Problem 2 (4 points) - Drag Race

The time derivative of the acceleration is called \(\text{“jerk”} \), i.e. \(j(t) = \frac{da(t)}{dt} \).

(a) (1 point) For motion under constant jerk \(j \), derive equations for the acceleration \(a(t) \), the velocity \(v(t) \), and the position \(x(t) \). Use \(x_0 \) for the initial position, \(v_0 \) for the initial velocity, and \(a_0 \) for the initial acceleration.

Two cars start a race at rest. Car A accelerates at constant rate \(a \), while Car J moves with constant jerk \(j \) and zero initial acceleration. Part way through the race, at \(t = 1 \) s, the cars are tied.

(b) (1 point) In a single graph, sketch \(x(t) \) for both Car A and Car J, and label the curves accordingly.

(c) (1 point) Who was ahead at \(t = 0.5 \) s?

(d) (1 point) Which car will win the race?