Problem 2 (6 points)

A cart of mass M_1 has a pole on it from which a ball of mass $m \ll M_1, M_2$ hangs from a thin string of negligible mass and length R attached at point P, as shown in the figure. The cart and ball have initial velocity V (the ball is initially at rest with respect to the cart). The cart crashes into another cart of mass M_2 and sticks to it. All surfaces are frictionless, and you may ignore the mass of the wheels.

Before:

After:

(a) (2 points) Find the velocity of the two carts V' after the collision.

(b) (2 points) Find the smallest initial velocity V so that the ball will complete a circle around the point P after the collision.

(c) (2 points) Now, instead of the two carts sticking together, assume an elastic collision and find the smallest initial velocity V so that the ball will complete a circle around the point P after the collision.