness.

7 Variations and discussions

7.1 On High-value environments (v ≥ 1)

An assumption that we have maintained throughout the analysis is that v < 1, where 1 is
the highest possible cost c. This assumption is standard and, for the constant returns to
scale case, implied by the stronger assumption requiring that the total benefit of success vn
is less than the marginal cost αn in the worst case scenario in which all types have a cost of
1, so that v < α (see, for example, Mailath and Postlewaite [1990]). The case with v ≥ 1,
however, has an interesting peculiarity that is worth discussing. If v ≥ 1, then, for weak
organizations we obtain a result similar to Theorem 2, because randomly selecting a group
of size mn, regardless of individual costs, does not violate the obedience constraint for any
type. Specifically:

Proposition 8. If v ≥ 1, MHRA is satisfied, and either mn ≺ n or mn = αn for some fixed
α < 1, then for all n the optimal direct mechanism satisfying (IC) and (IMH) is a random
mechanism in which each g such that |g| = αn is activated with probability 1/

(
n
mn

)
and each

g such that |g| 6= mn is activated with probability 0. The probability of success equals 1.

When v ≥ 1, however, the limit probability of success in the symmetric equilibrium of
an unorganized group remains 0 when m � n2/3. An implication of Proposition 8, therefore,
is that the limit equivalence of the probabilities of success in organized and unorganized
groups is not valid anymore when v ≥ 1. In this case, moral hazard is not a problem; the
only strategic problem faced by the members is coordination. Coordination can be easily
solved by a honest and obedient mechanism, but is unsolvable in a symmetric equilibrium
without an organization.31

7.2 On the divisibility of tasks

In the previous analysis we have assumed that the decision to contribute is dichotomous:
agent i either contributes at a cost ci or not. For example, an agent participates in a rally
or not; an agent signs a petition or not; joins a union or a committee or not. There are
however cases in which the contribution can be split up. For example, suppose that an agent
has up to one day to donate to a cause, say the organization of a charity. However, if the
agent cannot donate one day, perhaps the agent can donate less, say one hour. It is easy to
see that the analysis can be easily extended to this case, though the results are interesting
only when we assume some economies of scale, if the task cannot be “atomized” too much

31Of course, we can design an asymmetric equilibrium that achieves success with probability 1 in an
unorganized group, but such an equilibrium would implicitly assume a solution of the coordination problem
by ex ante selecting the “volunteers”.
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relative to the cost of providing the effort: in this case the obedience constraint becomes
moot (and the optimal mechanism becomes too powerful to generate plausible predictions).

To see this, assume that a contribution now can be divided in λ parts: when λ = 1 the
contribution is, say, one day; when λ = 24, it is one hour, etc. Now the mechanism can ask
each agent to contribute any discrete amount x ∈ {0, 1/λ, 2/λ, ..., 1}, say from 0 hours to 24
hours. Assume that we need a total of mn contribution units to achieve the collective goal
and recall that the costs are distributed in [0, c] and c can be possibly larger than 1: now we
can require mn agents providing one unit, or up to λmn agents providing one hour. If we
can choose λ so large that c/λ < v and λm ≤ n, then we can achieve the common goal with
probability one with a mechanism equivalent to the optimal (IC) and (INTIR) mechanism
of Theorem 2. In this case, we just ask λmn agents at random to contribute 1/λ each. If
mn ≺ n, then for any λ such that c/λ < v, it will be true that λmn ≤ n for large n, so
success with probability 1 is feasible for n large enough. In many plausible environments,
however, economies of scale make it unrealistic to assume that divisibility is fine enough to
guarantee that all types including the most extreme would be willing to obey it if asked. If
we assume that there is a λ satisfying c/λ > v, then the obedience constraint will always be
binding as in the analysis presented above. For instance, this is always true for any λ, for c
large enough.

The analysis in previous sections carries over to this case where contributions can be
discretely divisible rather than just dichotomous. In the dichotomous case a (reduced form)
mechanism specifies a probability of success p(c) and a probability of contributing a(c),
where a(c) ∈ [0, 1] and non-increasing in c. As before, a mechanism specifies an interim
probability of success p(c) and an interim expected contribution a(c), where again a(c) ∈ [0, 1]
and non-increasing in c. The analysis is completely analogous. Indeed, the same logic as
in Section 5 suggests that, for finite n, a(c) will be non increasing and positive up to a
threshold c∗ = min {c ≤ vvp(c∗)− c∗a(c∗) ≤ vp(c)} and then a(c) = 0 for c > c∗, just as
above. Moreover, a(c) will become flat as n→∞, so a VBO with a(c) > a for “volunteers”
and zero for free riders with a higher c will be asymptotically optimal, just as in the previous
analysis.

7.3 Alternative cost distributions

While we allow for general distributions of the players’ costs, three assumptions are main-
tained throughout the analysis. The first assumption is that there is a positive density of
zero cost types, i.e., f(0) > 0. This assumption is standard in the literature and has been
adopted in classic pivotal agent models to study voter turnout and candidate competition
(e.g., Ledyard (1984), Myerson (2000)). Relaxing this assumption has no impact on the
result for mn � n2/3, as well as for all the results concerning strong organizations. When
mn ≺ n2/3, the existence of a sequence of equilibria with the probability of success converging
to one may depend on the rate at which f(c) converges to zero as c→ 0.

A second assumption is that F (0) = 0, i.e., there are no types that actually like to
contribute. With negative cost types, i.e. F (0) > 0, it is trivial to see that the probability of
success equals one for any increasing returns, i.e., if mn ≺ n, with or without an organization,
since αn < F (0) for sufficiently large n, except if the distribution of types also depends on
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n and becomes sufficiently small as n increases, i.e. Fn(0) < mn/n for n sufficiently large.
The results for constant returns to scale with HO mechanisms are essentially unchanged as
long as F (0) < α.

A third assumption is that there is a continuum of types. The analysis can be extended
to allow for an arbitrary finite number of types. More can be said in the extreme case where
there are only two types, cL and cH , as studied in Ledyard and Palfrey (1994). For this case
Battaglini and Palfrey (2023) have shown that a simple VBO is exactly optimal for finite n

if cL
v
<

1− φ
αn

1−φ , where φ ∈ (0, 1) is the probability of the low type.

8 Conclusions

We have developed a model of collective action in which a group can organize by constructing
communication mechanisms to elicit private information and coordinate the actions of its
members. We have stressed the importance of requiring the mechanism to be obedient,
besides the more familiar requirements of incentive compatibility and individual rationality.
Mechanisms that are only incentive compatible and individually rational make sure that
members are willing to join a group and reveal their types, but they require members to
commit to carry out the mechanism’s recommendations, thus assuming away a key aspect of
the moral hazard problem. Obedience is not generally included in classic mechanism design
problems, since in these applications mechanisms map vectors of type profiles to allocations;
in collective action problems, on the contrary, mechanisms only map vectors of type profiles
to recommendations: allocations are the decentralized results of the members’ individual
actions.

Strong mechanisms that satisfy interim incentive compatibility and individually rational-
ity, but omit the obedience constraint, can fully solve a group’s problem, achieving success
with probability one even with no side payments. Moreover, regardless of how fast mn grows,
success is always guaranteed when the total benefit of the group is larger than the cost in
the worst case scenario (in which all members have maximal costs). The predicted success of
optimal honest and obedient mechanisms is typically much more modest, which highlights
the importance of realistic moral hazard or obedience constraints, and at the same time sug-
gests that interim individual rationality is too weak a condition. We showed that when mn

grows slower than n2/3, success is achievable with certainty, with or without an organization.
When mn grows faster than n2/3, however, success is impossible in the limit even if total
benefit is always larger than total cost. Nonetheless organizing a group with a simple honest
and obedient institution gives a group a key advantage even in large groups. The real benefit
of an organization is that even when the probability of success of the optimal HO mechanism
converges to zero, it does so at a much slower rate than without an organization (which is
exactly zero after a finite n). The rate of convergence of the probability of success when mn

grows faster than n2/3 is always strictly slower than exponential.

There are numerous ways the theory might usefully be extended. In our analysis we have
relied on a very simple base model of collective action, a classic threshold public good game.
It may be possible to explore the themes described above in much more general economic
environments in which the size of the common goal that can be chosen by the collectivity
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is a continuous variable: as, for example, when the group does not only choose to build a
bridge, but also its quality and its capacity. In addition, we have studied a completely static
model. Many collective action problems are dynamic. The ideas presented here could be
embedded in dynamic environments to extend previous work that has studied contribution
games in dynamic environments with no organizations (see, for instance, Matthews [2013]
and Battaglini et al. [2014]).

Another direction that we have begun to explore is the study of how multiple groups, each
facing their own potentially competing collective action projects, strategically interact with
each other. Groups may strategically interact because their respective goals are substitutes,
as when there is a budget constraint that allows only a subset of projects to be realized.
Or they can interact in environments with complementarities, which leads to “a collective
action problem in a collective action problem”: that is, the groups need to solve a collective
action problem between themselves in the face of common goals, but each group also needs
to solve its own internal collective action design problem in order for the group to elicit
contributions.

The theory presented here also provides inspiration for new empirical questions that can
be studied with laboratory experiments and possibly field work. We mentioned a significant
literature in experimental economics that has studied contribution games with structured and
unstructured preplay communication. Most of this literature has focused on environments
with complete information, or with only a few players. We leave for future research an
empirical investigation of the effectiveness of the VBOs characterized in this paper and the
comparison of their performance with unorganized groups.
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9 Appendix

9.1 Proof of Theorem 1

In Step 1, we show that mn ≺ n2/3 implies that F
(
cUn
)

is sufficiently larger than αn for all n
sufficiently large and in the limit. This guarantees that limn→∞ P

U
n = 1. In Step 2, we show

that if mn � n2/3, then PU
n = 0 for n sufficiently large.

Step 1. We proceed in three steps.

Step 1.1. We first show that mn ≺ n2/3 implies that F
(
cUn
)
> αn for any n sufficiently

large. Recall that the threshold, cUn , is the largest solution for c ∈ [0, 1] to the following
equation: c = vB(αnn − 1, n − 1, F (c)). Therefore, F

(
cUn
)
> αn for any n large if, for

sufficiently large n, we have:

αn < F (vB(αnn− 1, n− 1, αn))

This condition guarantees that there is an intersection on the right of αn. See Figure 1. The
following lemma will prove useful in the argument.

Lemma A1. If mn ≺ n2/3 then B(αnn − 1, n − 1, αn)/αn → ∞; if mn � n2/3 then
B(αnn− 1, n− 1, αn)/αn → 0.

Proof. We can approximate the binomial combinatorial term for large n using Stirling’s

formula:
(
n
k

)
=
√

n
2πk(n−k)

nn

kk(n−k)n−k . First note that:

(
n− 1

αn− 1

)
=

(n− 1)!

(αnn− 1)!(n− αnn)!
=
αnn

n

n!

αnn · (αnn− 1)!(n− αnn)!
= αn

(
n

αnn

)
Applying Stirling’s formula yields:(

n− 1

αnn− 1

)
' αn

√
1

2παn(1− αn)n

[
1

(αn)αn (1− αn)(1−αn)

]n
where ' means that the two sequences converge to zero at the same speed. So an approxi-
mation of B(αnn− 1, n− 1, αn) is given by:

B(αnn− 1, n− 1, αn) =

(
n− 1

αnn− 1

)
[(αn)αn (1− αn)1−αn ]

n

αn
'

√
1

2παn(1− αn)n

We therefore have:

B(αnn− 1, n− 1, αn)

αn
' 1

αn

√
1

2π (αn) (1− αn)n

We have B(αnn−1,n−1,αn)
αn

→ ∞ if
(
mn
n

)3
(1 − mn

n
)n → 0 as n → ∞, a condition satisfied if
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mn/n
2/3 → 0, or mn ≺ n2/3; we have B(αnn−1,n−1,αn)

αn
→ 0 if

(
mn
n

)3
(1− mn

n
)n→∞ as n→∞,

a condition satisfied if mn/n
2/3 →∞, or mn � n2/3. �

We can now prove that mn ≺ n2/3 implies that F
(
cUn
)
> αn for all n sufficiently large.

To this goal, note that as n→∞, vB(αnn− 1, n− 1, αn)→ 0, so we can write

F [vB(αnn− 1, n− 1, αn)] = vf(0) ·B(αnn− 1, n− 1, αn) + o(B(αnn− 1, n− 1, αn))

where o(B(αnn− 1, n− 1, αn))/αn → 0 as n→∞. It follows that:

lim
n→∞

F [vB(αnn− 1, n− 1, αn)]

αn
= lim

n→∞

[
vf(0) · B(αnn−1,n−1,αn)

αn

+o(B(αnn−1,n−1,αn))
αn

]

= lim
n→∞

[
vf(0)

+o(B(αnn−1,n−1,αn))
B(αnn−1,n−1,αn)

]
B(αnn− 1, n− 1, αn)

αn

= vf(0) lim
n→∞

B(αnn− 1, n− 1, αn)

αn

We conclude that whenever B(αnn−1,n−1,αn)
αn

converges to 0 or diverges at∞, so does F [vB(αnn−1,n−1,αn)]
αn

.

This implies that whenmn ≺ n2/3, then F [vB(αnn−1,n−1,αn)]
αn

→∞, implying αn < F [vB(αnn− 1, n− 1, αn)],

so F
(
cUn
)
> αn.

Step 1.2. We now prove that if mn ≺ n2/3 the probability of success for the group converges
to 1. We proceed in two sub-steps.

Step 1.2.1. Assume first that
F(cUn )
αn
→ 1. We have:

B(αnn− 1, n− 1, F (cUn )) =

(
n− 1

αnn− 1

)[(
F (cUn )

)αn
(1− F (cUn ))1−αn

]n
F (cUn )

=

(
n− 1

αnn− 1

)
[(αn)αn (1− αn)1−αn ]

n

αn

[(
F (cUn )

)αn
(1− F (cUn ))1−αn

]n
[(αn)αn (1− αn)1−αn ]

n

'
(

n− 1

αnn− 1

)
[(αn)αn (1− αn)1−αn ]

n

αn

But note that by the definition of cUn and the fact that mn ≺ n2/3 we must have:

1 =
B(αnn− 1, n− 1, F (cUn ))

cUn

'
(

n− 1

αnn− 1

)
[(αn)αn (1− αn)1−αn ]

n

αn
→∞,

a contradiction. We must therefore have that in equilibrium:
F(cUn )
αn
→ ζ > 1, with ζ possibly

arbitrarily large.
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Step 1.2.2. It follows from Steps 1.1 and 1.2.1 that we can assume
F(cUn )
αn

> ζ, for some

bounded ζ > 1. First note that F
(
cUn
)
> ζαn implies F

(
cUn
)
− αn > αn(ζ − 1). Second,

note that the probability of failure is equal to the probability that fewer than αnn agents
volunteer and thus it can be bounded above by:

Pr(k ≤ αnn) = Pr(
k

n
≤ αn) = Pr(

k

n
≤ F

(
cUn
)
− (F

(
cUn
)
− αn))

≤ Pr(
k

n
≤ F

(
cUn
)
− (αn(ζ − 1))) ≤ Pr

[∣∣∣∣kn − F (cUn )
∣∣∣∣ ≥ αn(ζ − 1)

]
= Pr

[∣∣∣∣kn − F (cUn )
∣∣∣∣ ≥

√
F (cUn ) (1− F (cUn ))√

n

√
nαn(ζ − 1)√

F (cUn ) (1− F (cUn ))

]

= Pr

[∣∣∣∣kn − F (cUn )
∣∣∣∣ ≥ σcUn (

k

n
) ·
√
nαn(ζ − 1)√
ζ(1− F (cUn ))

]
≤

(√
ζ(1− F (cUn ))
√
nαn(ζ − 1)

)2

→ 0

where in the second line we used F
(
cUn
)
− αn > αn(ζ − 1); in the fourth line we define

σcUn ( k
n
) =

√
F (cUn )(1−F (cUn ))√

n
and used Chebyshev’s inequality; and in the last step of the fourth

line (“→”), we used the fact that nαn = mn →∞.

Step 2. We now show that if mn � n2/3, then limn→∞ P
U
n = 0. We first establish that

limn→∞
pUn
αn

= 0. Assume not, so limn→∞
pUn
αn

= ζ for some ζ > 0. From the equilibrium
condition we must have:

pUn = F
(
vB(αnn− 1, n− 1, pUn )

)
Note however that:

B(αnn− 1, n− 1, pUn ) =

(
n− 1

αnn− 1

)[(
pUn
)αn

(1− pUn )1−αn
]n

pUn

=
αn
pUn

(
n

αnn

)[(
pUn
)αn

(1− pUn )1−αn
]n ' 1

ζ
·

√
1

2παn(1− αn)n
[ξn]n

with ξn =
(pUn )

αn
(1−pUn )1−αn

(αn)
αn (1−αn)1−αn ≤ 1 for any n (since for any pUn ,

(
pUn
)αn

(1−pUn )1−αn ≤ (αn)αn (1−
αn)1−αn). So, by Lemma A1, we have that for large n:

1 =
F
(
vB(αnn− 1, n− 1, pUn )

)
pUn

' vf(0) (ξn)n

αn

√
1

2παn(1− αn)n
→ 0

where in the second step (“'”) we used the fact that pUn = ζαn, and in the last step (“→”),

we used the fact that 1
αn

√
1

2παn(1−αn)n → 0 since mn � n2/3 and (ξn)n ≤ 1. This is a

contradiction, implying that limn→∞
pUn
αn

= 0. We next use this to show that pUn = 0 for large
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n. By definition we have:

pUn = F (vB(αnn− 1, n− 1, pUn )) = Ψ(αn, n, p
U
n ) (19)

Note that since we don’t have an equilibrium pUn > 0 on the right of αn, we must have an
equilibrium p̃n > 0 on the left of αn with Ψ′(αn, n, p

U
n ) < 1, where Ψ′(αn, n, p

U
n ) denotes

the derivative of Ψ(αn, n, p
U
n ) with respect to pUn for a given αn and n. Note that for any

constant ε > 0 arbitrarily small, there is a nε such that Ψ′(αn, n, p
U
n ) > vf(0)(1− ε)B′(αnn−

1, n − 1, pUn ), where B′(αnn − 1, n − 1, cUn ) denotes the derivative of B′(αnn − 1, n − 1, pUn )
with respect to pUn for a given αn and n. We can write:

B′(αnn− 1, n− 1, pUn ) = B(αnn− 1, n− 1, pUn )

[
αnn− 1

pUn
− n− αnn

1− pUn

]
→ pUn

f(0)v

[
αnn− 1

pUn
− n− αnn

1− pUn

]
=

(
αn − pUn

)
n− 1 + pUn

f(0)v (1− pUn )

=

(
1− pUn

αn

)
αn − 1−pUn

n

f(0)v (1− pUn )
n =

[(
1− pUn

αn

)
− 1−pUn

αnn

]
f(0)v (1− pUn )

αnn→
mn

f(0)v
→∞

where the equilibrium condition (19) and the fact that

F
(
vB(αnn− 1, n− 1, pUn )

)
' f(0)vB(αnn− 1, n− 1, pUn )

for n large is used in the second line; and the last line follows from the earlier result that
pUn
αn
→ 0 when mn � n2/3 and mn → ∞. This leads to a contradiction, since it implies that

for n large at any positive intersection Ψ′(αn, n, p
U
n ) is arbitrarily large. We conclude that

the only equilibrium is pUn = 0. �

9.2 Proof of Theorem 2

The paragraph immediately before the statement of Theorem 2 already proved that the
random mechanism satisfies (IC) and (INTIR) under the conditions of parts 1 and 2 of the
theorem, and it obviously achieves a probability of success equal to 1. Here we show that if,
in addition, F satisfies MHRA then it is also the optimal mechanism.

For a given n, consider the relaxed problem:

max
p(·),a(·)

{
vp(0)− E

[
a(c) · 1− F (c)

f(c)

]}
(20)

s.t. a(c) is non-increasing with a(c) ∈ [0, 1]

and p, a feasible

derived from (9) by eliminating the (INTIR) constraint, and let µn(c) with associated reduced
form mechanism an(c), pn(c) be its solution. We proceed in three steps. In Step 1, starting
from µn(c) we present a perturbed mechanism µγn(c) and show it is incentive compatible and
feasible. In Step 2 we show that such a perturbation strictly improves the relaxed problem
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(20) if an(c) is strictly decreasing. In Step 3, we show that the solution of the relaxed
problem is pn(c) = 1, a(c) = αn. Moreover, when mn � n and v > α, or when mn ≺ n and
n is large, then this solution is a solution of the full problem (9).

Step 1. Since the argument is true for any n, we omit here the subscript n for simplic-
ity. Let µ be any feasible and incentive compatible mechanism. Consider the following
“flattening” perturbation of the mechanism. After a profile of reports c, the perturbed
mechanism is defined by a new activity function that uses µ(c) with probability 1− γ, and
µ(c̃) and with probability γ, where c̃ is a vector in which all components ci > 0 are replaced
with i.i.d realizations in (0, 1] from F (x) (and components ci = 0 are left unchanged). Let

a =
∫ 1

0
a(x)f(x)dx and p =

∫ 1

0
p(x)f(x)dx. This new allocation generates a reduced form

mechanism:
pγ(ci) = γp+ (1− γ)p(ci), and aγ(ci) = γa+ (1− γ)a(ci)

for ci ∈ (0, 1] and pγ(0) = p(0), aγ(0) = a(0). Note that since a(0) ≥ a(ci) and p(0) ≥ p(ci)

for all ci ∈ [0, 1], we must have that a(0) ≥ a =
∫ 1

0
a(x)f(x)dx and similarly p(0) ≥ p.

The new reduced form allocation is clearly feasible since we have shown the feasible
activity function that generates it. It also does not change p(0). Note that after the change
incentive compatibility is satisfied since aγ(ci) is non increasing in [0, 1] and, after the change,
we have:

Uγ(x) = γ [vp− ax] + (1− γ) [vp(x)− a(x)x]

= vpγ(x)− aγ(x)x

For c > 0 and c′ ≥ 0, we have:

vpγ(c)− aγ(c)c = γ [vp− ac] + (1− γ) [vp(c)− a(c)c]

≥ γ [vp− ac] + (1− γ) [vp(c′)− a(c′)c]

= vpγ(c′)− aγ(c′)c

Moreover a type 0 does not want to imitate a type c > 0:

vpγ(0) ≥ γ [vp] + (1− γ) [vp(0)] ≥ γ [vp] + (1− γ) [vp(c′)] = vpγ(c′)

where the first inequality follows from the fact that p(0) ≥ p. Given IC, by the usual
argument, we have:

[Uγ]′ (x) = −γa− (1− γ)a′(x) = −aγ(ci)

So the change is feasible in the relaxed problem.

Step 2. To see that it increases the objective function, we need to show that −
∫ 1

0
aγ(x)(1−

F (x))dx increases in γ, since vp(0) is unchanged by the change. We can write it as:

a ·
∫ 1

0
G (x)

aγ(x)

a
f(x)dx

where G (x) = −1−F (x)
f(x)

and a is
∫ 1

0
a(x)f(x)dx. Note that aγ(x)f(x)

a
is a density since

37



aγ(x)f(x)
a

≥ 0 and

∫ 1

0

aγ(x)f(x)
a

dx = 1. By MHRA, G (x) is monotone non-decreasing in x,

so the result is proven if we prove that an increase in γ implies a first order stochastic dom-
inance improvement in aγ(x)

a
f(x). Define: Γγ(t) =

∫ t
0
aγ(x)
a
f(x)dx. We prove the result if

∂Γγ(t)/∂γ < 1 for all t < 1. We have:

∂

∂γ
Γγ(t) =

∂

∂γ

[
1

a

∫ t

0

[γa+ (1− γ)a(x)] f(x)dx

]
=

∫ t

0

[
1− a(x)

a

]
f(x)dx = F (t)

[
1− E [a(x);x ≤ t]

E [a(x)]

]
≤ 0

where the last inequality follows from the fact that a(x) non-increasing in x. It follows that
increasing γ improves the relaxed problem, which is maximized at γ = 1. When γ = 1,
feasibility and the (IC) are satisfied: so γ = 1 is optimal for the original problem as well.

Step 3. From Step 2 we know that the optimal mechanism solving the relaxed problem
is independent of c: aSn, p

S
n. It is easy to see that this mechanism will always activate a

coalition of size mn. Assume not. Three cases are possible. First, the mechanism activates
a coalition of size larger than mn; second the mechanism selects a non empty coalition of
size smaller than mn. In the first case, just modify the mechanism by imposing that all
activated coalitions are reduced to a size mn by randomly selecting agents to drop; in the
second, modify the mechanism by imposing that coalitions that are smaller than mn are not
selected and a coalition of size mn is selected instead, with equal probability on all coalitions
of size mn. This leaves pSn unchanged and it and reduce aSn. No constraint is violated and
the objective function is increased, a contradiction. The third case is that the mechanism
always select a coalition of size mn, but with probability pSn < 1. It is easy to see that
this is not optimal since by increasing pSn we obtain a marginal improvement in utility equal
to 1 − αn cv . We conclude that the optimal solution of the relaxed problem is pSn = 1 and
aSn = αn.

9.3 Proof of Proposition 1

We first prove that for any αn, n, Yn(c) has a unique fixed point cOn . We then prove that a
simple VBO is incentive compatible if and only if the volunteer cutoff is cOn , and cOn ∈

(
cUn , v

)
.

Finally, we establish the VBO is honest and obedient. The following lemma will prove useful.

Lemma A2. B(αnn−1+j,n−1,p)
B(αnn−1,n−1,p) =

∏j
k=1

(n−αnn−1−k)
αnn−1+k ·

(
p

1−p

)j
.

Proof: We prove this by induction. The formula is correct for j = 1 since B(mn+1,n−1,p)
B(mn,n−1,p) =
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(n−mn−1)
mn+1

· p
1−p , and for j = 2 since:

B(mn + 2, n− 1, p)

B(mn, n− 1, p)
=
B(mn + 2, n− 1, p)

B(mn + 1, n− 1, p)
· B(mn + 1, n− 1, p)

B(mn, n− 1, p)

=
(n−mn − 2)

mn + 2

(n−mn − 1)

mn + 1
·
(

p

1− p

)2

The induction hypothesis is that the formula is correct for j − 1:

B(mn + j − 1, n− 1, p)

B(mn, n− 1, p)
=
∏j−1

i=1

(n−mn − i)
mn + i

·
(

p

1− p

)j−1
This implies:

B(mn + j, n− 1, p)

B(mn, n− 1, p)
=

B(mn + j, n− 1, p)

B(mn + j − 1, n− 1, p)
· B(mn + j − 1, n− 1, p)

B(mn, n− 1, p)

=
(n−mn − j)

mn + j

(
p

1− p

)∏j−1

l=1

(n−mn − l)
mn + l

·
(

p

1− p

)j−1
=
∏j

i=1

(n−mn − i)
mn + i

·
(

p

1− p

)j
so the formula is correct for j, which proves the claim. �

We now proceed in three steps.

Step 1. For any αn, n, Yn(c) is defined as:

Yn(c) =
vB(αnn− 1, n− 1, F (c))∑n−1
j=αnn−1

αnn
j+1

B(j, n− 1, (F (c))
.

We can rewrite it as:

Yn(c) =
v

1 +
∑n−1

j=αnn
αnn
j+1

B(j,n−1,F (c))
B(αnn−1,n−1,F (c))

= F

(
v

1 +
∑n−αnn

j=1
αnn
j+αnn

B(αnn−1+j,n−1,F (c))
B(αnn−1,n−1,F (c))

)

We now show that: ∑n−αnn

j=1

αnn

j + αnn

B(αnn− 1 + j, n− 1, F (c))

B(αnn− 1, n− 1, F (c))

is strictly increasing in c, so Yn(c) is continuous and strictly decreasing in c. By Lemma A2,
we have:

B(αnn− 1 + j, n− 1, F (c))

B(αnn− 1, n− 1, F (c))
=
∏j

i=1

n− αnn+ 1− i
αnn− 1 + i

·
(

F (c)

1− F (c)

)j
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It follows that:∑n−αnn

j=1

αnn

j + αnn

B(αnn− 1 + j, n− 1, F (c))

B(αnn− 1, n− 1, F (c))
=
∑n−αnn

j=1

αnn

j + αnn
·
∏j

i=1

n− αnn+ 1− i
αnn− 1 + i

·
(

F (c)

1− F (c)

)j
which is increasing in c. Moreover, it is easy to see that Yn(0) = F (v) > 0 and Yn(v) = 0 < v.
Hence Yn(c) has a unique fixed point cOn in (0, v).

Step 2. Incentive compatibility requires that U(c) = vpOn (c) − caOn (c) ≥ vpOn (c′) − caOn (c′)
for all c, c′ ∈ [0, 1], where pOn (c), aOn (c) is the reduced form direct mechanism described by
the VBO. We now show that the mechanism is IC when the threshold is cOn such that
cOn = Yn(cOn ). Given cOn , we let pO1,n denote the (constant) interim probability of success for
all types c ≤ cOn , let pO2,n denote the (constant) interim probability of success for all types
c > cOn , and let aOn denote the (constant) interim probability of being activated for all types
c ≤ cOn . From the definition of a VBO, pO1,n, p

O
2,n, a

O
n are given by the following formulas:

aOn =
n−1∑

k=αnn−1

αnn

k + 1
B(k, n− 1, F

(
cOn
)
) (21)

pO1,n =
n−1∑

k=αnn−1

B(k, n− 1, F
(
cOn
)
) (22)

pO2,n =
n−1∑
k=αnn

B(k, n− 1, F
(
cOn
)
) (23)

The equilibrium condition for IC is:

acOn = v(pO1,n − pO2,n) (24)

By substituting equations (21), (22), and (23) into equation (24) for any n, we can obtain
an expression for cOn (v), the VBO volunteer threshold cost as a function of group size and
the value of success:

cOn (v) = v
B(αnn− 1, n− 1, F (cOn ))∑n−1

k=αnn−1
αnn
k+1

B(k, n− 1, F (cOn ))
(25)

where the numerator on the right hand side is pO1,n − pO2,n and the denominator is aOn , the
probability a volunteer is activated. It is easy to see that (25) implies the statement in the
Proposition. Moreover, we get cOn > cUn because Yn(c) > vB(mn − 1, n − 1, F (c)) for all
c, v,mn, n. It follows that cOn ∈

(
cUn , v

)
, as stated.

Step 3. To establish that the VBO is honest and obedient, first observe that all group
members whose recommended action is to free ride will obey the recommendation because,
if all other members are obedient, then either 0 or exactly mn other members will volunteer.
Hence, their participation will not affect success of failure so they are better off free riding.
Second, all members with type ci whose recommended action is to activate will obey the
recommendation if ci ≤ v because, if all other members are obedient, then exactly mn − 1
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other members have been recommended to activate and will do so. Hence their payoff is 0
if they disobey the recommendation to activate and v − ci > 0 if they obey. It follows that
all types ci ≤ v find it optimal to obey no matter what type they have previously reported.
Types ci > v, instead, always find it optimal to free ride regardless of the recommenda-
tion. Therefore they cannot strictly improve their payoff by reporting c′i 6= ci. Formally:

Ec−i

[∑
g∈I

µg (c̃i, c−i)u
i
g(c)

]
≥ Ec−i

[∑
g∈I

µg (c̃i, c−i)u
i
ξi(g)

(c)

]
. This condition and (IC) imply:

Ec−i

[∑
g∈I

µg (ci, c−i)u
i
g(c)

]
≥ Ec−i

[∑
g∈I

µg (c̃i, c−i)u
i
g(c)

]
(26)

≥ Ec−i

[∑
g∈I

µg (c̃i, c−i)u
i
ξi(g)

(c)

]
(27)

for any i = 1, ..., n, ci, c̃i ∈ [0, 1] and any function ξi (g) mapping g to either {g, g\{i}} if
g ∈ Ii, or {g, g ∪ {i}} if g /∈ Ii. �

9.4 Proof of Proposition 2

We proceed in two steps.

Step 1. To prove the first bullet point, let mn = αn for some α ∈ (0, 1). From (10), pOn is
the unique solution to:

pOn = F

[
v

1

1 +
∑n−αn

j=1
αn
j+αn

B(αn−1+j,n−1,pOn )
B(αn−1,n−1,pOn )

]
(28)

and from Lemma A2, we have:

∑n−αn

j=1

αn

j + αn

B(αn− 1 + j, n− 1, pOn )

B(αn− 1, n− 1, pOn )
=
∑n−αn

j=1

αn

j + αn
·
∏j

i=1

n− αn+ 1− i
αn− 1 + i

(
pOn

1− pOn

)j
(29)

≤
∑n−αn

j=1

αn

j + αn

(
n− αn
αn

pOn
1− pOn

)j
≤
∑n−αn

j=1

(
1− α
α

pOn
1− pOn

)j
Assume by contradiction that limn→∞ p

O
n = 0, then:

lim
n→∞

∑n−αn

j=1

(
1− α
α

pOn
1− pOn

)j
≤ lim

n→∞

∑n

j=1

(
1− α
α

pOn
1− pOn

)j
<∞
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since 1−α
α

pOn
1−pOn

→ 0. Hence

lim
n→∞

∑n−αn

j=1

αn

j + αn

∏j

i=1

n− αn+ 1− i
αn− 1 + i

(
pOn

1− pOn

)j
<∞⇒ lim

n→∞
pOn > 0

a contradiction.

Step 2. To prove the second bullet point, let mn ≺ n. From Proposition 1, pOn is again the
unique positive solution to (28) and from Lemma A2, we have (29). Assume by contradiction

that limn→∞
pOn
αn
< 1, so limn→∞

1−αn
αn

pOn
1−pOn

= θ < 1 . In this case:

lim
n→∞

∑n−αnn

j=1

(
1− αn
αn

pOn
1− pOn

)j
→
∑∞

j=1
(θ)j =

θ

1− θ
<∞

Hence

lim
n→∞

∑n−αnn

j=1

αnn

j + αnn

∏j

i=1

n− αnn+ 1− i
αnn− 1 + i

(
pOn

1− pOn

)j
<∞

⇒ lim
n→∞

pOn > 0 = lim
n→∞

αn ⇒ lim
n→∞

pOn
αn

=∞ > 1

where limn→∞ αn = 0 follows from mn ≺ n. We have a contradiction and conclude that
limn→∞

pOn
αn
≥ 1. �

9.5 Proof of Corollary 1

The fact that the probability of success in a VBO is infinitely higher than in an unorganized
group for large n follows from part (2) of Theorem 1, that PU

n = 0 for all n > nU , and part
(1) of Proposition 2, that cOn > 0 for all n, so PO

n > 0 for all n. Hence, PU
n /P

O
n = 0 for all

n > nU . Consider the claim that the probability of success is zero in the limit in the VBO
(with constant returns). From equations (22) and (23) we have:

p1(c
O
n )− p2(cOn ) = B(αn− 1, n− 1, F

(
cOn
)
)→n 0

since all single terms of the binomial expansion converge to 0 as n→∞. Hence, equation (25)
implies that limn→∞ c

O
n a(cOn ) = 0, which in turn implies limn→∞ a(cOn ) = 0 since limn→∞ c

O
n =

cO > 0. This implies limn→∞ P
O
n = 0. �

9.6 Proof of Theorem 3

The first part of Theorem 3 follows from Proposition 1 and part (1) of Theorem 1: for any n,
the probability of success of an organized group using a VBO mechanism is greater than or
equal to the probability of success of an unorganized group. Since the probability of success
of an unorganized group converges to one when mn ≺ n2/3, the same must be true for an
organized group using a VBO mechanism.

For the second part, we now proceed in three Steps.
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Step 1. We first prove that there is a constant a∞ > 0 such that

lim
n→∞

∑n−1

k=αnn−1

αnn

1 + k
B (k, n− 1, αn) = a∞.

To see this, first note that, for any η > 0 arbitrarily small:32∑n−1

k=αnn+η
√
n
B (k, n− 1, αn) = Pr

(
k ≥ αnn+ η

√
n
)

= Pr

(
k

n
− αn ≥

η√
n

)
≤ Pr

(∣∣∣∣kn − αn
∣∣∣∣ ≥ σαn(k/n)

η√
αn(1− αn)

)

≤ lim
αn(1− αn)

η2
' δ

η2
· mn

n
→ 0

where σαn(k/n) =
√

αn(1−αn)
n

and in the last step we use Chebyshev’s inequality. So we

have:

lim
n→∞

∑n−1

k=αnn−1

αnn

1 + k
B (k, n− 1, αn) = lim

n→∞

[ ∑(
αn+

η√
n

)
n−1

k=αnn−1
αnn
1+k

B (k, n− 1, αn)

+
∑n−1

k=αnn+η
√
n
αnn
1+k

B (k, n− 1, αn)

]

= lim
n→∞

∑(
αn+

η√
n

)
n−1

k=αnn−1

αnn

1 + k
B (k, n− 1, αn)

and limn→∞
∑(

αn+
η√
n

)
n−1

k=αnn−1 B (k, n− 1, αn) ≥ 1
2
. We can also write:

lim
n→∞

∑(
αn+

η√
n

)
n−1

k=αnn−1

αnn

1 + k
B (k, n− 1, αn)

≥

(
lim
n→∞

1

1 + η · n1/2

mN

)
· lim
n→∞

∑(
αn+

η√
n

)
n−1

k=αnn−1
B (k, n− 1, αn) ≥ 1

2

where in the last line we use the fact that αnn = mn � n1/2, so n1/2/mn → 0.

Step 2. Given that limn→∞
∑n−1

k=αnn−1
αnn
1+k

B (k, n− 1, αn) = a∞ > 0, we can now prove that

there is a constant ϑ < 1 such that limn→∞
F(cOn )
αn

< ϑ. Define pOn = F
(
cOn
)

and assume by

contradiction that limn→∞
pOn
αn

= ζ for some ζ ≥ 1. From the equilibrium condition we must
have:

pOn = F

[
vB(αnn− 1, n− 1, pOn )∑n−1
k=αnn−1

αnn
1+k

B (k, n− 1, pOn )

]
32The initial term of the summation below should be written as dαnn+ η

√
ne, since αnn+ η

√
n may not

be an integer. To keep the notation simple, and without loss of generality since irrelevant for the argument,
in the following we ignore this issue.
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Note however that:

B(αnn− 1, n− 1, pOn ) =

(
n− 1

αnn− 1

)[(
pOn
)αn

(1− pOn )1−αn
]n

pOn

=
αn
pOn

(
n

αnn

)[(
pOn
)αn

(1− pOn )1−αn
]n

=
1

ζ
·

√
1

2παn(1− αn)n
[ξn]n

with ξn =
(pOn )

αn
(1−pOn )1−αn

(αn)
αn(1−αn)1−αn ≤ 1 for any n (since for any pOn ,

(
pOn
)αn

(1−pOn )1−αn ≤ (αn)αn (1−
αn)1−αn). Note, moreover, that∑n−1

k=αn−1

αnn

1 + k
B
(
k, n− 1, pOn

)
≥
∑n−1

k=αn−1

αnn

1 + k
B (k, n− 1, αn) ,

since pOn > αn for n large enough. It follows that, using Lemma A1 and Step 1 above, we
have that for large n:

1 =
1

pOn
F

[
vB(αnn− 1, n− 1, pOn )∑n−1
k=αn−1

αnn
1+k

B (k, n− 1, pOn )

]
' vf(0)

pOn

B(αnn− 1, n− 1, pOn )∑n−1
k=αnn−1

αnn
1+k

B (k, n− 1, pOn )

≤ vf(0)

pOn

B(αnn− 1, n− 1, pOn )∑n−1
k=αnn−1

αnn
1+k

B (k, n− 1, αn)
' vf(0) (ξn)n

ζ · a∞
· 1

αn

√
1

2παn(1− αn)n
→ 0

where in the second step (“'”) we used the fact that pOn = ζαn, and in the last step (“→”),

we used the fact that 1
αn

√
1

2παn(1−αn)n → 0 since mn � n2/3 and (ξn)n ≤ 1. This is a

contradiction, implying that limn→∞
pOn
αn

= limn→∞
F(cOn )
αn

< ϑ for some ϑ < 1.

Step 3. Note that by Step 2, αn − F
(
cOn
)
≥ (1− ϑ)αn for some ϑ < 1. Following standard

steps (see for instance the proof of Theorem 1), we have:

Pr(k ≥ αnn) ≤ Pr

[∣∣∣∣kn − F (cOn )
∣∣∣∣ ≥ (1− ϑ)αn

]
≤ Pr

[∣∣∣∣kn − F (cOn )
∣∣∣∣ ≥ σcOn (

k

n
) ·
√
nαn(1− ϑ)√
ϑ(1− F (cOn ))

]
≤

(√
ϑ(1− F (cOn ))
√
nαn(1− ϑ)

)2

→ 0

where σcOn ( k
n
) =

√
F (cOn )(1−F (cOn ))

√
n

. This proves the result. �

9.7 Proof of Proposition 3

We can bound the probability of success in an optimal honest and obedient mechanism as
follows. Let D

(
k
n
‖p
)

= k
n

log k/n
p

+ (1− k
n
) log 1−k/n

1−p be the Kullback–Leibler divergence, or
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relative entropy. We can write:

lim
n→∞

P ∗n = lim
n→∞

∑n

k=mn
B (k, n, p∗n) ≥ lim

n→∞
PO
n =

∑n

k=mn
B
(
k, n, pOn

)
≥ lim

n→∞

1√
8mn(1− mn

n
)

exp
(
−nD

(mn

n

∥∥pOn )) ' lim
n→∞

1√
8mn

exp
(
−nD

(mn

n

∥∥pOn ))
where in the last line we used the lower bound on the tail of a Binomial distribution (Lemma
4.7.2 in Ash [1990]). Since mn

n
→ pOn , we have that for any ε > 0, there exists nε such that

for n > nε, we have D
(
mn
n
‖p∗n
)
≤ ε/2. So

lim
n→∞

P ∗n

m
−1/2
n e−εn

≥ lim
n→∞

1√
8mn

exp
(
−nD

(
mn
n
‖p∗n
))

e−εn

= lim
n→∞

e[ε−exp(−nD(mnn ‖p∗n ))]n
√

8mn

≥ lim
n→∞

e
ε
2
n

√
8mn

=∞

So for any ε > 0, P ∗n converges strictly faster than e−εn. We conclude that P ∗n converges to
zero at a rate that is strictly slower than exponential. �

9.8 Proof of Proposition 4

We will omit n here as a subscript for simplicity whenever it does not create confusion. Let
µb be an optimal binary mechanism and let cb be the volunteer cut-point associated with
µb, and qk be the corresponding probability of success when there are k volunteers. We will
prove the result that if qk > 0 for some k ≥ m, then qk+j = 1 for j > 0. This implies that
there is a kb such that qj = 0 for j < kb and qj = 1 for j > kb and at most at one k we have
qkb ∈ (0, 1). So the optimal binary mechanism is a kb-VBO except at most for an event with
probability that converges to zero as n→ 0, i.e. when there are exactly kb volunteers.

We proceed in two steps. In Step 1, we establish that the optimal binary mechanism
is non-wasteful, meaning that it does not ever activate more agents than necessary; Step 2
shows that it is characterized by a threshold kb.

Step 1. We first show that the optimal honest and obedient binary mechanism must be
non-wasteful in the sense that whenever a group is activated, there are exactly m members
in the activated group. We prove this by contradiction by supposing that µb is wasteful
at a positive measure set of profiles and then showing that it can be improved. First,
define a new mechanism, µ′, that is exactly the same as µ for all coalitions of size m, but
eliminates all waste by reducing all activated successful coalitions to a size m by randomly
selecting agents to drop out, and by not activating unsuccessful coalitions that are smaller
than m. This leaves cb, pµ1 and pµ2 unchanged and reduces aµ to aµ′ < aµ. This implies
that aµ′cb < v(pµ1 − p

µ
2), so some cost types in a neighborhood above cb are strictly better

off volunteering, which violates incentive compatibility. Now, for any c̃ > cb, consider a
modified version of µ′, denoted by µ̃′ that has the same success probabilities, {qk}nk=m as µ′

except that all members with c < c̃ are volunteers, so there is a bigger pool of volunteers.
This increases pµ1 and pµ2 to pµ̃

′

1 > pµ1 and pµ̃
′

2 > pµ2 and changes aµ′ to ãµ′. Denote by c̃b > cb
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the first such value of c̃ > cb such that ãµ̃′c̃b = v(pµ̃
′

1 − pµ̃
′

2 ). (Such a point exists by the
intermediate value theorem.) Denote by u(c; cb) the interim expected utility of a member
with cost c under µ, and denote by u(c; c̃b) the interim expected utility of a member with

cost c under the modified mechanism, µ̃′ with volunteer cutoff c̃b > cb. Because pµ̃
′

2 > pµ2 , we
know that u(c; c̃b) = u(c̃b; c̃b) > u(c; cb) for all c ≥ c̃b, so these members are strictly better off.
For c ∈ (cb, c̃b) we have u(c; c̃b) ≥ u(c̃b; c̃b) > u(c; cb), so these members are also better off.
Finally, for all c ∈ [0, cb) (the volunteers under µ) are better off because for each k ≥ m for
which qk > 0 there are a positive measure of additional profiles c with exactly k volunteers,
and for each such additional profile, the c-type member in [0, c̃b) gets a conditional expected
utility of (v − m

k
c)qk > 0. (Such members receive the same conditional expected utility for

all other profiles.) Hence, u(c; c̃b) > u(c; cb) for all c ≤ cb. Hence all agents are better off
under µ̃′ than under µ. All constraints are satisfied and the objective function is increased,
a contradiction. Hence the optimal mechanism is non-wasteful

Step 2. If qk > 0 for k ≥ m and qk+j < 1 for j > 1, then there must be a k′ such that
qk′ > 0 for k′ ≥ m and qk′+1 < 1, so we only need to prove the result for the case of j = 1.

Assume by contradiction that qk > 0 for some k ≥ m and qk+1 < 1. Let cb be the
minimum cost above which an agent is activated with probability zero. Then incentive
compatibility is binding at cb if acb = v(pb1 − pb2), where:

pb1 − pb2 = B(n− 1, n− 1, F (cb))qn +
∑n−1

k=m
[B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))]qk

and

a =
∑n−1

k=m−1

m

1 + k
B(k, n− 1, F (cb))qk+1.

We can marginally reduce qk by −dqk < 0 and marginally increase qk+1 by dqk+1 > 0 so that
the (IC) constraint is unchanged, thus keeping cb constant. This requires:

cb
[
−m
k
B(k − 1, n− 1, F (cb)) +

m

k + 1
B(k, n− 1, F (cb))

dqk+1

dqk

]
dqk (30)

=

[
−
(
B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))

)
+B(k, n− 1, F (cb))−B(k + 1, n− 1, F (cb))dqk+1

dqk

]
dqk

Note we can write:

pb1 − pb2 = B(n− 1, n− 1, F (cb))qn (31)

+
∑n−1

k=m
[B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))]qk =

∑n

k=m
Θkqn

where we denote:

Θn = B(n− 1, n− 1, F (cb))

Θk = B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb)) for k = n− 1, ..,m
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We can rewrite the previous expression as:

Θk = B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb)) = B(k, n− 1, F (cb))

[
k

n− k
1− F (cb)

F (cb)
− 1

]
Similarly, we have:

Θk+1 = B(k, n− 1, F (cb))−B(k + 1, n− 1, F (cb))

=
(n− 1)!

(k)! (n− k − 1)!

(
F (cb)

)k
(1− F (cb))n−k−1

− (n− 1)!

(k + 1)! (n− k − 2)!

(
F (cb)

)k+1
(1− F (cb))n−k−2

= B(k + 1, n− 1, F (cb))

[
k + 1

n− k − 1

1− F (cb)

F (cb)
− 1

]
Substituting into (30) gives:

cb
[
−m
k
B(k − 1, n− 1, F (cb)) +

m

k + 1
B(k, n− 1, F (cb))

dqk+1

dqk

]
dqk

=

[
−
(
B(k − 1, n− 1, F (cb))−B(k, n− 1, F (cb))

)
+B(k, n− 1, F (cb))−B(k + 1, n− 1, F (cb))dqk+1

dqk

]
dqk

or

cb

[
−m

k
k

n−k
1−F (cb)
F (cb)

B(k, n− 1, F (cb))

+ m
k+1

k+1
n−k−1

1−F (cb)
F (cb)

B(k + 1, n− 1, F (cb))dqk+1

dqk

]
dqk

=

 −B(k, n− 1, F (cb))
[

k
n−k

1−F (cb)
F (cb)

− 1
]

+B(k + 1, n− 1, F (cb))
[

k+1
n−k−1

1−F (cb)
F (cb)

− 1
]
dqk+1

dqk

 dqk
It follows that:

dqk+1

dqk

[(
cb

m

k + 1
− 1

)
k + 1

n− k − 1

1− F (cb)

F (cb)
+ 1

]
B(k + 1, n− 1, F (cb))

=

[(
cb
m

k
− 1
) k

n− k
1− F (cb)

F (cb)
+ 1

]
B(k, n− 1, F (cb))

⇔ dqk+j
dqk

=
1−

(
1− cb m

k

)
k

n−k
1−F (cb)
F (cb)

1−
(
1− cb m

k+1

)
k+1

n−k−1
1−F (cb)
F (cb)

B(k, n− 1, F (cb))

B(k + 1, n− 1, F (cb))
= Tn,k

B(k, n− 1, F (cb))

B(k + 1, n− 1, F (cb))

where:

Tn,k =
1−

(
1− cb m

k

)
k

n−k
1−F (cb)
F (cb)

1−
(
1− cb m

k+1

)
k+1

n−k−1
1−F (cb)
F (cb)

> 1⇔ k − cbm
n− k

<
k − cbm+ 1

n− k − 1
⇔ n > cbm
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After this change, the probability of success increases, indeed we have:

dPn =

[
−B(k, n− 1, F (cb)) +B(k + 1, n− 1, F (cb))

dqk+1

dqk

]
dqk

=

[
−B(k, n− 1, F (cb)) +B(k + 1, n− 1, F (cb)) · Tn,k

B(k, n− 1, F (cb))

B(k + 1, n− 1, F (cb))

]
dqk

> (Tn,k − 1)B(k, n− 1, F (cb)) · dqk > 0

Since the probability of success increases but the average probability of participation
remains constant (since cb is unchanged), we must increase welfare, ceteris paribus. This
implies that the original mechanism was not optimal, a contradiction. �

9.9 Proof of Lemma 1

We show that for any ε, there is a nε such that for n > nε we have:

p∗n(0)− p∗n(c∗n) < ε

where c∗n = sup {c ∈ [0, 1] |a∗n(c) > 0}. Since p∗n(c) − p∗n(c∗n) = 0 for c ≥ c∗n, this implies the
statement of Lemma 1. There are two cases to consider: (1) limn→∞ c

∗
n = 0; (2) limn→∞ c

∗
n =

c∗∞ ∈ (0, v).

Case 1: limn→∞ c
∗
n = 0. By IC, we have:

vp∗n(c∗n)− a∗n(c∗n)c∗n ≥ vp∗n(0)− a∗n(0)c∗n
⇔ v [p∗n(0)− p∗n(c∗n)] ≤ [a∗n(0)− a∗n(c∗n)] c∗n → 0

It follows that for any ε > 0, there is a nε such that p∗n(0)− p∗n(c∗n) < ε for n > nε.

Case 2: limn→∞ c
∗
n = c∗∞ ∈ (0, v). We first show that for any ε > 0 and for every δ ∈ (0, c∗∞),

there is a nε,δ such that p∗n(δ)− p∗n(c∗∞) < ε
2

if n > nε,δ.

Suppose by contradiction that this is not true, then, for some δ ∈ (0, c∗∞), it must be
that p∗n(δ)− p∗n(c∗∞) > ε for all n. Define τ0,n−1 as the probability that there is at least one
member out of n− 1 with cost c > c∗n; similarly let τ1,n−1 denote the probability that there
is at least one member out of n − 1 with cost c < δ. Denote by P n

0 , P
n
1 , P

n
B the probability

of success conditioning on, respectively, the presence of a type c ≤ δ and no type c ≥ c∗n; the
presence of a type c ≥ c∗n and no type c ≤ δ; and the presence of both a type c ≤ δ and a
type c ≥ c∗n. Then, using this notation, we have:

E [p∗n(c)|c ≤ δ] = τ0,n−1P
n
B + (1− τ0,n−1)P n

0

p2 = τ1,n−1P
n
B + (1− τ1,n−1)P n

1
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and furthermore we have: p∗n(δ) ≤ E [p∗n(c)|c ≤ δ] and p∗n(c∗∞) ≥ p2. So we have:

0 ≤ p∗n(δ)− p∗n(c∗∞) ≤ E [p∗n(c); c ≤ δ]− p2
≤ (τ0,n−1 − τ1,n−1)P n

B + (1− τ0,n−1)P n
0 − (1− τ1,n−1)P n

1

As n → ∞, both τ0,n−1 and τ1,n−1 converge to 1. Since P n
0 , P n

1 and P n
B are all bounded,

we have that for any ε > 0 and δ > 0, there is a nε,δ such that p∗n(δ) − p∗n(c∗∞) < ε
2

for all
n > nε,δ.

Finally, by incentive compatibility: v [p∗n(0)− p∗n(δ)] ≤ [a∗n(0)− a∗n(δ)] δ ≤ δ. Hence, if
we set δ/v = ε/2:

p∗n(0)− p∗n(v
ε

2
) ≤ ε

2
. (32)

Furthermore, for any ε, there is a nε such that:

n > nε =⇒ p∗n(v
ε

2
)− p∗n(c∗∞) ≤ ε

2
(33)

Combining (32) and (33) implies that for any ε, there is a nε such that for n > nε: p
∗
n(0)−

p∗n(c∗∞) ≤ ε. �

9.10 Proof of Proposition 5

As discussed in Section 5.1, we derive the objective function in the relaxed problem (15)
using the (IC) constraint in a similar way as in (9). The constraint in the second line of
(15) is just the implication of IC, also present in (9). The constraint in the third line of (15)
follows from the following lemma. For simplicity, we omit the subscript n in the expressions
of Lemma A4.

Lemma A4: If (IC) and (1) hold, then a(c) = 0 for c > c∗, where

c∗ = min {c ≤ v |vp(c)− ca(c) ≤ vp2} .

Proof: By (1), c > v implies a(c) = 0. Consider any c ∈ [c∗, v]. By the definition of c∗,
U(c) ≤ U(v), and (IC) implies U(c) ≥ U(v), so U(c)−U(v) = 0 for c ∈ [c∗, v]. This implies:∫ v
c∗
a(x)dx =

∫ c∗
v
U ′(x)dx = U(c∗)−U(v) = 0. Since a(c) is nonnegative, we get a(c) = 0 for

c > c∗. �

Let V ∗∗n (c) denote the expected value for a type c in an optimal mechanism that solves
the relaxed problem (15) and V ∗∗n = Ec{V ∗∗n (c)} be the value of the objective function in
(15). Note that V ∗∗n ≥ V ∗n , where V ∗n is the optimal mechanism in an honest and obedient
mechanism, since (15) is a relaxed version of (14).

Define an ε-bounded mechanism, µ̃εn(c), and associated reduced form mechanism ãεn(c),
p̃εn(c) as follows. It solves the problem for the optimal mechanism (15), but with an additional
condition:

ãn(c) > 0⇒ pn(0)− p̃n(c) < ε
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The value for a type c and the expected values of this mechanism are Ṽ ε
n (c) and Ṽ ε

n , respec-

tively. When ε = 1 (or larger), the additional constraint is slack, so Ṽ ε
n = V ∗∗n . When ε = 0,

µ̃εn(c) is a binary mechanism, that is there is a c̃εn such that p̃εn(c) = p̃εn(0) for c ≤ c̃εn and
p̃εn(c) = p̃εn(1) for c > c̃εn. Moreover, incentive compatibility implies that ãεn(c) = ãεn(0) for
c ≤ c̃εn and ãεn(c) = 0 for c > c̃εn. We denote a binary mechanism as follows: µbn(c) and
associated abn(c), pbn(c) with values V b

n (c) and V b
n .

We proceed in two steps:

Step 1: For any η, there exists nη such that n > nη =⇒ V b
n ≥ V ∗∗n −η, and hence V b

n ≥ V ∗n−η.

Consider Dn = V ∗∗n − Ṽ 0
n = V ∗∗n − V b

n . There are two possibilities:

(1) limn→∞Dn = 0. In this case:

lim
n→∞

Dn = lim
n→∞

(
V ∗∗n − V b

n

)
= lim

n→∞

(
V ∗∗n − V G

n

)
= 0

where V G
n is the value in the optimal generalized VBO and we are done.

(2) limn→∞Dn = D > 0. In this case let η ∈ (0, D) , and for any such η and any n, define
ε (n, η) as follows:

V b
n = Ṽ ε(n,η)

n − η/2

Note that ε (n, η) ∈ (0, 1) for any n. It follows that limn→∞ ε (n, η) exists and limn→∞ ε (n, η) =
ε (η) ∈ [0, 1].

Suppose that ε (η) > 0. Then for any ε′ ≤ ε (η), there is a n1
η such that for n > n1

η we

have V b
n ≥ Ṽ ε′

n − η/2. From Lemma 1, we know that there is a n2
η such that for n > n2

η we

have Ṽ ε
n = V ∗∗n , since the additional constraint in the ε-bounded mechanism becomes slack.

We conclude that for n > max{n1
η, n

2
η}, V b

n ≥ V ∗∗n − η, a contradiction with the assumption
that limn→∞Dn = D > 0. We conclude that we must have ε (η) = 0.

The rest of the proof of Step 1 relies on the following lemma:

Lemma A5. If limn→∞ ε (n, η) = 0, then for any arbitrarily small ε ∈ (0, η/2), there is an

nε such that for n > nε, we have Ṽ
ε(n,η)
n ≤ Ṽ 0

n + ε.

Proof. We first prove that, for any sequence εl such that εl → 0 as l → ∞ and εl ≤ εl−1,
we have:

lim
l→∞

lim
n→∞

Ṽ εl
n = lim

n→∞
lim
l→∞

Ṽ εl
n

To this goal define for convenience Ṽ j
n = Ṽ

εj
n and:

ajn = Ṽ j−1
n − Ṽ j

n with Ṽ 0
n = 0,

noting that by construction ajn ≥ 0. We can write:

lim
n→∞

lim
l→∞

Ṽ l
n = − lim

n→∞
lim
l→∞

∑l

j=1
ajn
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since Ṽ j
n = −

∑l
j=1 a

j
n. So we have:

lim
n→∞

lim
l→∞

Ṽ j
n = − lim

n→∞
lim
l→∞

∑l

j=1
ajn = − lim

n→∞

∑∞

j=1
ajn = − lim

n→∞

∫
an

where the
∫
an =

∑∞
j=1 a

j
n = liml→∞

∑l
j=1 a

j
n is the Lebesgue integral of an with respect to

the counting measure.

Define now the sequence (gj)∞j=0 such that gj = supn a
j
n. Note that gj ≥ ajn ≥ 0 for all

n by definition. Moreover, gj is integrable with respect to the counting measure since ajn is
integrable and integrability is passed by the sup operator. Finally, we have∫

gn = lim
l→∞

l∑
j=1

gj = lim
l→∞

l∑
j=1

sup
n
ajn = lim

l→∞
sup
n

l∑
j=1

ajn = lim
l→∞

sup
n
Ṽ l
n ≤ v

where v is the value of the collective good. We conclude that gj is an integrable function
that dominates ajn for any n. We can therefore apply the Dominated Convergence Theorem
as follows:

lim
n→∞

lim
l→∞

Ṽ l
n = − lim

n→∞

∫
an = −

∫
lim
n→∞

an

= − lim
l→∞

∑l

j=1
lim
n→∞

ajn = − lim
l→∞

lim
n→∞

∑l

j=1
ajn = lim

l→∞
lim
n→∞

Ṽ l
n

So we have limn→∞ liml→∞ Ṽ
l
n = liml→∞ limn→∞ Ṽ

l
n.

Now note that:

lim
n→∞

Ṽ εl
n = lim

n→∞
V ∗∗n ⇔ lim

l→∞
lim
n→∞

Ṽ εl
n = lim

l→∞
lim
n→∞

V ∗∗n

⇔ lim
l→∞

lim
n→∞

Ṽ εl
n = lim

n→∞
V ∗∗n ≥ lim

n→∞
Ṽ ε(n,η)
n

since we have proven in Lemma 2 that the optimal (HO) mechanism becomes approximately

flat for large n, so the constraint becomes slack for n large enough. Moreover, Ṽ
ε(n,η)
n ≥

liml→∞ Ṽ
εl
n = Ṽ 0

n . It follows that:

lim
n→∞

lim
l→∞

Ṽ εl
n ≤ lim

n→∞
Ṽ ε(n,η)
n ≤ lim

l→∞
lim
n→∞

Ṽ εl
n = lim

n→∞
lim
l→∞

Ṽ εl
n

⇔ lim
n→∞

Ṽ ε(n,η)
n = lim

n→∞
lim
l→∞

Ṽ εl
n = lim

n→∞
Ṽ 0
n

It follows that for any ε > 0, there is an nε such that for n > nε, we have Ṽ
ε(n,η)
n ≤ Ṽ 0

n + ε,
which proves the result. �

Take ε < η/2, from Lemma A5 there is a nε such that for n > nε, V
b
n = Ṽ

ε(n,η)
n − η ≤

Ṽ b
n + ε − η/2 < V b

n , a contradiction. Form the fact that we obtain a contradiction for any
ε (η) ≥ 0, we conclude that limn→∞

(
V ∗∗n − V G

n

)
= 0. �

Step 2. We can now put together Step 1 and Proposition 4 to argue that a VBO is

51



approximately optimal for n large. Since V b
n ≤ V ∗n , Step 1 implies that

∣∣V b
n − V ∗n

∣∣ → 0 as
n→∞. Proposition 4, moreover, shows that the optimal binary mechanism is a generalized
VBO with threshold k∗n. Let V BO(k∗n) be a VBO with threshold k = k∗n and no mixing for
k = k∗n. The V BO(k∗n) generates utility that converges to the utility of the generalized VBO
with threshold k∗n, since the probability of exactly k = k∗n volunteers converges to zero. Since
the generalized VBO is equivalent to an optimal binary mechanism that generates utility

V b
n , we have

∣∣∣V b
n − V

V BO(k∗n)
n

∣∣∣→ 0. Hence, we have that for any η there is a nη such that for

n > nη V
V BO(k∗n)
n ≥ V ∗n − η for some threshold k∗n, which implies the result. �

9.11 Proof of Theorem 4

We focus here on the second bullet point of the proposition. We prove the result in two
steps:

Step 1. We first prove that limn→∞
pθnn
θn

< 1, where pθnn = F (cθnn ) and cθnn is the cutoff for
participation with θn. In equilibrium we must have:

pθnn = F

(
vB(θnn− 1, n− 1, pθnn )∑n−1
j=θnn−1

mn
j+1

B(j, n− 1, pθnn )

)

Consider the right hand side. By the Mean Value Theorem we can write:

F

(
vB(θnn− 1, n− 1, pθnn )∑n−1
j=θnn−1

mn
j+1

B(j, n− 1, pθnn )

)
= F (0) + vf(ξ)

vB(θnn− 1, n− 1, pθnn )∑n−1
j=θnn−1

mn
j+1

B(j, n− 1, pθnn )

where ξ ∈
[
0, vB(θnn−1,n−1,pθnn )∑n−1

j=θnn−1
mn
j+1

B(j,n−1,pθnn )

]
and the last term uses the residual in the Lagrange

form. Thus, if we define f = maxc∈[0,1] f(c), we have:

F

(
vB(θnn− 1, n− 1, pθnn )∑n−1
j=θnn−1

mn
j+1

B(j, n− 1, pθnn )

)
≤
(
vf
)
· vB(θnn− 1, n− 1, pθnn )∑n−1

j=θnn−1
mn
j+1

B(j, n− 1, pθnn )
(34)

since F (0) = 0. We now prove that there is a constant ϑ < 1 such that limn→∞
pθnn
θn

< ϑ.

Assume not, so limn→∞
pθnn
θn

= ζ ≥ 1. Following a very similar argument as in Step 1 of

Theorem 3, we can prove that there is a constant a∞ > 0 such that
∑n−1

j=θnn−1
θn
j+1

B(j, n −
1, pθnn ) ≥ a∞. We therefore have:∑n−1

j=θnn−1

mn

j + 1
B(j, n− 1, pθnn ) =

αn
θn

∑n−1

j=θnn−1

θnn

j + 1
B(j, n− 1, pθnn ) ' αn

θn
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Following a very similar argument as in Step 2 of Theorem 3, we can prove:

B(θnn− 1, n− 1, pθnn )

pθnn
≤ B(θnn− 1, n− 1, pθnn )

ζθn
' 1

θn

√
1

2πθn (1− θn)n
'

√
1

θ3nn

Using these facts, we now note that in equilibrium we must have

1 =
1

pθnn
F

(
vB(θnn− 1, n− 1, pθnn )∑n−1
j=θnn−1

mn
j+1

B(j, n− 1, pθnn )

)
≤ vf

a∞

θn
αn

B(θnn− 1, n− 1, pθnn )

pθnn

' vf

a∞

√
1

(αn)2 θnn
→ 0,

where the last step follows since (αn)2 θnn = (αn)3 θn
αn
n > (αn)3 n, which converges to infinity

if mn � n2/3 as assumed. We therefore have a contradiction. We conclude that there is a

constant ϑ < 1 such that limn→∞
pθnn
θn

< ϑ. Using this fact, the result follows from the same
argument as in Step 3 of Theorem 3.

Step 2. We now show that if the probability of success in the optimal binary HO mechanism
(which is a general VBO) converges to zero, then the probability of success in a fully optimal
HO mechanism converges to zero as well. This implies that the expected welfare in the two
mechanisms converge to the same value. For this we use Proposition 5, that the generalize
VBO is an approximately optimal HO mechanism.

Suppose by contradiction that the probability of success in the optimal mechanism P ∗n
(non necessarily binary or VBO) converges to some positive value P ∗ > 0, but the probability
of success in the optimal generalized VBO mechanism PG

n converges to zero. Let W ∗
n and

WG
n be the expected per capita welfare in the optimal mechanism and in the optimal VBO.

Note that for any ε, there is a n1,ε such that for n > n1,ε:

WG
n = vPG

n

(
1− E

(
aG(c)

PG
n

· c
v

))
≤ vPG

n ≤ ε/2

since by assumption PG
n → 0. Moreover for any ε, there is a n2,ε such that for n > n2,ε

W ∗
n = vP ∗n

(
1− E

(
a∗n(c)

P ∗n
· c
v

))
≥ vP ∗ − ε/2 > 0

since: (a) for all c ≤ v, a∗n(c) c
v
≤ p∗n(c)− p∗n(v)→ 0, as proved earlier; and (b) P ∗n → P ∗ > 0.

It follows that for any ε, there is a nε = max{n1,ε, n2,ε} such that for n > nε, W
∗
n −WG

n >
vP ∗ − ε.

By Proposition 5, for any arbitrarily small η > 0, there is a nη such that for n > nη,∣∣W ∗
n −WG

n

∣∣ < η, where W ∗
n and WG

n are the expected per capita welfare in the optimal
mechanism and in the optimal VBO. It follows that for n large, η+ ε >

∣∣W ∗
n −WG

n

∣∣ ≥ vP ∗,
which is a contradiction since η and ε are both arbitrarily small, and vP ∗ is bounded away
from zero. �
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9.12 Proof of Propositions 6 and 7

The proof of Proposition 6 is in the main text in Section 6. We focus here on Proposition
7. If mn � n2/3, cOn > 0 for all n and cUn = 0 for n sufficiently large, so ∆V ∗n is proportional
to v, and thus clearly increasing in v. If instead mn ≺ n2/3, then both F (cOn ) > mn/n and
F (cUn ) > mn/n, so the first terms in the square parenthesis of (17) and (18) converge to zero
faster than the second terms, hence it can be ignored for large n. For large enough n, we
therefore have:

EUO(cOn )− EUU(cUn ) ' v

[
n−1∑
j=αnn

B(j, n− 1, cOn )−
n−1∑
j=αnn

B(j, n− 1, cUn )

]

which is strictly increasing in v since
∑n−1

j=αnn
B(j, n − 1, c) is strictly increasing in c and

cOn > cUn by Proposition 1. �
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