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Figure 1: Six possible local behaviours near a fixed point for a first-order autonomous equation
in two dimensions. Clockwise from top left: Sink, Saddle, Source, Spiral Sink, Center, Spiral
Source.
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Preamble

You are reading the lecture notes for the course Math 2 - Analytical as taught at Caltech in
Fall 2024. The “analytic” track is the more theory-focused of the two introductory courses on
differential equations taught at Caltech. It is intended primarily for sophomore students who
have already taken introductory proof-based courses on (multivariable) calculus and linear
algebra.

This is an unusual course! Most universities will offer an ODE course along the lines
of Caltech’s Math 2 (practical), and might also offer advanced undergraduate / graduate
courses on dynamical systems (in which one typically studies the qualitative properties of
ODE solutions without actually solving the ODEs, often because doing so is prohibitively
difficult); basic ODE theorems like the existence and uniqueness of solutions would only be
covered tangentially in real analysis courses. This may be one of the only courses in the
world that 1. is for undergraduates, 2. focusses primarily on quantitative aspects of ODEs,
and 3. is fully rigorous. Because the course is so unusual, there are not really any good texts
for it, which is why we will rely so heavily on these notes. Please let me know if you find
mistakes, or anything is unclear: do not wait until the surveys at the end of the
quarter to complain!

I think this is a great course covering many extremely interesting and important topics
that are often omitted from an undergraduate education in mathematics — I hope by the end
you will agree with me!

Organisation of these notes. These notes will sometimes contain more detail than will be
given in the lectures (and certainly much more text!).

Timeline of lectures.

Lecture 1: Introduction. Review of limits, continuity, differentiability, etc. Discussion of
some simple examples. Pages 5-9.

Lecture 2: Further discussion of examples, including examples with non-uniqueness of so-
lutions to [VPs. Brief discussion of IVPs vs. BVPs. Finite-time blow-up. Pages
9-15.

Lecture 3: Definition of linear ODEs. Linear algebra recap. Pages 18-21.

Lecture 4: Norms on vector spaces. Continuity, differentiability etc. for functions between
vector spaces. Open sets in vector spaces. Pages 21-26.

Lecture 5: Vector-valued ODEs. Phase space and reduction to first-order. Started dis-
cussing matrix representation of linear ODEs. Pages 27-33.

Lecture 6: Calculus with matrices. Defined and proved some basic properties of matrix
exponentials. Pages 33-37.



Lecture 7:

Lecture 8:

Lecture 9:

Lecture 10:

Lecture 11:

Lecture 12:

Lecture 13:

Lecture 14:

Lecture 15:

Lecture 16:

Lecture 17:

Lecture 18:

Lecture 19:

Lecture 20:

Finished discussing basic properties of matrix exponentials and relations to
ODEs. Started talking about how to do computations with matrix exponentials.
Pages 37-42.

Computing matrix exponentials for non-diagonalizable matrices via Jordan nor-
mal form. The damped spring equation. The cookbook solution to constant
coefficient linear ODEs. Pages 43-50.

The big-picture strategy behind the proof of Picard-Lindelof. Completeness of
the space of continuous functions with the uniform norm. Pages 52-55.

Continuity of integration. Term-by-term differentiation. Proof of (local, first-
order) Picard-Lindelof. Pages 56-60.

nth order local Picard-Lindelof. Definition of locally space-Lipschitz functions.
Statement of global Picard-Lindelof and proof of the glueing lemma. Pages
60-63.

Proof of global Picard-Lindelof. Consequences for autonomous ODEs. Auto-
matic smoothness of solutions to smooth ODEs. Solution to first-order linear
ODEs. Pages 64-66.

Gronwall’s lemma. Started discussing continuous dependence of solutions on
initial conditions. Pages 66-69.

Finished proof of continuous dependence of solutions on initial conditions. Con-
tinuous dependence of solutions on coefficients. Pages 70-71.

Inhomogeneous linear ODEs and Duhamel’s principle. Started discussing sep-
arable ODEs. Pages 71-77.

Finished discussing separable ODEs, started discussing Laplace transforms.
Pages 77-82.

Injectivity of the Laplace transform. More transformation rules. Laplace trans-
forms of products of polynomials, exponentials, and trig functions. Pages 82-85.

More Laplace transforms; solving constant coefficient linear ODEs using Laplace
transforms and partial fractions. Computing the Laplace transform of the solu-
tion to a non-constant coefficient linear ODE. Started discussing convolutions.
Pages 86-91.

Finished discussion of convolutions. Started section on formal power series and
formal operations on power series. Pages 92-97.

Formal solutions to ODEs. Formal and function operations coincide within the
radius of convergence. Computation of some examples. Pages 98-102.
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Lecture 21:

Lecture 22:

Lecture 23:

Lecture 24:

Lecture 25:

Lecture 26:

Lecture 27:

Lecture 28:

Existence of formal solutions; convergence of formal solutions to polynomial
ODEs in standard form. Some examples where things go wrong for more general
polynomial ODEs. Started discussing ordinary generating functions. Pages
103-108 and 111-112. (Forgot to discuss composition of formal power series and
analytic ODEs...)

(Formal) ordinary generating functions and their applications to combinatorial
problems. Started discussing exponential generating functions. 112-117.

Continued discussing (formal) exponential generating functions and their ap-
plications to combinatorial problems. Difference equations. Composition of
formal power series and formal solutions to analytic ODEs. Pages 118-122 and
110-111.

Asymptotic notation. Asymptotic expansions. Computed the asymptotic ex-
pansion of the exponential integral.

Overview of Tauberian theory and functions of regular variation.
Series solutions beyond power series; the Frobenius method.

A worked example of the Frobenius method; some heuristic methods to guess
the first term in the series expansion for more general ODEs.

A brief introduction to the local analysis of autonomous ODEs near equillibrea.
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1 Introduction

This course is an introduction to the study of ordinary differential equations (ODEs), i.e.,
equations among the derivatives of a function taking a single variable as input, often thought
of as time, but which may have a multiple-variable output. The word ‘ordinary’ distinguishes
such equations from partial differential equations (PDEs), which concern the (partial) deriva-
tives of multivariable functions and are typically much more difficult to study. For functions
f: R — R? the most general form® such an ODE can take is

ar &1 dnf) ~0 (1.1)

for some given function F' taking 1 + (n + 1)d variables (equivalently, one one-dimensional
variable and n + 1 d-dimensional variables) for some n > 1. Such an equation is called an
order n ODE; the problem is to solve for f (either on R or some appropriate interval), given
some appropriate boundary conditions. Note that part of what is means for f to solve the
ODE (1.1) on some open interval is for f to be n-times differentiable on that interval®. In
practice we will almost always consider the not-very-restrictive special case where our ODE
is of the form

af _ df &f dn_lf) | (1.2)

—Ft @), L, 2L
dtn (’f()’ dt’ dt2’ T dent

This is partly because ODEs arising in applications almost always have this form (or can
be written in this form), and partly because it is for equations of this form that the basic
existence and uniqueness theorems are formulated (as we will see, uniqueness can fail for
simple algebraic reasons in the more general setting of (1.1)).

It should go without saying that ODEs are ubiquitous throughout engineering and the
natural sciences. In these notes I will assume that you already have a reason to care about
ODEs from some other aspect of your life* (or are happy to proceed unmotivated) and focus
on the mathematical aspects. Even within mathematics, ODEs arise in a huge variety of
contexts and, especially once one moves beyond the linear setting, require many distinct tools
to solve.

Since different kinds of ODE all have their own distinct characteristics and personality, it

LOf course one is not obligated to call the independent variable t.

2In fact one can formulate precise notions of what it means for a not-necessarily-differentiable function
to satisfy a differential equation using what are called weak derivatives. This perspective is particularly
important in PDE. Unfortunately, the theory of weak derivatives requires some measure theory to formulate
and is outside the scope of this course. If you are interested, the Wikipedia page https://en.wikipedia.
org/wiki/Weak_solution is a good place to start.

3In the 2023/2024 versions of the notes I have been adding discussions of examples arising in applications.
These are meant to add flavour only; it’s not a problem if you’re not familiar with the examples discussed.
For even more flavour you can try making your favourite AI chatbot turn each of your homework problems
into a word problem.


https://en.wikipedia.org/wiki/Weak_solution
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is easy for an introductory course to take on a disjointed, ad hoc, or “cookbook” style in an
effort to quickly teach the student how to solve a wide variety of examples. Students inclined
towards a more theoretical perspective are likely to find such a presentation uninspiring,
and perhaps to (wrongly) deduce that the subject is not interesting. This could not be
further from the truth! Indeed, the late 19th / early 20th century real analysis, functional
analysis, measure theory etc. that you have learned and will learn in your other math classes
— with all its attendant es and ds — was developed with the primary goal of putting the
theory of differential equations on a rigorous footing, and the theory of differential equations
(particularly PDEs) remains one of the most research-active areas of theoretical mathematics
to this day. Moreover, although ODEs are usually thought of as a “settled topic” in contrast
to PDEs, there are still many aspects of the theory that are not completely worked out.
Indeed, the 16th of Hilbert’s problems, a highly influential list of 23 problems posed by David
Hilbert in 1900 as a challenge for 20th century mathematics, concerns ODEs and remains
open to this day. (Besides this, there are also, of course, settled parts of the theory that are
much too advanced to be covered in this course!) Partly this is all a matter of branding, with
many aspects of the topic of contemporary research interest now coming under the heading
of “dynamical systems” rather than ODE per se.

We hope that the presentation of the basic theory of ODEs given in these notes will help
those same theory-inclined students appreciate the mathematical beauty of the topic, and
later on, perhaps, to better appreciate the work of their colleagues in analysis and applied
mathematics (if they are not working in these topics themselves). Of course there must be a
trade-off to developing the underlying theory at greater length than usual, which will most
likely be that we will have much less time to go through worked examples in class and will
cover fewer computational solution techniques. Since I do still want you to develop your
facility solving concrete equations, the problem sets will likely have a more computational
character than the lectures themselves.

1.1 Differentiability Recap I

Before proceeding further, let us quickly recall some important definitions from Math 1. We
write R for the set of all real numbers. Given two real numbers a < b, we write (a,b) for
the open interval (a,b) = {z € R:a < z < b} and [a,b] for the closed interval [a,b] = {z €
R :a < x < b}. Similarly one can define the half-open and intervals (a,b] and [a,b), noting
that (a,b), (a,b], and [a,b) are all empty if @ = b. One can also consider open intervals with
endpoints at —oo or +00, so that e.g. (—o0,b) = {z € R: 2 < b} and (—o0,4+00) =R. A
set of real numbers I C R is said to be an interval if [a,b] C I for every a,b € I: Every
non-empty interval is of the form (a,b), [a,b], or (a,b] for some —o0 < a < b < +o00. We say
that an interval I is non-trivial if it contains at least two distinct points.

A sequence of real numbers (z,),>1 is said to converge to a real number z if for every
e > 0 there exists N < oo such that |z — z,| < € for every n > N. We write “x,, — z as
n — oo’ as a shorthand to mean that (x,),>1 converges to x. Given an interval I and a



function f : I — R, we say that f is continuous at a point = € [ if f(z,) — f(z) asn — oo
whenever (z,),>1 is a sequence in [ converging to x as n — co. We say that f is continuous
on the interval I if it is continuous at every point of I. We say that f is differentiable at a
point x of a non-trivial interval I if there exists a real number f’(x) such that

fxn) = f(=)

T, — T

— ['(x)

whenever (z,),>1 is a sequence in I \ {z} converging to x. (Note that if x is a left or right
endpoint of I then this is equivalent to what is usually called left- or right-differentiability as
appropriate.) Intuitively this means that f is approximated to first order by a straight line of
slope f’(x) when we zoom in near z. We say that f is differentiable on I if it is differentiable
at every point of I and that f is continuously differentiable on [ if its derivative f’ defines
a continuous function on I. Note that differentiable functions are always continuous.

Exercise 1. Give an example of a function f : [—1,1] — R that is differentiable on [—1,1]
but for which the derivative f’ is not continuous at 0.

Differentiation is linear, meaning that if f,g : I — R are differentiable at x € I and
a,b € R then af + bg is differentiable at x with derivative af’ 4+ bg’. The product rule states
that if f,g: I — R are differentiable at x € I then their product fg is also differentiable at x
with derivative f'g + f¢’. The chain rule states that if f: I; — I, and g : I, — R are such
that f is differentiable at € I; and g is differentiable at f(x) € I then the composition
gof : I; — R (defined by go f(z) = g(f(z))) is differentiable at x with derivative f'(x)g'(f(x)).

We say that a function f : I — R is twice differentiable if it is differentiable and its
derivative f’ is also differentiable. The derivative of f’ is called the second derivative of f
2) or using Leibniz’s notation as e.g. 3275 or ZQT;
one wants to call the input variable). We can similarly define n-times differentiability and
the nth derivative f(™ for each n > 1, and say that a function f : I — R is smooth (a.k.a.

infinitely differentiable) on [ if it is n-times differentiable for every n > 1. If f is n-times

and is written as f”, f! (depending on what

differentiable on an interval I, Taylor’s approximation theorem states that

f" (o) o ) (o)

21 n!

f(x) = f(zo) + (x = 20) f'(20) + (& — 20)* + - (2= 2o) +o (|2 — zo|")

as * — xo in I, where to(|x — xo|™) represents a function h(x) satisfying h(z)/(x — z¢)" — 0
as * — xg in I and n! (a.k.a. n factorial) denotes the product of the first n positive integers.
More formally, this means that if o € I and (z,,)m>1 is a sequence in I\ {x¢} converging to

o then

F@m) = (F(0) + (@ = 70)f'(30) + (@ = 302G + - (0 — o) L) )

—0
($m - z0)”

as m — Q.



Exercise 2. Let I C R be a non-trivial interval and let n > 1. Prove that f : I — R is
n-times differentiable on I if and only if there exists an open interval I containing I and an
n-times differentiable function f : I — R such that f(t) = f(t) for every t € I. (NB* The
claim is trivial if I is already open.)

1.2 Lessons from some simple ODEs

In this section we will solve a few of the most simple ODEs and discuss how the behaviour

of the solutions will be reflected in more complicated examples. We begin with the simplest
ODE of all.

Lemma 1.1. Let I C R be a non-trivial interval and let f : I — R be a differentiable function.

Then f satisfies the first order ODE
df
i
for every t € I if and only if there ezists a constant C € R such that f(t) = C for everyt € I.

0

Proof. Constant functions obviously have zero derivative, so it suffices to prove conversely that
every function with zero derivative is constant. Since f is differentiable on I, the mean-value
theorem states that for every a < s < t < b there exists s < x < ¢ such that f(t) — f(s) =
(t —s)f'(x). Since f'(x) = 0 for every x € I it follows that f(t) = f(s) for every s < ¢ in I,
implying the claim. [l

Lemma 1.2. Let I C R be a non-trivial interval, let g : I — R be continuous and let
f I — R be a differentiable function. For each tq € I, f satisfies the first order ODE

f'(t) = g(t) (1.3)

for every t € I if and only if there exists a constant C' € R such that

sy = [ gtsyas+ o

to
for every t € 1.

Proof. This is just the fundamental theorem of calculus! Let’s nonetheless take a moment
to unpack this a little since there are a few different possible statements of the fundamental
theorem. The most basic statement is that if g : I — R is continuous and ¢y € I then

d t

i [ ods =)

4“NB” is an abbreviation for the Latin term “Nota Bene,” which translates to “Note Well.” It’s traditionally
used in academic and formal writing to emphasize an important point or detail that the reader should not
overlook.
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for every t € I. Since constant functions have zero derivative and differentiation is linear,
this implies that every function of the form ftto g(s)ds + C has derivative g(t) for every t € I.
On the other hand, if f(t) is any function satisfying £ f(¢t) = g(t) for every t € I then
L(f(t) — ftto g(s)) = 0 for every t € I, so that there exists a constant C' € R such that

f(t) — ftz g(s) = C for every t € I by Lemma 1.1. This is equivalent to the claim. ]

Lemma 1.3. Let I C R be a non-trivial interval, let g : I — R be continuous and let
f I —= R be a differentiable function. Then f satisfies the first order ODE

F1(@t) =g(t)f(t) (1.4)

for every t € I if and only if

£(t) = £(to) exp [ / (s) ds] (15)

for every t,ty € I.

The easy way to see that the solutions to (1.4) should be of the form (1.5) is to think in
terms of the logarithmic derivative (log )" = f'/f. Indeed, if f is positive on I, then the
ODE (1.4) is equivalent to the ODE

(log f) = g(t),

which we can solve using Lemma 1.2 and recover the solution (1.5). Generally it is a good
idea to “think logarithmically” whenever the rate of change of a quantity is described as a
proportion of its current value as in (1.4), since in such cases the logarithm of the quantity
will often satisfy a simpler ODE than the original quantity. This perspective is particularly
natural in applications related to e.g. population growth, epidemics, compound interest, and
so on. At the level of generality of Lemma 1.3 this approach raises some annoying issues
regarding negative or zero values of f, which have to be treated by case analysis, so we will
follow a slightly different approach.

Proof. We can easily verify from the chain rule and the fundamental theorem of calculus that
functions of the form (1.5) satisfy (1.4):

/0 "4(s) ds] _ A% exp [ /O "4(s) ds]

[ a6 ds] & [ oras=sae| [ o ds] |

Conversely, suppose that f : I — R is any solution to (1.4). Then we have by the product

% Aexp

= Aexp

11



rule that

< m%—ﬂﬂ@gww :%w4}Ad@§P®+%p—Ag@¢1%f
=—mmm1<[m@mrmwﬂmePAE@m4ﬂw:o

for every t € I and hence by Lemma 1.1 that there exists a constant A € R such that

m4j[mW4f®=A

for every t € I. This is equivalent to the claim. ]

Note that in each of these three simple examples, every solution of the relevant first-order
ODE is completely determined by its value at a single point. This is in fact a very general
phenomenon. We state the relevant principle imprecisely for now; a precise statement will be
given later as the Picard-Lindelof Theorem.

Principle 1. If f satisfies a “nice” first-order ODE, then it’s value at every point in time
1s determined by its value at a single point in time. In particular, a “nice” first-order ODE
describing functions taking values in a d-dimensional space should have a “d-dimensional”
space of solutions.

Having such a uniqueness statement will be very useful: it means we can often guess
a family of solutions, easily verify that they satisfy the ODE (since differentiation is much
easier than integration), and be guaranteed from general principles that this family includes
all other solutions.

We will return to the meaning of the word “nice” later in the course. To convince you that
some restrictions are necessary, let us give a simple example of an ODE that is not “nice” in
the sense that Principle 1 does not apply to it.

Example 1.4. Consider the ODE

(1) = f()*°.

We can verify that one solution of this ODE is given by f(t) = %t:)’:

1 1 2/3
ri =gt =(5¢) =10

(Later we’ll see how to solve this kind of equation without guessing: It’s an example of a
separable ODE.) In particular, this solution has f(0) = 0. This is not the only solution with

12



0.05 |
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0.5 1.0

Figure 2: Left: Three different solutions to the same first-order ODE f = f?/3 all with
f(0) = 0. The blue and orange curves are identical for ¢ > 0. Right: We will see that this
ODE is “not nice” partly because the function f +— f?/3 used in its definition has a cusp at
0, where its derivative converges to +00 as we approach from the left or the right.

this property! Indeed, the constant function f(t) = 0 is also a solution. Moreover, for each
—o0 <t_ <ty < oo the function defined piecewise by

gt =1y t>ty
t<t<t,
F(t—t_)d t<t

O N

ft) =

is a solution to the same ODE, with f(0) = 0if - < 0 < ¢, (in particular this function is
differentiable). We will later prove that these are the only solutions to the ODE.

A real-world example with non-unique solutions

Suppose that a cylindrical tank has a small hole in its side. Torricelli’s law states that
if the tank is filled up to a height h above the hole at time zero, then the height h(t) of
the water after ¢ seconds satisfies the ODE

area of hole
P) = - 1(h > 0)2gh(t
() cross-sectional area of cylinder\/ o = W)

where ¢ is the constant for acceleration under gravity. Similarly to above, this ODE

has solutions 1
h(t) = Z(to —1)?1(t < to)

for to € R and
h(t) =c

for each ¢ < 0. In particular, there are infinitely many different solutions with h(0) = 0.
This makes perfect sense physically: If we see the tank at some time and the water is
filled only to the height of the hole, we should not be able to guess how long ago any
additional water emptied from the tank.
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What about higher-order ODEs? As in the first-order case, the simplest examples admit
simple solutions using the fundamental theorem of calculus.

Lemma 1.5. Let I C R be a non-trivial interval, let n > 1, let g : I — R be continuous and
let f: 1 — R be an n-times differentiable function. For each ty € I, f satisfies the nth order
ODE o f
— 4 — gt 1.6
T = 9(t) (1.6)
for every t € I if and only if there exist constants Cy, ..., C,_1 € R such that

Onltn1+ Cn2

—_— n2 DRI
(= 1)1 (n—2)t + Cit+ Cy

// / / 9(sn-1) dsp-1ds,—2---dsy (L.7)

Remark 1.6. Taking g = 0, it follows that the only functions f satisfying g—,{ = (0 on a

ft) =

for every t € 1.

non-trivial interval are polynomials of degree at most n — 1.

Proof. Fix tg € I. Let gy = g and for each n > let g, be the nth antiderivative of g defined
recursively by

gn(t) = /gn1 dS—/// / G(sp—1) dsp_1ds,—o---dsg

so that, by the fundamental theorem of calculus,

dgn

dt = On—-1

for every n > 1 and ¢t € I. It follows in particular that the nth derivative of g, is equal to g,
and since the nth derivative of a degree n — 1 polynomial is zero it follows that every function
of the form (1.7) is a solution to (1.6).

It remains to prove conversely that every solution to (1.6) is of the required form. We
will prove this by induction on n > 1, the base case n = 1 having already been treated in
Lemma 1.2. Let n > 1, suppose that the claim has already been proven for every smaller
value of n, and suppose f is n-times differentiable and solves (1.6) for some n > 1. Rewriting

the equation (1.6) as
d (df
7 <—dt”1> =g(1)

dnfl f
dtm

and applying Lemma 1.2 yields that

14



for some constant C' € R and every ¢t € I. It follows by the induction hypothesis that f is of
the form f(t) = P(t) + G(t) where P is a polynomial of degree at most n — 1 and G/(¢) is the
c

(n — 1)th antiderivative of g; + C. Since integration is linear, G(t) is equal to g, + mt”_l

and f has the required form. O]

The first main takeaway from this example is that solving an nth order ODE is, in general,
at least as difficult as integrating a function n times. Often it is much more difficult! Ex-
pressing the solution to an ODE in terms of standard functions and their (iterated) integrals
is known as solution by quadrature. Note that while integrals of ‘standard’ functions do
not always have exact expressions in terms of other ‘standard’ functions, solving an ODE by
quadrature is about as good as we can hope for in many situations, and much better than we
can hope for in others. While we will see throughout the course that there a few important
classes of equations that can always be solved by quadrature (separable equations, first order
linear equations, higher order linear equations with constant coefficients...), you should not
be fooled into thinking that ODEs can “usually” be solved by quadrature.

Note that in this example, knowing the value of a solution at a single point was not
sufficient to determine the rest of the solution, but knowing the value of the first n — 1
derivatives of the function at a single point did suffice to determine the solution. Again, this
turns out to be a very general principle.

Principle 2. If f satisfies a “nice” nth-order ODE, then it’s value at every point in time
18 determined by the value of f and its first n — 1 derivatives at a single point in time.
In particular, a “nice” nth order ODE describing a real-valued function should have an “n-
dimensional” space of solutions.

We will see later that nth-order ODEs can always be thought of as first-order ODEs in
a higher dimension, so that in fact Principle 2 is a consequence of Principle 1. It is worth
pointing out again how wuseful a precise uniqueness theorem of this form would have been for
solving the equation (1.6): We could simply have verified that the solutions of the desired
form solve the ODE, and deduce that these are the only solutions by an easy application of
a general uniqueness result.

IVPs and BVPs. When solving ODEs in practice we are usually interested in finding all
solutions of the ODE only insofar as it helps us understand the specific solution arising in our
problem. Since the space of all solutions of a “nice” nth order ODE will be n-dimensional (in
some sense), we should expect to need to specify the values of n parameters in order to pin
down any specific solution. (That is, there should be n degrees of freedom when we specify a
solution.) The simplest way to do this is via what’s called an initial value problem (IVP),
where we specify the value of the function and its first n — 1 derivatives at some point in
time (often to = 0): principle 2 says that when the ODE is sufficiently “nice”, the IVP should
always have a unique solution. (Moreover, we will see that the precise meaning of “nice” —
the local Lipschitz property — is not a very restrictive condition.)
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In applications one also often encounters boundary value problems, where some data
of a solution is specified at both endpoints of an interval. For example, in a second-order ODE
we might specify the values of the function at both endpoints of an interval and not specify
the derivative anywhere. This still gives two degrees of freedom, so it might be the case that
we have existence and uniqueness of solutions. Unlike for IVPs, however, it is no longer at all
the case that any sufficiently nice BVP has a unique solution. One can easily come up with
very simple, well-behaved examples where there are either no solutions or multiple solutions:
In the second-order case above with the interval I = [0,1] (and assuming that the IVP has a
unique solution for every initial value and derivative) this comes down precisely to whether,
for each initial condition f(0) = z and initial derivative f'(0) = A, the map sending A to the
value of f(1) in the solution of the relevant IVP is a bijection R — R. There is simply no
reason for this to be the case in many examples.

Exercise 3. In this exercise we will study IVPs and BVPs for the ODE f” = —f. Let I CR
be a non-trivial interval.

1. (Existence of solutions to the IVP.) Prove that for each ty € I, xg € R, and A\ € R,
there exist constants A,0 € R such that f(t) = Acos(t — o) is a solution to the ODE

f” = —f with f(to) = X and f/(t0> = A

2. (Uniqueness of solutions to the IVP.) Prove that the function A cos(t — o) you found in
step 1 is the only solution to the IVP with f(ty) = zo and f’(typ) = A. (Hint: Show that
the derivative of f/g is identically zero whenever f and g are arbitrary solutions of the
IVP.)

3. (Existence and/or uniqueness of solutions to the BVP depends on the choice of I and the
boundary data.) Show that if I = [0, 7/2] then for every zo, 1 € R there exists a unique
function f : [0,7/2] — R solving the ODE f” = —f with f(0) = zo and f(7/2) = ;.
What happens when I = [0, 7] or I = [0,27]7 (Hint: Use the multiple angle formula to
write the solutions in the form A cos(t) + Bsin(t) instead of A cos(t — 0).)

16



A ball in a bowl

Imagine that a ball (modelled as a point) sits inside a bowl. If we write down an
equation describing the shape of the sides of the bowl, the location of the ball will
satisfy a second-order ODE, with the acceleration of the ball determined by the two
forces acting on it: gravity and the contact force. (The basic point of this example
still stands if we include things like friction; the state of the system is still described
by a second-order ODE.) If we push the ball from the center of the bowl with a certain
velocity, its trajectory is a solution to the initial value problem where we fix the location
and velocity of the ball at time zero. On the other hand, we could try to study the
boundary value problem, where we are given the ball’s location (but not its velocity) at
two times, and want to determine its trajectory in between. In this example we easily
see that the solution to this BVP is typically not unique. In particular, if the ball is in
the center of the bowl at two times, this could either be because we didn’t push it at all,
or pushed it with exactly the right velocity that it rolled back down to the center at the
second time. There will in fact be more than two solutions in general, corresponding to
the ball rolling back and forth multiple times before passing through the center of the
bowl at some later time.

BVPs from variational problems

Boundary value problems often arise in the analysis of variational problems, where a
curve is chosen to maximize some function (often the negative of the energy) with
its initial and final values fixed. The fact that solutions to such problems are often
described by ODEs is a consequence of the FEuler-Lagrange equations. For example,
when we hold the two ends of a string in the air and let the rest of the string come to
rest, the string will settle in a way that minimizes its potential energy subject to the
constraints we have placed on the locations of its endpoints. Using the Euler-Lagrange
equations, one can deduce that the function describing the string satisfies a second-order
ODE, and more specifically a BVP: We know where the string is at its two endpoints
but not the derivative of the curve at either endpoint. Look up the term “catenary” to
learn more about this particular example.

\. J

The importance of linearity. All the examples we have looked at so far are linear. This
means that there exist functions ag,...,a,_1 : I — R and b : I — R such that our differential
equation can be expressed in the form

FO) + an-a () f0 () + -+ ao(t) £(E) = b(2).

Linear ODEs are called homogeneous if b(t) = 0 and inhomogeneous otherwise. Linear
equations are typically much easier to solve than nonlinear equations, and their solutions often
have underlying linear-algebraic content. For example, we will see that constant-coefficient
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linear ODEs can always be solved by computing the Jordan normal form of an associated
matrix. One basic principle about these equations, that we have already seen illustrated in
our examples above, is that the solutions to a homogeneous linear ODE form a vector space
under pointwise addition and scalar multiplication, while for inhomogeneous linear ODEs we
have that

dnf L -
{f L + an—l@)W + o Fag(t) f(t) = b(t)}

dnflf

= {f + fo: % + an—l@)W + - Fag(t) f(t) = 0}

for every solution fy to the original inhomogeneous ODE 4/ —i—an,l(t)‘f;z;_lf +--Fap(t)f(t) =
b(t). This means that we can always find the general solution to an inhomogeneous linear
ODE by finding any single solution (e.g. by guessing), often called the particular solution,

and finding the general solution to the associated homogeneous ODE, which is easier.

A simple nonlinear example. Before moving on, let us consider a simple example of a
nonlinear ODE, which will also exhibit the phenomenon of finite-time blow-up.

Lemma 1.7. Let I be a non-trivial interval. A differentiable function f : I — R satisfies the
ODE

fl — f2
if and only if f(t) =0 for allt € I or there exists a constant ty ¢ I such that
1
t) =
1) =

for every t € 1.

Proof. As usual, we can easily check that functions of the form f(¢t) = 0 and f(t) = 1/(to —t)
satisfy the relevant ODE by calculus. For uniqueness, suppose that f : I — R is not identically
zero and satisfies the ODE f' = f2 on I. For the uniqueness part of the proof, we would like
to say that either f = 0 or the reciprocal function 1/f satisfies

n_
(f) = poh

so that we can conclude using Lemma 1.2. The problem is that this doesn’t make sense when
f is zero. To get around this problem we will use a trick that will come up many times
in the course: We analyze the solution on a (possibly) smaller “good” interval in which the
technique we want to use works, then use the output of this analysis to show that this interval
is actually the whole domain of the solution.

Suppose that f is not identically zero, and let ¢; be such that f(¢;) # 0. Since I is
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non-trivial and f is continuous, the quantities

t_=sup{t<t;:t¢lorteland f(t) =0}
t,=inf{t>t;:t¢Torteland f(t) =0}

satisfy t_ < t,. Let I = (t_,t;) C I, so that f is non-zero and satisfies f' = f2 when
restricted to /. (This is the “good” interval alluded to above.) On I, the reciprocal function

1/ f satisfies
(3=
f)

so that, by Lemma 1.2, there exists a constant C' such that

1
—=0C~—t
f

for every ¢ € I. By definition of I, each endpoint of I must therefore either be an endpoint
of I or be equal to C', and the claim follows by continuity of f on I. m

This example exhibits finite-time blowup: There are solutions on intervals I C R that
cannot be extended to solutions defined on the whole real line, because the function converges

to infinity as ¢ converges to some ty. Of course this can also occur because we put a singularity
directly into the ODE, such as in the ODE

the solutions of which will always have a singularity at 1. In contrast, the location of the
singularity in a solution to f’ = f? depends on the choice of solution.

The ODE f’ = f? is also an example of an autonomous equation, i.e., an ODE of the
form

1) = F (0. £/, 1)

where the right hand side has no direct dependence on t. We will study autonomous equations
extensively later on in the course. Note that if f(¢) is a solution to an autonomous ODE then
so is the shifted function f(t — ty) for every t, € R.

Remark 1.8. The solutions of the ODE f’ = f? +1 are all of the form f(¢) = tan(¢ —t;), and
hence always have two singularities a distance 7 apart from each other, but with the location
of these singularities depending on the choice of solution. The fact that these are the only
solutions to the equation will follow from Picard-Lindel6f (which we will state and prove later
in the notes).
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Finite-time blow-up in the real world

You might guess that solutions with finite-time blow-up should not be relevant to real-
world phenomena, but this is not true. For example, ODEs whose solutions have
finite-time blowup often arise in the study of phase transitions, where the finite-time
blow-up represents a critical point at which a rapid change or transition occurs. In the
context of phase transitions, this can be understood as a moment where the system
undergoes a rapid change from one state to another. Here, the finite-time blow-up is
not a mathematical anomaly but rather a (good approximation to a) physical reality
that needs to be addressed and understood. It often represents some quantity changing
by a factor of order the number of particles in the system (e.g. changing from an
electron-Volt-order quantity to a Joule-order quantity), which is taken to be infinite in
the mathematical models where these ODEs arise.

To give a specific example, the ODE f’ = f? that we just studied arises in the study
of branching processes, which can be used as e.g. a simple model of the spread of a
disease, where the parameter we're differentiating with respect to is “Ry”, the average
number of people that an infected person infects. In this set-up, f(Ry) = 1/(1 — Ry)
is the average total number of infected individuals when we start with a single infected
individual. The finite-time blow-up represents the phase transition between the disease
dying off quickly when Ry < 1 to infecting a very large number of people (an infinite
number of people in the mathematical model) when Ry > 1.

. J

Exercise 4. Let I C R be a non-trivial interval, let g : I — R be continuous, let f: I — R
be a differentiable function, and let a € R be a constant. Prove that f solves the first-order
ODE f' =af + g if and only if

t
F(6) = 0 fltg) ) [ el g ) ds

to

for every t,ty € I. (Hint: Find an ODE satisfied by e % f.)

Exercise 5. Let I be a non-trivial interval and let o > 1. Prove that a differentiable function
f I — (0,00) satisfies the ODE

f/:fa

if and only if there exists a constant tq > sup I such that
] 1/(a—1)
o= ( )
D=\G=Dt-1

Exercise 6. Let I C R be a non-trivial interval, let ¢ : I — R be continuous, and let

for every t € I.
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f I — R be a differentiable function. Prove that f satisfies the ODE
f/ — 9~ /f

if and only if for each ¢y € I there exists A > 0 such that

f(t) =log [/teg(s) ds+ A

to

for every t € I.
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2 Constant coefficient linear ODEs

In this section we begin to study ODEs in a more systematic manner. We will, for now, be
concerned primarily with linear ODEs, i.e., ODEs of the form

F 4 an (0 FOD 4+ a6 () + ao(t) f(E) = b(2).

for some functions aq, ...,a,_1 and b: I — R, where I is a non-trivial interval. We recall that
a linear ODE is called homogeneous when b = 0 and inhomogeneous otherwise. Since
linear algebra plays an important role in the study of linear ODE, we begin by recapping
some of the basic theory that we’ll need.

2.1 Linear Algebra Recap

Linear algebra will play an extremely important role throughout our study of differential
equations. While we expect you to have already taken a course on linear algebra, we quickly
review some of the most important facts here before moving forward.

Vector spaces. A (real) vector space (V,+,-) is a set V equipped with addition and scalar
multiplication operations

+:VxV —V G RxV —V
(x,y) — x+vy (a,x) — ax
satisfying the following axioms:
1. (Associativity of vector addition) z + (y+2) = (z +y) + z for all z,y,z € V.
2. (Commutativity of vector addition) =z +vy =y + z for all z,y € V.

3. (Identity element of vector addition) There exists an element 0 € V, called the zero
element, such that 0 +x = x + 0 = x for every x € V.

4. (Inverse elements of vector addition) For each x € V' there exists an element —z, called
the additive inverse of z, such that x 4+ (—z) = —z + 2z = 0.

5. (Compatibility of scalar multiplication with field multiplication) a(bx) = (ab)x for every
a,beRand z € V.

6. (Identity element of scalar multiplication) 1o = x for every z € V.

7. (Distributivity of scalar multiplication with respect to vector addition) a(z+y) = ax+ay
for every a € R and x,y € V.

8. (Distributivity of scalar multiplication with respect to field addition) (a+b)z = ax + bx
for every a,b e Rand z € V.

22



Example 2.1. For each d > 1, R = {(z1,...,24) : ¥1,...,24 € R} is a vector space with
operations defined entrywise by

(xla"'axd)+<y17'--7yd>:(xl—i_yla"'?md—i_yd) and G(l‘l,...,xd):<CZ£C1,...,CLJZ'd).

Example 2.2. The complex numbers C are a vector space over R.

Example 2.3. For each n,m > 1, the space of n xm matrices is a vector space with operations
defined entrywise by

(A + B)i,j = Ai,j + Bﬁj and ()\A)ZJ = )\Ai,j-

(Note that matrix multiplication does not feature in the definition of the space of matrices as
a vector space, which is isomorphic to R™*™.)

Example 2.4. The space R*Y of all functions [0,1] — R, the space C([0,1]) — R of con-
tinuous functions [0,1] — R, and the space C'([0,1]) of continuously differentiable functions
[0,1] — R are all vector spaces with respect to pointwise addition and scalar multiplication.
(It is standard to denote these spaces this way, so that C''(R) means the space of continuously
differentiable functions R — R and so on.)

Example 2.5. Let I C R be a non-trivial interval. Given functions ag,...,a,_1: I — R, the
set of functions

{f T =R + a1 () f V@) + -4 ag(t) f(t) = 0 for every t € I}

is a vector space under pointwise addition.

Linear maps. A function f : V' — W between vector spaces is said to be linear if f(ax +
by) = af(x) 4+ bf(y) for every a,b € R and x,y € V. A bijective linear map between vector
spaces is called a linear isomorphism; the inverse of a linear isomorphism is automatically
linear also. We call two vector spaces isomorphic if there is a linear isomorphism between
them. Given two vector spaces V and W, the space L(V,W) of linear maps between V' and
W is itself a vector space under pointwise addition and multiplication, i.e. where we define
(af +bg)(z) = af(x) + bg(x) for every a,b € R, f,g € L(V,W) and z € V.

Linear independence, spanning sets and bases. Given a vector space V' and a set X
of vectors in V', we define the linear span of X to be the set of linear combinations of
elements of X, that is,

(X) = {a1x1+---akzk:k21, T1,...,T, € X, al,...,akER},

and say that X spans V if (X) = V. A vector space V is said to be finite-dimensional if
it admits a finite spanning set. On the other hand, we say that X is linearly independent
if the equation

a1Ty + asxy + - -arpx =0
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holds for some aq,...a; € R if and only if a; = 0 for every 1 < ¢ < k. In other words, X is
linearly independent if it does not contain zero and = ¢ (X \ {z}) for every z € X. A linearly
independent set that spans V is called a basis® of V. For R, one choice of basis is given by
the vectors

{(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)},

but this is not at all the only choice of basis!

The following facts are hopefully familiar to you from your previous courses:

Fact 2.6. A set B is a basis for a vector space V' if and only if it is a spanning set that does
not have any strict subset that also spans, if and only if it is a linearly independent set that
does not have any strict superset that is linearly independent.

Fact 2.7. If By and By are both bases of a vector space V' then they have the same number
of elements. We call this number the dimension of V.

Fact 2.8. If V| and V5 are vector spaces with the same finite dimension then they are iso-
morphic. In particular, every d-dimensional vector space is isomorphic to R?.

Note that there are many different isomorphisms between two vector spaces of the same
dimension: In particular, if we choose a basis for each space then we can always find an
isomorphism sending one basis to the other.

Example 2.9. The space R*Y of all functions [0,1] — R, the space C([0,1]) — R of con-
tinuous functions [0,1] — R, and the space C'([0,1]) of continuously differentiable functions
[0,1] — R are all infinite-dimensional spaces. Indeed, the functions 1, z,2?, ... are an infinite
sequence of linearly independent elements in all of these spaces. (These functions do not form
an algebraic basis.)

Matrices. Every linear map f : R® — R™ can be represented by an m x n matrix A =
(A;j)1<i<ni<j<m which is the unique array of numbers such that

n
) > i1 Av;
n
o] > i1 A2
n
Tn > im1 Am T
for every vector (z1,...,x,) € R™. Conversely, given an n X m matrix A we can define a

linear map f using the same relation, which we normally write in shorthand as

flx)i = Z A; jzj.

5In the infinite-dimensional context this is usually not the right notion of basis, and is sometimes called
an ‘algebraic basis’ to distinguish it from more appropriate notions. In this course we will mostly deal with
finite dimensional spaces.
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Be careful to note that when we write elements of R" using coordinates in this
manner we are implicitly choosing a basis for our vector space, and that the
matrix representation of a linear map depends on this choice of basis!

Composition of linear maps corresponds at the level of matrices to matriz multiplication:
If Ais an m X k matrix and B is a k X n matrix then the product AB is an m X n matrix

defined by
(AB)Z'J’ - ZAMBZ’J"
=1

If A represents the linear map f and B represents the linear map g then AB represents the
linear map f o g.

Since linear maps between finite-dimensional vector spaces can always be uniquely repre-
sented as a matrix after choosing a basis for each space, we also have the following fact.

Fact 2.10. IfV and W are finite-dimensional vector spaces of dimension n and m respectively,
then L(V,W) is finite-dimensional with dimension nm.

2.2 Norms, continuity and differentiability

I next want to review some basic definitions from multivariable calculus. Since later on I will
want to tell you about matrix-valued ODEs, I want to define what it means for a function
between two finite-dimensional vector spaces to be (n-times) differentiable. Although you
probably haven’t encountered this definition before, it is not really any different in content
than the definition for functions R™ — R™. It will however require a little more sophistication
to state things correctly.

We first have to define what it means for a sequence in a finite-dimensional vector space
V to converge. One way to do this is to choose an isomorphism between V and R? for some
d > 1, then define convergence coordinatewise. This is fine — one can verify that the resulting
notion of convergence does not depend on the choice of isomorphism and that it coincides with
the definition we are about to give — but is unsatisfactory in some regards. We will instead
work with norms. Given a vector space V', a norm of V is a function || - || : V' — [0, 00)
satisfying

1. ||z|| = 0 if and only if x = 0°.
2. (Triangle inequality.) ||z +y|| < [|z| + ||y|| for every z,y € V.
3. |I\x|| = |A| - ||z]| for every A € R and z € V.

We think of ||z|| as being the ‘distance’ from z to the origin as determined by the norm ||x||.
(These definitions ensure that d(z,y) := ||z — y|| defines a metric on V. Don’t worry if you

6A function satisfying all the axioms other than this one is called a seminorm.

25



don’t know what this means.) A pair (V| - ||) where V is a vector space and || - || is a norm
on V is called a normed vector space.

On R, the only norms are of the form ||z|| = ¢|z| where ¢ is a positive constant. In higher
dimensions there are many more norms, with important examples including the /¥ norms
with 1 < p < oo, defined on R¢ by

1/p
(S fwil) ™ p<oo

max || p = 0.

”(xla s 7xd>HP =

(It is true but not obvious that || - ||, always satisfies the triangle inequality when p > 1 — this
is known as Minkowski’s inequality.) Note that the ¢? norm of (zy,...,x4) is just the usual
Euclidean distance between x and the origin

(21, ... za)ll2 =

(NB: We will also use || - ||1,] - |2 to denote an arbitrary pair of norms. Hopefully it will be
clear from context that these are not to be confused with the p = 1,2 cases of the ¢’ norm.)

Remark 2.11. Analogues of these norms can also be defined on spaces of continuous functions.
For example, if C(]0, 1], R) is the space of continuous functions from [0, 1] to R then

(i 1r@r) " <

sup,efo |f ()] p =00

£l =

defines a norm on C([0, 1],R) for each 1 < p < 0o. The p = 0o norm on C([0,1],R) is also
known as the uniform norm, and will play an important role throughout the course.

One reason why it makes sense for us to work with general norms is that when we come
to study matrices, other choices of norms besides the Euclidean norm in the entries are much
more natural. Indeed, if (V, | - ||1) and (V3,]| - ||2) are normed vector spaces, the operator
norm on £(Vy,V3) is defined by

[ lop :sup{% ‘z € V\{O}}.

When (Vi, || - 1) = (Va, || - ||2), the operator norm has the important property that

If OgHop < ”fo)p”gHom (2.1)

which is why we will usually want to use operator norms rather than entrywise-defined norms
when studying spaces of matrices.
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Figure 3: In R2?, the ¢? unit ball contains the ¢! unit ball and is contained in the ¢*-ball of
radius v/2.

Exercise 7. Verify that the operator norm is indeed a norm and that it satisfies (2.1). Give
an example of linear maps f and g for which (2.1) is strict.

Exercise 8. Prove or provide a counterexample: If f : V — V is a linear map for some
normed space V' then || f?||op = || fI12,-

The following important fact is not very hard to prove, but will be left unproven since it
is rather tangential to the rest of the course. You will probably see a full proof in the next
analysis course you take.

Fact 2.12. All norms on a finite-dimensional vector space are “equivalent”: If V is finite-

dimensional and || - ||1 and || - ||2 are two norms on V' then there exist positive constants ¢ and
C' such that

clefy < llzlh < Cllzfls and  cfjzfl < lzfls < Cllz]ly

for every x € V.

This fact has the following geometric interpretation. Given a norm || - ||, the unit ball is
defined to be B = {z € V : ||z|| < 1}, and for each z € V' we can write

|z|]| = inf{A > 0:2 € AB}

where AB := {Az : © € B}. As such, the claim is equivalent to saying that if By and B; are
the unit balls associated to two different norms on the same finite-dimensional vector space
V' then if we scale By by a big enough constant it will contain B;, while if we scale By by a
small enough constant it will be contained in B; (see Figure 3). This is hopefully intuitively
plausible to you, and you might like to think about how to flesh out all the details to turn it
into a proof.

Remark 2.13. The analogue of this fact is not true for infinite-dimensional spaces. For exam-
ple, the different L” norms on C([0, 1], R) are not equivalent to each other. This can be seen
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by computing the LP norm of z™:

. (1+np)~? p< oo
2" llp =
p = 00.

If 1 <p; <p2 <oothen [[z"|,,/]|2"|l,, — o0 as n — oo, so that the two norms cannot be
equivalent.

Remark 2.14. In fact the map sending a norm to its unit ball is a bijection” between the set
of norms on a finite-dimensional vector space and the set of convex subsets of the space that
are non-empty and symmetric (in the sense that {—z : x € B} = {x : © € B} where B is the
set). Since there are a lot of convex symmetric sets (in strictly more than one dimension),
there are a lot of different norms.

This means that we can define what it means for a sequence to converge in a finite-
dimensional vector space using any norm on that space, and the norm we choose will not
actually affect the definition®: Given a finite-dimensional vector space V and a norm || - || on
V', we say that a sequence (z,),>1 in V' converges to a point x € V if ||z,, —z|| — 0 as n — oc.

Lemma 2.15. Let V' be a finite-dimensional vector space and let || - || be a norm on V.

1. If (v)n>1 is a Cauchy sequence in the sense that limy,_,o SUp,,>,, |7m — 24| = 0 then
there ezists x € V' such that ||z, — x| — 0 as n — oo.

2. If (xp)n>1 is a sequence in'V such that Y7 | ||x,|| < oo then > 07 | x, is well-defined in
the sense that the partial sums 25:1 x, converge to some element of V as N — oo.

Proof. The first part is true for R? and is therefore true for any finite-dimensional normed
vector space since they are all isomorphic and all norms are equivalent. The second part
follows since if 327 ||, || < oo then the sequence of partial sums (>3-, x,,) is Cauchy since

N M max{N,M} max{N,M} )
DIEEEDDEN B I DI E D DI D Dl 1 |
n=1 n=1 n=min{N,M} n=min{N,M} n=min{N,M}
which is small if min{N, M} is large since ) ||z, || converges. O

Similar considerations allow us to define continuity, differentiability etc of maps between
(subsets of) finite-dimensional vector spaces by first choosing norms on these spaces, with the
resulting definitions not depending on the choices we make by Fact 2.12. Let Vi and V5 be

"Recall that a function f : X — Y between two sets is said to be injective if f(x1) # f(x2) for every pair
of distinct elements z1,z2 € X, surjective if for every y € Y there exists € X such that f(z) = y, and
bijective if it is both injective and surjective. Each bijective function f has a unique inverse f~!:Y — X
satisfying f~1(f(z)) = z for every x € X and f(f~'(y)) =y for every y € Y.

8In infinite-dimensional spaces (such as function spaces) the distinction between different norms is much
more important, something you will learn about in detail if you take a course in functional analysis.
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finite-dimensional vector spaces and let || - ||; and || - ||2 be norms on V; and V; respectively.
Given a subset (2 C V; and a function f : 2 — V5, we say that f is continuous at a point
z € Q if for every € > 0 there exists § > 0 such that if y € Q satisfies ||z — y|[; < ¢ then
|f(z) = f(y)|| < e, and say that f is continuous if it is continuous at every point of 2.

We say that f is differentiable at z € ) if there exists a linear map Df(x) : Vi — V;

such that
1/ (y) = f(z) = Df(z)(y — )|l
ly — =[x
and say that f is differentiable if it is differentiable at every point of 2, in which case D f defines
a function Df : Q — L(V4, V). Since L£(V, Va) is itself a finite-dimensional vector space, we
also have a well-defined notion of what it means for D f to be continuous or differentiable,

— 0 as y — x in €2,

leading iteratively to a definition of what it means for a function f : 2 — V5 to be n-times
differentiable. We say that f is smooth if it is n-times differentiable for every n > 1.

Exercise 9. Using fact 2.12, check carefully that the definitions of continuity, differentiability,
and smoothness do not depend on the choice of norm when the relevant vector spaces are
finite-dimensional.

Exercise 10. Prove that linear functions between finite-dimensional spaces are always smooth.

Note that there is an interesting distinction here between the one-dimensional and higher-
dimensional cases: For smooth vector-valued functions f : R — V, all of the derivatives
f™ can also be thought of as functions R — V since there is a canonical isomorphism
L(R,V) =V given by f ~ f(1). In contrast, for a smooth function f : R* — R’ the nth
deriative D" f is a function R* — L(R®, L(- -- L(R*, L(R* R?))---)), where the space on the
right has dimension a™b. As such, even for functions f : R? — R the higher derivatives of
f can be very complicated, high-dimensional objects. From now on we will always make the
identification L(R,V) = V and consider all derivatives of a function f : R — V as taking
values in V.

Exercise 11. (Optional) Verify that the usual rules of calculus extend to functions between
finite-dimensional vector spaces. (Here, given functions into spaces of linear maps, I am
writing o to denote composition of the functions and - to denote composition of the linear
maps. This is not standard.)

1. (Linearity) Let V; and V5 be finite-dimensional vector spaces and let 2 be a subset of
Vi. Prove that if f,g : Q — V5 are differentiable then af + bg is differentiable with
derivative D(af + bg) = aDf + bDg for every a,b € R.

2. (Chain rule) Let Vi, V5, and V3 be finite-dimensional vector spaces and let €y and €y
be subsets of V; and V5 respectively. Prove that if f : Q; — Q9 and g : 25 — V3 are
differentiable then g o f is differentiable with

[D(g o /)(x) = [Dgl(f(x)) - [Df](x)
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for every x € €.

3. (Product rule) Let Vj, Vs, V3 and Vj be finite-dimensional vector spaces and let €2 be a
subsets of V;. Prove that if f : Q — L(V5,V3) and ¢ : Q@ — L(V5,Vy) are differentiable
then g - f is differentiable with

[D(g - () = [Dgl(x) - f(x) + g(x) - [Df](z)

4. Let V1, V5, and V3 be finite-dimensional vector spaces, let n > 1, and let 2; and 25 be
subsets of Vi and V5 respectively. Prove that if f : €2y — €25 and g : 25 — V3 are n-times
differentiable then g o f is n-times differentiable. (Hint: Induct on n using parts 1-3.)

Open sets. We now discuss the (very important!) notion of an open set in a normed vector
space: Given a normed vector space (V.|| - ||), we say that a set U C V' is open if for each
x € U there exists € > 0 such that {y € V : ||y — z|| < e} C U. Note that if two norms on
the same space are equivalent in the sense of fact 2.12 then they have the same open sets. In
particular, the open sets of a finite-dimensional vector space are defined independently of the
choice of norm.

Some example are in order:

1. If V is a vector space then V and the empty set () are open in V with respect to any
norm.

2. An open interval (a,b) with a < b is open in R, as are the half-infinite open intervals
(—00,b) and (a, 00).

3. Open rectangles [[,(a;, b;) in R* are open in R,

4. Closed rectangles ], [as, b;] in R? are not open. For example, the interval [0, 1] is not
open in R since it does not contain any set of the form (—¢,¢) or (1 —¢,1+¢).

5. If V is a finite-dimensional vector space and A C V is a finite set of points then

VNA={zeV:x¢ A} isopenin V.

Exercise 12. Prove that a function f : R” — R™ is continuous if and only if for each open
set U CR™, the set f~1(U) ={x € R": f(z) € U} is open in R™.

Integration in vector spaces. It will be useful to know how to integrate vector-valued
functions as well as differentiate them. Suppose that f : I — V is a continuous function
from a non-trivial interval I C R to a finite-dimensional vector space V. For each pair of
numbers a < b in I, the integral fab f(t)dt is defined to be the unique vector in V' such that
if {e1,...,e,} is a basis for V and we represent f in terms of these basis elements as

ft) = Z fi(t)es,
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where each of the function f; : I — R is continuous (as justified in the exercise below), then

war=3 ([ fwat) e
[row=3(f s

Exercise 13. Let V' be a finite-dimensional vector space and let f : I — R be a function
from a non-trivial interval to V. Let {ey,...,e,} be a basis of V' and let

f(t) = Z fi(t)e:

for each t € I. Prove that f is continuous if and only if f; is continuous for every 1 <i < n.
Exercise 14. Prove that the definition of fab f(t)dt does not depend on the choice of basis.
The fundamental theorem of calculus extends to this setting as follows:

Exercise 15. Let V be a finite-dimensional vector space and let f : I — R be a continuous
function from a non-trivial interval to V. Prove that if ¢, € I then F(t) = ft'; f(s)ds is
differentiable with derivative f.

2.3 ODEs in vector spaces

At the beginning of the course we considered only ODEs whose outputs were one-dimensional.
For many applications, we will want to consider the higher-dimensional case also. As we will
explain in detail in the next section, one reason to do this is to work in phase space and take
all ODEs to be first-order. Of course there are also many examples where the quantities of
interest are already multi-dimensional before we pass to phase space by also tracking their
derivatives, such as particles moving in three-dimensional space; some specific examples are
given at the end of this section.

Let us now give some formal definitions that will be used throughout the rest of the course.
Let V' be a finite-dimensional vector space. (As usual, we identify £(R, V') with V' so that
derivatives of functions from (intervals in) R to V are also considered to take values in V.)
Given n > 1, an nth ODE in V is an equation® of the form

™ =F@, f,..., fo0), (ODE)

where U where U is an open subset of R x V" and F' : U — R x V" is a function. (Often U
will be the whole space. Sometimes our ODE is not defined on the whole space and we need

9If you’ve read too much set theory and have begun to doubt that “‘equations” are valid mathematical
objects (I don’t endorse this opinion), you can consider the ODE to be the data (U, F'). You could also define
the “equation” to be the set of all its solutions, among various other options.
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to define it on a smaller set instead.) An nth order initial value problem (IVP) in V is a
system of equations of the form

(Flto)s- SO (ko) =% and O = F(t,f,...,foD)  (IVP)

where [': U — R x V™ is as above, ty € R and xq € V™.

Remark 2.16. Usually we won’t be quite this formal and just write our ODE in the natural
way, where we take U to be the largest set where the ODE is defined; this natural domain
of definition will typically be open when the function F' is sufficiently continuous. 1 will
only draw further attention to this if there’s something subtle going on and we need to be
concerned about it.

Given a pair (I, f) consisting of a non-trivial interval I C R and an n-times differentiable
function f : I — R% we say that (I, f) is a solution to (ODE) if (¢, f,..., f® V) € U and
f™ =F(t, f,..., fY) for every t € I. We say that (I, f) is a solution to the initial value
problem (IVP) if it is a solution to the ODE, ¢, € I, and (f(to), ..., f™ Y (t)) = xo. We will
also use this terminology when studying solutions to ODEs taking values in one dimension,
where V' = R.

Let us now mention a few examples of higher-dimensional ODEs arising in practice.

Point charges in magnetic fields

Consider a massive point-particle with mass m and charge ¢ (in some fixed unit system,
let’s say SI) moving through a constant electric field E and magnetic field B. The
equations of motion of the particle can be written

a= i(E—i—v x B) — g,
m
where a is the acceleration of the particle, v is its velocity, and —g is the downward-
pointing vector representing acceleration due to gravity. We can either think of this
as a second-order ODE describing the position of the particle or as a first-order ODE
describing the velocity; in either case the output at each time is naturally a three-
dimensional vector. This is a constant coefficient linear ODE, and you will easily be
able to solve it exactly by the end of this section.
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Geodesics on a surface

Suppose we have a surface S C R? defined as the zero-set of some smooth function
f(z,y,2) = 0. A geodesic in S is a locally-length-minimizing curve in S. That is, it
is a curve in .S so that for any two points on the curve that are sufficiently close to one
another, there is no strictly shorter curve connecting the same two points. Examples
include straight lines in R? and great circles in the sphere. If we take a point on S and
a unit vector tangent to S at that point, there is a unique geodesic emanating from the
point with initial direction given by this unit vector; this geodesic can be thought of as
a solution to a certain second-order IVP in R? called the geodesic equation, where
the details of the equation depend on the choice of surface. (For straight lines in R?
this ODE is just f” =0.)

\.

Rabbits and wolves: The Lotka-Volterra equations

The Lotka-Volterra equation is a non-linear, first-order, two-dimensional ODE used
to describe the dynamics of biological systems in which two species interact:

d (z\ [ar—Bxy
dt \y) \ozy—ry )

Here, z and y represent the populations of prey (e.g. rabbits) and predators (e.g. wolves),
respectively. The prey population is assumed to have an unlimited food supply and to
reproduce exponentially in the absence of predators. The predator population has
sufficient food supply from the prey and will starve or leave if the prey is extinct. The
parameters «, 3, 7, and § are positive constants that represent the reproduction rate of
prey, the mortality rate of prey due to predation, the natural death rate of predators,
and the reproduction rate of predators due to predation, respectively. It turns out that
this nonlinear two-dimensional ODE has periodic solutions, but that (in general) these
solutions do not admit exact formulas in terms of “standard” functions.

J

Remark 2.17. Higher-dimensional ODEs such as those we have discussed here are often written
as systems of ODFs, so that e.g. one might write the Lotka-Volterra equations as

¥ = ax — By and y = dxy — vy.

The two formulations are completely equivalent. Writing the equation as a single higher-

dimensional equation may seem needlessly sophisticated, but it is often much nicer to work

with once you are used to it.
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Figure 4: Solutions to the Lotka-Volterra equation with various different parameter values
and initial conditions.

2.4 Phase space and reduction to first order

We now discuss how we can always think of all ODEs as being first order provided that we
are willing to work in more than one dimension. We do this by moving to a bigger space in
which we keep track of everything that is relevant for the evolution of our system. This is
called “working in phase space”: The phase space of a general nth order ODE is the space
of all possible times, positions, and first n — 1 derivatives of the position.

Let’s first see how this works in a simple example.

Example 2.18. Let (I, f) be a solution to the second-order ODE f” = —f. By considering

the function f : I — R? defined by f(t) = (f(t), f'(t)), we can rewrite the ODE as a first-order
ODE in phase space:

, d [f I f 0 1
o5 (7)-(7) - (%)= (4 o)

In fact, (1, f) is a solution to the second-order ODE f” = —f if and only if (I,f) is a solution
to the first-order ODE £/(¢) = (% §) £(t), where £(t) = (f, f), if and only if there exists a
solution (7, g) to this first-order ODE such that f is equal to the first coordinate of g; the fact
that the second coordinate of g is equal to the derivative of the first coordinate is an automatic
consequence of the ODE. The fact that we get a rotation matriz in this phase-space ODE is
closely related to the fact that we get trig functions as solutions to the original second-order
ODE. (We will revisit this example in some more detail later.)
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Proposition 2.19 (Every ODE can be thought of as a first-order ODE in a higher dimension).
Let n,d > 1, let U C R be an open set, and let F be a function F : U — R?. Define a
function F : U — R™ by

F(t7 Lo, L1y - - - 7In—1) = (‘Th L2y Tn-1, F(t,l‘o, s 7xn—1))
for every (t,xo,...,x,_1) € U. Then

(I f) = (Lf)  where  £:=(f,f,...,f"7V)
defines a bijection
{solutions of f™ = F(t, f,..., f"" N} — {solutions of f' = F(t,f)}.
The inverse of this bijection is defined by taking (I,f) — (I,fy), where f = (fy,...,f,_1).

Remark 2.20. Note that when d > 1, the coordinates of f are themselves more than one-
dimensional. If you find this confusing, it may help you to think that

E= (oo Fas Pl s U0, 00,

While this may suggest we should use different notation for points in the canonically isomor-
phic spaces R and (R?)", we will generally avoid doing so in this course.

For our purposes, this proposition means that we can often restrict attention to the first-
order case when proving theorems about ODEs. It does not mean that it is always best to view
specific higher-order ODEs through the lens of this reduction when working with examples,
as there are also significant advantages to working with functions with one-dimensional range.

Proof. The reasoning is no different than in the simple example we saw above. We can think
of the equation f' = F(t,f) governing the vector-of-vectors f = (fy,...,f,_1) as a system of
equations

fi/:fi+1 Z:()?,TL—Q
f’rlz—l = F(tva(t)7 fl(t)a fQ(t)a ey fn—l(t)) .

Solving the first part of this system is equivalent to f; being the ith derivative of f; for each
1 <1i<n-—1,so that f solves the entire system if and only if f; is the ith derivative of fy for
each 1 <i<n—1and f = f; satisfies the ODE f" = F(¢, f, f',..., f"V). H
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Phase spaces in mechanics

For a ball in flight we could take the phase space to simply be the position and velocity
of the ball; more accurate treatment might include additional variables to keep track of
how the ball is spinning etc., so that phase space for the dynamics of a simple object
can be reasonably high-dimensional. If we considered the time evolution of a system of
n point-projectiles (without considering things like spin), the “obvious” way of writing
down the system would be as a 3n-dimensional second-order ODE, while the phase
space representation would be a first order ODE in 6n dimensions.

A further remark: Since the ODEs arising in classical mechanics are usually second-
order, the relevant phase spaces usually have an even number of dimensions, regardless
of how many degrees of freedom we are keeping track of in the system. Symplectic
geometry is an area of mathematics studying the abstract structure of even-dimensional
spaces (equipped with a notion of time-evolution) of the kind arising as phase-spaces
in classical mechanics.

Tangent bundles

Here we continue our discussion of geodesics on a surface from the last section. The

relevant phase space here is called the ‘unit tangent bundle’, and consists of all pairs
of a point in the surface and a unit tangent vector emanating from that point; the unit
tangent bundle of a surface in R® can be thought of as a “three-dimensional object”
(technically speaking, a 3-dimensional manifold) living in R®. This space is not the full
phase-space of all solutions to the ODE, it is just a subspace describing the geodesics
inside the surface that are parameterised by arc-length. (The full tangent bundle, where
tangent vectors are not required to be unit vectors, is a four-dimensional object in RS.)
“Bundles” like this also arise naturally when one wants to define what it means to do
calculus or study ODEs “inside a surface” (or any other curved space) and are very
important both in mathematical subjects like geometry and topology and in general

relativity.

Exercise 16. Formulate and prove a version of Proposition 2.19 stating that every ODE can
be thought of as an autonomous first-order ODE in a higher dimension, i.e., an ODE of the
form f' = F(f), where there is no dependence on time on the right hand side. (Note: You
will want to use a different vector f than we used above.)
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2.5 Constant coefficient linear ODEs and matrix exponentiation

Let U C R be open and consider the nth order linear ODE defined by
PO+ @ fOV b anf +aof = b

where ag,...,a,_1,b: U — R. As usual, we can always think of an nth order ODE as a first
order ODE in phase space, which we can write in vector notation as

=) b—ap 1 f ) — . —qof
f(n—2) f(n—l)
d
E J;, B ffl/
f I
b —Qp—1 —Qp—p -+ —Gz —ap —dg fo=
0 1 o -~ 0 0 0 fn=2)
=|: |+ : : S P : (2.2)
0 0 o - 1 0 0 f!
0 0 o -~ 0 1 0 f

If we write £ = (f™1, ... f), b = (b,...,0), and write A for the n x n matrix given by
Ay j=—a,_jand A, ; = 1(j =i—1) for each i # 1, we can therefore express our linear ODE
in the very convenient form

£(t) = b(t) + A(L)E(L).

In particular, if the equation is homogeneous, meaning that b = 0, we have the even simpler
form

= A@)f(t).
We will focus on the homogeneous case for now and return to the inhomogeneous case later.

We now give an informal overview of how we will proceed; we will fill the details in later.
We know that if we have a homogeneous linear ODE with two solutions f; and f; then any
linear combination of f; and fs is also a solution. It follows that if the a; are continuously
differentiable, I is a non-trivial interval, and t, € I is such that there is a solution (I, f) to
the IVP f™ 4 q,_f® D 4 ... fa f +aof =0, f = x, for every x, € R” then, for each
t € I, the map sending the initial condition x, to the value of the solution to the relevant
IVP at t is linear! In other words, in this situation there will be a matriz valued function M
such that f(t) = M(t)f(ty) for every ¢, and this matrix-valued function must satisfy

(M(t)f(to))" = A(t) M () (to).

Assuming for now that the usual rules of calculus apply to matrix-valued functions, this

37



should be equivalent to M satisfying the ODE

At least superficially, this looks just like the one-dimensional ODE

f'=gf

= exp {/g(s)ds}.

It’s therefore reasonable to hope that we can solve our matrix ODE in a similar way, so that

which we saw had the solution

M(t) = exp [ / A(s) ds]

and we will see that this can be done provided that the matrices A(t) all commute with each
other. Of course, a first step towards doing this should be to figure out what it means to
exponentiate a matrix!

Calculus with matrices and matrix exponentiation. We now apply the general
setup described in the previous section to do calculus with matrices. Let M(m,n) be the
space of n X m complex matrices, which describe complex linear maps C" — C™. We
also write M(n) = M(n,n). While this vector space has dimension nm as a complex vector
space, we will instead think of it as a real vector space of dimension 4nm. We will always
equip C" with its usual Euclidean norm

and equip M (m,n) with the associated operator norm || - ||op-

We already know how to differentiate and integrate functions from (intervals in) R to
M(m,n) as a special case of our general constructions concerning finite-dimensional vector
spaces. To really do ‘calculus with matrices’ rather than just ‘calculus in vector spaces’ we
need the matrix version of the product rule.

Lemma 2.21. Let n,m,k be positive integers, let I be a non-trivial interval, and suppose
that A : I — M(m,k) and B : I — M(k,n) are differentiable. Then their product AB is
differentiable with derivative (AB) = A’B + AB'.

Proof. Apply the usual product rule to each entry (AB); ;(t) = >, Aie(t)Be;(t) to get that

(AB);; = Al B+ AiuBy; = (AB)i; + (AB):;
4
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forevery 1 <i<mand1<j<n. O

We next define matrix exponentiation by mimicking the usual exponentiation of numbers.
Given a square matrix A, we want to define a matrix-valued function 4 that such that

1. €% is the identity matrix, and

2. Lot = Aet for every t € R.

Rather than immediately writing down the right definition, let us see how we could arrive
at it heuristically. Fix ¢t > 0 and suppose that k is a very large integer. Since we want our
matrix eponential to satisfy %e™* = Ae', we should have that

t
R / Ae*t ds ~ (1 + EA) e%m,

where the (non-rigorous) estimate in the second line is saying that ¥4 does not change much as
s varies between k—;lt and ¢t. Applying the same estimates recursively yields (non-rigorously)

that
N t N\ k2, t\"
e z(l%—EA)ekt %---Q(I+EA>

and we can expand this estimate using the binomial theorem

k )
k t ,
tA - 7
e~ ;0 <z) (k;) A"

If we write the binomial coefficient as the ratio of k(k — 1)---(k — i) to 4! and note that
k(k—1)---(k—1i)/k" = 1 as k — oo for each fixed 7, assume that we can safely switch the
order of summation and limits, and assume that taking the limit as £k — oo gives an ezact

expression for e, we get that
00 .
i (EA)
e = Z T

=0

In other words, this non-rigorous calculation suggests that we should define matrix exponen-
tials by just ‘plugging a matrix in’ to the usual power series representation of exponentials of
numbers. Of course if we want to use this idea rigorously we should check that doing this a)
makes sense, and b) satisfies the properties we would like an exponential to have.

Lemma 2.22. Let A € M(n) be a complex n X n matriz. The matriz exponential defined by

tA — (tA)"
¢ _Zo n!

is well-defined for every t € R in the sense that the infinite sum on the right hand side
converges for every t € R.
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Proof. Since ||(tA)'|lop < [t]" - |All, for every n > 1 and t € R, we have that

o0 s o0 )
(tA)l |t‘l”AHZp -1 Al
" < = llop op
ZH it op = Z il ‘
=0 =0

for every ¢ € R. It follows that the series ) :°, % converges to a matrix that has operator

norm at most el!ll4llor for every ¢t € R. O

Lemma 2.23. Let A € M(n) be a complex n x n matriz. Then the matriz exponential '/

commutes with every matriz that A commutes with for every t € R. In particular, Aet* =
e A.

Proof. We will prove more generally that if (Bg)g>1 is a sequence of matrices in M(n) that
all commute with some fixed matrix A € M(n) and that converge to some matrix B then
A and B commute: The claim will follow by applying this to the sequence of partial sums

Ef:o (t%)i, which all commute with every matrix that A commutes with.

To prove this more general statement, we simply observe that

|[BA = ABl|lop < ||[BA = BAllop + || BeA — ABy|lop + [[ABy — AB|op
< ||B - Bk”OpHAHOP +0+ HAHOPHB - Bk”Op = QHAHOPHB - Bk”op

for every £k > 1, and since the right hand side tends to zero as k — oo it follows that
|BA — AB]||,, = 0 and hence that AB = BA as claimed. O

Lemma 2.24. Let A € M(n) be a compler n x n matriz. The matriz exponential e defines
a smooth function R — M(n) with kth derivative (e!*)®) = AFet? for every k > 1.

We will deduce this lemma from some general theory that we will prove later in the course.
If I = [a,b] is a non-trivial closed bounded interval (bounded means a and b are finite) and
(V. ||-1]) is a normed vector space we write C'(I, V') for the vector space of continuous functions
f I —V equipped with the norm

I/ lloo := sup [[f()]].
tel
Theorem 2.25 (Differentiating term-by-term). Let I be a non-trivial closed bounded interval,
let (V)| -|l) be a finite-dimensional normed vector space, and let (f;)i>1 be a sequence of

functions from I to V. Suppose that n > 1 is such that f; is n-times differentiable for every
i > 1, the series > -, fi(m) (t) converges in'V for each t € I, and

> Ao < o0
=1
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Then > ;= fi is n-times differentiable with

[e.e]

DSV ICED SFALD

foreveryl <m<nandtel.

We stress that we only require pointwise convergence for the first n — 1 derivatives, but
require the stronger condition of uniform convergence for the final derivative. We will prove
this theorem later in the course, after we finish our discussion of linear ODEs. Let us now see
how it implies Lemma 2.24.

Proof of Lemma 2.24. We can compute the kth derivative of the partial sums defining the
matrix exponential to be

N : , N—k ,; i
d tz—kAz ttA?
i S N S— :
> Z(i_@; 27
=0 i=k i=0
The claim follows from Theorem 2.25 since if I is any closed bounded interval then
S <3k (1) <o
dtk Z' oo i—0 Z' P tel ’

and since a function whose restriction to any closed bounded interval is smooth is smooth
everywhere. O]

Lemma 2.26 (Semigroup property). Let A € M(n). Then etdest = esdett = 94 for

—tA

every s,t € R. In particular, e is the inverse of 4 for everyt € R.

Proof. It suffices to prove that et4e*4 = e(t+5)4: the other equality follows by symmetry. We
~t4 s the inverse of e for each ¢t € R. This is obvious when ¢ = 0, in which
case both matrices are the identity. We can use the product rule together with Lemma 2.24

first claim that e

to compute that
(e—tA tA) Ae_tA tA + e—tAAetA — _Ae—tAetA + Ae—tAetA =0,

where we used Lemma 2.23 in the second equality. Applying Lemma 1.1 to each entry of
e et shows that this matrix is equal to the identity, and the same proof shows this is also
true for ete=t4.

We now prove the claim for general s and t. Fix s € R and consider e~ (t$)4¢t4esA a5 g

function of ¢. Since €”4 is the identity, this function is the identity when ¢ = 0. Using the
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product rule (Lemma 2.21), we can differentiate to obtain that

0

= [ef(tJrs)AetAesA] — A HDAGASA | —(t49)A g 1A sA

_ _Aef(tJrs)AetAesA + Aef(t+s)AetAesA -0

where we used Lemma 2.23 in the second equality. This implies the claim by similar reasoning
as before. ]

Theorem 2.27. Let A € M(n), let I C R be a non-trivial interval, and let to € I. Then
M : I — M(n) solves the ODE M' = AM if and only if M(t) = e"0)ANM (t) for every
tel.

Proof of Theorem 2.27. The fact that e~*)4M (ty) solves the ODE for each M(t,) € M(n)
follows from Lemmas 2.21 and 2.24. Now suppose that M : I — M(n) is an arbitrary
solution. We can use the matrix product rule Lemma 2.21 to calculate

(e7MM(t) = —Ae M (t) + e AM(t) = —Ae M (t) + Ae " M (t) = 0,

where we used Lemma 2.23 in the second equality. Applying Lemma 1.1 to each entry of
e “AM (t) implies that e M (t) = e ™AM(ty) for every t € I, and the claim follows by
multiplying both sides on the left by e*4. O

Remark 2.28. It follows that if M(¢p) commutes with A then M also solves the ODE M’ =
MA. This is always the case in our application to phase space representations of constant
coefficient linear ODEs, where M (ty) is the identity. In general, the solutions to the ODE
M’ = MA are of the form M (ty)e(t—t0)4,

Corollary 2.29. Consider the constant-coefficient, homogeneous linear ODE
FO 4 ana fO 4 af +ag =0,

which can be written in matriz notation as ' = Af. For each non-trivial interval I C R and
to € I, the function f: I — R solves the ODE if and only if

£(t) = e Af (1)
for every t € I, where =(f=1, fn=2 ).

Proof. As usual, we first need to check that functions of the given form solve the ODE. If
xg € R™, we have by the product rule that

d d d
= (e(tfto)AXO) _ (%e(ttO)A> Xo + e(tfto)AEXO — Ae(t—t) Ay
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so that f = e(*"%)4x, is indeed a solution to the ODE. To prove that these are the only
solutions, we can take an arbitrary phase-space solution f and differentiate e *Af; the details
are similar to before. m

The holomorphic functional calculus and the heat equation

The fact that we can sensibly apply functions defined through power series to matrices
and preserve many of the properties that make these functions interesting as functions
R — R (as we have just done with exponentials) has many applications. One further
important example is the power series (1 —z)~!' = >~ 2™, which is explored in exer-
cise 17. One can also do similar things with “linear operators” on infinite dimensional
spaces, like the differentiation operator f +— f’ or the Laplacian f — Af. This is
known as the holomorphic functional calculus.

One paradigmatic example where these ideas arise is in the heat equation %u(t, x) =
Au(t,z). This is a PDE describing the time evolution of the function wu(¢,-), which
describes the distribution of heat in a material. Appropriate infinite-dimensional ver-
sions of the ideas to those we have just explored let us express the solutions of the heat
equation as u(t,-) = e®u(0, -), where the exponential e® is known as the heat kernel
and can be expressed in terms of the density of the Gaussian distribution (as you may
be familiar with from probability and statistics). Exponentials of linear maps on func-
tion spaces also arise in solutions to the wave equation and the Schrodinger equation,
making the holomorphic functional calculus very important in mathematically rigorous

treatments of quantum mechanics.

\. J

Exercise 17. Prove that if A € M(n) with ||Al|op, < 1 then I — A is invertible with inverse
2o AN

Exercise 18. Let A : [0,00) — M(n) be a differentiable function. Prove that A satisfies the
semigroup property stating that A(0) is the identity and A(t 4+ s) = A(t)A(s) for all s,t >0
if and only if there exists L € M(n) such that A(t) = e'* for every ¢ > 0.

Semigroups and their generators

There are versions of the fact proven in exercise 18 that do not assume differentia-
bility of the semigroup and that apply in various infinite-dimensional settings: Look
up “Hille-Yosida theorem” and “Stone’s theorem on one-parameter unitary groups”
on Wikipedia if you are interested. These theorems are important in mathematical
quantum mechanics.

Exercise 19. Let n > 1. Given an n x n matrix A € M(n), define

' o0 . A2n+1 o0 . A2n
sin(A) = %(—1) 2T and cos(A) = ;(—1) )i

43



1. Prove that these infinite series are well-defined, that sin(tA) and cos(tA) define differen-
tiable functions of ¢ for each A € M(n), and that these functions satisfy the identities

% sin(tA) = Acos(tA) and % cos(tA) = —Asin(tA)

for every A € M(n).

2. (Matrix Pythagoras.) Prove that sin(A)? + cos(A)? is equal to the identity matrix for
every matrix A.

3. Prove that every solution to the second-order matrix ODE M"” = —AM is of the form
cos((t — tg)A)M (to) + sin((t — to)A)M'(to).

Doing computations with matrix exponentials. We have now expressed the solutions
to constant-coefficient homogeneous linear ODEs in terms of matrix exponentials. Arguably,
however, this is only useful insofar as we can actually compute matrix exponentials!

The first case to consider is when the matrix A is diagonal, meaning that all its non-
diagonal entries are zero. In this case, A* is also diagonal for every k& > 1 with entries
AF, = (A;;)", so that the matrix exponential ' is also diagonal with entries (¢'4);; = e,
Unfortunately the matrices arising in our original linear ODE problem are never diagonal!
This is not really a problem, however, provided that they are at least diagonalizable. Recall
that this means that there exists an invertible matrix C' and a diagonal matrix D (i.e., a matrix
all of whose non-diagonal entries are zero) such that A = CDC™!. Indeed, if we can find such
matrices C' and D then we have by induction that A* = CDC~'CD*'C~! = CD*C! for

every k > 1 and hence that

kAP SN thODRC! =tk Dk
tA o o -1 _ tD  ~—1
e _Ej—k,_Ej—k! _OEjk! c~t=cetPo

k=0 ’ k=0 k=0

where we used that the map M — CMC™! is continuous on M(n) to pull the conjugation

outside of the infinite series in the second equality. (Note that this equality holds for any two

conjugate matrices; we haven’t yet used that D is diagonal.) Since e'”

e!4 is reasonably easy also.

is easy to compute,

But when are matrices diagonalizable? As you will recall from Math 1, a matrix A € M(n)
is diagonalizable if and only if there exists a basis of C" consisting of eigenvectors'’ for A,
i.e., vectors x such that Az = Az for some A € C, where X is known as the eigenvalue
associated to the eigenvector x. Indeed, we can think of the diagonal matrix D as expressing
the same linear transformation as A in terms of the basis of eigenvectors rather than the
basis we started with: If {v;} is a basis of eigenvectors with eigenvalues {\;} and C' is the

10«Figen” is a German word that is etymologically related to “own” in English. In this context it means
something more like “characteristic”.
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matrix describing the linear map that sends the standard basis vector e; (that has 1 in its ith
coordinate and 0 everywhere else) to v; then we can write A = CDC™! with D;; = \;.

Exercise 20. Let ay,...,a,—1 be constants and consider the matrix A defined by A, ; =
—a,_j and A;; = 1(j = ¢ — 1) for each 7 # 1, as arises in the phase-space representation of
a constant coefficient linear ODE. Prove that the eigenvalues of A coincide with the roots of
the polynomial A" + a, (A" 1+ -+ a A+ ag = 0.

Exercise 21. Let A be a matrix that encodes a constant coefficient linear ODE of the form
™ 4 a,_ fOD 4o arf 4+ aof = 0 as £ = Af. Prove that if x € C" is an eigenvector
of A with eigenvalue X then x = (A" "lc, \"2¢, ..., Ac, ¢) for some ¢ € C. Deduce that A is
diagonalizable if and only if it has n distinct eigenvalues.

Let’s see how we can use this theory to compute the solution to an ODE in a simple
example.

Example 2.30. The second-order ODE f” = —f can be written as a first-order ODE in

phase space as /
f/ B 0 _1 f/
£ \1 o £l

We can compute that this matrix has eigenvalues +i and —i with eigenvectors (i, 1) and (1, 1)
respectively, and can therefore be diagonalized

-1
0 -1\ (i 1\ [i © i 1\ 1fi 1\ (i 0 i -1
1 o) \1t i)J\o —i)J\1 i) 2\1 i)J\o —i)J\=1 i)
As such, we have that
o 11 (0 1 1(i 1\ (et 0 i -1
X = —= )
Pty o o\1 i) \o —et)\=1
B eit_*;fif eft;fﬂjt [ cost sint
o\ g5t et )\ —sint cost )

Note that since the linear transformations

<;§> > ([1) _01> (Zj) and = + iy — i(z + iy)

are the same map after identifying R? and C as real vector spaces by the isomorphism (x,y)

ox tO —1 [ cost sint
p 1 0 ~ \ —sint cost

45

x + 1y, the expression



is really just Euler’s formula
e = cos(t) + isin(t)

in disguise! It follows that every solution to our ODE is of the form

f'(t)\ [ cos(t—to) sin(t—to))\ [ f(to)

f(t) —sin(t —ty) cos(t —tg) ) \ f(to) ]~
This example already illustrates a general principle: When solving real-valued ODEs, we
may have to diagonalize with complex eigenvalues, but these eigenvalues must always come in

complex conjugate pairs, and ultimately lead to trig functions appearing in our ODE solutions
as exactly as they did here.

Remark 2.31. As we saw in this example, we don’t actually have to compute the matrix C' in
the diagonalization A = CDC~! if we only want to find the space of all solutions. When A is
diagonalizable, it will always have a basis of solutions of the form

{eM X a real eigenvalue} U {e™ cos(Bt) : o + i a complex conjugate pair of eigenvalues}

U {e*sin(Bt) : a & i3 a complex conjugate pair of eigenvalues},

so we know what the space of solutions is as soon as we’ve found the eigenvalues. On the
other hand, the matrix C'is telling us how to pick out a particular element of this space as a
function of the initial conditions when solving the relevant IVP, since

f(t) = e (t,) = Cell PO (t).

Unfortunately, not every matrix is diagonalizable. Moreover, while a ‘generic’ matrix s
diagonalizable, non-diagonalizable matrices turn out to be very important in ODE. Indeed,
if we consider the simplest kth order ODE of all, namely

f(k) -0
then the associated matrix
00 -0 0 0
1 0 0 0O
10 0 0O
A=
000 ---100
000 ---010

is not diagonalizable! Indeed, this matrix is nilpotent, meaning that there exists m > 1 such
that A™ = 0 (in this case m = k+1). While nilpotent matrices are not diagonalizable (unless
they are the zero matrix), they are still easy to compute the exponential of: If NV is nilpotent
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with N™ = 0 then

o) m—1 ,;

oV — _Z N — N
— 7! — i!
so that the matrix exponential eV is really just a polynomial! As such, if we exponentiate
the matrix A encoding the linear ODE f*) = 0 we get that A™ is the matrix with ones on
the mth subdiagonal and zeros everywhere else, so that

1 0 0 0 0
1 -« 0 00
12 i 1 0 00
oA _ ‘
e e B
at® ot gt o gttt

As expected, the solution f(t) = e*"%)4f(¢y) agrees with our usual way of solving this ODE.

Now, it turns out that every matrix can be written as the sum of a diagonalizable matrix
and a nilpotent matrix, letting us compute the exponential of any matrix in a reasonable way.
Indeed, every matrix A can be written in the Jordan normal form A = CJC~! where C is
invertible and J is of the form

Ai

J = where J; = o
g Ao 1

for some \q,..., \. € C, where all the parts of the matrices left blank represent entries that
are all zero. In particular, J can be written as the sum J = D + N where D is diagonal,
N is nilpotent, and D and N commute with each other. Once we have expressed a matrix
A= CJC™! in Jordan normal form we can write

etjl

etA — CGtJC_l = C . C_l.

To compute the exponential of each Jordan block e/’ we will use the following lemma, whose
proof is left as an exercise.

Exercise 22. If A and B commute then e*4e!B = e/A+5) for every t € R.

If the Jordan block J; has length k; it can be written as the sum of \;Iy,, where I} is the
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identity matrix of side-length k, and the standard nilpotent matrix of side-length k;,

01
0 1
Ny, =
0 1
0
which satisfies
1,2 1 k-2 1 k-1 1k
Lt 5t - (k;—2)!t (k—l)!t Tt
1 k- 1 k-2 1 k-1
o1 t - (k—3)!t ’ (k—Q)It (k—l)!t
1 k-4 1 k-3 1 k-2
otNi — 00 1 (k74)!t (k73)!t (k72)!t
00 0 0 1
00 O 0
Since Ny, and A;I;, commute, we have that
Lot gt o oyt ettt att
1 k-3 1 k-2 1 k-1
0 1 ¢ (k—3)'t (k 2)!t (k—l)!t
1 k4 1 k-3 1 k-2
etJi — et)\ilkietNki — €t>\i O 0 1 (k—4)!t (]C 3)'t (k—2)!t ’
00 O 0 1
00 O 0 1

and we can express e in terms of blocks of this form conjugated by the matrix C'.

Exercise 23. Continuing from Exercise 21, prove that if we write A in Jordan normal form
then each Jordan block has a different associated eigenvalue. Prove moreover that the size
of each Jordan block is equal to the multiplicity of the corresponding root of the polynomial
AN+ a, A"+ 4 a9 = 0. (That is, if Ao is an eigenvalue of A, then the size of the Jordan
block with eigenvalue A is equal to the largest n such that (A — A\g)™ divides the polynomial
A 4y AT+ ag =0.)

Note that if A is an eigenvalue of the matrix A with eigenvector x then f = e"*z must be

a solution to the ODE f’ = Af. Writing this back in our original ODE notation and using
that ()™ = A™e for each m > 0, this means that A is a solution to the polynomial

Ny A" ad +ag = 0.

Conversely, if \ solves this equation then e* is a solution to the ODE and )\ is an eigenvalue
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of A. When this polynomial has fewer than n distinct roots, A must be non-diagonalizable
by the above exercise, and f' = Af will therefore admit solutions that are either polynomials
or products of polynomials and (complex) exponentials.

Example 2.32. Consider the second-order homogeneous linear ODE

ff+20f + f=0.

2 e 3
1 0
We can compute the eigenvalues of this matrix by solving

det <_2C_>‘ _1) = A4+ 200 +1=0,

In matrix notation this ODE reads

1 —-A

so that
A=+ -1

If [¢| > 1 then we have two distinct real eigenvalues, and so there must exist an invertible
matrix C' such that

_ _ —((—/¢2-1)t
exp t( 20 1) | 0 ct

1 o /| " 0 o~ (/-1

Without needing to actually compute what these matrices C are, we deduce that every solution

f= e~ V@Dt 5e*<<+¢<2_*1>t

for some complex numbers o and [ such that the right hand side is real for every t € R,

is of the form

which is the case if and only if o and § are both real.

Similarly, if |(| < 1 then we have two distinct complex eigenvalues A = —( + i4/1 — (2
coming in a conjugate pair, and again we have that every solution is of the form

f= <aeit\/l—c2 _i_ﬁe—it\/@) o<t

for some complex numbers a and [ such that the right hand side is real for every t € R,
which now is the case if and only if o and g are complex conjugates of each other, so that
a =x+1y and f = x — 1y for some z,y € R. Recognizing this sum of complex-conjugate
exponentials as a sum of consine and sine functions, it follows that every solution is of the
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form
f= [o? cos(ty/1 — C2) + Bsin(ty/1 — CQ)} e !
for some real numbers &, .

Finally, suppose that [(| = 1, so that A = —( is the only eigenvalue. In this case there
must exist an invertible matrix C' such that

-2¢ -1\ —( 1 _
() )
exp t<_12< _01> = e iC (é i) c

Thus, again without having to actually compute C', we can deduce that every solution must
be of the form

so that

f=(a+pt)e

for some complex numbers o and § making the right hand side real for every t € R, which is
the case if and only if o and § are both real.

A spring paradox? Before moving on, let us point out a hidden subtlety with what we
have just done. When ¢ > 0, the equation f” + 2(f' + f = 0 is the equation of motion of a
damped spring of mass and spring constant 1, with ¢ describing the strength of the damping
(which you can think of as describing how ‘rigid’ the spring is). We have seen that our solution
to this equation looks very different depending on whether ( is smaller than 1, equal to 1, or
larger than 1. Suppose we release our spring at time zero with f(0) > 0 and f’ = 0. When
0 < ¢ < 1, the spring oscilates around its resting state of zero, with oscillations of decaying
amplitude, while when ¢ > 1 it decays directly to zero without ever attaining a negative
displacement; the ¢ > 1 and ¢ = 1 cases are qualitatively similar but with a quantitatively
different form of decay at the special value ( = 1.

Thus, our algebraic approach to solving the equations seems to suggest that these three
regimes are all very different in some sense. On the other hand, it seems likely that if we
performed this experiment with springs that had ¢ = 0.99999999, ¢ = 1, and ¢ = 1.00000001
we would have a hard time telling the difference between the three springs without specialist
equipment. Of course our analysis above had hard math to back it up, whereas the thought
experiment we are now entertaining is just an appeal to intuition, but it is worth thinking
about what is going on here, and whether the two things are really in tension with each other
or not.

The resolution to this ‘paradox’ — that the solutions to the ODE should depend continu-
ously on the parameter ¢ but it seems that the solutions we have given do not — comes from
the fact that the matrix C~1, which we did not compute, does not depend continuously

20



on (! Indeed, it can’t possibly depend continuously on ( since if it did we would get that

[ (- vE=T) 0 -
Cl<_< 1)0: 0 —((+/¢-1)
0 —¢ o1 o
\ 0 _C

is continuous in ¢, which it isn’t. Because we used the matrix C~! to describe our solutions,
it is only natural that our description has an abrupt change as ( passes through the special
value of 1, but this is not inconsistent with an observer making imperfect measurements of
the system being unable to tell the difference between a value of ( very slightly smaller than
1 or very slightly larger than 1.

Exercise 24. For each ¢ > 0, let f, be the solution to the ODE f” + 2(f' + f = 0 with
fc(0) = 1 and f{(0) = 0. Compute f; and prove that the function ¢ +— f¢[p defines a
continuous function from [0, c0) to C([0, 1], R).

Unfortunately, the solution to the matrix ODE M’ = AM in terms of matrix exponentials
does not generalize readily to the setting of non-constant A. There is one nice condition under
which it does work:

Exercise 25. Let [ C R be an open non-trivial interval, let ¢ty € I and let A: I — M(n) be
continuous. Prove that if A(f) commutes with ftto A(s)ds for every s € I then every solution
the matrix ODE M’(t) = A(t)M(t) is of the form

M(t) = el A% 011,

for every t € I.

Exercise 26 (Bonus problem). In this question, we will investigate what happens when we
slightly relax the assumption of commutativity from the previous exercise.

a. Given two martrices A and B, the commutator [A, B] is defined by [A, B] = AB —
BA. A linear subspace L of M(n) is said to be a Lie algebra if it is closed under
commutators, meaning that if A, B € L then [A, B] € L. Prove that the space N (n) C
M(n) of n by n matrices that are 0 on and below the diagonal is a Lie algebra.

b. We say that a Lie algebra NV C M(n) is nilpotent of step at most 1if [A, [B,C]] =0
for every A, B,C € N. (Equivalently, if every element of the algebra commutes with
every commutator formed from elements of the algebra.) Prove that the Lie algebra
N (3) of 3 by 3 matrices with zeros on and below the diagonal is nilpotent of step at
most 1.
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c. Let A: R — N be a differentiable function from R to some Lie algebra N/ C M(n)
that is nilpotent of step at most 1. Prove that

d A(t) / 1 / A
—e = [A +2[A A ®,
dte _'_ 2[ Y ] €

(Hint: Using that N is nilpotent of step at most 1, find a simple expression for A" BA™ —
BA™™ for A, B € N and integers n,m > 0.)

d. Let A : R — N be a continuous function from R to some Lie algebra N' C M(n)
that is nilpotent of step at most 1. Prove that the unique solution to the matrix ODE
M'(t) = A(t)M(t) with M(0) equal to the identity is given by

/OtA(s) ds — %/Ot {/OSA(U) du,A(s)} ds] ,

(Analogous facts are also true for step-s nilpotent Lie algebras, where the iterated commutator
[A1, [Ag, [As, -+ A, [Ast1, Asia]]] - - -] = 0 vanishes for all Ay,..., As1o. Examples include the
space of upper-triangular matrices in d 4+ 2 dimensions with zeros on the diagonal. For such

M (t) = exp

algebras, solutions to the relevant ODEs also involve more iterated commutators. Without
any nilpotency assumptions, one can still write the solution for small times as an infinite
series of iterated commutators. Look up the Baker-Campbell-Hausdorff formula if you want
to learn more.)

2.6 The cookbook solution

I will now describe the standard algorithm for computing the solution to a constant coefficient
homogeneous linear ODE, which gives the same answer as going through matrix exponenti-
ation but can easily be performed “robotically” without knowing where the method comes
from. Suppose we want to solve a constant coefficient linear ODE

™ 4a,  fOY 4 g f = 0.

We can do this via the following procedure.
1. First look for solutions of the form f = e, where ) is a complex number. This function
will solve the ODE if and only if A is a root of the polynomial
Ny A" 4 ad +ag = 0.

(In fact the roots of this polynomial are precisely the eigenvalues of the matrix A in the
phase space representation f* = Af.) If this polynomial has complex roots, they must
come in complex-conjugate pairs A = « + i, and the corresponding real solutions are
e cos(ft) and e sin(St).
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2. If we found n distinct roots in the first step, then the relevant exponentials and trig
functions span our whole space of real solutions, so we are done. If we do not have n
distinct eigenvalues, the roots of the polynomial A" +a, A" 1 +---+a; A +ay = 0 that
have multiplicity more than 1 will lead to solutions that are multiples of polynomials and
the (complex) exponentials written above, where the maximum degree of the polynomial
is equal to one minus the multiplicity of the root.

Example 2.33. Let’s consider the ODE f®) = f. The eigenvalues of the relevant matrix

are the solutions to A3 = 1, i.e., the third roots of unity 1, €37, and e~"57. Writing e'53™ =

—% — ‘/731', we deduce that the solutions to this ODE are of the form

3 3
Ae' + Be /2 cos(gt) + Ce /2 sin(gt).
Notice how different initial conditions can lead to very different large-time behaviours accord-
ing to whether A = 0.

Example 2.34. Let’s consider the ODE f®) — 6f®? 4+ 12f' — 8 = 0. The eigenvalues of
the relevant matrix are the solutions to A* — 6A\? + 12\ — 8 = 0, which we can recognise as
(A —2)3 = 0. Thus, there is only one eigenvalue, 2, with multiplicity 3. Thus, the solutions
to the ODE are all of the form (A + Bt + Ct3)e*.

Example 2.35. Let’s consider the ODE f® — 6 (M 4 27f©) — 685 4 135f@W — 1503 4
125f2) = 0, whose associated polynomial can be factored A2(\ — 1 + 2i)*(\ — 1 — 2i)3. (This
is a contrived example, and I would not expect you to factor this polynomial by hand.) Thus,
there is one zero eigenvalue of multiplicity two and a complex conjugate pair of eigenvalues
each of multiplicity three. Every solution is of the form

A+ Bt + (C + Dt)e' cos(2t) + (E + Ft)e' sin(2t).
Exercise 27. Find all solutions f : R — R to the ODE f2024) = f.

Exercise 28. Find all solutions f : R — R to the ODE f® 4+ f® 4+ f = 0.
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3 Existence, Uniqueness, and Regularity

Our next goal is to state and prove the most basic and important existence and uniqueness
theorem for first-order ODEs, the Picard-Lindeldf Theorem (a.k.a. Picard’s existence theorem,
a.k.a. the Cauchy—Lipschitz theorem).

Theorem 3.1 (Picard-Lindelof — local, first-order version). Let Q C R be an open set and
let F:Q — R be a continuous function for which there exists a constant M such that

[F(t,21) = F(E,22) || < M[zy — o] (3.1)

for every (t,z1), (t,x2) € Q. Then for each (ty,zq) € Q) there exists € > 0 such that if I is a
non-trivial closed interval containing ty of length at most € then the ODE ' = F(t, f) has a
unique solution on I with f(ty) = xo.

Note that this theorem is “local” in the sense that it only guarantees existence and unique-
ness of solutions on a possibly very small interval around the starting time. We will return
later to the issue of how big we can actually take the domain of our solutions to be.

Before we start working towards the proof of this theorem, some remarks are in order
about its statement. A function F' defined on a subset 2 of R? is said to be Lipschitz (or
Lipschitz continuous) if there exists a constant M such that ||F(x) — F(y)|| < M|z — y||
for every z,y € Q; the hypothesis of the Picard-Lindelof theorem can be expressed more
succinctly as the condition that F(¢,z) is continuous in ¢ and Lipschitz in x. Note that if
F : Q — R4 s differentiable and has bounded partial derivatives in all directions (equivalently,
bounded total derivative in the operator norm) then it automatically satisfies this condition.

Remark 3.2. To see that the Lipschitz condition is needed for the uniqueness part of the
theorem to be true, consider the ODE f’ = |f|*?, which has two solutions with f(0) = 0
given by f = 0 and f(t) = 2—17t3. For the existence part of the theorem it suffices for F' to
be continuous, a fact known as the Peano existence theorem. We will not prove the Peano

existence theorem in this course.

Let us now start working towards the proof of the theorem. We will work with the
equivalent integral equation

F(t) =0 + / F(s, f(5)) ds. (3.2)

to

The basic idea of the proof will be to construct a solution to the equation via what is called
Picard iteration: We start with fy = xy and, at each step k > 1, construct a new function
fr satisfying

fr(t) = F(t, fe_1(t)) and fi(to) = o
by setting

folt) =z + / F(s. fuy(s)) ds.

to
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It is plausible that if this sequence of functions converges to some function f then f should
satisfy (3.2) as required, and we will see that this is indeed the case. Moreover, we will see
that the function on the space of functions defined by

t

f = x —|—/ F(s, f(s))ds (3.3)
to

tends to “push functions closer together”, so that if we were to iterate this map starting at

two different functions then they should converge to the same fixed point. But any solution to

the ODE is a fixed point of the map, and the solution to the ODE must therefore be unique!

Filling out the details of the proof will require introducing a few basic concepts that are
very important throughout analysis. If you take more courses in analysis you will develop
many of these concepts (metric spaces, completeness, Banach spaces, ...) in a systematic way.
Since that is not the purpose of this course, we will instead develop the relevant theory only in
the specific context we need it, although in fact the general proofs are not really any different.

3.1 The space of continuous functions

In order to start implementing the proof we just sketched rigorously, the first step will be to
introduce an appropriate space of functions on which to define the map (3.3), together with
a suitable notion of what it means for a sequence of functions to converge in this space.

For this we will need a generalization of the extreme value theorem. A subset!! V' of R"
is said to be closed if whenever (z,),>0 is a sequence in V' converging to some point z € R",
then x € V. (That is, a set is closed if it contains all its limit points.)

Exercise 29. Prove that a subset V' of R is closed if and only if its complement V' \ R” is
open. Prove that the only sets that are both open and closed in R™ are the whole set R™ and
the empty set ().

A subset V' of R" is said to be bounded if there exists C' < oo such that V' C {z € R" :
|z|| < C}. (Here we take || - || to be the Euclidean norm, but the choice does not affect the
definition of being bounded.)

Theorem 3.3 (Multivariable extreme value theorem). Let V' be a closed, bounded set in
R™ and let f : V — R be a continuous function. Then there exists o € V such that
sup{f(x) :x € V} = f(zo). In particular, sup{f(z):x € V'} is finite.

Proof. This proof is similar to that of the single-variable version and is left as an exercise. [

Exercise 30. Prove Theorem 3.3.

11t is traditional to denote open sets by U and closed sets by V. This does unfortunately clash with our
traditional notation for a vector space, but there are only so many letters in the alphabet.
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Figure 5: A continuous function f is graphed in black. A continuous function g satisfies
|lf — gllc < € if and only if it stays between the two grey shifted copies of f. (Can you
explain why the ribbon of allowed functions looks narrower when the slope of f is steeper?)

Remark 3.4. A more sophisticated way to state this theorem is that “closed, bounded subsets
of R™ are compact”. This is often known as the Heine-Borel theorem.

Let V' be a closed, bounded set in R for some n > 1, and let C'(V,R™) be the space of
continuous functions from V' to R™. The uniform norm || - ||, on C(V,R™) is the function
|- [loo : C(V,R™) — R defined by

1flloc = sup || f()]],
eV

where || f(z)|| denotes the Euclidean norm of f(z). The uniform norm || f||» is finite for every
f € C(V,R™) by the extreme value theorem. Let’s now check in detail that it really does
define a norm on the vector space C'(V,R™). The only non-obvious thing we need to check is
that the triangle inequality holds:

Lemma 3.5 (The triangle inequality). Given n,m > 1 and a closed, bounded set V- C R" the
inequality
1f 4 9llos < N1 lloe + 119l

holds for every f,g € C(V,R™).

Proof. We have that

I + gl = sup 1 £(2) + g(@)] < sup(lF @] + la(@)])

< sup [[f(@)[| + sup [lg()]| = [ flloo + [|glloo,
zeV yel

where the first inequality holds by the triangle inequality for the Euclidean distance on R™. [

We say that a sequence of functions (f,),>1 in C(V,R™) converges uniformly to a
function f € C(V,R™) if ||fn — flloo — 0 as m — oo. As before, we say that a sequence of
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functions (f,),>1 in C(V,R™) is a Cauchy sequence (with respect to || - ||«) if for every
e > 0 there exists N < oo such that ||f, — fiu]leo < € for every n,m > N.

We will need to know that Cauchy sequences in C'(V,R™) always have limits.

Theorem 3.6. Let n,m > 1 and let V- C R™ be a closed, bounded set. If (fn)n>1 is a Cauchy
sequence in C(V,R™) then there exists f € C(V,R™) such that f, converges uniformly to f.

Proof. First note that for each x € V, (fn(x))n>1 is a Cauchy sequence in R™ (because
| fr(z) = frn(@)|| < || fo — finlloo for every x € V') and therefore converges to some limit, which
we may denote f(x). It suffices to prove that this defines a continuous function f : V — R™
and that || f, — f|]| — 0 as n — oo. For each x € V' we have that

17@) = @) = T [[fue) — fu(2)]
and hence that for each € > 0 there exists N < oo such that
[ f(x) = fulz)]| <€ for every n > N and z € V. (3.4)

Let us now see why this implies continuity of f. Fix x € R and ¢ > 0, and let n be such
that || f(y) — fu(y)|| < €/3 for every y € V. Since f,, is continuous, there exists d such that if
ly — x|| <6 then || f.(y) — fu(2)|| < /3. Thus, if y € V is any point satisfying ||y — z|| < ¢
then

1f () = fF@I < f @) = @+ 1fn(w) = fal@)| + [ fa(z) = f)I < s+ 5+ 35 =¢

Since x € V' and € > 0 were arbitrary this implies that f is continuous as claimed. Now that
we know f is continuous, we can rewrite (3.4) equivalently as the statement that for each
e > 0 there exists N < oo such that ||f — f,||ec < € for every n > N, so that ||f — fullee = 0
as n — oo. U

Remark 3.7. This theorem is usually stated as “spaces of continuous functions with the uni-
form norm are Banach spaces”, where a Banach space is normed vector space that is complete,
meaning that all its Cauchy sequences have limits. We avoid using this terminology here since
we don’t want to get into the general theory of such spaces. (You will do this if you take more
courses in analysis.)

Exercise 31. A sequence of functions (f,,),>1 from [0, 1] to R is said to converge pointwise
to a function f : [0,1] — R if f,(z) — f(z) for every x € R. Prove that a pointwise limit of
continuous functions need not be continuous.

Now that we have a notion of distance on the space of continuous functions, we can make
sense of what it means for a function on this space to be continuous. If V' C R" is a closed,
bounded set and A is a subset of C(V,R™), we say that a function ¢ : A — C(V,R™) is
|| - ||co-continuous (or continuous with respect to || - ||~ ) at a function f € A if for every
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e > 0 there exists 0 > 0 such that if g € A satisfies ||g — f||ooc < 0 then [|¢(g) — &(f)]|eo < €,
and say that ¢ is || - ||o-continuous if it is continuous at every f € A.

Lemma 3.8. Let I be a non-trivial closed bounded interval in R and let ty be a point in I.

For each d > 1 integration defines a function

[:C(,RY — C(I,RY)

H/f

that is continuous with respect to || - ||o-

This proof will use the fact that

\ < [ W

for any continuous function f : [a,b] — R (Recall that the integral of a multivariable
function f : [a,b] — R is defined by integrating each coordinate separately.) If you haven’t
seen this inequality before you should convince yourself that it is true (e.g. using the definition
of the Riemann integral).

s)ds

Proof of Lemma 3.8. For each function f € C(I,R%) let [ f be the function defined by [ f(t) =
ft s)ds. For each f,g € C'(I,R™) we have that

/t:f(s) ds—/t:g(s) ds
up [ 176 st

I [f=J9lls = sup

< sup

< sup |t —toll[f = gllee <]~ [If = 9gllse
tel

where |I] is the length of I, which is finite since I is bounded. (We have to put the absolute
values in after the first inequality to deal with the case ¢ < to.) This implies || - ||oo-continuity
of [: Foreach e > 0, if f, g € C(I,R?) satisfy || f—gllec < =¢//I|then || [ f—[ gl <e. O

Example 3.9. Let C*([0,1],R) be the subset of C([0,1],R) consisting of those functions
that are continuously differentiable. Then differentiation does not define a || - ||-continuous
function C*([0,1],R) — C([0,1],R): The functions * sin(nx) converge uniformly to the zero
function as n — oo but their derivatives (£ sin(na))’ = cos(nx) do not converge uniformly to
Zero.

Term-by-term differentiation. We now have everything we need to go back and prove
Theorem 2.25, which we left unproven in our discussion of matrix exponentials. Strictly
speaking this requires versions of everything we have just done for functions taking values in
an arbitrary finite-dimensional vector space, but this follows from the R? version.
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Proof of Theorem 2.25. This is just || - ||co-continuity of integration in disguise! The same
proof we just also implies that integration defines a continuous function from C(7, V') to itself
when V' is any finite-dimensional vector space. That is, if we fix a base point ¢ty € I then

fH/t:f(s)ds

defines a continuous function C'(I,V) — C(I,V).

Now, the condition 3% || /™| < oo implies that the partial sums (32, £™) =1 form
a Cauchy sequence. The same proof we did earlier in the case V = R? shows that every
Cauchy sequence in C(I, V') converges to a limit in C(/, V'), and we can call the limit of these
partial sums g. Fix ¢y € I. Since (iterated) integrals are || - ||oo-continuous and (ZZ]\L1 fi(”))Nzl
converges to g, we must have that SN fi(m) (t) — 2N, £ (ty) converges (with respect to
| - [[oo) to the (n — m)th iterated integral of g for each 0 < n < m as N — oco. Since we
also have that the partial sums S~ | f™(ty) converge for each 0 < m < n by assumption,
it follows that, for each 0 < m < n, the partial sums S, fi(m) (t) converge (with respect to
| - |lo) to a function whose (n — m)th derivative is ¢ as claimed. O

Exercise 32. Let C'([0,1]) be the space of continuously differentiable functions from [0, 1]
to R. Given f € C'(]0,1]), define

1fller = 1O+ 11l

Prove that this is a norm. Prove that if (f,,),>1 is a Cauchy sequence in C'([0, 1]) in the sense
that

lim sup || fr — faller = 0
n—oo m>n

then there exists a function f € C*([0, 1]) such that ||f, — f|lcx — 0.

3.2 Proof of Picard-Lindelof

Proof of Picard-Lindeldf. Fix (ty, o) € €. Since € is open, there exists § > 0 such that the
box B of side-length 40 centered at (¢y,zo) is contained in 2. Since this box is closed, there
exists a constant C' such that ||F(t,z)|| < C for every (t,z) € B by Theorem 3.3. Let

~minds o 1
€ = min 50" M [

The reason for this particular choice of ¢ will become apparent later in the proof; the basic
point is that the integral transformation I' that we will iterate to find our solution is ‘more
continuous’ the smaller interval we take when defining it. Fix a closed interval I containing
to that has length at most e; we need to prove that the IVP has a unique solution on I.
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Remark 3.10. If you were coming up with this proof for the first time, you would keep ¢ as
a variable and then figure out how small you need to take it at the end of the proof. When
writing up the proof it’s usually nicer to define it up front so that you are certain there’s no
circularity in the conditions defining how small it needs to be.

Step 1: Defining the map. Let R be the closed box of sidelength 2§ around xg, so that
I xRC BC. Let

€ ={f € CURY: f(ty) =z and f(t) € R for every t € I}.

We claim that if f € € then the function I'f defined by

Tf(t) :x0+/t F(s, f(s))ds tel

to

also belongs to @. Clearly I'f is continuous and satisfies ' f(ty) = x¢, so it suffices to prove
that I'f takes values only in R. To see this, note that, since ||F'|| < C' on B we have that

ITF(t) — zol] < / |F(s. f(s))l| ds < Clt — to] < &

for every t € I and hence that I'f(t) € R for every ¢t € I as claimed. (This is why we made
sure £ < §/C when choosing € > 0.) Thus, we have a well-defined function

I'% —%

fr— :130+/ F(s, f(s))ds.

to

Our next goal is to prove that this map tends to “push functions closer together” in an
appropriate sense.
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Step 2: The contraction property. We claim that if f;, fo € € then

I~ Tl < 1~ fol (35)

(The fact that we get 1/2 here isn’t very important; any constant strictly less than 1 would
work.) Indeed, for each t € I we have by the Lipschitz assumption on F that

ITfi =Tl < <M

[Hﬂxmw—F@ﬁ@ww

[Hmw—mwMS

< M(t =~ to)lfi ~ falle < gllFi — Foll

where the final inequality holds since we took ¢ < 1/2M.

Step 3: A Cauchy sequence via Picard iteration. Let f; € ¥ be given by taking
fo = zo. For each n > 1, we define f,, € € by f, =T f,_1. We have by (3.5) that

1
||fn+1 - fn”oo = ||an - an—l”oo < §||fn - fn—l”oo

for each n > 1 and hence by induction that

[ fr1 = fallo <2711 = follo

for every n > 0. It follows by the triangle inequality that

m—1 m—1
1 fm = Fall <D0 M fivr = filloo < D 2711 = folloo < 2712 = folloo

and hence that (f,)n,>1 is a Cauchy sequence in C'(I,R™). Thus, there must exist some
function f € C(I,R™) such that ||f — ful]lco = 0 as n — oo, and this function f must also
belong to € (proving this in detail is a nice simple exercise to get to grips with the || - ||oo
norm). Finally, we have that

ITf = flloo < Tf = Tfulloe + 100 = fulloo = 1fn = Fll
3
for every n > 1, and since the right hand side tends to zero as n — oo we must have that

ITf — f|| = 0 and hence that T'f = f. In other words, f is a solution to the integral equation
(3.2) and hence to the ODE f' = F(t, f) on I with f(ty) = wo.

Step 4: Uniqueness. Suppose that fi, fo € € are both solutions to the ODE f' = F(t, f)
on I = [ty — e,ty + €] with fi(t9) = fa(to) = xo. Then f; and fo both solve the integral
equation (3.2) and hence are fixed points of I' in the sense that I'f; = f; and I'fo = fo. But
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in this case we have that || fi — fallso = [|[Tfi = T folle < 2]|/1 — fallso which holds if and only
if || f1 — f2llo = 0, if and only if f; = fo. Thus, there is at most one solution f € % to the
ODE satisfying f(to) = zo.

Unfortunately this is not quite what we wanted to prove: we also need to rule out the
existence of solutions that don’t belong to €, i.e., that don’t take values in R. Ruling out
such a solution can be done similarly to how we proved that I' : ¥ — % took values in %.
Indeed, suppose that (I, f) is any solution to the integral equation (3.2). Since R is closed

and f is continuous, we can consider the largest possible closed interval [t_,¢,] C I containing
to such that f(t) € R for every t € [t_,t,], defined by

t_=sup{t <to:tée¢lor f(t)¢ R}
te =inf{t >ty:t ¢ I or f(t) ¢ R}.

Since f(t) € R for every t € [t_,t,], we have that if t € [t_,{,] then

o

1£(8) —oll = || [ (s, f(s))ds /HF ) ds < Cle—to] < &
since € < ¢§/2C. As such, neither f(t_) or f(t4) can belong to the boundary of R (which is
centered at xy and has side lengths 26), and since f is continuous we must have that ¢ = inf I
and ty = sup I, so that f takes values in R as desired. O

3.3 Higher-order Picard-Lindelof

Recall Proposition 2.19, which explained how for each nth order ODE with d-dimensional so-
lutions, there is a first-order ODE with nd-dimensional solutions whose solutions are naturally
in bijection with those of the original ODE. This proposition has the following consequence
when combined with Picard-Lindelof.

Corollary 3.11 (Higher-order Picard-Lindelof). Let Q C R be a non-empty open set and
let F:1xQ — R be a continuous function for which there exists a constant M such that

[1E(t,x) = F(t,y)|| < Mlx -y (3.6)

for every (t,x), (t,y) € Q. Then for each (ty,xq) € Q) there exists € > 0 such that if I is a
non-trivial closed interval of length at most € containing ty then the ODE f™ = F(t, f) has
a unique solution on I with f@(ty) = X, for each 0 <i<n—1.

Checking that this corollary follows from the first-order version of Picard-Lindelof is left
as an exercise below.

Exercise 33. Let I C R be a non-trivial interval, let n > 1, and let f : I - Randg: I — R
be n-times differentiable. Given a set S C I, we say that ¢t € I is an accumulation point of
S if there exists a sequence (t,),>1 in S\ {t} such that ¢, — ¢t as n — oo.
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1. Prove that if S C I is such that f(s) = g(s) for every s € S then f™(t) = g™ (t) for
every accumulation point ¢ of S in I and every m < n. (Warning: an accumulation
point of S need not be an accumulation point of the set of accumulation points of S!)

2. Deduce that if f and g both satisfy the same nth order ODE f™ = F(t, f,..., f®=1)
on I, where I satisfies the hypotheses of the Picard-Lindelof theorem, and are equal
on a set S that has an accumulation point in I then they are equal at every point of I.
(This is an ODE analogue of the identity principle in complex analysis.)

3. Deduce that if I is a closed, bounded interval then any two solutions to the same nth
order ODE of the form f™ = F(t, f,..., f™ V) defined on I, where F satisfies the
hypotheses of the Picard-Lindel6f theorem, are either equal or coincide at at most
finitely many points. Is this true for I = R?

Exercise 34. Verify in detail that Theorem 3.1 (the Picard-Lindel6f Theorem) and Proposi-
tion 2.19 imply Corollary 3.11.

Exercise 35. Formulate and prove a precise version of the following statement: For every
1 < m < n, every nth order ODE for a function f taking values in R? is equivalent to an mth

order ODE for a function ¢ taking values in R=m+hd,

3.4 Maximal solutions

The Picard-Lindeloof theorem has the annoying feature that it only tells us about existence
and uniqueness of solutions locally, in a small interval around our starting time t,. We now
discuss the theory of maximal solutions, where we extend our solution to be defined on as big
an interval as possible.

We first need to introduce the appropriate “global” analogue of the Lipschitz condition
in the Picard-Lindel6f Theorem. Let €2 C R™ be a set. A function F' : Q — R™ is said to
be Lipschitz if there exists a constant M such that ||F(x) — F(y)|| < M|z — y|| for every
z,y € Q. (Recall that we interpret this as a ‘bounded slope’ condition; we’ll interpret it in
terms of the derivative of F' momentarily.) We say that F' : Q@ — R™ is locally Lipschitz
if for each x € ) there exists € > 0 so that the restriction of F to {y € Q : |ly — z|| < e} is
Lipschitz. (In particular, Lipschitz functions are always locally Lipschitz.)

Proposition 3.12. If Q) CR" is open and F : Q2 — R™ is continuously differentiable then F
is locally Lipschitz. If the derivative of I is bounded then F is Lipschitz.

Proof. Let 2 C R™ be an open set and let F' :  — R™ be continuously differentiable. For
any two points z,y € Q with + <y we have that
1
<)

[F(x) =

/—Fw+t 2)) dt

%F(x +t(y — :c))H dt.
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Now, using the chain rule, we have that

%F(gj +t(y—x) = [DF(z +tly — 2))] (y — x)

and hence that
0
aF(x +t(y — )| < [[DF(x +t(y — ))[loplly — ||

If F' has bounded derivative, so that | DF(x)||op, < M for every t € Q and some M < oo, then
[1F(x) = F(y)l < M|z -yl

as claimed. More generally, since €2 is open, for each x € {2 there exists € > 0 such that the
closed ball B ={y : ||y — x| < e} is contained in 2. Since this set is closed and bounded and
the restriction of DF to this set is continuous, the supremum sup,cp [| DF(y)|[op is finite, and
we have as above that

1E(y) = F(2)]l < sup IDE)lop - Iy — =l
Y

for every y,z € B. Since x € () was arbitrary, F' is locally Lipschitz as claimed. O

Example 3.13. The function f : R — R defined by f(x) = |z| is Lipschitz but not continu-
ously differentiable.

Example 3.14. The function f : R — R defined by f(z) = 22 is locally Lipschitz but not
Lipschitz.

Given an open set Q C R and a function F : Q — R? where we think of the first
coordinate as time, we say that F' is locally space-Lipschitz if for every (¢,x) €  there
exists € > 0 and M < oo such that ||F(s,z) — F(s,y)|| < M||z—y]| for every (s,y), (s,z) €
with ||(s,y) — (t,x)|], [|(s,2) — (t,x)|| < e. (This terminology is not standard.) Being locally
space-Lipschitz is a weaker condition than being locally Lipschitz, so that every continuously
differentiable function is locally space-Lipschitz.

We now have everything we need to discuss the “global” version of Picard-Lindelof. We
say that a solution (I, f) is an extension of a solution (I, f) if I C I and the restriction of
f to I is equal to f. (In particular, every solution is an extension of itself.) We say that a
solution (7, f) is maximal if it has no extensions other than itself.

Theorem 3.15 (Global Picard-Lindelof). Let Q C R be an open set and let F : Q — R?
be a continuous, locally space-Lipschitz function. For each initial condition (ty,xq) € € there
exists a unique maximal solution (Inmax, fmax) to (IVP), which extends every other solution.
Moreover, the interval I, is open.
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We begin by proving that we can always “glue together” two solutions to make a solution
defined on a bigger interval.

Lemma 3.16. Let Q C R be an open set, let F: Q — R? be a continuous, locally space-
Lipschitz function, and let (to,xo) € Q. If (I1, f1) and (Is, f2) are two solutions to (IVP) then
f1 and fy coincide on I, N Iy and if we define a function f: I; U I, — R? by

filt) tel

fe) = Rt tel

(3.7)

then f is a solution to (IVP) that extends both (I, f1) and (I3, fa).

Remark 3.17. A pretentious way to state this lemma is that the set of solutions to a given
(continuous, locally space-Lipschitz) ODE form a “sheaf”.

Proof of Lemma 3.16. Since F is locally space-Lipschitz, there exists a non-empty open set
U C Q containing the point (o, x¢) such that the restriction of F'(¢,x) to U is Lipschitz in x.
As such, the Picard-Lindelof Theorem implies that there exists ¢ > 0 such that (IVP) has a
unique solution on every non-trivial closed interval of length at most € that contains t,, and
hence that the two solutions f; and f5 coincide on I} N Io N [ty —&/2,t + ¢/2]. Let

ty =inf{t >ty fi(t) # fa(t) or t ¢ L N I}
to=sup{t <to: fi(t) # f2(t) or t ¢ 1N I}

We want to prove that ¢, = sup ; N I and that ¢ = inf [; N I5: This implies that f; and f,
coincide on I; N I, since they are both continuous.

We will prove that ¢, = sup I; N I, the proof of the claim about ¢_ being similar. Suppose
not, so that t, < sup/l; N I. Since f; and f5 are n-times differentiable, their first n — 1
derivatives are continuous and (to, fi(ts), ..., "V (t) = (te, folty), ..., £V, € Q.
Since F' is locally space-Lipschitz on €2 there exists a non-empty open set U’ around this point
so that F'is Lipschitz on U’, and it follows by Picard-Lindeldf that there exists € > 0 such
that f, and fy coincide on [ty — e,t; + ¢|. This contradicts the definition of ¢, so that in
fact f1 and fy coincide on I; N Iy as claimed.

It remains to verify that f is differentiable and satisfies (IVP). In general, if we glue
together two functions f; and f, that are defined on two non-trivial intervals I; and I of
non-empty intersection I; N I and coincide on this interval as in (3.7), the only way for the
resulting function to not be n-times differentiable is for I; and I to intersect at a single point
and for f to have distinct left and right mth derivatives at this point for some 1 < m <n. In
our case this cannot happen since the intervals I; and I, must both contain ¢y and solutions
to (IVP) have specified mth derivatives at this point for every 1 < m < n. Thus, f is n-times
differentiable and satisfies (IVP) since f; and f> both do. O
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Proof of Global Picard-Lindelof. Since F' is locally space-Lipschitz, there exists a non-empty
open set U C R containing the point (g, %) such that the restriction of F(¢,x) to U is
Lipschitz in x. It follows from Picard-Lindel6f that there is at least one solution (I, f) of
(IVP). To define a maximal solution, we first take the maximal interval

Lo = | J{I : (I, ) is a solution of (IVP)}.

(Note that if a unique maximal solution exists then its domain must be given by this expres-
sion!) We define a function fuay @ Imax — R? by, for each x € Iy, picking a solution (I, f)
to (IVP) with = € I, one of which must exist by definition of Iy, and taking fi.x(z) = f(z)
— Lemma 3.16 implies that the choice of solution (7, f) does not affect the value of fiax(x)!
For each x € I and each solution (I, f) to (IVP) with € I we have moreover that the
restriction of fi.« coincides with f, and it follows that f,.. is n-times differentiable and is a
solution to (IVP). Since (Iax, fmax) extends every solution to (IVP), it is the unique maximal
solution to (IVP).

We now prove that I,.. is open. If I,.. is not open, then either sup [,., < oo and
sup Inax € I or inf Iy, > —o0 and inf I, € I (or both). We will rule out the case that
SUP Iimax € Imax, the case that inf [, € Iy being similar. Suppose that (7, f) is a solution to
(IVP) with sup I € I. Write sup I = b. Since F is locally Lipschitz, there exists a non-empty
open set U’ C Q containing the point (b, f(b), ..., f™~ (b)) such that the restriction of F(t,x)
to U’ is Lipschitz in x. As such, the Picard-Lindelof theorem implies that there exists e > 0
and a solution g to the ODE g™ = F(t,g,...,g" Y (t)) defined on (b — ¢,b + ¢) satisfying
(g(b),d'(b), ..., g D)) = (f(b), f(b),..., f™D(b)). Thus, if welet I = TU(b—¢e,b+¢)
then the function f : I — R? defined by

s Jfle) zel
fle) = glz) xzel\I

in n-times differentiable and satisfies the (IVP). It follows that any solution (7, f) to (IVP)
such that sup I € I admits a non-trivial extension (i.e., an extension that is not equal to (I, f)
itself), and hence that sup lax & Imax- O

Remark 3.18. If we consider an ODE rather than an IVP, the Global Picard-Lindel6f theorem
implies that if F' is locally space-Lipschitz then there is exactly one maximal solution passing
through each phase-space point (o, Xp), which extends every other solution passing through
this point. Indeed, “passing through this point” is equivalent to solving an appropriate IVP!

Exercise 36. Let 2 C R be an open set, let F': Q — R be a continuous, locally space-
Lipschitz function, let (t,x0) € 2 and let (I, f) be a maximal solution to (IVP). Prove that
there must exist a sequence (¢;) in I with t; — sup I such that (t, f(tz), f'(tx), ..., f™ D (tr))
either has a coordinate converging to infinity or converges to a point that does not belong to
Q. In other words, a solution can only fail to be extended if it blows up or leaves the domain
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of definition of the ODE.

3.5 Autonomous equations

Before moving on, let us briefly discuss autonomous equations. As we briefly mentioned back
at the beginning of the course, an autonomous ODE is one of the form

FW =FE(f, ... fm),

i.e., where the right hand side does not directly depend on the dependent variable t. An
important property of autonomous ODEs is that if the function ¢ — f(t) solves an autonomous
ODE then so does the ‘time-shifted’ function ¢t — f(t — o) for every ¢, € R.

When the hypotheses of Global Picard-Lindelof are satisfied, there is an easy way to check
that we've found all solutions to an autonomous ODE:

Theorem 3.19 (Solving autonomous equations by shifting). Let Q C R™ be open, let F :
Q — R? be locally space-Lipschitz, and suppose that S is a set of mazimal solutions to the
equation f™ = F(f,... ). If for each vy = (z00,...,To,) € Q there exists (I, f) € S and
t € I such that (f(t),..., f™ V) = xq then every mazimal solution to f™ = F(f,..., f=1)
is of the form (I + to, f(t — to)) for some to € R and (I, f) € S where the shifted interval
I +to is defined by I +tog={t+to:t €I}

In other words, if we have enough maximal solutions to visit every point of the phase space
in which the autonomous ODE f™ = F(f,..., f"=Y) is defined, then every other maximal
solution can be found by ‘time-shifting’ one of these solutions.

Proof. First note that if (1, f(¢)) is a maximal solution to the ODE then so is (I +to, f(t—to))
for each ty € R: That it is a solution follows since the mth derivative of the time-shift of a
function is always equal to the time-shift of the mth derivative of that function. That it is
maximal follows since if it weren’t then we could define a non-trivial extension of (I, f(¢)) by
time-shifting back the non-trivial extension of (I +tg, f(t —to)). The fact that every maximal
solution is a time-shift of a solution in S follows by Global Picard-Lindel6éf (applied to the
function F : R x Q defined by F(t,z) = F(x)) since this set of maximal solutions includes
one going through each possible initial condition (tg,z) € R x €. O

In particular, if we have a solution f : R — R to a first-order, one-dimensional autonomous
ODE f' = F(f) that F is locally space-Lipschitz on R and f is a bijection, then every maximal
solution to this equation is of the form (R, f(t — ty)) for some t, € R.

3.6 Smoothness of solutions

Part of our definition of what it meant for a function to be a solution of an nth order ODE
was for it to be n-times differentiable. In fact, we can often guarantee from first principles
that solutions to ODEs are smooth:
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Proposition 3.20. Let Q C R'™™ be open and let F : Q — R? be k-times differentiable. If
(I, f) is a solution to the ODE f™ = F(t, f,..., f® D) then f is k + n-times differentiable.
In particular, if F' is smooth then f is smooth.

Proof. We will prove that f is m + n-times differentiable for every 0 < m < k by induction
on m. The base case m = 0 holds by assumption. Let 0 < m < k and suppose that f is
(n 4+ m — 1)-times differentiable, in which case the function mapping ¢ to (¢, f,..., f® ) is
m times differentiable. The (multivariable) chain rule implies that the composition of two
m-times differentiable functions is differentiable, and since F' is m-times differentiable by
assumption it follows that F(¢, f,..., f™ D) is m-times differentiable. This completes the
proof of the induction step since f™ = F(¢, f,..., f*=V). n

Exercise 37. Give an example where [ is Lipschitz but not differentiable, and the solution
to the first-order autonomous ODE [ = F(f) is not twice-differentiable.

Later we will prove that solutions to ODEs are often real analytic, a much stronger con-
dition than being smooth.

3.7 Dependence of solutions on coefficients and initial conditions

We now study the dependence of solutions to ODEs on their initial conditions and coefficients.
We will not prove the most general version of these theorem that we possibly could; there
are also versions that only require F' to be locally space-Lipschitz. The version that we
now state is sufficiently general to handle all linear ODEs (even if they have non-constant
coefficients). Note that the part of the theorem that rules out finite-time blow-up (unless the
ODE becomes undefined) really is specific to the case that F' is space-Lipschitz rather than
locally space-Lipschitz.

Proposition 3.21 (Continuity of solutions as functions of their initial conditions). Suppose
that I C R is a non-trivial open interval and that F : I x R™ — RY is a continuous function
such that for each closed, bounded interval J C I, the restriction of F to J is space-Lipschitz
in the sense that there exists M(J) < oo such that |[F(t,x) — F(t,y)|| < M||x —y|| for every
t € R and x,y € R™. Then every mazimal solution to the ODE f™ = F(t, f,..., f"Y) has
domain I. Moreover, if J C I is a closed, bounded interval containing the point to and (I, f)
and (I, g) are the unique solutions passing through the points (to,Xo) and (to,yo) for some xq
and yo in R™ then
16 — g(6)] < MO=jxg — yo

for everyt € J.

In other words, solutions to space-Lipschitz ODEs that start within distance € of each
other remain close until time at least of order log 1/e.

Example 3.22. The ODE f’ = f is Lipschitz with constant M = 1. The solutions to this
ODE starting at 0 and ¢ at time 0 are 0 and ee’ respectively, and show that the inequality of
Proposition 3.21 cannot be improved.
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This proposition has the following corollary.

Corollary 3.23 (No finite-time blow-up for linear ODEs). Let I be an open interval and
suppose that a,_1,...,a9,b: I — R are continuous. Then every xo € R™ and ty € I, there is
a unique mazimal solution to the ODE ™ +a,_1 f" D 4+ .a1f' +aof = b with f(ty) = xo,
and this mazimal solution has domain I.

We will prove this proposition using Gronwall’s inequality, an elementary lemma that is
very useful throughout the study of ODEs.

Lemma 3.24 (Gronwall’s inequality). Let I be a non-trivial interval, let to € I, and suppose
that f,g,h : I — R are continuous functions such that f is differentiable and

F'(t) < h(t) +g(8) f(t)

for everyt > tg in I. Then

7(1) < exp [ /t:g<s> ds] Flto) + / esxp [— [ ate) dx] h(s) ds

for every t >ty in I. In other words, functions satisfying the differential inequality f'(t) <
h(t) + g(t)f(t) are bounded by solutions to the differential equation f'(t) = h(t) + g(t)f(t).

Proof. Define u(t) = exp [— ftz g(t)] Then we have by the chain rule, product rule, and

fundamental theorem of calculus that

(fu) = flu—gfu=u(f —gf) < uh

where we used the inequality f* < h + fg (together with the fact that u is non-negative) in
the final inequality. It follows by the fundamental theorem of calculus that

t

F(tyu(t) — flto)ulto) = / (fu) ds < / u(s)h(s) ds,

to to
which is equivalent to the claim since u(ty) = 1. O

Unfortunately, the main thing we would like to “apply” Gronwall to is || f||, which is not
differentiable. As such, it will be useful to have an “integral” version of Gronwall that does
not require differentiability of f. (On the other hand, this integral version will require that g
is non-negative, which was not needed for the differential version.)

Lemma 3.25 (Gronwall’s inequality, integral form). Let I be a non-trivial interval, let ty € I,
and suppose that f,g: I — R are continuous functions such g is non-negative and

£ — F(to) < / B(s) + g(5)f(s) ds

to
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for everyt >ty in I. Then

f(t) <exp [/t:g(s) ds] (f(to) + /t: exp [_ /t:g(x) dx] h(s) ds)

for everyt >ty in I.

Proof. Consider the function v(t) defined by

olt) = exp [— /t:g@ ds] /t:g(S)f(S) ds.

We can differentiate v using the product rule, chain rule, and fundamental theorem of calculus
to obtain that

V(D) = —g(t)exp [— / g(s)ds] [ ats)5(5)ds + gl017(0) exo [— / g<s>ds]

to

= g(t) exp [— | at) ds] ~ <f(t) - [ st ds> .

Using the assumption that g is non-negative, we obtain that

v'(t) < g(t) exp [— /ttg(S) d8] <f(to)+/tt h(s) dS)

and hence that

o(t) = v(t) — vlto) < / o(r) exp

5 — /t:g(s) ds] (f(to) + /t: h(s) ds) dr
= —exp [_ /t:g<8) d3] <f(t0) + /t: h(s) ds) + f(to) + /t: exp [_ /t: 9(s) d5] h(r)dr,

where we used integration by parts in the second line. It follows by definition of v(t) that

/ ' g(s)F(s) ds = ul) exp [ /t:f’@ ds] <- / h(s)ds — (1)

/t:g(s) ds] /t: exp [— /t: g(s) ds] h(r)dr

+ exp

/t 4(s) ds] F(to) + exp
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and hence that

7(t) < exp [ /t:g<s> ds] Flto) + / esxp [— [t ds] hr) dr

as claimed. O
Let us now prove Proposition 3.21.

Proof of Proposition 3.21. We first prove the claim that maximal solutions are defined on I.
It suffices to prove that if ¢y € I then every maximal solution defined on an interval containing
to has domain containing J for every closed, bounded interval contained in I and containing
to. Fix top and J and let M = M(J). Let (I, f) be a solution to the ODE with ¢y, € I’ and
let f = (f,f",..., f™Y) be the corresponding phase space solution. Then

1£(t) = £(to)|| = II/t F(s,f(s))ds| <

/t (s, £(s)]| ds

where F is the phase-space version of F. It follows from the triangle inequality that F is
space-Lipschitz whenever F' is, with the same constant M. As such, we can bound

[F (s, £(s))[| < [IF(s, £(t0))[| + MIE(2) — £(to)]

for every t € I' N J. As such, we can apply the integral form of Gronwall’s inequality (with
h(t) = ||F(t,f(to))| and g(t) = M) to deduce that

t
I£(0) — £t < 10 [ e (s, gt ds

to

for every t >ty in I’ N J. Applying the same argument to f(—t) yields more generally that

I£(t) — £(to) || < e / e MOl R (s, £(t0)) ] ds (3.8)

to

for every t € I. The only important feature of this inequality for our current purposes is that
I£()|| is bounded by a continuous function that is defined on all of I, and hence is bounded
on J. Since there is no special role for ¢, in this inequality, we obtain more generally that

I£(t2) — £(t)] < M= /2 e M Hl||F (s, £(t1))] ds (3.9)

t1

for every ti,ty € J.

To use this inequality, we will need the following elementary fact.
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Exercise 38. Let (V.|| - ||) be a normed vector space and let a < b be real numbers. If
f: (a,b) = V is n-times continuously differentiable and the limits limy;, f(¢) and lim,qy, £ ()
exist for every 1 < m < n, then the extension of f to (a,b] defined by taking f(b) = limyy f (%)
is n-times continuously differentiable.

We will prove that if (I, f) is maximal then sup J € I’, the proof that inf J € I’ being
similar. It suffices to prove that if sup J ¢ I’ then the solution (I’, f) is not maximal. Suppose
to this end that supJ ¢ I’, and let ¢, = sup I’ < supJ. It follows from (3.9) that ||f(¢)]|
is bounded on [to,t,], and since F is continuous on I x R™ it follows by the extreme value
theorem that [|F (s, f(¢))|| is bounded on the set {(s,t) : to < s,t < t;}. Letting C' be the
maximum of |F(s,f(¢))|| on this set, it follows from (3.9) that

t2
/ e*M|87t1| dS
t1

for every tg < t; <ty < supI. Since the right hand side is small when |t,—%| is small, it follows
that the limit limy,, f(¢) is well-defined. Since F is continuous, limgyy, f (n) — limyy, F(t,£(2))
is also well-defined and equal to F(t.,limy,, f(2)). As such, we can extend f to the interval
I' U {t;} by setting f(t;) = limyy, f(t), which yields a solution to the ODE defined on this
larger interval by the above exercise. This shows that (I’; f) was not maximal, completing

£ (ty) — £(t1)]] < CeMitz—tal < CeMlt=tili, — ¢

the proof.

It remains to prove the claim concerning stability with respect to initial conditions. Let
(I, f) and (I, g) be the two maximal solutions passing through the points (to, %) and (tg, yo)
respectively, let f and g be the corresponding phase-space solutions, and let J be a closed,
bounded interval contained in / and containing t,. Writing M = M (.J), we have that

1£(2) — gl = /F(Si(S))—F(s,g(S))dS

to

<M

/ I£(s) — g(s) ds

(s,9(s Hds

for every t € J, and applying the integral form of Gronwall yields that

I£(t) — g(®)]] < ™" 0lIf (ko) — g(to)

for all t € J with t > t;. An analogous inequality holds also for ¢ < ¢, by similar reasoning.
This is stronger than the claimed inequality. O

We stress again that the proposition we have just proved is just one particularly simple
instance of a “continuity of the solution as a function of the initial condition” result; one can
also prove similar theorems under the weaker assumption that the function is only locally
space-Lipschitz.
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We next deduce a similar theorem about continuous dependence of solutions on the func-
tion F,. Again, the version we are stating here is not the most general theorem you could
prove to this effect.

Proposition 3.26 (Continuity of solutions as functions of coefficients). Suppose that I C R
15 a non-trivial open interval, and that for each a € R™ we have a continuous function
F, : I x R — R%.  Suppose further that for each closed bounded interval J C I there
exists M(J) < oo such that ||F,(t,x) — Fp(t,y)|| < M(J)|[(x,a) — (y,b)|| for every t € J,
x,y € R, anda,b € R™. If (I, f) and (I,g) are the unique mazimal solutions to the ODEs
f =F,(t, f,...,f" V) and ¢ = Fy(t,g,...,9™ V) passing through the point (ty,xq) for
some Xy in R™ and a,b € R™ then

I£(t) — @)l < " lla —b]

for every t € R.

Proof. Consider the first-order, (nd 4+ m)-dimensional ODE (f,a)’ = (F,(¢,f),0), where F,, is
the phase-space version of F,. The solutions to this ODE have a constant value of their second
coordinate a, and are in bijection with the solutions to the original ODE; the constant second
coordinate encodes the parameter a in the function F,. As such, the proposition follows from
Proposition 3.21. O

Remark 3.27. A different way to prove stability under changing coefficients and initial con-
ditions is using the Arzela-Ascoli theorem, which gives conditions under which a sequence of
continuous functions has subsequential limits in the uniform norm. Using this theorem, one
shows that if one has a convergent sequence of initial conditions and a convergent sequence of
functions encoding the ODE, then the solutions to the relevant IVP must have a subsequential
limit, and that any such subsequential limit must be a solution to the limiting IVP. Under
the hypotheses of Picard-Lindel6f this solution is unique, so that in fact the solutions to the
IVPs in the sequence really do converge to the solution of the limiting [VP. One complication
in doing this is that one must define all relevant “spaces of solutions” in a way that accounts
for the fact that different solutions might have different domains, even when these solutions
are maximal. Note that this proof method is more general than ours, but does not provide
quantitative estimates on how close the two solutions must be to each other.

3.8 Inhomogeneous linear ODEs and Duhamel’s principle

Let us now consider the case of inhomogeneous linear ODEs
™ fan  fO D paf tagf=b
for some functions a,_1,...,ag and b. As before, we can write this equation in the form
f'=Af+b
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Recall that if f is any (phase-space) solution to this ODE, then every other solution can be
written in the form f + g, where g is a solution to the homogeneous ODE g’ = Ag. As
such, to solve inhomogeneous linear ODEs we just need to be able to solve the corresponding
homogenenous linear ODE and be able to find one solution to the inhomogeneous ODE. This
is often called finding a particular solution. In practice, the best way to do this is often
“by inspection”, i.e. just guessing a particular solution based on your experience solving
ODEs. In this section we will discuss a systematic way to find a particular solution known as

Duhamel’s principle.

Before discussing Duhamel’s principle, let us mention that is is usually possible to think of
inhomogeneous linear ODEs as a kind of homogeneous linear ODE in one higher dimension,
provided that log b is well-defined and differentiable. For example, if b is constant then

/

fo b—anaf" — - —arf —aof
f(n—2) f(n—l)
f"/ l]l://
f f
b 0
—Qp_1 —Cp_2 —ay —a; —ap 1 fnb
1 0 O 0 0 fn=2)
1 o 0 1 0 0 1
0 0 1 0 0 f
0 0 0 0 0 b
while if b is continuously differentiable and does not take the value zero then
Fo=n\ b—an 1 fD — i —ay f — aof
f(an) f(nfl)
j;/ JC'//
f f
b 0
—Qp—1 —0p—2 —ap —ag 1 fo
1 0 0 0 f=2
| o 0 0 0 £
0 0 1 0 0 f
0 0 0 0 (logb) b
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This means that we can always solve constant coefficient linear ODEs using matrix expo-
nentiation, even if they are inhomogeneous. (Be careful to note however that the relevant
matrices are not quite of the same form that we considered in the homogeneous case.)

We now discuss Duhamel’s principle.

Proposition 3.28 (Duhamel’s principle). Consider the linear ODE f' = Af + b, where A
and b depend continuously on t and are defined on some non-empty open interval I C R. For
each s € I, let fs be the solution to the homogeneous linear ODE f' = Af with f§n_1)(s) = b(s)
and fs(m)(s) =0 for every m < n — 1. For each ty € I, the function defined on I by

- /t:fs(t) ds

is a solution to f' = Af +b. Consequently, every solution to this ODE can be expressed as
the sum of this function and a solution to the homogeneous linear ODE ' = Af.

The proof of Duhamel will use the following lemma, which is a consequence of Proposi-
tion 3.21; the proof is left as an exercise. This lemma also ensures that the function f from
the statement of Duhamel is well-defined.

Lemma 3.29 (Regularity of solutions). For each 0 < m < n the function fs(m) (t): I xR" —
R™ depends continuously on (s,t).

We will also need the following standard fact about differentiating under the integral sign.

Theorem 3.30 (Differentiating under the integral sign). Let z¢ < x1, let a : [z, x1] — R and
b [xo,z1] = R be continuously differentiable with a(x) < b(x) for every xo < x < x1, and
suppose that f(x,t) is a function defined on some subset 2 of R* such that f and its partial
% are well-defined and continuous and {(x,t) : xog < x < z1,a(x) <t < b(x)} C Q.
Then f:((f)) f(z, t)dt is differentiable with derivative

derivative

d [*® d d )
) f(x t)dt = f(z,b(z))——b(z) — f(z,a(z))-—alz )+/a(x) FRAGDLZ

Proof of Duhamel’s principle. That fact ensures that we have the conditions we need to dif-
ferentiate under the integral sign, so that

dt/fs Jds = f,(t) /atfs ds—/f

and by induction that

-1 : ' sm) t)d
" dtm/fs = /" )<t)+/tof§m)(t)d5: fzof () ds m<n

b(t) —|—ftz fs(m)(t) ds m=n
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for every 1 < m < n. It follows by linearity of the integral that

n—1 t m t
FOE) ) " aif ™M () =b(t) + / fds +) a / F ds
=0 to i=0 to

m

o+ [ [0+ D) as =
=0

to

as required. O
Let us now use Duhamel’s principle to give the general solution to first-order linear ODEs.

Theorem 3.31 (First-order linear ODEs). Let I C R be a non-trivial open interval, let
to € I, and let a,b : I — R be continuous. Then every mazximal solution to the first-order
imhomogeneous linear ODE

f+af=0b

t b
to

Proof. We already know that every maximal solution has domain /. We also already know
that every solution to the homogeneous linear ODE f’ = —af is of the form f = Ce” Jig ote)ds
for some ty € I and C' € R. As such, the function fs defined in the statement of Duhamel’s
principle can be written

1s of the form

fs(t) _ b(S)G_ f; a(u) du7

so that . t
/ b(s)e™ Je atdu g5 — ¢ I a(u)du/ b(s)eln @ g

to to
in a solution to our inhomogeneous linear ODE. The claim follows since every solution can be

written as the sum of this solution with some solution of the associated homogeneous linear
ODE f' = —af. O

Exercise 39. In this exercise you will work through an alternative derivation of the solution
to first-order inhomogeneous linear ODEs. Let I C R be a non-trivial open interval, let ¢y € I,
and let a,b: I — R be continuous. Define the integrating factor u(t) = 09995 Show that
if f solves the ODE [’ + af = b then pu(t)f(t) satisfies the ODE

(nf) = pb.

Use this to give an alternative proof of Theorem 3.31.
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Exercise 40. Find the maximal solution to the IVP

3f

!/
F+-

=t f(1)=1/2.

Exercise 41. Find every maximal solution to the ODE f’' +tf = t%.
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4 Separable equations

Now that we have laid the proper groundwork by establishing our main existence and unique-
ness theorems, it’s time to start solving some equations! We begin by studying separable
equations, one of the most important and easy to solve classes of equations arising in appli-
cations. We say that a first-order ODE f’ = F(¢, f(t)) describing a one-dimensional function
f is separable if I’ can be factored into a term depending only on ¢ and a term depending
only on f(¢) — in other words, a separable ODE is a one-dimensional, first-order ODE of the

df
2 = FOG(/(1))

Note that this includes the case that one of F' or GG is constant. Before stating any theorems,

form

let us start by explaining how to solve such an ODE in heuristic terms. The (non-rigorous)
idea is to imagine that we are free to ‘rearrange’ the equation to read

1
G & = Pl

(of course this does not really make sense!) then integrate both sides to obtain that

/#df = /F(t) dt. (4.1)

Of course, even if the method used to arrive at this answer was a little dubious, we can still
try plugging it into the equation and seeing if it works.

Example 4.1. Let’s consider the separable ODE

fi(t) =tf(t)*

[ gar= [ra

as above. Integrating both sides and remembering to include a constant of integration gives
that

We can write out the formal solution

1 1

——==t*+C.
T2t
Letting ¢ = —C'/2, we can rearrange this to give that
2
/= c—1t1%
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If we want to make sure that this is really a solution to the ODE, we can just differentiate:

(Z5) - - ver

as desired. Thus, for each ¢ < 0 we have a maximal solution (R, ﬁ%), for ¢ = 0 we have two

((—oo, 0), —t%) and ((0, 00), —t%)

while for each ¢ > 0 we have three maximal solutions

) (CvevaZg). wa (Ve )

c— 12

maximal solutions

2
c— 12

(o0 -vo)

These solutions are maximal since the functions blow-up as they approach 4+/c and so cannot
be extended to any larger interval. Of course (R,0) is also a maximal solution (which can
be thought of as the limit of the other solutions when we take ¢ — +00). Are these the
only maximal solutions? Yes! Since the function F(¢,z) = tz? is continuously differentiable
it is locally Lipschitz, and Global Picard-Lindedf implies that there is exactly one maximal
solution passing through each space-time point (g, xo), and since every non-zero x, can be
written as 2/(c—t2) for appropriate choice of ¢ € R the solutions we have just written down are
the only maximal solutions that exist. (In particular, every other solution is just a restriction
of one of these solutions to a smaller domain.)

Exercise 42. Find all maximal solutions to the ODE f’ = ¢(f — 1) (Hint: You don’t have
to redo all the work we just did!)

Exercise 43. Find all maximal solutions to the ODE f’ = 3 f4.

Let’s now return to the general form of our separable ODE f' = F(t)G(f). Since we
want to express f in terms of ¢, we should be careful to restrict to an interval where the
antiderivative of 1/G is injective. Suppose therefore that F' and G are continuous and that
I, is such that G # 0 on I} and ® : I} — Iy is an antiderivative of 1/G that is a bijection
between its range and its domain, and that ¥ : I3 — R is an antiderivative of F'. If U(x) € I,
for every x € I3 then we can safely define a function f : I3 — R by

which is a formal way of solving for f in the equation (4.1). We can easily check that this
solves the ODE f' = F(t)G(f(t)) :
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as required, where we used that the derivative of an inverse function satisfies

—1\/ o ]‘
(@ )(t)—m-

(If you don’t remember why this is true you should prove it. Note that if you assume that
®~! is differentiable then its derivative must be given by this formula by the chain rule since
(@ lod) =1.)

This method always gives us some solutions, provided that G is not always zero. Indeed,
if G is not always zero then, since it is continuous, there are non-trivial intervals on which
G is non-zero with constant sign, and on such intervals the antiderivative of 1/G is strictly
monotone and hence invertible. Are they the only solutions? Not necessarily! We already
saw in our previous example, which was a very nice ODE satisfying the hypotheses of Global
Picard-Lindelof, that we missed the constant zero solution when solving the ODE this way.
Let’s see what happens in a situation we know to be problematic.

Example 4.2. If we take F(t) = 1 and G(z) = 2%/3 then our separable ODE is just the ODE
f/ _ f2/3‘

We can write out the formal solution

/?%df:/lﬁ

as above. Integrating both sides and remembering to include a constant of integration gives
that

3fY8 =t+C,
and solving for f gives that

£ = 55

While this does give a family of solutions, we are missing both the constant zero solution, the

t+C)>

solutions of the form 2% max{0, (t + C')*} that stick to zero rather than becoming negative,
and solutions of the form 5= min{0, (¢+C)3} that stick to zero rather than becoming positive.
Yet another kind of solution is given by piecewise functions of the form

> (t—0)* t>b
a<t<b

O N

ft) =

»(t—a)® t<a.

This is all despite the antiderivative of 1/G being well-defined and bijection R — R, which is
as nice as we could hope for for the method otherwise. With care, one can still use the Global
Picard-Lindelof theorem to prove that these are the only solutions:
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Exercise 44. Prove that every maximal solution to the ODE ' = £%/3 is of one of the forms
just listed.

Exercise 45. Let ¢ : R — (0,00) be an increasing, continuously differentiable function.
Prove that the initial value problem

fO)=1 " f'=0¢(f)

has a solution defined on all of R if and only if

<1
——dt = o0.
)
Example 4.3. Let’s now consider an example where the antiderivative of 1/G is not bijective,
namely
=2
f Y

where F' =1 and G(z) = 1/x is defined on R\ {0}. We can write down the formal solution

/fdf:/ldt

which leads to 1

for a constant C' € R. Taking the square root leads to two families of maximal solutions
<(—C’, o0), —V2t + 20) and <(—C’, o0), +v/2t + 20) ,

so that we get a pair of maximal solutions for each constant C' € R. These solutions really
are maximal, since extending them continuously to —C' would give a zero value of f where
the ODE is not defined. They are also the only maximal solutions of the ODE since 1/x is
a continuously differentiable function of ¢ and x on the phase space 2 = {(¢,z) :  # 0} and
solutions of this form pass through every phase-space point.

81



5 The Laplace transform

5.1 Definition and basic properties

In this section we study the Laplace transform, a tool which sometimes lets us solve ODEs
by solving equivalent algebraic equations. This method is very powerful, and was the most
popular way for engineers to solve ODEs by hand before the advent of widespread computing
in the second half of the 20th century. We will see that it can also be very useful for extracting
large time asymptotics on solutions even when we cannot solve the equation explicitly.

Given a continuous function f : (0,00) — R, the Laplace transform £{f} is the function
with domain {s € R: [;*[f(t)le™dt < oo} defined by

C{f}(s) = / " ft)edt.

Example 5.1. £{1} has domain (0,00) and is given by £{1}(s) = % for every s > 0.

Remark 5.2. Tt is not at all important that f is continuous, and you could instead take f
to be e.g. Riemann integrable when restricted to any closed bounded interval in (0,00). In
fact one can also unproblematically define the Laplace transform of things that aren’t even
really functions, such as the Dirac delta function. These generalizations are important in
applications, but we will avoid dealing with them since we have not set up all the relevant
background. If you learn some measure theory in a subsequent course you will be able to
revisit these notes and see that everything works for Laplace transforms of, say, locally finite
measures on (0, 00).

Exercise 46. Prove that £{f} is continuous on its domain of definition.

The domain of L{f} is always either empty (which will never happen in examples we are
interested in) or is an interval of the form (s.(f),00) or [s.(f), 00) where

s(f) =inf{s e R: /OOO |f(t)|e " dt < oo}

Note in particular that if @ € R and C' > 0 are such that |f(t)] < Ce™ for every t > 0
then s.(f) < a, so that the domain of £{f} is non-empty. Such a function is said to be of
exponential type.

The Laplace transform satisfies a large number of useful identities. We will now go through
the most useful of them. The first is trivial from linearity of integration.

Lemma 5.3 (Linearity). If f and g are two continuous functions f,g : (0,00) — R and s
belongs to the domain of both L{f} and L{g} then s belongs to the domain of L{af + bg}
and L{af + bg}(s) = al{f}(s) +bL{g}(s) for every a,b € R.

Another obvious identity is as follows.
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Lemma 5.4 (Multiplication by exponential — shifting s). If f : (0,00) — R is continuous
and a € R then L{ef} has domain {s + a : s is in the domain of L{f}} and satisfies
L{e" f}(s) = L{f}(s — a) for every s in the domain of L{e™ f}.

The next identity accounts for most the usefulness of Laplace transforms for solving ODEs.

Lemma 5.5 (Differentiation — multiplication by s). If f is a continuously differentiable
function f:(0,00) = R and f(0+) = limyo f(t) is well-defined then

L{f'}(s) = sLLf}(s) = f(0+)

for every s in the domain of both L{f'} and L{f}.

Remark 5.6. If f = sin(e’”) then £{f} has domain (0,00) but £{f’} has empty domain. Of
course this situation can be rescued by weakening our requirement that all integrals converge
absolutely in the domain of the Laplace transform. On the other hand it’s not worth wor-
rying too much about treating such pathological examples since they do not tend to arise in
applications. In most ‘nice’ examples we will have that s.(f") = s.(f).

Proof. This is just integration by parts! If 0 < a < b and s belongs to the domain of both
L{f} and L{f"} then

b b b
/ Bt dt = fB)e— f(a)e / (e dt = 5 / F(t)e At f(b)e*— f(a)e

and the claim follows by taking the limit as a | 0 and b 1 oo, which we can do unprob-
lematically since all the relevant integrals converge absolutely. The only thing that requires
further justification is that we can get rid of the term f(b)e=**. To do this, we just note that
if inf,>, | f(u)e*"| is positive for some ¢ then the integral [ |f(u)le™*"du must be infinite,
and since [;° | f(u)|e”*"du is finite by assumption we must have that inf,>, | f(u)e™*| = 0 for
every t > 0, so that we can find a sequence b, with b, — oo such that f(b,)e~" — 0. O

Corollary 5.7 (Repeated differentiation). If f is an n-times continuously differentiable func-
tion f : (0,00) — R and f™(0+) = limyyo f™(t) is well-defined for every 0 < m < n —1
then

L{FYs) = "L{fHs) Zs” THO04).

for every s belonging to the domain of L{f®} for every 0 <i < n.

Proof. This follows from the differentiation identity by induction on n. Indeed, given that
the claim holds for the (n — 1)th derivative, we deduce that

L{Y = sL{f" Dy = f7D(04)

= [ = 3 SO0 | - F004) = LY ) = 3D 8O0
=0 =0
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for every s in the domain of £{f (i)} for every 0 < i < n as claimed. O

Exercise 47. Prove that if f : (0,00) — R is a continuous function such that fol |f(t)|dt < oo

then
c { | s du} (5) = ~L{f}(s)

for every s in the domain of both Laplace transforms.

Given constants a,_1,...,ap and b : (0,00) — R continuous, it follows that any function
f + (0,00) — R solving the constant coefficient linear ODE (with possibly non-constant
inhomogeneity b)
™ 4a,  fOD pqgf=b

with f(™(04) well-defined for every 0 < m < n — 1 must satisfy

n—1 n—2
S"LLfY(s) = ) s FD04) + anoy [ STLLFHs) = D" 04) |+
=0 =0

e aol{f}(s) = L{b}(s)
for every s in the domain of both £{b} and L{f®} for every 0 <i < n — 1, so that
S"L{f}(s) + an—1s" LLf}(s) + -+ aoL{f}(s) = L{b}(s) + P(s)

for some polynomial P of degree at most n — 1 whose coefficients are determined by the initial
conditions (f®¥(04):0 <i < n — 1). Rearranging, it follows that

L{b}(s) + P(s)

§" + Q18" 4 -+ ag

L{f}(s) =

for every s in the domain of both £{b} and L£{f®} for every 0 < i < n—1. This already hints
at the power of the Laplace transform since — assuming the Laplace transform is invertible!
— we can solve the ODE by solving an algebraic equation for £{f} then inverting. Of course
this is not so exciting since we already know how to solve constant coefficient linear ODEs,
but it does hint at the power of the method.

Of course if we want to make sure this really gives a solution of our ODE, we need to
make sure that we can invert the Laplace transform.

Theorem 5.8 (Injectivity of the Laplace transform). Let f,g : (0,00) — R be continuous
functions of exponential type. If there exists so € R such that L{f} and L{g} are defined and
equal to each other on (sg,00) then f = g.

We will prove this theorem using the following fact. This fact is an easy consequence of the
Weierstrass approzimation theorem, which states that polynomials are dense in C([0, 1], R).
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(That is, any continuous function from [0, 1] — R can be written as a || - ||«-limit of polyno-
mials.)

Fact 5.9. Prove that if h : [0,1] — R is a continuous function such that fol h(z)P(z)dx =0
for every polynomial P, then h = 0.

Proof of Theorem 5.8. Suppose that f,g : (0,00) — R are two continuous functions of ex-
ponential type whose Laplace transforms are defined and equal to each other on some in-
terval (sg,00). By increasing if sy if necessary, we may assume that lim; ., f(t)e %" =
limy 0 g(t)e™%" = 0. Setting u = f — g, we have that L{u} is defined and equal to zero
on (sg,00) and that lim . u(t)e " = 0. We can therefore define a continuous function
h :10,1] = R by h(z) = z®u(—logz) for x € (0,1] and h(0) = 0. Moreover, we have by a
change of variables t = —logx (so that z = e~* and e 'dt = dx) that

oo 1
0=L{u}(sop+n+1)= / u(t)e e et dt = / z"h(x) dx
0 0

for every n > 0. It follows from the above exercise that h = 0 and hence that f = g. O

Unfortunately it is usually very hard (i.e. impossible) to explicitly invert a Laplace trans-
form. The situation is closely analogous to symbolic integration — differentiating symbolically
and applying the Laplace transform symbolically are both relatively easy, but to go in the
other direction we usually just have to recognize our function as the derivative/Laplace trans-
form of a function we already know. We will see later that the Laplace transform method
can also be very useful to extract large time asymptotics of solutions even when closed-form
solutions are not available.

In order to apply the Laplace transform method, we need to build up a good supply of
functions whose Laplace transforms we know. Let’s start with the simplest possible thing:

L{1} has domain (0, 00) and is given by L{1}(s) = 1
$

Next, we show that multiplying f by powers of ¢ corresponds to differentiating or integrating
L{f}.

Lemma 5.10 (Division by ¢ — integration). Let f : (0,00) — R be a continuous function

such that .
[0
0 t

Then the domain of L{f/t} contains that of L{f} and

c{ito= [Cetnwa

for every s in the domain of L{f}. Moreover, the integral on the right hand side converges
absolutely for every such s.
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The proof of this identity will use Fubini’s theorem, which states that if f : I} x
I, — R is a continuous function defined on a product of two non-trivial intervals and

f[l f12 |f(z,y)|dzdy < oo then

/ f:vydxdy—/ f(z,y)dy dx.
nJn

That is, we can compute a double integral in either order provided it converges absolutely.

Proof of Lemma 5.10. First observe that the hypothesis ensures that

0 1 oo
/ IO st gy < gmst—s0) / OIp / |[f(t)le™™ dt
0 t 0 t 0

for every s € R and hence that the domain of £{f/t} contains that of £{f} as claimed. Since
all the relevant integrals converge absolutely, we can use Fubini to compute that

C{F /1Y (s) / JO) gy — / (1) /:oe‘“tdudt

_ / * / " pye vt dt du / " L{fHw) du

for every s in the domain of £{f} as claimed. O

Lemma 5.11 (Multiplication by ¢ — differentiation). Let f : (0,00) — R be a continuous
function. Then s, (tf) < s.(f) and

LAY 5) = LAY S)

for every s > s.(f). In particular, L{f} is differentiable on (s.(f), o).

Proof. If fo |f(t)]dt = oo then L{f} has empty domain and the claim is trivial, so we may
suppose that this integral is finite. Since fo |f(t)|dt < oo, we can apply Lemma 5.10 to tf to
deduce that, in this case, the domain of £{f} contains that of £{tf} and that

L) = [ £t} du
for every s in the domain of £{f}. The claim follows from the fundamental theorem of
calculus. O

Corollary 5.12. Let f: (0,00) — R be a continuous function. Then for each n > 1 we have
that s,(t" f) < s.(f) and

LAY (5) = (1) £ ()

for every s > s.(f). In particular, L{f} is smooth on (s.(f),o0).
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It follows from this corollary that the Laplace transform £{¢"}, which has domain (0, c0),
is given by

a [ !
L{t"}(s) = (-1)"— At = ——
(He) = (s [ ea= o
for each n > 0, where we stress that we are thinking of ¢" as a function defined on (0, c0).

Together with the fact that multiplication by an exponential corresponds to shifting s, it
follows that £{e®t"} has domain (a,00) and that

n!
(s —a)ntt

L{et"}(s) =

for each n > 0 and @ € R. We can also easily compute the Laplace transforms of trig functions.

Lemma 5.13. For each w € R, L{sin(wt)} and L{cos(wt)} have domain (0,00) and are

gen by . :
L{sin(wt)}(s) = e and L{cos(wt)}(s) = T
for every s > 0.
Proof. We have that
/ cos(wt)e ' dt = §R/ ewit=st 4 — R _R s '+WZ __ g twi s
0 0 5 — wi (s — wi)(s + wi) 2+ o? 242

as claimed, where the symbol ® means “the real part of”. The computation for sin is similar
except we take imaginary parts instead of real parts. O

It follows from these rules that £{e® sin(wt)} and L£{e* cos(wt)} have domain (a, c0) and
that
w

L{e™ sin(wt)}(s) = Goafia? and L{e cos(wt)}(s) =

s—a
(s —a)? + w?
for every s > a.

Example 5.14. Let’s see how we can use the Laplace transform to solve the damped spring
equation f” 4 2(f'+ f = 0 on the interval (0, 00). Any solution to the equation that extends
to a continuously differentiable function on [0, c0) must have

L{f"+20f" + [} = SL{f}(s) = sf(0+) = f/(0+) + 2(sL{f} — 2¢ f(0+) + L{f} =0,
for every s > s,(f), which we can rearrange to give that

0 + (5 520/ (0+)

L{f3(s) s2+2(s+1

To proceed, we need to be able to recognise this as the Laplace transform of something we
know. This can be done using partial fractions.
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Recall that a rational function is a function of the form P(z)/Q(x) where P and @
are both polynomials. A real polynomial is said to be irreducible if it cannot be written as
the product of two non-constant real polynomials. The fundamental theorem of algebra
states that every degree n polynomial can be written uniquely in the form

where A € C and A\q,..., A\, € C. If ) is real then the roots A\; must either be real or come in
a complex conjugate pair, and it follows that every real polynomial can be written uniquely
as a product of real irreducible polynomials

k ¢
Qz) = AH(&: -\) H(a:2 + o + wy)
i=1 j=1
where A1, ..., \; arereal and oq,...,00 and wy, ..., w, are real numbers such that 0]2 —4w; <0

for each 1 < j < ¢ (of course k and ¢ could be zero). For our purposes, it will be more helpful
to group identical terms and write

k

Q) =4 H(x — )" 1_[(36'2 + ojx 4 w;)™

i=1 j=1

where the A\;s and the pairs (o;,w;) are all distinct and n;, m; are positive integers. The
partial fraction expansion states that we can always write a rational function in the form

where

1. If @ has larger degree than P then A = 0. If P and @ have the same degree then A is a
constant. If P has larger degree than @) then A is a polynomial of degree deg P — deg ().

2. Q1,...,Q, are polynomials of the form (x — A\)™ or (2* + ox + w)" that divide @ and
are a power of an irreducible polynomial, and

3. Ay, ..., A, are polynomials such that A; has degree strictly smaller than the irreducible
polynomial of which @); is a power of for each 1 <17 < k.

To use partial fraction expansions to solve ODEs one must compute what the polynomials
A; are, and doing this amounts to a linear algebra problem. Of course, we are secretly doing
something very similar to computing the Jordan normal form of a matrix, since the two

techniques can both be used to compute the general solution to constant coefficient linear
ODEs.
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Let us illustrate how this works in our simple example. As when we solved the ODE using
matrix exponentiation, something different will happen according to whether s 4 2(s+1 has
two real roots, two complex conjugate roots, or a single real root. In the first case, which
occurs when |[(| > 1, we want to write

f'(04+) 4+ (s +2¢) f(0+) a N b
s24+2¢+1 s (-1 s—CH 21

where a, b are real. Adding these together we get that

f'04) + (s +20)f(0+) (S—C)(a+b)+ ¢ - (a—b)

s2+2(+1 (s—C—+/C—=1)(s—=(C+ /c? =

so that, comparing the s terms and constant terms in the numerator,

a+b= f(0+) and -V =1a+ (C++/C—=1b=—-2Cf(0+) — f'(0+).

This system of linear equations can of course be solved by inverting a 2 x 2 matrix. This will
give us some explicit constants a and b determined by ¢, f(0+), and f’(0+) such that

LY== = al{e”CHVEDY 4 prle Ve

a b
VA1 s (ryEo1

Thus, we can deduce that, assuming that s was in the domain of all relevant Laplace
transforms whenever we needed it to be, our solution must be of the form

While it is possible to go through and justify this assumption at each step, we can instead
just check that this really is a solution to our ODE, and deduce from Picard-Lindel6f that we
have got every solution.

If || < 1 then we complete the square to write s> +2(s+ 1= (s+()* + 1 — ¢?
cif) = F1(04) + (s +20)f(04) _ J(0+) +¢f(0+) (s + O F(0+)
(s+¢)P+1-¢ (s+¢P+1-¢ (s+¢(P+1-¢
= F0+) + Cf(o—'—)ﬁ{e’gt sin(ty/1 — ¢2)} + f(04+)L{e " cos(ty/1 — ¢?)}.

Ve

Again, assuming s is the domain of all relevant Laplace transforms, we deduce that

our solution must be of the form

S (04) +¢f(0+)
Vi@

f(t) = e~ sin(ty/1 — ¢2) + f(0+)e “ cos(ty/1 — 2).
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As before, rather than justifying that s was indeed always in the relevant domain, we can just
check that this is indeed a solution and deduce from Picard-Lindelof that every solution is of
this form.

Finally, if [¢] = 1 then s 4+ 2(s 4+ 1 = (s 4+ ¢)? and we seek a partial fractions expansion
of the form

(04+)+ (s +20)f(0+) _ a N b
(s +¢)? s+¢  (s+Q)?

To solve for a and b we can add the two fractions and compare numerators to obtain that

ciy=1

as +a¢+b=sf(0+)+ f'(04) + 2¢ f(0+),
so that a = f(0+) and b = f(0+) 4+ (f(0+). Thus, we have that

ey = 200 FEETRE _ poyoqeey - (00 + cromete ey

= F0+)L{e "} + (f/(04) + Cf(0+)) L{te "},

As before, assuming that s belongs to the domain of all relevant Laplace transforms,
we deduce that

f(t) = F0+)e ™ + (f'(0+) + Cf(0+))te "

Checking that this is indeed a solution, we deduce by Picard-Lindel6f that every solution is
of this form.

It has come time to humble ourselves by trying to use the Laplace transform solve a simple
linear ODE with non-constant coefficients.

Example 5.15. Consider the linear ODE

f”—tf/—f:O.

Suppose that f : (0,00) — R is a solution to this ODE with f(0+) and f’(0+) well-defined
and let I be the intersection of the domains of L{f}, L{f'}, L{f"} and L{tf'}. (Of course
this might be empty, and we will need to come back to this issue later.) If s € I then we have
that

L —tf = f} = SL{f} = £1(04) = sf(04) + d% (s£4f} = F(04)) = £{f} =0

and hence, rearranging, that

LUY + SL{T} = F(04) +—f/(04)

for every s € I with s > 0. Since this is now a first-order linear ODE, we can let sq € I and
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write down the solution

S0

LU = oxp [ [

(ﬁ{f}(So) s [ e [ / d} (FOH) + = 7/(04) du)

S0

. (.c{ fH(s0) + / D (f(04) + if/<0+)> du)

for every s > 0 in I. A problem appears: The right hand side doesn’t look like the Laplace
transform of anything we're familiar'? with! Despite this, it seems clear that we have achieved
something, and that the same approach would let us compute the Laplace transform of the
solution to any linear ODE where all the coefficients are linear in ¢. Similarly, we can compute
the Laplace transform of an ODE whose coeflicients are degree m polynomials in ¢ by solving
an mth order ODE whose coefficients are rational functions in ¢, which may or may not be
simpler than what we started with.

Remark 5.16. Analyzing this example via other methods, one can prove that there space of
solutions to the linear ODE f” — tf’ — f = 0 is spanned by two functions f; and f, where
L{f1} has domain (0, 00) and £{f>} has empty domain! Explicitly, these functions are

f1 = e Perfe(t/V?2) and fo=e"?

where

2 e
erfc(t) == — e " dt
7

is the complementary error function. As such, our Laplace transform analysis does not,
in fact, apply to all solutions of the ODE. In applications this is not necessarily a problem.
For example, if one is only interested in solutions that converge to zero as t — oo then the
Laplace transform of such a solution always has domain containing (0,00). Moreover, for
second-order linear ODEs the Wronskian method allows us to compute a second linearly
independent solution to the ODE given a single solution, so that a complete set of solutions to
this ODE can be found by a combination of the Laplace transform and Wronskian methods.

Exercise 48 (Stokes equation). Let f : (0,00) — R be a solution to the ODE f” = t¢f and
suppose that f(0+) and f/(0+) are well-defined and that the domain of the Laplace transform
of f is non-empty. Compute the Laplace transform of f.

Later, we will return to the following question: What can we learn about a function from
its Laplace transform, even when we cannot compute the function explicitly?

12In fact this ODE does admit a solution by quadrature that can be found by explicitly inverting this
Laplace transform, but let that not distract us from the main point that we may wish to extract information
from the Laplace transform in situations where we cannot explicitly invert it!
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5.2 Convolutions and inhomogeneous linear ODEs

Given constants a,_1,...,ap and b : (0,00) — R continuous, we saw in the previous section
that any function f : (0,00) — R solving the linear ODE

™ 4, fOY pqgf=b
with f®(0+) well-defined for every 0 <i < n — 1 must satisfy

L{b}(s) + P(s)

S 4 Q18" 4 Fag

L{f}(s) =

for every s in the domain of both £{b} and L{f®} for every 0 < i < n — 1 for which
s" + ap_18" 1+ - + a9 # 0, where P is a polynomial of degree at most n — 1 whose
coefficients are determined by the initial conditions (f@(0+):0 <4 <n —1). This means in
particular that we should be able to find a particular solution to the ODE by inverting the

L{b}(s)

S+ 18"+ Fag

Laplace transform

We already know how to find the inverse Laplace transform of (s" + a,_ 18" >+ -+ 4+ ag) ™"
using partial fractions. It turns out there is an easy way to invert the product of this with
L{b} (or at least to write the inverse as an integral).

Suppose that f,g : (0,00) — R are continuous with fol |f(t)]de, fo lg(t)|dt < oco. The
convolution of f and g, denoted f % g, is the function f * g : (0,00) — R defined by

0 /f gt —7)d

which is well-defined since

t t/2 t
| 1@t =ntar = [ 1relate = mlar+ /t/2|f(T)Hg(t—T)!dT

< sup ]/ 7)|dr 4+ sup |/ T)|dr < 00
t/2<u<t t/2<u<t

for every t > 0.
Example 5.17. If f : (0,00) — R is such that fol |f(t)|dt < oo then (f * 1)( fo

Example 5.18. We can use the binomial theorem to compute the convolution of two powers
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of t:

Zm: m (_1)k grtmtl
k)n+k+1

k=0

We will shortly perform this calculation another way, using the Laplace transform, and obtain
a simpler expression for this constant.

Exercise 49. Suppose that f, g, h: (0,00) — R are continuous with fol |f(t)] dt, fo lg(t)] dt,
fol |h(t)| dt < co. Prove the following properties of convolution:

1. Commutativity: fxg = gx* f.
2. Distributivity: f*(g+h) = f*g+ f *h.

3. Associativity: fol |(g * h)(t)|dt < oo and f * (g *h) = (f *g) * h. (Hint: use Fubini’s
theorem.)

4. Product rule: If f is continuously differentiable with fo |f'(t)] dt and g¢(0+) is well-
defined then f x g is differentiable with (f x g)' = g(0+)f + f' * g.

Lemma 5.19 (Factoring out exponentials). Suppose that f, g, h: (0,00) — R are continuous
with fol |f(t)]dt and fo lg(t)| dt finite. Then

(e™f) = (e7"g) = e (f xg)

for every s € R.

Proof. We can compute that

(7 f) * (eg) () = / e f(r)e g (t - / F()glt —7)dr = e (f * g)

as claimed. n

Lemma 5 20 (Integrals of convolutions). If f, g : (0,00) = R are continuous with [~ | f(t)|dt
and [;° g(t)|dt finite then

ot ([ som) ([ ).
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Proof. Writing 1(7 < t) for the function that is 1 when 7 < ¢ otherwise, and using that Fubini
remains valid for piecewise-continuous functions, we can compute that

/f*g t)dt = //f g(t —7)drdt

/ f(r)gt —m)I(r <t)drdt

(u)1(0 < u)dudr

-

R
//f dujT
:(/ f(t)dt)-(/o g(t)dt).

as claimed, where to verify that our application of Fubini was legitimate we do essentially the
same calculation to check that

// gt = )L(r < ) dr dt = // W)[1(0 < ) dudr
// )| dudr
([ |<>|dt) ([ oar) <o

Theorem 5.21 (Convolution — products). Suppose that f,g: (0,00) — R are continuous
with fol |f(t)] de, fo lg(t)| dt < oco. If s belongs to the domain of both L{f} and L{g} then it
belongs to the domain of L{f * g} and

L{f * g}(s) = L{f}(s)L{g}(s).

Proof. We first check that s belongs to the domain of £L{f * g} whenever it belongs to the
domain of £L{f} and L{g}. Since s belongs to the domain of £{f} and L£{g} we have that

/ooo (Fg)(B)le™ dt < / (U1 lah et ar
B /ooo<<6‘“|f|> (g (t) dt
= /OOO eSt’f(t)\dt/Ooo e~g(t)| dt < oo

so that s belongs to the domain of £{f * g} as claimed. Since all relevant integrals converge
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absolutely, we can compute that

ﬁwng@=1Amq*m@wﬂwv=Am«aﬁﬁ*@ﬂw»wdt
:Aweﬂﬂwwﬂweﬂmwﬁzﬁuwﬁﬁwxﬁ

as claimed. n

This means that if s belongs to the domain of all relevant Laplace transforms and

L{b}(s) + P(s)

8" 4 p_18" 4 ag

L{f} =

then

1 P
fzb*ﬁ—l{ - }+£—1{ () }
Sn_|_an715nf +...+a0 5n+an713n71+"'+a0

where we have seen how to compute the inverse Laplace transforms of these rational functions
using partial fractions (or by solving the relevant homogeneous linear ODE using matrix
exponentiation). In other words, the solution to a linear ODE with constant a,_1,...,ag
but possibly non-constant b can be expressed as the convolution of b with the solution the
associated homogeneous equation.

Exercise 50. Explain why this solution is the same as that given by Duhamel’s principle.
Exercise 51. Use this method to solve the inhomogeneous linear ODE f' — f = sin().
Example 5.22. We have that

nlm! n!m!

1" % "M (s) = L{MYL{E™} = = gt
LU= ") = LML = s = ST
and hence that .
iy g nlm! ntmil
(n+m+1)!

Comparing this with our direct calculation of the convolution yields the non-obvious (to me!)

nim! _Zm: m\ (=1)*
(n+m+1)!_k:0 k)n+k+1

Using Laplace transforms in this way turns out to be a very useful way of proving identities

combinatorial identity

like this, something we will return to in the next section.

Remark 5.23. If X and Y are independent (0, 0o)-valued random variables with probability
density functions fy and fy then their sum X + Y has probability density function fxiy =

Ix * fy.
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Remark 5.24. One thing Laplace transforms are very useful for is solving functional equations
involving both derivatives and convolutions, such as f’ = f % f. Indeed, if s belongs to the
domain of the Laplace transform for some f with f' = f * f then

sC{fY — f(0+) = L{f}?
and we can solve the quadratic

i) = 52 N YN

2

Of course to give an explicit solution one would have to find the inverse Laplace transform of
this function. At this point it is probably not apparent why one would ever encounter such
an equation f’ = f x f in the first place, but we will see in the next section that expressions
of this form often arise when using ODE techniques in counting problems.
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6 Series solutions

In this section we begin to develop the theory of series solutions, one of the most powerful
and general methods for solving ODEs. We will begin by discussing standard power series
solutions of the form > 7  a,z", but we will later see that one often wants to consider other
kinds of series solutions also.

6.1 Formal power series

A formal power series is a series ), _,a,x" that is considered as an algebraic object only,
without any consideration of whether the series actually converges and defines a function.
The space of (real) formal power series is written R[[x]]. As a set, it is in bijection with the
set of sequences {(ag, ai,...) : ag,a,... € R}; two formal power series are considered to be
equal if and only if all their coefficients are equal. The space is a vector space with addition
and scalar multiplication defined by

A i apx" + ,ui by = i()xan + pby,)x"™
n=0 n=0 n=0

for every two formal power series Y~ ja,z™ and Y~ b,z™ and real numbers A, 1 € R. We
can also define multiplication of formal power series by

n=0 \ k=0

We stress that this is the definition of multiplication for formal power series, and makes
sense even if none of the relevant series converge. If you find this confusing, it might help you
to think that we are really defining an operation on sequences that takes the pair of sequences
(an) and (b,) to the sequence (D>} _, arbn_k)-

The formula for the product of two formal power series is closely related to the convolution
identity for Laplace transforms: If we define the convolution a * b of two sequences a = (a,)
and b = b, by (a*b), = ZZZO arb,_r then we can rewrite our multiplication rule as

(Z anx”) (Z bnx”> = Z(a * b)pa".

The following exercise gives some legitimacy to the idea that the two notions of convolution
we have introduced are discrete and continuous analogues of each other.

Exercise 52 (Discrete and continuous convolutions). Let f,g : (0,00) — R be continuous
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functions extending continuously to 0. Prove that

Frg(t) = lm — (((FOr/m)aso) * ((90/m))az0))

m—o0 1M,
for every ¢ > 0.

Note that polynomials can be thought of as formal power series for which a, = 0 for all
sufficiently large n, and that the rules we have defined for addition and multiplication coincide
with the usual addition and multiplication rules for polynomials. In particular, we have by
definition that if Y~ ja,z™ is a formal power series then

z™ Z ax” = (Z I(n= m)x”) (Z an$”> = Z I(n>m)a, nx",

n=0 n=0 n=0

where 1(n >m) is 1 if n > m and 0 if n < m.

We say that a formal power series > _,b,2" is the reciprocal of a formal power series
S panz™ if (320 jana™) (oneybaz™) = 1 as formal power series, ie., if Y} agbp_ is

equal to 1 for n = 0 and 0 for every n > 0.

Proposition 6.1. A formal power series ), _, a,x™ has a reciprocal if and only if ag # 0,
and n this case its reciprocal is unique.

Proof. Since Y ,_,arbn—r = aoby when n = 0, it is clear that a formal power series with
ag = 0 cannot have a reciprocal, and for any other formal power series, every reciprocal must
have by = ag . For a formal power series with ag # 0, the formal power series Yo b is a
reciprocal if and only if by = ay* and

1 n
bn = T akbn—k

for every n > 1, so that each b, is uniquely determined by ay,...,a, and bg,...,b,_1. O

There are many more operations we can define purely algebraically for formal power series.
For us the most important will be differentiation:

% (Z anx”> = Z(n + Dap 2™,

n=0 n=0

This coincides with usual differentiation whenever we are inside the radius of convergence of
the relevant power series (since in this case we can safely differentiate term-by-term as we saw
earlier), but also makes sense as a purely algebraic operation on formal power series. Again,
if you find the notation confusing, you can think of this as an operation on sequences defined
by

(ag, a1, as,...)— (a1, 2as,3as, .. .).

98



One can also define integration of formal power series similarly.

It will often be useful to use function-style notation for discussing power series, even if

they are not really functions, so that we can write e.g. f(z) =>_ ",

series f(z) € R[[z]]. Of course when you do this you should make sure that you are not doing

apx" for a formal power

any “illegal” operations that are not defined formally.

Formal power series from smooth functions. Given a smooth function f defined on
an open interval containing 0, we can always consider the Taylor series of f as a formal power
series

— f70)

pPEACI

o n!
Be warned however that 1) this power series might not converge for any z # 0, in which case
it does not define a function and 2) even it it does converge, the function it defines might not
be equal to f. We will return to examples of the first kind later in the course. For a simple
example of the second kind, one can consider the function

etz #£0
0 x=0.

This function is smooth and has f(™(0) = 0 for every n > 0, but is not identically equal
to zero in any neighbourhood of zero. This particular function is not special: any smooth
function for which |f(z)| goes to zero as © — 0 faster than any power of |z| would work.

Given an open interval I and a function f : I — R, we say that f is real analytic at a

point xy € I if f is smooth, the formal Taylor series > %(w — xo)" has positive radius

of convergence r = r(xy) > 0, and

) (0
fw) = 3 T (e

for every x with |z — x| < r. We say that f : I — R is real analytic if it is real analytic at
every xg € I. Real analytic functions are always smooth, but the example discussed in the
previous paragraph shows that not every smooth function is real analytic.

6.2 Formal power series solutions to ODEs

Consider an ODE of the form f* = P(t,f, f',..., f™ ) where P is a polynomial in n
variables, such as, say,

f/// — f3
or

fr==(r+es
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Since we have well-defined notions of differentiation and multiplication for formal power series,
we have a well-defined notion of P(t, f(t), f/(t),..., f®~V(t)) as a formal power series, and
hence a well-defined notion of what it means for a formal power series f(t) € R][t]] to satisfy
the ODE. We call this a formal solution to the ODE. Similarly, we also have a well-defined
notion of what it means for a formal power series to satisfy a generalized polynomial ODE of
the form P(t, f,..., f™) =0, such as (f')? = f.

Let’s see how this works in a very simple example: the ODE f’ = f. A formal power
series f(t) =D, a,t" € R[t]] satisfies this ODE if and only if

(n+ 1ani1 = ay

for every n > 0 and, by induction, this holds if and only if

1
Ap = —'(lo
n!

for every n > 0. Thus, every formal solution to this ODE is of the form

o
tTL

Qo T
n!

n=0
which is, unsurprisingly, the Taylor series of the exponential.

Of course, once we find a formal solution we would really like to turn it back into a solution
in the normal sense (i.e. an honest function). In simple cases we can do this in the direct and
obvious way. The radius of convergence of the formal power series Y > a,2" is defined
to be the supremal value of r > 0 for which the series Y~ |a,|r"™ converges. The radius of
convergence may be defined in several equivalent ways in addition to this definition:

1. It is equal to limsup,, ., |a,|"/".

2. Tt is equal to the supremal value of r for which there exists a constant C). such that
la,| < Cpr=" for every n > 0 (i.e., for which limsup,,_, . |a,|r" is finite).

Here, given a sequence of real numbers ¢,, we define limsup,,_, . ¢, and liminf,,_, ¢, by

limsupe, = lim sup ¢, and liminf ¢, = lim inf ¢,,.
n—00 n—00 ;>n n—o00 n—oo m>n

The limsup and liminf of a sequence always exist as elements of [—00, 00| (since they are limits
of monotone sequences) and coincide if and only if lim,_, ¢, is well-defined.

Proposition 6.2 (Formal operations and function operations coincide within radii of con-
vergence). Let Y 7 jant™ and Y .- b,t" be formal power series with radii of convergence
Ta,Tp > 0.
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1. For each m > 1, the formal power series (3 o ant”)(m) =32 on+m)n+m—
1)+ (n4+1)animt™ has radius of convergence r,. Moreover, the function f: (—rq,r.) —
R defined by f(t) = "y ant™ is smooth with mth derivative

o0

F@=>"m+m)n+m—1) (n+ 1)amt"

n=0

for each m > 1.

2. The formal power series (3 oo ant™) (3oneobut™) = ooy (Oor_g akbn—k) t™ has ra-
dius of convergence at least min{ry,m,}. Moreover, if we define functions f,g,h :
(—min{r,, rp}, min{ry, 7p}) = R by f(t) = D7 jant™, g(t) = > 2 bt", and h(t) =
> o (Ch_g arbn_k) t" then h(t) = f(t)g(t) for every |¢| < min{rq,7s}.

Proof. 1. The fact that the formal mth derivative Y>> (n+m)(n+m —1)--- (n+ 1)appmt"
has the same radius of convergence as Y~ a,t" follows since

limsup((n+m)(n+m —1)--- (n+ 1)anpm)™ = lim sup a}l/fm = limsup a/™.

n—oo n—oo n—oo
The fact that the formal derivative and the actual derivative coincide within the radius of
convergence follows by our theorem about differentiating infinite series term by term: If
r < r, and we define functions f,, : [-r,r] = R by f.(t) = a,t" then Fim) = nn—1)---(n—
m)ant"™™, so that || f{™ ||le < n(n—1)---(n—m)|a,/r™™ and 3-°° | /™|ls converges by
the ratio test.

2. Let r be strictly smaller than the radius of convergence of both "> ja,t™ and Y~ b,t",
so that there exists a constant C,. such that |a,|, |b,| < C,r~™ for every n > 0. This allows us
to bound

n

Zakbn_k < nC’fr_”
k=0

for every n > 0, from which it follows that the power series Y~ (> "7_, axb,—x)t" has radius
of convergence at least r. Since r < min{r,,,} was arbitrary, it follows that the radius of
convergence is at least min{r,,r,} as claimed.

We have by definition of infinite series that >~ a,t" = limy_,q z;vzo ant™and Y byt
limpy oo Zivzo b,t". Thus, whenever both these limits exist we have that

] 0 N N
<Z ant”> (Z bnt") = lim Z ant" Z b, t"
n=0

n=0
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Now, for each N we can write

N N 2N 2N
S ant™ | D bt | =D D arbuilk,n—k < N) |t
n=0 n=0 n=0 k=0

N n

n 2N
Zakbn_k t" + Z Zakbn_kﬂ(k, n—k S N) t".

n=0 k=0 n=N-+1 k=0

[e.9]

Letting r be strictly smaller than the radius of convergence of both "> a,t™ and >~ b,t"
and using the bound |a,|, |b,| < C.r~™ as above allows us to bound the error term appearing

here
2N n
DD arbaslkn—k<N) || < Y nCt/r)
n=N+1 \ k=0 n=N+1
so that
2N n

Z Zakbn_kl(k,n—kgj\f) t"| —0 as N — oo when t < r.

n=N+1 k=0

Thus, it follows that if |t| < r then

[e'e) 0o N N
(Za,ﬂ) (2% bnt"> = lim_ Zant” ant”

n=0 n=0 n=0
N n 2N n
= [ B n 3 _ k< n
ngl)oz Zakbn e |t + Z Zakbn rl(k,n—EkE<N)|t
n=0 \ k=0 n=N+1 \ k=0
N n 0 n
S5 DI IEES 3) g
n=0 \ k=0 n=0 k=0
and the claim follows since r < min{r,,r,} was arbitrary. O

This proposition has the following consequence: If > _,a,t" is a formal power series
solution to a generalized polynomial ODE P(t, f,..., f™) = 0 that has positive radius of
convergence, then the honest function defined through this power series is a solution to the
ODE within that radius of convergence. Moreover, in this situation the derivatives of f at
zero are all given by f(0) = nla,.

In the example ' = f we studied above, the formal solution ag >~ % has infinite radius
of convergence and we deduce that the function R — R defined by this power series (namely,
the exponential function) is an honest solution to the ODE.

We can also go in the other direction:
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Corollary 6.3. If I is an open interval containing 0 and (I, f) is a solution to the generalized
polynomial ODE P(t, f,...,f™) = 0 that is real analytic at zero, then the Taylor series
P f<n( Ltn is a formal solution to the same ODE.

Example 6.4. Let’s now consider the ODE f’ = f?. We already studied this equation using
other methods and saw that every maximal solution is either of the form (R, 0), ((¢,00),1/(c—
t)), or ((—o0,¢),1/(c —t)). For a formal power series Y > a,t" to be a formal solution to
the ODE, we must have that

Z(n + Dayt" = <Z ant”> (Z ant”) = Z Z apn_r | t".

n=0 n=0 =

By definition, this means that the equality
(n+1)an = Zakan k

holds for every n > 0, and hence that

n

1
Apy1 = — ApGp—k
n+1 —

for every n > 0. Note that this uniquely specifies the whole sequence (ay),>0 in terms of a.
To find a formula for general n, we can input a few small values, guess a formula, then prove
this formula by induction. To this end, we see that

1 1
a; = CL%, Ay = 5(&0@1 -+ alao) = ag, as = 5(&0(12 +ar1a; + (Igao) = ag,
and it seems reasonable to guess that a, = af™ for every n > 1. It is easy to check by
induction that this does indeed work: If a; = a0+ for every 0 < k < n then

n

n
py] = 1 Gy = 1 2 :an+2 a2
n+1 — n—k — 0 0
n—+1 n—+1
+ o + P

as required. This means that every formal solution to our ODE is of the form

00

n+1yn
g ag 't
n=0

for some ag € R. For each ay # 0 this series has radius of convergence |ao| ™! and, as expected,
the function defined by summing the series within this radius of convergence coincides with
the function ag/(1 — agt) = 1/(ag* — t) within this radius of convergence.
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As such, we see in this example that: 1) the formal solution can be summed within its
radius of convergence to give us a solution to the ODE, but this solution is not necessarily
maximal. 2) We naturally do not see the maximal solutions that are not defined at zero as
formal power series solutions.

Remark 6.5. In general when we find the formal solution to an ODE there is no reason to
expect that we can find a nice formula for the coefficients or that we can recognize the resulting
function as ‘something we know’. (Of course this is not a well-defined mathematical notion!)

Example 6.6. Consider the linear ODE
=ty S,

which we previously studied using the Laplace transform. For a formal power series Y > a,,t"
to be a formal solution to the ODE, we must have that

i(n +2)(n+ 1)ayot" = ti(n + 1)ay 1 t" + i a,t"
n=0 =0 n=0
= f’: (n > 1)a,t" + Z at" = i(n + Dayt"
n=0 n=0

By definition, this means that the equality
(n+2)(n+ 1Dape = (n+ 1a,

holds for every n > 0. By induction, this means that

—1
( Zf{%n—?k:)) ap m even

Ay = -1 .
( ,EZ/OQJ (n—2k)> a;  nodd
The products appearing here, which is equal to the product of all positive numbers smaller
than n with the same parity as n, is known (for some reason) as the double factorial and

denoted by n!l. (Note that his is not the same thing as (n!)!, which is much larger than n!!.)
Using this notation allows us to write our formal solution neatly as

i apl(n even) + a;1(n odd) i

—~ n!!
This formal power series has infinite radius of convergence by the ratio test. Thus, any
function defined by one of these formal power series is a maximal solution to the ODE with
f(0) = ap and f'(0) = ay; it follows from global Picard-Lindel6f that every maximal solution
is of this form. On the other hand, this series doesn’t look like the Taylor series of anything
we're familiar with, so we don’t obviously obtain a closed-form solution (i.e., a solution in
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terms of compositions of known functions). This isn’t necessarily a problem depending on
what we want to do with our solution, but in fact in this case we can write the solution in
terms of standard functions with some work.

Indeed, note that if a; = 0 then, since (2m)!! = 2™m! for every m > 0, our solution is
given by
> ay o 142
w1
Z 2nn|t = Go€?
n=0

Double factorials of odd numbers are not so nice, so it’s unclear what we would do when a;
is not zero. In the following exercise you will give a solution by quadrature using the method
of Wronskians, which, in general, lets us compute an nth linearly independent solution of an
nth order linear ODE in terms of (integrals of) any collection of n — 1 linearly independent
solutions.

Exercise 53 (Wronskians). Suppose that f,g : R — R are two solutions to the second-
order homogeneous linear ODE f” + a(t) f' 4+ b(t)f = 0, with a,b : R — R continuous. The
Wronskian of f and g is the function W (f, g) : R — R defined by

W(f,g) = det <J]:, gg,> =f9 - fg

1. Prove that if W(f, g)(to) # 0 for some ¢, then {f, g} is a basis for the space of solutions
to the ODE.

2. Prove that W(f, g) satisfies the ODE W (f, g)' = —a(t)W (f, g).

3. Find a first-order linear ODE satisfied by ¢ defined in terms of f and W(f, ¢)(0), and
use this to give a formula for g in terms of f, a, b, g(0) and ¢'(0).

4. Find a basis of solutions to the ODE f” = tf'+ f. [You may use that e’"/2 is a solution.]

Example 6.7. Consider the ODE tf’ — 2f — 2t> = 0. This ODE is not in our usual form,
since the top derivative f’ has not been solved for, but it is of the form P(t, f, f') = 0 for a
polynomial P so that there is a well- deﬁned notion of what is means for a formal power series
to be a formal solution. Indeed, ) > " is a formal solution if and only if

f: I(n > 1)na,t" — 22 — Z 2a,t".
n=0 n=0

In order for this to hold we must have that 2as — 2 — 2as = 0, which is impossible, so that
there do not exist any formal power series solutions to this ODE. On the other hand, we can
check that

t?logt? t#0

ft) = 0 f— 0
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is a solution to the ODE. This function is not analytic at zero (indeed, it is not three-times
differentiable at zero).

Theorem 6.8 (Existence and uniqueness of formal solutions). Every polynomial ODE of the
form ™ = P(t, f,..., f V) has exactly one formal solution f(t) = Y on o ant™ for each
given values of ag, ..., 0n_1.

Proof. If f(t) =Y %, a,t™ then the formal power series P(¢, f,..., f™Y) has the property
that the kth coefficient P(t, f,..., f™~Y), is determined by the first k +m — 1 coefficients
ag, ..., agsim—1 of f for each k > 0. This can be verified formally by induction on the degree
of P, using that the first k coefficients of f™ are determined by the first k + m coeffi-
cients of f, that the first k& coefficients of the product (37, ant™)(> ", bat™) are determined
by the first k coefficients of > 7 a,t™ and >~ b,t", and that the first k coefficients of
"y g ant™ are determined by the first & — r coefficients of > 7 ja,t™. Thus, the ODE
fm) = P(t, f,..., f"Y) determines the n + mth coefficient of f as a function of the first
n+m — 1 coefficients of f for each n > 0, and it follows that there is a unique formal solution

for each given value of (aq, ..., am_1). O

Theorem 6.9 (Positive radius of convergence). Let f(t) = >~ ant™ be a formal solution
of a polynomial ODE of the form f™ = P(t, f,..., f™ D). Then > o0 a,t™ has positive
radius of convergence.

This theorem together with the equivalence of formal and function operations within
the radius of convergence yields the following corollary, which is a special case of Cauchy’s
Theorem.

Corollary 6.10. If I C R is open and (I, f) is a solution to the polynomial ODE f™ =
P(t, f,..., fm=V) then f is real analytic on I.

Cauchy’s Theorem states more generally that solutions to ODEs of the form f™ =
F(t f,....f (m_l)) where F' is analytic are analytic (see also the Cauchy—Kovalevskaya theo-
rem for PDEs). Cauchy’s theorem is usually proven using sophisticated tools from complex
analysis etc. We will prove Theorem 6.9 in a more direct and elementary way by recursively
bounding the coefficients of the solution. (Warning: “Elementary” proofs can be significantly
more complicated than their more conceptually sophisticated counterparts!)

(This proof was not lectured in 2024.)

Proof of Theorem 6.9. Let ag,ay, ..., an—1 be given and let the coefficients (ay,)n>m be deter-
mined by letting f(t) = >°° a,t" be a formal solution to the ODE f™ = P(¢, f, ..., fim=1).
Express P(t, f,..., f™ V) as

l
P(t, foo f070) = gt o (flmm )y
i=1
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for some real numbers A;,..., A, and non-negative integers r; and k;; with 1 < ¢ < ¢ and
0 <j<m—1,let P be the polynomial defined by

tTika,i . (f(mfl))km—l,i’

Y/
Pt f, ..., fom )y = D43 |
=1

so that all the coefficients of P are non-negative. Let the sequence (Gn)n>0 be given by taking
4y, = 1+ maxo<i<m—1 |a;| for every 0 < n < m—1 and letting (@, ),>m be determined by letting
f(t) = 3220 @nt™ be a formal solution to the ODE f0™ = P(t, f,..., ft»=1) so that the
sequence (ay,),>o is non-negative. Since |axbl,, < (|a|*|b|), for any two sequences a = (ay,)n>0
and b = (by,)n>0, we have by induction on the degree of P that

an| < ay,

for every n > 0. Moreover, the inclusion of the f term in the definition of P, together with the
fact that all the coefficients of P are non-negative, ensures that the sequence (a,),>o satisfies
the inequality

m+m)(n+m—1)-(n+Dapem>m+m—1) - (n+1)ansrm_1
for every n > 0, and hence that
(n+ Ditpsr > an
for every n > 0, where the fact that this holds for 0 < n < m — 1 follows by definition of
ag, - . ., Gm—1. Applying this inequality recursively we deduce that

()4 k= 1) (0 D = (4 k= 1) (04 Dinar 2 - >

for every n,k > 0. In other words, if f(t) = > no Gnt™ denotes the formal power series
determined by (@, )n>o then the nth coefficient of the formal derivative f(¢)* is an increasing
function of k for each n > 0, and hence that

l
Pt foo o f ) = [ FOmD Y gl froc - (Fm )

i=1

¢
< f(mfl) + Z |\

i=1

tTi (f(mfl))kl

n

where k; = 327 k.

§=0

Our aim is to bound the coefficients a,, in terms of the coeflicients of the formal solution
to a simpler ODE that we can solve exactly. To this end, let A = 1 + Zle |Ail, let k& =
2 + max;<;<¢ k;, and consider the ODE ¢ = Ag*. We can solve the ODE ¢’ = Ag* non-
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formally by thinking of it as a separable equation to find the family of solutions

A=) (| — 1)1/ (=)
T (to— )Y/

to >0, t<ty,

and the generalized binomial theorem allows us to write this solution as a convergent power

series
N1 (fp — YYD \YG=1)(f  )1/(=1) )
= — /(k=1)
(o — YD 7D (1= (t/to))”
= R Sl (RR VTSI 3
n=0 i=0

and it follows that

o RV N T
s =3 (M) | S - v - )| o

|
n=0 to ton 2

is also a formal solution to the ODE ¢’ = A\g* for each t; > 0. The coefficients of this
power series are all positive since the two negatives always cancel for n odd, and since they
become large when ¢ty is small we can take ty sufficiently small that these coefficients satisfy
Jn > ﬁ(lm_l) for every 0 < n < m. Moreover, we also have that

1 (n+1/(k—1))
g (n+ 1)tg

for every n > 0, so that if ¢, is sufficiently small then g, > g, for every n > 0. This implies
that the coefficients of g* are also increasing for every ¢ > 1:

Exercise 54. Prove that if ZZOZO a,t™ and EZO:O b,t" are formal power series such that the
sequences (ay,)n>0 and (by,),>0 are both non-negative and increasing then the coefficients of the
product (3°°7 Jant™) (Y o7, byt™) are non-negative and increasing. Deduce that (302 a,t")*
has non-negative, increasing coefficients for every ¢ > 1.

Exercise 55. Prove that if f(t) = " °  a,t" is a formal power series with ay > 1 and the
sequence (a,) is non-negative then f¢ > f, for every n > 0 and ¢ > 1.

We claim that if ¢g is small enough that both inequalities hold then g, > ﬁ(szl) for every
n > 0. We prove this by induction on n, the base case n = 0 being trivial by choice of t,.
Suppose that the claim has been proven for all 0 < ¢ < n for some n > 0. Then we have that

tT‘i (f(mfl) )kl

n

l
fo—t) _ 1 gy _ 1 g dmeny oL Fme \
j%+1 Tl+-1j% ( 7f7"'7f )n _>Tl+-1 f +_;§;| 1
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Since the right hand side is an increasing function of the coefficients f DY g

follows from the induction hypothesis that

gk gl
“n+1 n+l

n

t’f'lgk

= Gn+1

)4
oy 1 R

where the second inequality holds by our two exercises and the penultimate equality follows
since g is a formal solution to the ODE ¢’ = \gF.

Putting this all together, it follows that

1 Fomn

< a, =
‘an‘_a/n n(n_l)...(n_m+2)nm+1_gn m+41

for every n > m, and since g has positive radius of convergence it follows that >~ a,t™ does
also. O

Example 6.11. Consider the ODE %f’ + % — f = 0. This ODE is not in our usual form,
since the top derivative f’ has not been solved for, but it is of the form P(t, f, f') = 0 for a
polynomial P so that there is a well-defined notion of what is means for a formal power series
to be a formal solution. Indeed, Y >, a,t" is a formal solution if and only if

00 a1 t2 00
E I(n>2)(n—1 t"+ — — E nt".
n=0 g . ) 2 ! 2 n=0 ’

For this to hold we must have that ay = a; = 0, that a; = 1, and that

(n—1)an—1
> M
for every n > 3, so that, inductively,
(n—1) (n—1)(n—2) (n—1)! (n—1)!
ap = 9 ap—1 = 9 9 ap—9g =" "= on—2 Qo = on—1

for every n > 2. Thus, the only formal solution to the ODE is given by

f:g_l L(n > 2)t"

n=0

which has zero radius of convergence. Later we will see that this formal solution is still
meaningful even though it cannot be summed to give a function solving the ODE.

Exercise 56. Find all formal power series solutions to Stokes equation f” =tf.

Exercise 57. Find all formal power series solutions to f” = f'f.
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6.3 Composition of formal power series and analytic ODEs

So far we have been discussing formal power series solutions only in the context of polynomial
ODEs. While this is already a very large class (including most examples one encounters in
practice), the theory can also be applied to analytic ODEs using the notion of the formal
composition of formal power series.

Suppose that f(t) = > 7 a,t" and g(t) = >~ b,t". We would like to be able to define
the formal composition by

IZang(t)"zao+a1(bo+blt+-~)—|—a2(b0+blt—|—~~)2+~-.

If by is not zero, then we get infinitely many constant terms when expanding the right hand
side, so that the series cannot be defined without getting into issues of convergence — which
we do not want to do when using formal power series! On the other hand, if the constant
term b, is equal to zero, we only get finitely many terms contributing to the coefficient of
each power of t and can therefore define the formal composition f(g(t)) by

fg —ao+z Zak Z bj, -+ b, | 1"
n=0 k=1

JiyeensJie 21
Z]z

Similarly, if f : I — R is a real analytic function defined on some open set I and g(t) =
> o bat™ is a formal power series with by € I, we can write f as a power series around by

<) (g,
fi) =3 T gy

and define the formal composition f(g(t)) to be the formal power series

f"(bo)
2!

f(g(t)) = f(bo) + ['(bo)(bat + bot> + -+ ) + (bit +bot® 4+ -+ )2 + -

S IORD ] DIEALIES SR T
n=0 \ k=1 '

it =1
ji=n
Thus, there is a well-defined notion of a formal power series f(t) = >~ a,t™ being a formal
solution to an ODE of the form, say, f'™ = F(f) where F is a real analytic function whose
domain contains ag. (Of course one can also define formal solutions to ODEs of the form
F(t, f,...,f™) = 0 for F analytic, but I don’t want to get into a discussion of analytic
functions in multiple variables.)
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Example 6.12. Let f(t) = Y7 a,t™ be a formal solution to the ODE f' = cos(f) with

n=0

ag = 0. This ODE means that

Zant” =1+ Z Z ( k:? 1(k even) Z aj, ---aj, | t".
n=0 n=0 | k=1 ’ J1yeenin>1
> jJi=n
We can solve for the first few coefficients by hand:
a; = 1
2&2 =0
1 1
3@3:—561% :>a3:—6
4@4 =
. 1 1 N 1, N 1
a5 = ——a1a3 — —asa; + —a as = —.
5 5113 = 5d301 + 770 5= 51

One can take the same calculations further with a computer to obtain that

1 1 61
)=t — —t3+ —t° —
/) 6"t 5040

277

7 t
+72576

It is easy to show by induction that a,, = 0 for every even n, but no clear pattern emerges for
the odd coefficients. This is just what is to be expected when solving formal ODEs in general!
On the other hand, the ODE f’ = cos(f) can also be solved as a separable ODE to obtain

the (function) solution
1
f(t) = 2tan™* (tanh (ﬁx)) ,

which is sometimes known'® as the Gudermannian function. The derivatives of this func-
tion at zero are complicated, which is why we didn’t see any obvious pattern in our formal

power series solution.

13T had never heard of this function before I prepared this example.
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7 Recursions, difference equations, and generating functions

Series solutions allow us to reduce the problem of finding the solutions to a polynomial ODE
fm = P(t, f,..., f™Y) to the problem of recursively computing the coefficients ag, ay, ...
of Y7 ,a,t™ via the relation

1
Apym = Pt7 DRI (m_l)n
RSl prprapen yprarapeeang s puwy prariy s L GRAREEEE AN
where the right hand side is a function of the coefficients ay, ..., @, 1m—1. In particular, this

method allows us to turn a continuous problem (solving an ODE) into a discrete problem
(computing a recursively defined sequence). In this section we discuss how this method can
also be used in reverse, to study discrete problems about recursively defined sequences using
ODE methods.

7.1 Ordinary generating functions

Given a sequence of real numbers (a,),>0, the formal ordinary generating function of
(@n)n>0 is the formal power series Y ° - a,t". The ordinary generating function of (a,),>0
is the function defined by summing this formal power series within its radius of convergence
(taking the generating function to have empty domain when the radius of convergence is

Y

zero). The word “ordinary” is used to distinguish the ordinary generating function from the
exponential generating function, which we will discuss later.

The operation of sending a sequence to its generating function is closely analogous to the
operation of sending a function to its Laplace transform. Indeed, if we define a piecewise-

continuous function g by ¢(t) = a,, for every n > 0 and every n <t < n+ 1 then

00 n41 1 — 5 00
Lods) =3 [ metar =Y e
n=0"" n=0

whenever all relevant series and integrals converge absolutely, so that the ordinary gener-

ating function of (a,),>0 and the Laplace transform of g are ‘the same’ up to a change in
1—e~%

parameterization and multiplication by a simple prefactor.

As with the Laplace transform, there are many identities relating operations on sequences
to operations on ordinary generating functions. Since we are doing everything formally,
all these rules follow directly from the definitions and we do not need to be careful about
convergence issues as we did when discussing the Laplace transform.

1. (Shifting index — multiplication by 1/t.) If f(¢) is the formal ordinary generating
function of (a,)n>o0 then (f(t) — ap)/t is the formal ordinary generating function of

112



(@n+1)n>0. Similarly, if £ > 1 then

f(t) — ag — alt — s — kaltk_l
tk

is the formal ordinary generating function of (a,1x)n>o0-

2. (Multiplication by n — multiplication by t%.) If f(t) is the formal ordinary generating
function of (a,)n>o then tf'(¢) is the formal ordinary generating function of (na,),>o.
More generally, if P is a real polynomial in one variable then the ordinary generating
function of (P(n)a,),>o is given by P(t4)f(t).

3. (Convolutions — products) If f(¢) and ¢(t) are the formal ordinary generating func-
tions of a = (an)n>0 and b = (b,)n>o respectively then f(¢)g(t) is the formal ordinary
generating function of a*b. In particular, f* is the formal ordinary generating function
of the sequence

S Il

ni,...n>0 =1
Yoni=n n>0

Let us now go through some simple examples where we can use ordinary generating func-
tions to solve recurrences.

Example 7.1. Let N(n,k) be the number of ways of writing n as the ordered sum of k
non-negative integers. For example, N(2,2) = 3 since we can write 2 as 2+ 0, 1 4+ 1, and
0+ 2. If we let @ = (a,)n>0 be the constant sequence a,, = 1, then

N(n, k) = Z 1= Z H@m

ni,...n>0 ni,...ng>0 =1

S ni=n S ni=n

so that N(n, k) is the nth coefficient of the formal power series (3 oo ¢")*. This formal power
series can be summed to obtain the function

(Z) =T

for |t] < 1. The generalized binomial theorem lets us expand this series as

[e.9]

(e :Z(Hz_l)”’

n=0

so that N(n, k) = (”+§_1) for every n, k > 1.
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Exercise 58. Find a formula for the number of ways of writing n as the ordered sum of k&
positive integers.

Example 7.2 (Catalan numbers). For each n > 0 let C,, be the number of ways of writing
n pairs of left and right parentheses so that every left parenthesis is correctly matched to a
right parenthesis (i.e., such that when we read the sequence from left to right, we have at
each step read at least as many left parenthesis as right parentheses). For example,

Ci=#{0} =1 C=#{00,((N}=2 Cs=4{000.000). (00, (00), (0N} =5.

To make things work nicely, we also consider the empty sequence, with zero pairs of parenthe-
ses, to be a sequence of parentheses with all parentheses correctly matched and set Cy = 1. C,
is known as the nth Catalan number and arises in a huge variety of combinatorial enumer-
ation problems (see e.g. Figure 6). In any such sequence of parentheses, the first parenthesis
must be a left parenthesis, which is matched to some right parenthesis, so that we can write
our sequence uniquely in the form (X)Y where X and Y are (possibly length zero) sequences
of correctly-matched parentheses. Considering the possible lengths of the two sequences X
and Y leads to the recurrence

Cos1 =Y CrlChy = (CxC),
k=0

which holds for every n > 0. Thus, if f(t) = > -, Cyt" is the formal ordinary generating
function of (C,),>0 then

If Y~ , C,t" has positive radius of convergence then f must satisty this equality as a function
within this radius of convergence, and we obtain that

1++v1 -4t 1—+1—4t
e L R A

for every positive ¢ within the radius of convergence. The first option is not viable since it
converges to co as t | 0. L’Hopital’s rule implies that the second expression converges to 1 as
t | 0, and expanding /1 — 4t as a power series using the generalized binomial theorem yields
that

1—4t:i(1/2)(—475)”:1+i(%)(%_1)m(; ntD gy

114



ccy ccc)y )y cc)ry)y)y o))

Figure 6: The nth Catalan number C,, is also equal to the number of sequences (Xg, X ... Xs,)
such that |X; — X; 1| = &1 for each 1 < i < 2n, Xy = Xy, = 0, and X; > 0 for every
0 <i < 2n. Such sequences are called Dyck paths. To see this, note that there is a bijection
between such paths and configurations of parentheses defined by taking X; — X; | = 1 if
the 7th parenthesis is a left parenthesis and X; — X; ; = —1 if the ith parenthesis is a right
parenthesis. As such, 27"C), is equal to the probability that a 2n-step simple random walk
on the integers with Xy = 0 satisfies X3, = 0 and X; > 0 for every 0 <1 < 2n.

where we use the convention that (—¢)!! =1 for £ > 0, so that
1—V1—-4t 1 °°2(2n— = 2"(2n — 1)
2t 2 ; z% (n+1)!

Since this power series has positive radius of convergence, satisfies the equation % = f2
and takes the value 1 at 0, the coefficients a,, = % must satisfy the recurrence ag = 1,

an+1 = (a*a),, so that they coincide with the Catalan numbers C,, and we have that

n —

27(2n — 1)!!
(n+1)!

Using the identities (2n — 1)!I! - (2n)!! = (2n)! and (2n)!! = 2"n! yields the more standard
expression for the nth Catalan number

c - 1 <2n>
n+1\n

Exercise 59. For each n > 1, let A, be the number of length-n strings using the symbols “(”,

7

“)” and “x” such that every left parenthesis “(” is correctly matched to a right parenthesis

“)”. For example,

Ar=#{xt =1,  As=#{xx 0} =2,  Ag=#{xxxx(),0x ()} =4,
Find a recurrence satisfied by the sequence (A, ),>¢ and use it to find a formula for A,.

Example 7.3. The Fibonacci sequence is defined by ag = a; = 1 and a,.9 = a,, + a4 for
every n > 0. Taking f(t) = > - ast" to be the formal ordinary generating function of this
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sequence, we have the equality of formal power series

(o] (o] o0

n n n
E Aol = E a,t” + E An+1t,
n=0 n=0 n=0

which can be rewritten using the “shifting indices” rule as

f—1—t f—1
T f+ — (7.1)
Solving for f yields that
1
1t

Since this function is analytic at 0, has f(0) = f/(0) = 1, and satisfies the relation (7.1),
the coefficients of its Taylor series at zero must be the Fibonacci sequence. The easy way to
express f as a power series around zero is not directly via its Taylor series, but rather using
partial fractions:

1 NG TACIE I <1+\/5>n+1tn_ 1 & (1—\/5>n+1tn

5

n=0

f_1—t—t2_%5_t Y 2 2

so that

o 1 1+\/5 n+1 1_\/5 n+1
"5 2 a 2

for every n > 0. Later on we will see a different (easier) way of doing the same computation.

7.2 Exponential generating functions

Given a sequence of real numbers (a,),>0, the formal exponential generating function
of (an)n>o is the formal power series )~  92¢". The exponential generating function
of (an)n>0 is the function defined by summing this formal power series within its radius
of convergence (taking the generating function to have empty domain when the radius of
convergence is zero). In other words, the exponential generating function of (a,),>¢ is the
ordinary generating function of (a,/n!),>o.
As with ordinary generating functions, there are various identities relating operations on
sequences and operations on exponential generating functions.
1. (Shifting index — differentiation.) If f(t) = > ' %" is the formal exponential
generating function of (a,),>; and k£ > 1 then the formal kth derivative %) is the
formal exponential generating function of (a,4)n>0-

2. (Multiplication by n — multiplication by t%.) If f(t) is the formal exponential gen-
erating function of (a,),>¢ then ¢f’(¢) is the formal exponential generating function of
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(nap)n>0. More generally, if P is a real polynomial in one variable then the exponential
generating function of (P(n)a,)n>o is given by P(t4)f(t). (Yes — this rule is exactly
the same for ordinary and exponential generating functions.)

3. (Binomial convolution — multiplication.) If we multiply together two formal expo-

nential generating functions f = Y 7 j4t" and g = >, %t”, what does this mean

in terms of a sequence operation? The formal product f(¢)g(t) can be written

%) n akbnfk . oo 1 n n .
f(t)g(t) = ZO kz W — k)l th = ZO - kz (k:) agbn -y | 1",

so that f(t)g(t) is the formal exponential generating function of the binomial convo-
lution a ® b of a = (a,)n>0 and b = (by,),>0 defined by

(a@Db), = é (Z) b

(This notation is not standard; I made it up.)

Let us see how we can use exponential generating functions to solve some counting prob-
lems. Note that it might not always be obvious whether to use ordinary or exponential
generating functions to solve a given problem, although the presence of binomial convolutions
is a clear sign that exponential generating functions should be appropriate.

Example 7.4.

1. The constant sequence a,, = 1 has exponential generating function e’.

2. The exponential sequence a,, = A" has exponential generating function e*’.

3. The sequence a, = n! has exponential generating function 1/(1 — ).
Example 7.5 (Derangements). A derangement of {1,...,n} is a bijection o : {1,...,n} —
{1,...,n} such that o(i) # i for every 0 < ¢ < n. (In other words, a derangement is a
permutation with no fixed points.) Let D, be the number of derangements of {1,... ,n},
where we set Dy = 1. Since there are n! bijections from {1,...,n} to itself, and we can

uniquely specify any such bijection by first choosing its fixed points and then choosing a
derangement of the non-fixed points, we have that

n

=% (Z) Dy, =(1®D),

k=0

for every n > 0. Taking exponential power series of both sides, using that n! has formal

t

exponential power series 1/(1 — ¢) and 1 has formal exponential power series e, we obtain
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that

. D 1
t n,n
U p—
€ nz:% n! 1—¢
and hence that .

> o=

=

—~ nl 1—t

Since e~ is the formal exponential power series of (—1)™ it follows by a second application of
the binomial convolution rule that

o] Dn o] 1 n n e

n __ _1\n | n
th_zm Qy” K
n=0 n=0 k=0

and hence that

k=

In particular, for large n, D, is approximately equal to n!/e. This means that the probability
that a uniformly random permutation of {1,...,n} has no fixed points converges to 1/e as
n — oo. In fact, noting that the error satisfies

n! > n! 1
D, ——| = D < ——
' e k;-i-l( ) K~ n+1’

which is less than 1/2 for n > 2 (the last inequality follows since if (a,),>0 is any decreasing
sequence then | >~ (—1)"a,| < ag), D, must actually be equal to the closest integer to n!/e
for every n > 2, and in fact this is true for n = 1 also.

Example 7.6 (Binary rooted trees with increasing labels). Let A,, be the number of functions
¢ from {1,...,n} to itself such that p(1) =1, p(k) < k for every k > 0 and o1 (k) \ {1} =
{2 <m < n:p(m)=Ek} has at most two elements for every 2 < k < n. See Figure 7 for a
visualization of these functions as flow charts, where we see that A; = Ay = 1, A3 = 2, and
Ay = 5. We also set Ay = 1 to make the rest of the calculation work out nicely. Since the
only feature of the numbers {1,...,n} that we use to define A, is their relative order, A, also
counts the number of functions ¢ from any set € of n integers with minimal element ng to
itself such that ¢(k) < k for every k € Q\ {no} and with |~ (k) \ {no}| < 2 for every k € Q.
We call such a function an admissible function on €2.

To get a recursion for A,, we first note that if ¢ : {1,...,n + 1} is admissible with
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Figure 7: The functions counted in example 7.6 represented as binary rooted trees with
increasing labels. Our calculation shows that the higher derivatives of tan at /4 are secretly
counting these diagrams.

|¢6=1(1) \ {1}| = 1 then we must have that p~'(1) = {1,2} and that

o(k) k#2
(k) =
2 =2
defines an admissible function on {2,...,n + 1}. This defines a bijection between admissible

functions on {1,...,n+ 1} with [¢~!(1)\ {1}| = 1 and admissible functions on {2,...,n}, so
that the total number of such functions is A,,.

On the other hand, if |p~!(1) \ {1}| = 2, we can partition the numbers {2,...,n + 1}
into two sets X and Y according to the last number taken by the iterates (k, o(k), ¢*(k),...)
before it fixates at 1. (In other words, in the pictorial representation of Figure 7, we separate
the numbers {2,...,n + 1} into those appearing on the two sides of the tree.) Similarly to
above, in this case the function ¢ can be uniquely specified by specifying the unordered pair
of sets {X,Y} whose union is {2,...,n+ 1}, an admissible function on X and an admissible
function on Y. As such, the number of admissible functions on {1,...,n + 1} such that
lp™1(1) \ {1}] = 2 is given by 3 - (1) ArAn—k, where the factor 1/2 comes from the fact
that the order of the pair {X,Y} does not matter.
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Putting these two identities together yields that

n—1 n
1 n 1 n 1
Anit = At 30 (zf)“"““"'“ =32 (k>AkA"k 51 =0),

where the second equality comes from the expression for the sum over the “missing terms”

5 2 () -

ke{0,n}

Az = % n = 0.

N= N

(Be careful: The fact that something special happens at zero [or other small values of n]

is extremely easy to miss when doing these calculations!!) Thus, if f = > 7 %t” is the

exponential generating function of (A4,),>¢ then f is a formal solution to the polynomial
ODE

= %<f2+1)-

Being a formal solution to a polynomial ODE of the form f’ = P(f), the formal power series
f must have positive radius of convergence, and therefore defines a real analytic function
on some open interval containing 0 that solves the ODE 2f" = f2 + 1. Since this ODE is
separable, we can solve it as a separable ODE:

2df

We can recognize the integral on the left as 2tan~'(f) and rearrange to obtain solutions of

f:tan(%—i-C).

Since we want the solution to have f(0) = Ay = 1 we must have that tan(C') = 1; taking C' =
7/4 works. Since function and formal operations coincide within the radius of convergence
and since this f is the unique solution to the ODE with f(0) = 1 by Picard-Lindel6f, we must

have that
i ﬁt” = tan ! + 2
nl 2 4)

n=0

the form

Unfortunately there is no nice expression for the Taylor series of tan, so that we do not get a
nice formula for A,. (Again, “a nice formula” does not have a precise mathematical meaning
here. The double factorial n!! would not look that nice either if we didn’t have notation for
it and just wrote it as a product.)

In the next section we will learn about what we can get out of having a nice expression
for the ordinary/exponential generating function of a sequence even if this does not lead to
such a nice formula; this is very similar to the question of what we can learn from the Laplace
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transform of a function when we are not able to explicitly invert the Laplace transform.

Exercise 60. Use exponential generating functions to solve the recursion

n—1
1 n
An+1 = —5 Z (k}) AkAn—k—i-l
k=1
Exercise 61. Using exponential generating functions, find a formula for the number of (iso-

morphism classes of) trees with n leaves labelled 1, ..., n and with unlabelled internal vertices
each having degree exactly 3.

9 3 2 3 4 3 4 3e e
ol »—+¢ e ;

1 \1( 1 I 2 1 2 1 2
(The first few numbers in this sequence are 1,1,1,3,...)

7.3 Difference equations

Given a sequence (ay)n>0, the sequence of differences (Aa,,),>o is defined by Aa,, = a1 —ay,
so that A is a discrete analogue of differentiation. A kth order difference equation is a
recurrence relation of the form

Afa = F(t,a,Aa,..., A" a).

In practice “difference equation” is used less precisely than this, and is often just used inter-
changeably with “recurrence relation.” The theory of difference equations is closely analogous
to that of ODEs, and various simple difference equations become ODEs after we take gen-
erating functions. As in the ODE case, kth order linear difference equations can always be
thought of as a first order difference in k& dimensions:

AF1lg F(t,a,Aa,...,A¥1q)
AkiZCL Akila
A : == A :
Aa A%aq
a Aa

A kth order linear difference equation is a difference equation of the form
Antk + Ck_l(n)an+k_1 +--+ co(n)an = b(n)
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where cg, ..., cx—1 and b are function from {0,1,...} to R. (We could write this relation in
terms of the differences, but there’s not much reason to do so.) As in the ODE case, linear
ODEs can be written in terms of matrices as

Uik —cp-1(n) —cp—a(n) - —ci(n) —co(n) b(n)\ [@nir—
Qntk—1 1 0 ce 0 0 0 An4k—2
Gni1 0 0 e 1 0 0 an
1 0 0 e 0 0 1 1
so that if we write a,, = (a@pyx_1," - ,a,) and write A(n) for the matrix appearing here then

( “1“) — A(n) ( 1") = A(n)A(n — 1) - - A(0) (10) .

If A(n) = A is constant, then this simplifies to

()= (3)

So that solving constant-coefficient linear difference equations reduces to taking powers of
matrices just as solving constant-coefficient linear ODEs reduces to taking exponentials of
matrices; such powers can be computed efficiently by diagonalizing / taking the Jordan normal
form as appropriate just as we did when exponentiating.

Exercise 62. Use this method to derive the formula for the nth Fibonacci number.

Note also that if a solves a constant coefficient linear difference equation
Uk + Ch—10nyk—1 + -+ Coap = b

then the formal exponential generating function f(t) =), _, %" of a satisfies the constant
coefficient linear ODE
f(k) + Ckflf(kil) + -+ Cof = bet.

This means that there is a sense in which constant coefficient linear ODEs and difference
equations are equivalent, rather than merely analogous.
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8 Introduction to asymptotic analysis

The goal of this section is to provide a brief introduction to asymptotic analysis and Tauberian
theory. Asymptotic analysis is a huge topic that could easily be the subject of an entire course,
so we will only be scratching the surface.

8.1 Asymptotic notation

We begin with a primer on asymptotic notation. Asymptotic notation is extremely useful
throughout analytic branches of mathematics, and is what modern researchers in probability,
combinatorics, PDE, theoretical computer science theory, analytic number theory, etc. use to
describe their work. Part of the utility of this notation is that it is very flexible, which makes
it difficult to provide a single unified formal framework for its use, and you should not always
expect other uses of this notation that you see to strictly conform to the rules we set out here.
Here are the basics. Suppose that we have non-negative functions f and g defined
on domains including a neighbourhood of some point ¢ € [—o0, +00]; if ¢ = 400 or —oo
this means that their domains include all sufficiently large positive or negative numbers as
appropriate. “Big-O”, “little-0”, “big-€)”, and “little-w” notation are defined as follows:

t

“f(t) =0(g(t)) as t — ty” means that lim sup ) < 00
tsty 9(t)

t

“f(t) =o(g(t)) as t — to” means that lim sup & =0
tst0 9(t)

t
aaf'(t) = Q(g(t)) as t — tO” means that h%r_l}glf % >0
“ — 9 . . f(t) B

ft) =w(g(t)) ast — to means that lim inf —= =
t—to g(t)

We also define “©” notation (there is no little-6)
“f(t) =O(g(t)) as t — to” means that f(t) = O(g(t)) and f(t) = Q(g(t)) as t — to.

Finally, we write

ft)

“f(t) ~ g(t) as t — ty” to mean that tlgg) m =1,

in which case we say f is asymptotically equal to g as t — ;. All these notions extend
in obvious ways to situations where e.g. one has sequences instead of continuous-domain
functions, or where one requires ¢ to converge to ¢y from a particular direction. Often one
omits the “as t — t,” part if the relevant limit is obvious from context.

Some warnings are in order:
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1. The requirement that quantities written in this notation are always non-negative is not
completely standard, but greatly increases the expressive power of the notation. If we
want to talk about quantities of uncertain sign we can use +, so that e.g.

f(z) = £0(2%) as © — +o0

means that |f(z)| = O(2?) as z — +o00.

2. In some fields one often sees big-O notation used to mean what we denote © here (often
in the same places where it is also used in the same way we use big-O). We much prefer
having two different notations for the two different things.

Another feature of this notation is that we can use expressions like O(g(t)) etc. to stand
in for a function satisfying the appropriate asymptotic bound as part of a more complicated
expression. So, for example,

f(t) = f(t()) + (t — to)f/(to) + 0(|t — to’) ast — to

means that there exists a function h(t) with |h(t)| = o(|t — to|) as t — to such that f(t) =
f(t[)) + (t - to)f/(to) + h(t), and

(I+o(1)n as n — 0o

a, =e
means that there exists a non-negative sequence h(n) with h(n) — 0 as n — oo such that
an = ehIn Moreover, f(t) ~ g(t) as t — to if and only if f(t) = (1 £ 0(1))g(t) as t — t,.

8.2 Asymptotic expansions

As we saw with the example f(x) = e * ", it is not always true that a smooth function can
always be recovered from its Taylor series around a point (not every smooth function is real

analytic). Still, Taylor’s theorem does tell us that if f is smooth at xy then

N £ (g, N
1) =3 T 4y ol — o)

n=0

as r — xg for each N > 0. Thus, there is still some weak sense in which f is “equal” to the

oo f((x)

infinite sum ) > &——=(x — 20)", even when this sum is not well-defined! This motivates

the definition of an asymptotic expansion, of which the Taylor series is a key example.

Just as we previously considered formal power series, we can now consider arbitrary formal
series of functions >~ a,f,. (Rigorously, this is ‘just notation’ for a sequence of functions
(fo, f1,-..) and coefficients (ag, ai, ...). We will put more conditions on these functions if we
want to define multiplication and differentiation formally.) Let ¢ty € [—00, 0] and let Q@ C R
be an open interval which either contains ¢y or has ty as an endpoint. Given a function f and
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a sequence of functions (f,,)n>o defined on Q such that |f,11(t)| = o(|f.(t)|) as t — ¢y and a
sequence of real numbers (ay),>0, we say that

flt) = Z anfn(t) mod t.s.t.s asymptotically as t — tg
n=0
if
N
f(t) :Zanfn(t):lzo(|fN(t)|) as t — to for every N >0
n=0

or equivalently if

N
F@&) = anfalt) £ O(| fysa (t)]) as t — to for every N > 0.
n=0

Exercise 63. Prove that these two definitions are equivalent.

The “equality” f(t) = D> . fa(t) is referred to as an asymptotic expansion of f(t).
The “t.s.t.s” in this notation stands for “transcendentally small terms”, and refers to the fact
that if f and g are two functions satisfying |f(t) — g(t)| = o(| fx(t)]) as t — t, for every k >0
then we can have that both

flit) = Z anfn(t) mod t.s.t.s asymptotically as t — tg

n=0

and

g(t) = Z anfn(t) mod t.s.t.s asymptotically as t — tg
n=0

even when f and g are not actually equal. Be careful to note that what constitutes a tran-
scendentally small term depends on the sequence of functions (f,)n>0. As before, all these
notions have alternative versions making sense for sequences and for one-sided convergence

t T toort l, to.
Remark 8.1. The standard notation for asymptotic expansions is just

o0

F&) ~ > anfa(t) as t — to.

n=0

Our (highly non-standard) notation is chosen to avoid overloading the ~ notation (since, in
our usage, the simpler relation f(¢) ~ agfo(t) holds in this case when ag # 0) and to stress
that anything going to zero faster than everything used in the sequence of functions used in
the expansion is invisible to the expansion.
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Note that if

o0

ft) = Z anfn(t) mod t.s.t.s asymptotically as t — ¢

n=0

for some sequence of coefficients (a,),>0 then we can compute these coefficients from f by

- 01— tim L0 @h®) ) = aofo(t) — aufi(?)
t—to fo (t) ’ t—to fl (t) ’ 10 f2 (t) 5

In particular, these coefficients are unique (given f and fo, fi1,...) when they exist.

Example 8.2. Taylor’s Theorem implies that if f is smooth at a point ¢y € R then

X £ (¢
ft) = Z / (| 0) (t —tp)" mod t.s.t.s asymptotically as t — .
n!
n=0

Note that this makes sense even if the Taylor series has zero radius of convergence!

Exercise 64. Prove that if f(t) = >~ ja,f,(t) mod t.st.sast — toand f(t) =D~ bufu(t)
mod t.s.t.s as t — to then a, = b, for every n > 0. (Recall the standing assumption that
| foa1(t)] = o(| fu(t)]) as t — to for each n > 0.)

Example 8.3 (The exponential integral). Let us try to come up with an asymptotic expansion

(1) :/j%ds.

The first term in this expansion is fairly straightforward to see: Since e—; increases very rapidly,

for the function

most the contribution to the integral will come from values of s that are very close to ¢, so

that we should have .

1 [ 1 !
6—dSN—/ esds:—(et—l)we—.
t ) t t

1 S

To prove this rigorously, we can fix ¢ > 0 and write

t t t
s 1 1 1
e—ds——/esds §/ — ——|eds
1 8 t )y 1|8
t 1 1 t/(1+4¢) 1 1
§/ ———esds+/ - ——le’ds
t)1re) |5 1 1 S
t e t/(14€)
g/ - Sds—l—/ e’ds
t/(1+e) | 1
t s
<e 6?ds + el/(+9), (8.1)

1
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Since € > 0 was arbitrary and e'/(1+%) = o(e!) for each fixed € > 0, we can deduce that

t _s 1 t t
/ e—ds——/ e’ ds :0(6—) (8.2)
18 t )y t
t s 1 t t
/e—dSN—/esdswe—.
18 t )y t

as required. Since this kind of thinking is new to you, it will probably not be obvious to you
how to get from (8.1) to (8.2): The point is that if we take £(¢) to go to zero sufficiently slowly

and hence that

as t — oo (in this example taking ¢ = clogt/t for a sufficiently small constant ¢ works) then
the right hand side will be o(e'/t) as required.

In fact for this example there is a nice way to compute the asymptotics in a much less
messy way that gives the entire asymptotic series: Integration by parts! We have that

ol 5

and iterating this calculation any finite number of times

-1 7 LN
/—ds— {W@] + 1 SN+1€SdS7

1

for every N > 1. This means that f1 — ds has the (divergent) asymptotic expansion

/ —dt = t P e’ mod t.s.t.s asymptotically as t — +o0.

Note that e.g. f2 — ds differs from fl - ~ds by the constant fl S‘ ds and has the same asymp-
totic expansion.

Let us compare this to the (convergent) expansion
t s t X n—1 X in
e s t" —1
—ds = ds =logt +
/1 s /1 nz% n! & ; n - n!

Although this expansion converges, it is not an asymptotic expansion as t — —+oo: If we

want to get an accurate estimate of our function using this expansion we need to take a large
number of terms when ¢ is large.

Exercise 65. Prove that

L(1+e)t]
— ~ e as t — 400 and Z — = o(e") as t — +o00
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for every € > 0, where || means x rounded down to the nearest integer.

Remark 8.4. In fact we have more precisely that

[t+m(t)]

-~ e’ as t — 400 if and only if  m(t) = w(t/?) as t — +oo0.
n!
n=t—m(t)]

(This can be seen as a consequence of the central limit theorem!) This means that we need
to use about v/t terms to get a good estimate to e from its series expansion when t is large.

Example 8.5. You are probabily familiar with Stirling’s formula

n!l ~ V2mn (E> )
e

This asymptotic formula can be expressed in terms of log(n!) as
1 1
log(n!) = nlogn —en + 3 logn + 3 log 27 £ o(1).

(In general, if we want to determine the first-order asymptotics of some quantity, we should
expand its logarithm up to £o(1) terms.) There is in fact an asymptotic expansion

1 1
logn! =nlogn — en + §logn+§log27r

—  (=1)*By :
+ —————— mod t.s.t.s asymptotically as n — oo,
kZ:: k(k — D)nk— YHp Y
where By, is the kth Bernoulli number. This is a divergent asymptotic series expansion.

8.3 Formal series solutions beyond power series

Up until now we have discussed formal solutions to ODEs only in terms of formal power series
solutions Y 7 a,t" or Y > a,(t —to)™. While power series solutions are very flexible, they
do not always apply as we saw for the ODE tf’ — 2f — 2t2, which did not have any formal
solutions but did have the solution ¢? log 2, which is not real analytic at zero. Moreover, while
power series are obviously useful when studying the behaviour of our function near zero, they
might not be the most appropriate way of understanding the large time behaviour of our
function, where other expansions might be more appropriate.

For all these reasons, it is often natural to work with other kinds of series solutions to
ODEs besides power series. To do this with formal series, one must of course work within a
class of formal series for which all the operations needed to define the ODE (most commonly
differentiation and multiplication) are well-defined. For example one can work with formal
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power series Y o a,t™" in t~!, for which the theory is much the same as for formal power
series as we studied them before.

To identify the first term in our series solution, we can attempt to find something which
is “almost” a solution to the ODE, then recursively attempt to “correct” this solution into
an actual solution by adding in more terms.

Regular singular points and the Frobenius method. Consider an nth order homoge-
neous linear ODE of the form

Pot)f™ + Py () f" Y+ + By f =0,
where P,, ..., Py are polynomials!*. A simple and important example is

tf' —af =0

for a constant o € R, which has solutions of the form Ct® that do not have a power series
representation at zero when « is not an integer and C' # 0. (In particular, for non-integer «
this equation does have a single formal power series solution — the all zero power series — but
these solutions do not recover all solutions to the ODE.)

When P, (t) # 0, we can write the ODE in the form

P, _ P _
£ +?1f(n 1)+...+Fof:f(n) T+ O f™ 4+ Quf =0 (8.3)
where Qq, ..., Q,_1 are rational functions. We say that ¢ty € R is an ordinary point for the

ODE if Q;(0) is well-defined for every 0 < i < n — 1. Note that every point which is not a
zero of P, must be a regular point, but that cancellations between factors appearing in both
the numerator and denominator of each @); can lead to some zeros of P, also being regular
points. The ordinary points of the ODE are precisely when our usual theory of power series
solutions works with only minor modifications:

Exercise 66. Prove that if 0 is an ordinary point then the ODE has an n-dimensional space
of formal power series solutions.

Points that are not ordinary are called singular points. We would still like to find some
kind of series solution for our ODE around a singular point, but know that power series will
not always work. How, then, should we identify the correct sequence of functions to take our
expansion with respect to? If we want our expansion to be asymptotic, the first term should
describe the first-order asymptotics of our solution as ¢ — 0. One way to proceed, in light
of the example above, is to guess that our solutions can be expanded in possibly non-integer
powers of t as t — 0. If f does have a convergent expansion of the form f(t) = 0 a,t*

1 Everything we discuss here applies equally well with polynomials replaced by analytic functions and
rational functions replaced by so-called meromorphic functions.
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for some strictly increasing sequence ag < oy < --- then the first-order asymptotics of f and
each of its derivatives as t — 0 are determined by the first of these powers o = ay:

(n-1)
F) = (1 £o(1))(a—n+ 1)%@ == (1xo(W)) ala—1) - (a—n+ 1)]%
f(t)

= (1% o(1))(0), ]}
as t — 0 for each n > 1, where (a), == a(a—1)--- (a—n+1) denotes the falling factorial.
(When « is an integer we might not be able to write these relations using the notation ~ as
f ~0-gis not equivalent to f = o(1)g.) Plugging this into the ODE yields that

(£ o()a)d + (£ o(D)ahr Bt s oD )
Multiplying both sides by ¢"/f, we have that
(1% o(1))(@)n + (1 £ 0(1)) (@)n_s P]’;:t (1t 0(1))%#. (8.5)

We say that 0 is a regular singular point if is not an ordinary point but each of the terms
PI’;—;"ti appearing on the right hand side has a finite limit as t — 0. (Equivalently, if the
rational function P%: either has no singularity at 0 or a pole of order at most ¢ at 0 for each
1 <i < n. This also defines what it means for a point other than zero to be a regular singular
point). Singular points that are not regular singular points are called irregular singular

points. If 0 is a regular singular point and we write ¢,,_; = lim;_,q PI’;*iti for each 1 <17 <n,
then we can take the t — 0 limit in (8.5) to obtain that

(@)n + cn1(@)p—1+ -+ ac; + ¢y = 0. (8.6)

This is known as the indicial equation; the calculations we’ve done suggest that if the ODE
has a series solution in (possibly non-integer) powers of ¢ then the first power in this series
should be a solution to the inidicial equation. (Note that this equation may have complex or
negative roots; in the case of complex roots it does not really make sense to speak of the first
root but we’ll come back to this later.)

Before going further, it will be helpful to set up an appropriate class of formal series to de-
scribe rational functions that may have singularities at 0. A (formal) Laurent polynomial

is a (formal) series of the form

Z ant"

n=—oo

with a, = 0 for all sufficiently large negative numbers n. Every rational function can be
expanded as a Laurent polynomial, with the maximal n > 0 such that a_,, # 0 being the order
of the pole at zero if there is one. We can define addition, multiplication, and differentiation
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of formal Laurent polynomials exactly as we did for formal power series.

We now go back to our ODE. Suppose that we attempt to write down a solution as a
series beginning with a multiple of t*. If we start differentiating ¢t* we will naturally obtain
terms of the form t*~!, t*~2 etc., and multiplying our functions by rational functions will
lead more generally to terms of the form ¢t*™" for arbitrary integers n. Thus, it makes sense
to try to find solutions described by formal series Y, a,t*". If we consider more generally
formal series of the form > 7 a,t*™" with a,, = 0 for all sufficiently large negative n, then
we have well-defined formal operations describing differentiation, addition, and multiplication
by formal power series:

% Z At " = Z: (0 —n—1)a, 1t "
() ant™™)( i byt") = f: i Ambnm | 107" = i (a * b)t*"

where the coefficient in the product is a sum over finitely many terms since our series are
assumed to terminate for sufficiently large negative indices. (Note that the convolution here
is being used in a slightly more general sense than previously.) (Note that if we took products
of these series we would get a more kind of series involving powers of the form t***+" for
integers k,n > 0. In the example we are currently considering such products do not arise
because the ODEs are linear with analytic coefficients.) Note that this all makes sense even
if o is complex.

If we expand each of our rational functions @; = P;/P, as a Laurent polynomial

Qi = Z gint",
k=—(n—i)

where we have used the assumption that 0 is a regular singular point to rule out terms
with negative powers larger than n — ¢, we have a well-defined notion of what it means for
> oo axt®™ to be a formal solution to the ODE:

o0

Z (@ +k +n)narin + Z Gnrp(@+k =) 10k pyn1+--+ Z ogar—e | t*TF =0,

k=—o0 {=—00 {=—00

or in other words that each coefficient appearing here is zero. The coefficients ¢;,—; are
precisely the constants ¢; we defined earlier. Using that 0 is a regular singular point we can
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write

o

Z (Oé + k + n)nak+n + Z qnfl,é(a + k — g)nflakféJrnfl + -+ Z qo,eQk—y tOH_k = Oa

ke=—00 =—1 t=—n

(8.7)
so that the kth coefficient depends only on a; for ©+ < k+ n, and the coefficient of aj., in this
coefficient is given by

(a+k+n)y+agnai(a+k+n—1)1+ -+ qon (8.8)

The assumption that a solves the indicial equation is equivalent to (8.7) holding for the term
k = —n, while all coefficients for k& < —n are trivially zero. Thus, there is no constraint on
ap, and if the coefficient (8.8) is non-zero for every k > —n then we can solve uniquely
for the remaining coefficients. Note that if this quantity does vanish at some k, then a + k
must be another solution to the indicial equation.

Proposition 8.6. If no two roots of the indicial polynomial are separated by an integer, then
for each root «v of the indicial equation and each ag € C there is a unique (possibly complex)
formal solution to the ODE of the form Y, _, apt®™.

In particular, if the indicial polynomial has n distinct roots none of which are separated
by an integer, then we have obtained n different one-dimensional spaces of formal solutions,
so that we should be able to obtain all solutions to the ODE by summing these solutions.
(In the case of complex roots, we should be able to sum complex-conjugate pairs to get real
solutions.) In fact this does always work, and the series expansions we obtain this way are
always convergent. Solving the equation at a regular singular point in this way is known as
the Frobenius method.

In the case that there are roots separated by an integer, the Frobenius method will still
work to produce a unique solution when we use, say, a root of maximal real part. In the
second order case, it turns out that if the two roots are separated by an integer (or equal)
and f is the solution corresponding to the larger of the two roots then a second solution can
be given in the form

flogt + Z aitetk
k=0

where « is the smaller of the two roots.

Example 8.7. Consider the second-order, linear ODE 4tf” + 2f' + f = 0. Writing this
equation in the form

1 1
1" !/
il —f=0
Jor 2tf - 4tf ’
the indicial equation is

1
a(a—1)+§a:O
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which has roots & = 0 and o = 1/2. Looking first for a formal power series solution Y ; a,t",
we obtain that

oo

1 1 .
> {(" +2)(n+ Danre + 50+ 2)ansz + Jana | 17 =0,

where we set a,, = 0 for n < 0. This has the solution

1 1
R T )t D+ 2mnr2) T T nrd(2n +3)

Gt s
2n+ 4"

for every n > —1. This yields a convergent series (with infinite radius of convergence) and
hence a function solution of the ODE. In fact this solution is given by

— (=D, N (=D 12y
aogmt Iaogﬂ(n even)T(t )" = ag cos(V1).

[e.9]
n=

We next want to find a formal solution of the form Y °°  b,t/>t". In this case our formal

solution must satisfy

Z [(1/2—|—n+2)(1/2~|—n+1)bn+2—|—5(1/2%—7”%2)6)%24_A_thn+1 /240 _ ()
bnt2 = ! bpy1 = 1 b i — _ (=12 b
T 2n+5)(2n+3)+ (2n+5) T 2n+5)2n+4) T 2n+5) 0

Again this series has infinite radius of convergence, so that it defines a function solution to
the ODE, and in fact we can recognise this solution as by sin(v/¢). Thus, we have solutions to
the ODE of the form

ag cos(V/t) + by sin(vV1).

These can be shown to give all solutions to the ODE. (Note that Picard-Lindelof does not
obviously apply.)

8.4 A non-linear example

[This section was lectured only briefly in 2024. A revised and briefer version is to be written.]

If we want to solve a particular ODE it is not always clear what kind of series we should use.
Since the first term in the series should describe the first-order asymptotics of the solution,
correctly identifying this first term should be is equivalent to determining these asymptotics.
There are some good semi-rigorous ways of doing this, which are very useful for guessing the
right form for a series solution before trying to prove that it really works. We say that a
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function is regularly varying of index v as t — +oo if f is eventually non-zero and

tooo f(t)
for each A > 0; f is said to be regularly varying if it is regularly varying for some index o € R.
A regularly varying function of index 0 is called a slowly varying function, so that every
regularly varying function of index « can be written f(t) = L(t)t* for some slowly varying
function L. For example, t“ is a regularly varying function of index «, while logt is a slowly
varying function. Note that if f is regularly varying and g(t) ~ f(t) as t — +oo then ¢ is
regularly varying with the same index as f.

Exercise 67. Prove that if f is continuously differentiable, eventually non-zero, and satisfies
(log f) = (1 £ o(1))a/t as t — oo then f is regularly varying of index a.

Exercise 68. Prove that a continuous function f : (0,00) — R is regularly varying if and
only if it is eventually non-zero and

fAY)

AT

is well-defined for every A > 0.

Exercise 69. Prove that if L is a continuous slowly varying function then L(t) = t=°() as
t — 00. Is the converse true? Deduce that if f and g are regularly varying functions and the
index of f is strictly smaller than the index of g then |f(t)| = o(|g(t)|) as t — +o0.

Exercise 70. Let f(t) = L(t)t* be a regularly varying continuous function of index « defined
on [0, 00) such that L(t) # 0 for all sufficiently large t.

/f dswiﬂ

1. If « > —1 then

a+1
as t — +o00.
2. If « < —1 then fo s)ds converges to a constant as t — +oo and
ta+1
[ ropas 2O
as t — +00.

3. fa=-1 then cither [7|f(s)|ds = oo and fo s) ds is slowly varying or [;*[f(s)|ds <

oo and [ f(s) ds is slowly varying.
In particular, fo s)ds either converges to a non-zero constant or is regularly varying of
index o + 1.
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Very often, in the absence of oscillation, the solution to an ODE is either a regularly
varying function or the exponential of a regularly varying function, and the same is true for
the higher derivatives of the function. If we assume this is the case, we can often use the
above exercise to compute the asymptotics of the solution conditional on this assumption.

It’s time to try this out in an innocuous-looking example: Stokes equation f” = tf. This
turns out to be fairly involved, so buckle up for some calculations!

Example 8.8. Let us consider Stokes’ equation f” =tf. A solution to this equation cannot
have second derivative that is continuous and regularly varying with respect to any index: If
f" is regularly varying with index o« > —1 then ¢ f is regularly varying with index a+ 3, while
if @« < —1 then f'(t) converges to a constant but f is regularly varying with exponent av — 1;
this can occur only if f/(¢) converges to zero, in which case f'(t) = — ftoo f"(s)ds is regularly
varying of exponent o + 1 and f is either converging to a non-zero constant or is regularly
varying of exponent « + 2, both of which are inconsistent with the ODE f” = ¢f and the
assumption that f” is regularly varying with exponent c.

The next most natural thing to try is that f is the exponential of a regularly varying
function, so that f(t) = e9® for some g = log f. The function g must satisfy the ODE
(9" + (¢))e?® = tesV
and cancelling the e9® from both sides yields that
g+ =t

To understand the large-time asymptotics of the solutions to this equation, we can try as-
suming that our solution satisfies ¢” = L(t)t* for some slowly varying function L. If & > —1

then we have that
(14 o(1))L(¢)*t? 2

(o +1)2

and since L(t) = t*°) we can simplify this to

=t

L)t +

(1£0(1))L(t)* >
(a+1)2 B

For this equation to hold we must have that
a=-1/2 and L(t) ~1/2 or L(t) ~ —=

so that 1 1
g//(t) ~ §t_1/2 or g”(t) ~ _§t—1/2

and 5 5
g(t) ~ §t3/2 or g(t) ~ —§t3/2.
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The fact that we get two different possible asymptotics is encouraging, since we expect to
get a two-dimensional space of solutions to our ODE. Before moving on, we can also check
that other values of a do not yield anything sensible: If &« = —1 then ¢’ is slowly varying and
"+ (¢')* = to(t), while if @ < —1 then ¢’ = ¢/(c0) £ 0(1) and ¢” + (¢')* = £O(1) = +o(t).
Thus, we have shown that if ¢” is regularly varying then we must have that g ~ %t?’/ 2
or g ~ —%tg’/ 2 as t — +o0o. This suggests we look for series expansions to solutions of
g"+ (¢')? =t of the form

2
g:§t3/2+?+? 4o

and

2
g:—§t3/2—|—?+? o

and we can guess what these missing functions should be by making more assumptions that
relevant functions are regularly varying.

Let us start with the first solution, whose leading term is %t?’/ 2. To proceed, we will write
our solution as

o(t) = 51+ (1)

for some function h = g — %t?’/ 2. The function h must satisfy

2

<§t3/2 + h(t))” - <<§t3/2 + h(t)>,> =,

1
§t*1/2 + A"t + 2020+ (W) =t

so that

and hence that 1
hl/ =+ 2t1/2h/ + (h/>2 — __tfl/Q.
2

To proceed, we will assume that h(t) = +0(t%?) as t — 400 and that h” = L(t)t® is regularly
varying of some index o, with L a slowly varying function. Since h = 40(t3/2) by assumption,
we must have that @« < —1/2. As tends to be the case in these calculations, we need to do
some case analysis according to the value of . If —1 < a < —1/2 then we have that

lfl/Z

2

2(1+0(1))
a+1

(1+0(1))

L(t)t* + (a+ 172

L<t)ta+3/2 + L(t)2t2a+2 _
To understand this equation we will have to split into further case analysis according to
whether o < —1/2 or a = —1/2. In the first case, the term L(#)t**+3/2 dominates the left

hand side and we have that

2(1£0(1))
a+1

9

L(t)to+3/2 = L
2
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which is incompatible with the assumption that & > —1. If « = —1/2 then a+3/2 = 2a+2 =
1 and we must have that

l)tfl/?

(4% 0(1)L(1) + (4 £ o(1) L(1)*)t = (L(t) — 5

Since the powers of ¢ are different on the left is bigger than that on the right, this is only
possible if the two terms 2(14o0(1))L(t) + (1 £ 0(1))L(t)* approximately cancel, which means
that L(t) ~ —L(t)? and hence that L(¢) ~ —1. But in this case h” ~ —t71/? and h ~ —$t%/2,
so that |h| is not o(t3/?). Indeed, we have just recovered the other “solution”

2753/2 — ét?’/? — —2t3/2.

3 3 3

We can also rule out the case that v = —1, since in this case A’ is either converging to a
non-zero constant or slowly varying so that the term 2t'/2h/ is regularly varying with a larger
index than any other term and the equation cannot hold.

It remains finally to consider the case o < —1, in which case

o L(t)tet?
h (+00) — K (¢ :/ R (s)ds ~ —2—
(+00) (t) t (s)ds o+ 1]
where h/(+00) = lim;_, A/ (t), so that
2+ o(1
L(t)t* + 2R (+00)t/? — AT 5(1 |) L(t)t*+3/2 4 b/ (400)?
(6%
2+ o(1) 1+0(1) 1
. —hl L t ta+1 —L ¢ 2t206+2 — ¢ 1/2‘
PSR UL P TR 2

If B'(4+00) # 0 then the term 2h/(+00)t'/? has larger index than every other term, so that
the equation cannot hold. Thus, we must have that h'(+o0c) = 0, in which case the equation
simplifies to

2+ o(1)
lao + 1]

L(t)ta+3/2 i 1+ 0(1)L(t)2t2°‘+2 _ —lt_l/2.

L(t)t*
®) o + 12 2

Since av < —1, the term involving t*+3/2 has larger index than anything else on the left hand
side, so that
2+ o(1)
la + 1

11571/2.

(t :

Thus, we must have that

a= -2 and L(t) ~ as t — +oo.

1
4
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Thus, we have shown that if there is a solution to our ODE of the form §t3/ 24+ h(t) such that
|h(t)] = o(t*?) and h” is regularly varying as ¢ — 400, then we must have that A’ ~ 1t72 as
t — 400 and h/(+00) = 0, in which case

and
1
h(t) ~ 1 logt as t — +oo.

This gives the next term in what will eventually be our infinite asymptotic series

2 1
git) =t3% — Zlogt + 7+ 7 + -
3 4
One can perform a similar calculation for the other “solution”, whose first term is —%tg‘/ 2
and find that the next term must also be —}l logt, so that this other solution should be of the
form 5 ]
glt) = —==t32 — Zlogt + 747 + ---
3 4
What about the third term? Well, we can just do the same thing again: We assume that
our solution is of the form 5

1
— 32 _ 2
g(t) 3t 1 ogt+ h(t)

for some h satisfying |h(t)| = o(logt) as t — oco. Expanding out the ODE ¢” + (¢')* = t, we
see that h must satisfy the ODE
1 1

§t*1/2 + %1“ + b+t - 51&*1/2 + %N +2(t2 +log )W + (R')* =t

which we can simplify to

5
KW'+ 2(tY2 +logt)h' + (W)? = —1—6t—2.
To proceed, we can again assume that hA” is regularly varying of some index «, so that
R"(t) = L(t)t* for some slowly varying function L(t). Since h(t) = +o(t) we cannot have
that h'(t) converges to a non-zero constant, so that h/(t) is regularly varying of index o + 1.
If « > —2 then h must be regularly varying of index o 4+ 2 > 0, which is not possible since
h = +o(logt), so that & < —2. The term 2t'/2h/ has larger index than every other term on
the left, so that
5

5
2pr 2 472 — ~ 4 3/2
2t7°h 16t and h(400) — h(t) 48t .

Now, notice that adding a constant to g does not affect whether or not it solves ¢” + (¢')* = t,

t
so that we should expect the freedom to choose a constant term, which corresponds to h(400).
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(In the original linear Stoke’s equation f” = ¢f this corresponds to multiplying our solution
by e#.) Thus, our asymptotic expansion should continue

2 1 5

t)==t3? — _logt+ A+ —t 3242 4 ...
9(t) = 3 7108 e

for a constant A that we are free to choose. Again, we can do something similar for the other
“solution”, this time obtaining that

2

1 5
t)=—=t32 - Zlogt+ A— —t32 47 4 ...
9(t) = —3 plost + A=t 7

where A is again a constant we are free to choose.

If we continue doing this for more and more terms, we will see that the next terms we
get are constant multiples of t=3, t=9/2, ¢+=6 etc. As such, it makes sense to try to find formal
series solutions of the forms

2 3/2 1 Zoo (3—3n)/2
and
2 4 1 =
_ _ = /2 Z1 A (3—3n)/2.
g(t) 3t 1 ogt+ A+ nEQ byt

Once we have identified the correct form for our formal solution, we can proceed in much the
same way as when we dealt with formal power series. For the first form, we have the formal

derivatives
1 <—3-3n
gt/ (1=3n)/2
g 4t+; 5 an,
- 1 3-3
:Z (]l(n:())_é_l]l(n: 1)+ 5 nanll(nZ 2)> $(1=3n)/2
n=0
. ]- 3—3n n
=t (Hn=0)=7ln=1 An>2)) (+77)
;((n ) 4(n )+ 50 (n_)>
and

. 1- 1 —

g = ;_0 23” (]l(n =0) = 71n =1) S A > 2)) $(-1-3n)/2
1e=1-3n 1 3—3n n
; nEZO 5 ( (n=0) (n )+ 5 (n )) t

139



Thus, the formal equation g” + (¢')? = ¢ can be rewritten

%i 1—3n (1(” —0)— il(n =1)+ 3~ Bnan]l(n > 2)) (t_?’/Q)n

—~ 2 2
+t2§: [zn: (Il(k =0) — i]l(k =1)+ 3 ;Bkak]l(k > 2))
. (]l(n —k=0)— ;l]l(n —k=1)+ Wan_kﬂ(n —k> 2))] (t_3/2>n

=1.

As a formal equality, this means that the coefficient of each power of ¢ is equal on both sides.
(Unlike before, however, we now have non-integer powers of ¢ appearing in the series.) One
can show that this does have a solution by finding a recursion for the coefficients a,, as we
have done several times before. Rather than doing this, we will instead go back to our original
equation, the Stokes equation [’ =tf.

Our (non-rigorous!!) calculations above suggest that we should have two solutions to the
Stokes equation of the forms

2,30 1 S (3—3n) /2
f(t) = exp lgt ~ 1 logt + A+ Zant

n=2
and

_ Y (3—3n) /2
f(t)—exp[ 3t 4logt—|—A~|— E bt ]

n=2

in some appropriate asymptotic sense. Since the exponential of a series in powers of ¢~3/2

3/2

should itself be a series in powers of ¢t7%/% it therefore makes sense to look for (formal)

solutions to the Stokes equation of the form

25,0 1 IS —32\" _ €3 —3/2\"
F(t) = exp {gt — 7 logt Zan(t ) =7 Zan<t )

- n=0 n=0

and
_243/2 o0
3

2 1 1< Lo\ e RN
10 = |26 = Lot S0, () = S ()
n=0 n=0

where the sequences a and b are not the same as in the expansion of the exponential. (I just
want to avoid introducing more letters!) Let us focus on the first solution. To be a formal
solution, all coefficients of e3t"*12 on both sides of the equation f” = tf should be equal to
zero when we formally differentiate (i.e., write out the formal series in which we differentiate
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term by term). The formal derivative of the series is

<. d et -3/2\" o T ~n/2-1/4
nzzo(lna t1/4 (t ) = Zan% [65 t ]

n=0
= Z a, (3t ¢3n/2+1/4 _ Me%tg/zt—Sn/2—5/4
n=0 4
243/2 00
2 anzrtje _ O g
- (t !

and the formal second derivative is

(e}

3/2
Za d_2 €3t < 73/2> ZCL t3/2 —3n/241/4 _ 6TL+ 1e%t3/2t73n/275/4
o "dtz t1/4 ndt 4

_ Za”< 7t3/2t 3n/24+3/4 6"4_ 1€§t3/2t73n/273/4

4 4 4

t2/3 o0

6n —1
_ 3n/24+1 —3n/2—-1/2
= t1/4 g an, (t 1 t

6n—|—1_3 _ 6n+16n+95 5, 5
_ —3n/2-1/2 43n/2-2 |
)l * 4 4

Thus, the equation f” = tf becomes

2t2/3 00 6 16 5 2t3/2 0o
€t1/4 Zan (t—3n/2+1 St 3n/2-1/2 4 ”Z‘ ”Z‘ t—3n/2—2) =~ Zant—3n/2+1
which is equivalent to
. 6n+16 5, = 6 —56 1
Z3nant_3"/2 S a2y =2 LT ez ),
n=0

so that

~ (6n—1)(6n —5) (61 —1)(61 —5)
n = 48n i o H 48i (8.9)

for every n > 1. Since the ratio a,/a,_1 ~ 36n/48 — oo, the formal series will have infinite
radius of convergence.

The standard way to express the coefficients is in terms of the Gamma function I'(z) =
fooo t*~te~tdt, which has I'(1) = 1 and (using integration by parts) has the property that
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I'(z +1) = 2l'(x) for every x > 0. This means that n! = I'(n 4 1) for each integer n > 0, so
that the Gamma function may be thought of as a natural continuous version of the factorial
function.

Exercise 71. Prove that if @ > —1 then

n

. I'm+a+1)
S

for every n > 0. Deduce that the sequence (a,) appearing in (8.9) can be written

B (3)" I'(n+5/6)['(n+1/6)
“=\1) TGETA/6)(n+1) "

for every n > 0.

One can do a similar calculation for the other solution, giving that

a3\ T(n+5/6)T(n+1/6)
b = (1) (Z) F(5/6)F(1/6)F(n—|—1)b0’

In particular, one sees again that the series > bat—3"/2 does not converge for any t € R,

so that these series solutions can be interpreted only as asymptotic expansions. All this work
has led us to divergent formal series solutions of the form

e5t3? IF(n+5/6)L'(n+1/6) 5,
751/4 Z( ) '(5/6)r'(1/6)r (n+1)t /

and

e 5 SN L (3 T(n+5/6)T(n+1/6) .5
i 21 (Z) /606 + 1) B

Of course we would really like to say that we really have solutions to the Stokes equation

n=0

satisfying
~0 3 (3) T G mod et v

and

=35y () T U0 o

n=0

While there are good general ways to prove this last step, we only have time to discuss them
very briefly in this course. Let us just say that this is correct, and that in fact there are two
linearly independent solutions to the Stokes equation satisfying these asymptotics that can
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Figure 8: Graphs of the Airy functions Ai(z) and Bi(z). (Courtesy of Wikipedia.)

1 0 3 3
Bi(t) = %/0 exp (—% + tm) + sin (% + tx) dz
1 [~ 3
Ai(t) = — — +tx | dx.
i(t) 7T/o cos ( 3 + x) x

The functions Ai(¢) and Bi(¢) are known as the Airy functions of the first and second
kind. (I apologize for using the sequence (a,),>o for the coefficients of Bi(t) and (b,),>¢ for
the coefficients of Ai(t)!)

be written

and

Remark 8.9 (Stokes phenomenon). The functions Ai(t) and Bi(¢) both oscillate between posi-
tive and negative values as t — —o0, and the asymptotic expansions we wrote down for them
are not valid as asymptotic expansions in the ¢ — —oo limit. Indeed, the correct first order
asymptotics of Ai(t) as t — —oo turn out to be

, Cixo(l) . (2,5, Cy +o(1) 259
Al(—t)ITSIIl §t/ +Z — @ 08 gt/ +Z

for appropriate positive constants C; and Cs, and it is possible to give a full asymptotic
expansion in which these #o(1) terms are expanded in powers of ¢~3/2
function

. Now consider the

t2Ai(3) z#0

fe) = 0 rz =0.
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which is twice differentiable with first and second derivatives equal to 0 at 0. For ¢t # 0 we

can compute that

d
EtQ Ai(th) =2t Ai(t™!) —t AV ()

and that
2

%ﬁ At = 2Ai(t) F2AV () F AV (Y = (2 Al +F 2A1 (1Y)

where in the last step we used that Ai(t) solves Stokes equation Ai”(¢) =t Ai(t). This means
that

Bt = (420 f + 22 AV () = (2 2t) f + 202 At — f)
= +2)f +4f —2tf'
so that f solves the ODE
B = (P +2t+4)f —2tf,

which is a polynomial ODE that is not of the standard form f™ = P(t, f ..., fm=D).
Why is this interesting? Well, the fact that we needed different asymptotic expansions to
understand the behaviour of Ai(t) near +o0o and near —oo means that we need different
asymptotic expansions to understand the solution f to this ODE as t approaches 0 from
above and from below. This is the Stokes phenomenon: the solutions to an ODE may
have different asymptotic behaviours as t — t5 depending on which direction one approaches
the point ¢y from! Note that this cannot happen when the solution is analytic at .

Exercise 72. Let f be a solution to the polynomial ODE f” — 2f" = f2.
1. Prove that if f” is regularly varying as ¢ — +oo then f ~ 2/t as t — +o0.

2. Prove that the ODE admits a formal series solution of the form

Fo Z logt

where (P,),>0 is a sequence of degree n — 1 polynomials with leading coefficient 2 for
each n > 0.

8.5 Tauberian and Abelian theory

In this section we will briefly sketch some answers to the following questions:

1. How can we extract asymptotic information about its function from its Laplace trans-
form, even when we cannot invert it explicitly?
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2. How can we extract asymptotic information about a sequence from its (ordinary or
exponential) generating function, even when we cannot get an explicit formula for the
sequence?

(Note in both cases that even if we do have an explicit formula, it might still be hard to
estimate the asymptotic growth of this formula, in which case the techniques of this section
may still be helpful.)

A theorem which lets us go from function / sequence asymptotics to Laplace transform /
generating function asymptotics is called an Abelian Theorem; a theorem which lets us go
from Laplace transform / generating function asymptotics to function / sequence asymptotics
is called a Tauberian Theorem. Note that Tauberian/Abelian theorems always concern
first-order asymptotics only, and typically do not yield explicit error bounds. The various
Abelian and Tauberian theorems available differ in the hypotheses they place on the functions
in order to deduce their conclusions, which in this context are often called side conditions.
Tauberian theorems are typically more interesting/useful than Abelian theorems, and will be
our focus in this section.

We begin by stating the Hardy-Littlewood-Karamata Tauberian Theorem, which allows
us to extract asymptotic estimates for a non-negative sequence from its generating function.
(Here non-negativity is the “side condition.”) Karamata introduced the theory of regularly
varying functions, which allowed him to generalize and simplify the earlier Tauberian theorem
of Hardy and Littlewood.

Theorem 8.10 (Hardy-Littlewood-Karamata Tauberian Theorem). Let f(t) = > ", a,t" be
a power series with non-negative coefficients and radius of convergence t. > 0. If

o= () ()

ast T t. for some a > 0 and some continuous slowly varying function L then

N

. L(N)N®
>tz LUV
— I(a+1)

as N — oo.

Often there are some mild additional conditions that allow us to convert this into a point-

wise estimate )
o
L (n) n tfn

['a) €

Ay
as n — o0.

Exercise 73. Let f(t) = Y 7 a,t" be a power series with non-negative coefficients and
radius of convergence t. > 0. Prove that if

o~ () ()
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as t 1 t. for some o > 0 and some continuous slowly varying function L and a,1t"™ > a,t"
for every n > 0 then

as N — oo.

In order to apply this theorem, we will often need to also use the following important
theorem about power series with non-negative coefficients.

Theorem 8.11 (Vivanti-Pringsheim Theorem). Let f(t) = >, _,ant" be a power series with
non-negative coefficients and radius of convergence r > 0. Then there is no real-analytic
function defined on an interval (r — e,r + €) that coincides with f on the interval (r —e,r).

This theorem is often summarized by the slogan “functions defined by power series with
non-negative coefficients have singularities on the positive real axis at their radius of conver-
gence”. Be careful to note that the relevant notion of singularity can be subtle, however, and
does not imply that |f(t)] — oo ast T r.

Example 8.12. Let (A,,),>0 be the sequence defined in example 7.6, so that

i A"t” ta t + T
—_ — n J— J—
n! 2 4

n=0

for ¢t within the radius of convergence of the left hand side. Since A, /n! is non-negative for
every n > 0 and tan(t/2 + 7/4) is analytic on (—3m/2,7/2), the radius of convergence of the
series on the left must be 7/2 and the equality between the two functions must hold for all
—7/2 <t < 7/2 by Vivanti-Pringsheim and rigidity of real analytic functions. Since we also

have that oy
tan(t 7T>_Sln(§—|—z) 1 4 w2

271 ~cos (L4 7) Tr/A—t]2 wrj2—t

Applying the Hardy-Littlewood-Karamata Tauberian Theorem, it follows that

N n
A 2 4
Ed_n(_) ~ N
n! \ 7 T

n=0
as N — oo.

Exercise 74. Prove that this sequence satisfies

as n — oQ.

We now turn to the analogous theorem for the Laplace transform.
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Theorem 8.13 (Karamata). Let f : [0,00) — [0,00) be a continuous function whose Laplace
transform L{f} has domain (s*,00) for some s* € R, and let ¢ : [0,00) — (0, 00) be regularly
varying of index o« > 0. Then the following are equivalent.

1 [ et f(t)dt ~ ¢(T) as T — +oo.

2. L{f}(s) ~T(a+1)¢ (8718*) as s} s*.

Again, if ¢(t) = t*L(t) for some slowly-varying function L, one can deduce under mild
additional assumptions that one also has the pointwise asymptotic estimate

f(t) ~ ae” L)t
(For example this holds if we make the additional assumption that f is regularly varying.)

Example 8.14. Earlier we studied the ODE f”—tf'— f = 0, and showed that if a solution to
this equation has Laplace transform whose domain includes (0, 0o) then this Laplace transform
must satisfy

LUH) = (L0 + [0+ 1 0

1

for every s > 0. If f/(0+) then we have that

£i}6) ~ - [ 8w g0+

as s | 0, and it follows from Karamata’s theorem (applied to —f) that if this holds and f is
non-positive then

T
/ f(t)ydt ~ —f'(0+)log T
0
as T'— +oo. It follows moreover that if f is regularly varying then

f'(0+)
t

ft) ~ =

as t — +oo.
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Higher-order Tauberian analysis

Tauberian theory allows us to draw conclusions with only very light assumptions on our
functions, but tends to only yield first-order asymptotics and does not provide error es-
timates. In the case that our Laplace transform/generating function is ‘nice’ and we can
do more computations with it, there are often much more powerful tools available that
can give us the whole asymptotic expansion (which may be a convergent expansion). A
very detailed account is given in the textbook Analytic Combinatorics by Flajolet and
Sedgewick. One of the most sophisticated versions of this analysis, which is designed to
handle the case that the generating function has singularities at every (complex) point
in the boundary of its disc of convergence, is the Hardy-Ramanujan-Littlewood Circle
Method. The circle method was famously applied by Hardy and Ramanujan to analyze
the number of ways to write a number n as an unordered sum of positive integers,
known as the partition number p(n), which (setting p(0) = 1) has ordinary generating
function expressible as an infinite product

> 1
pn)t" = =————— for |t| < 1.
2 YRGS

=1

Hardy and Ramanujan used their very sophisticated version of Tauberian theory to
prove that
V3 /2

p(n) ~ T E as n — oo,

and also to get very precise control of the errors in this approximation. Their paper
(published 1918) is remarkably modern — I highly recommend that you read the original
if you are interested!
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Dirichlet series and the prime number theorem

Another very important application of Tauberian theory in math is the prime number
theorem, which states that if 7(n) is the number of primes smaller than n then

n

m(n) ~ logn

as n — oo. Rather than ordinary or exponential generating functions, the proof of
the prime number theorem relies on the analysis of Dirichlet series Y - az a kind
of generating function that appears very naturally in number-theoretic contexts. The

relevance of these series to number theory comes from their multiplication law:

n n o —n
Do | ) = =i
n=1 n=1 n=0 n=1

The operation a,b — a * b with (a *b), := > _,,_ axb, is known as Dirichlet convo-
lution. The importance of the Riemann zeta function ((s) := Y >, n~° owes in part
to its being the Dirichlet series of the all-one sequence, so that replacing a sequence
(@n)n>1 by the sum (D", 4ioiqes n @m)n>1 corresponds to multiplying the Dirichlet series
of a by the Riemann zeta function.
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9 A brief introduction to dynamical systems

For the last part of the course, we will consider a completely different approach to ODEs, in
which we consider the qualitative properties of solutions to autonomous differential equations.
Here, we recall that a differential equation is autonomous if it does not directly involve the
time variable t. We will restrict attention to equations of the form f™ = F(f, f/,..., fim=1).
Since every autonomous differential equation of the form is equivalent to a first order au-
tonomous equation f* = F(f) in higher dimensions, it suffices to consider first order au-
tonomous equations. We will restrict further to the case that F' is continuously differentiable
and defined on all of R?, so that by global Picard-Lindelof there is a unique solution maximal
solution with f(0) = z for each z € R%

As we noted when we previously discussed autonomous equations, if (1, f(t)) is a solution
to the autonomous equation f' = F(f) then so is the shifted function (I + to,f(t — to)) for
each ty € R. As such, we can think of the ODE f’ = F(f) as partitioning R? into a collection
of curves, where two points x and y lie on the same curve if there is a maximal solution to
the ODE passing through both x and y: If such a curve exists, then it is uniquely specified
up to time-shifts. These curves are called the trajectories of the autonomous ODE, and the
study of the partition of R? into the trajectories of the system is known as dynamics.

It is often helpful to think of the function F' in the ODE f' = F(f) as a vector field, in
which each element of x is assigned to a vector F'(x). The vector F(x) describes the way a
trajectory started at x will move by

f(t) =+ Fl)t £ of|t])

as t — 0, where f is the solution to the ODE with f(0) = x. As such, to understand the shape
of the trajectories of the ODE associated to F', we only need to know 1) the points where F' is
equal to 0, which will yield constant solutions f(t) = = — these are called the fixed points or
equilibrium points of the ODE, and 2) the direction of F(z) when F(z) # 0, i.e., the unit
vector F(z)/||F(x)||. Indeed, if F and F are two vector fields related by F(z) = \(z)F ()
for some function A : RY — (0,00) then F and F will decompose R? into the same set of
trajectories (but with possibly different time parameterizations of associated solutions). As
such, we often represent vector fields in R? graphically by drawing arrows of unit length in
the direction of the vector field at each non-equilibrium point. The trajectories (a.k.a. flow
lines) of the vector field just follow these arrows!

We already know how to understand one-dimensional linear autonomous ODEs since they
are always separable. Indeed, away from equilibrium points we have an implicit solution to

the ODE f" = F(f) given by
d
/ 4 / 1,
F(f)
which we can always invert to get a solution away from equilibrium points since [ % is
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monotone in f whenever F' is continuous and does not take the value 0.

Stable and unstable equilibria. Let F' : R — R be continuously differentiable, and
suppose that g is an equilibrium point of f" = F(f), so that F'(zq) = 0.

1. We say that x( is an asymptotically stable equilibrium (a.k.a. attractive fixed point)
if there exists ¢ > 0 such that if |z — x| < e then the trajectory starting at x converges
to xg as t — +o0.

2. We say that z( is a stable equilibrium if for each € > 0 there exists > 0 such that
if |x — xo| < 9 then the trajectory starting at x stays within the ball of radius ¢ around
xo for all ¢ > 0.

3. We say that z( is an unstable equilibrium (a.k.a. repulsive fixed point) if there
exists a positive constant ¢ such that any solution f started at a point x # x satisfies
|f(t) — xo| > ¢ for some t > 0.

Intuitively, if we start near an asymptotically stable equilibrium our solution will be ‘sucked
in” and get closer to the equilibrium point over time, while at an unstable equilibrium point,
no matter how close we start to the point, we will eventually get far away from the point.
A stable equilibrium may not be an asymptotically stable equilibrium if the error f(t) — zq
tends to stay of the same order rather than shrink over time.

Proposition 9.1. Let xy be an equilibrium point of a one-dimensional autonomous ODE
f'=F(f) with F continuously differentiable. If F'(xo) < 0 then zo is asymptotically stable,
while if F'(xo) > 0 then o is unstable.

Proof. The more basic criterion is that

1. If there exists € > 0 such that F(z) is positive for x < xy with | — x| < ¢ and F(z) is
negative for x > o with |z — x| < e then xg is an asymptotically stable fixed point.

2. If there exists ¢ > 0 such that F'(z) is negative for x < xy with |z — x¢| < ¢ and F(x)
is positive for z > xy with |x — 2| < e then ¢ is an unstable fixed point.

The derivative conditions in the proposition are just sufficient conditions for these to hold.

We will prove the stability criterion, leaving the instability criterion as an exercise. We
will prove the stronger, ‘one-sided’ version of this claim that if F'(x) < 0 for z € (z¢, zo + ¢)
for some ¢ > 0, then any solution started at x € (xg, ¢ + ¢) must converge to zg as t — +00.
Let f be the solution to f' = F(f) with f(0) = = and let T" = inf{t : f(t) & (xo,z0 + ¢)},
where we set inf () = +00. We wish to show that 7' = oo and that f(t) — x¢ as t — +o0.
Since f' = F(f), the derivative of f is negative on [0,T) and we must have by the mean-value
theorem that f is decreasing on [0,7"). On the other hand, we have by global Picard-Lindel6f
that the constant function ¢ = xz is the only solution to our ODE passing through zg, so
there cannot be a point in the domain of f with f(t) = zo. As such, we must have that
T = oo, that f(t) € (zg, x| for every ¢t > 0, and that f(t) is a decreasing function of .

151



Exercise 75. Prove that the domain of the solution f includes [0, 00).

Now, since f is decreasing and bounded below, it must converge to some limit f(+00) as
t — +oo. Since f(t) = f(0)+ f(f 1'(s) ds, this is inconsistent with f” converging to a non-zero
constant, and since F is continuous we must have that F(f(+00)) = 0. Since f(t) € (o, 7]
for every t > 0 and F' is non-zero at every point of (g, x], this implies that f(4+00) = z¢ as
claimed. 0

Exercise 76. Prove the instability part of the proposition.

At a more intuitive level, the idea is that when F’(zy) # 0 and f(0) is close to xg, the
function f satisfies

f1(#) = F(f () = F'(wo) f(t) £ o(|f(£)])

so that f should we well-approximated at small times by the solution to the linear, constant
coefficient ODE

g = F'(x0)g

with ¢(0) = f(0). Using this approximation to understand the behaviour of an ODE near an
equilibrium point is called linearization around the fixed point. Note that while this approxi-
mation is still valid in some senses when F’(x¢) = 0, it is not sufficient to determine whether
the point is stable or unstable. (Note however that near a stable equilibrium point with
F'(z9) = 0, the solution will be sucked into xy much more slowly than it will be at a stable
equilibrium point with F’(zg) < 0. Similarly, solutions started near an unstable equilibrium
point with F'(z) = 0 will escape from the point much more slowly than at an equilibrium
point with F'(zg) > 0.)

If F'(zg) = 0 then we cannot determine whether the point is stable or unstable by looking
at the derivative alone, and must investigate some higher-order information.

Example 9.2.
1. f'= F(f) = f? has an unstable equilibrium at zero with F’(0) = 3(0)? = 0.

2. f' = F(f) = —f? has an asymptotically stable equilibrium at zero with F’(0) =

3. f/ = F(f) = f? has an equilibrium at zero with F'(0) = 2(0) = 0 that is neither
stable nor unstable: Solutions starting at small positive numbers escape to infinity,
while solutions started at small negative numbers are sucked back in towards zero.

Let us note however that unless F' has an infinite set of zeroes accumulating to the equi-
librium points x, there is always a well-defined notion of xy being stable or unstable in each
direction.

Similar reasoning to that used at the end of the previous proof leads to the following
proposition.
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Proposition 9.3. Let (I, f) be a maximal solution to a one-dimensional autonomous ODE
f' = F(f) with F continuously differentiable. As t — supl, f(t) either converges to +oo,
—00, or an equilibrium point. The same holds as t — inf I. Moreover, the solution f cannot
converge to an unstable equilibrium point as t — sup I unless f starts at that point.

Example 9.4 (The logistic equation). Suppose that the number of cells in a bacterial colony
is governed by the ODE
P'(t) = P(M — P)

for some constant M. If the ODE were just P’ = M P this would model pure exponential
population growth. The term (M — P) is supposed to model the effect of a large population
using up resources so that growth slows and eventually becomes negative as the population
increases. This ODE has two equilibrium points, 0 and M. Taking the P-derivative

d P(M —P)=M —2P

dP N ’
we see that 0 is an unstable equilibrium point and that M is a stable equilibrium point. It
follows that if P is a solution with P(0) > 0 then P(t) converges to M ast — +oo, if P(0) =0
then P(t) = 0 for every ¢t > 0, while if P(0) < 0 then P converges to —oo as t — +00.

Linearlization in higher dimensions. In higher dimensions one may also study the
behaviour of an ODE f = F(f) near an equilibrium point xy by studying the linearized ODE
(f — x9) = DF(x0)(f — ), but the situation is significantly more complicated than in one
dimension since the linear map DF'(zy) can have various different relevant properties besides
being positive or negative. The simplest case to understand is when all eigenvalues have
non-zero real part of constant sign.

Theorem 9.5. If all the eigenvalues of DF(xg) have positive real part then xq is an unstable
fized point. If all the eigenvalues of DF(xg) have negative real part then xy is an asymptotically
stable fixed point.

Let us suppose for simplicity that DF'(z¢) is diagonalizable with real eigenvalues A1, ..., Ay
and corresponding eigenvectors ey, ...,eq. Writing f(t) = fi(t)es + -+ + fa(t)eq and zg =
To1€1 + -+ Togeq We can compute that

d
%(fz - sz sz - xO,i)

Mg

d
diz _sz

=1

=2 Z F(f))i(filt) = wo.)-
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Using the definition of the derivative, we can get with a little work that

d d

QZF@M — Zo4) = Z [DF(x0)(z — x0)], (i — x0,4) £ o[z — xo[[3)

d

Z i = 204)" E o([lz — woll2)

=1

as r — T, where we expand each vector x in the basis of eigenvectors x = x1e1 + - - - xqeq. If
we assume that all the eigenvalues are positive, it follows that there exists € > 0 such that if

f(t) # xo and || f(t) — xo||2 < € then

d
Z sz > 0.

Similarly, if all the eigenvalues are negative there exists ¢ > 0 such that if f(t) # z, and
[/(#) = 2olla < & then

Q.l&

d d
d—z —51501 <O

This is can be seen to imply the claims about stability /instability following a similar argument
to the one-dimensional case.

The technique of studying the solutions to multidimensional ODEs by finding functions
¢ : RY — R for which we can estimate the time derivative ¢(f(t))’ is very important. Given
an ODE f" = F(f) and an equilibrium point zy, a continuously differentiable function ¢ :
R? — [0, 00) is said to be a Lyapunov function if ¢(z) = 0 and there exists € > 0 such that
¢(z) > 0 for every x # zo with ||z — zo|| < e, and L¢(f(t)) < 0 for any solution f starting
with || f(0) — x¢|| < e. Any equilibrium point admitting a Lyapunov function must be stable,
and if the function satisfies £¢(f(t)) < 0 for every solution starting at a point close to but
not equal to xy then xy is asymptotically stable.

An equilibrium point z; is said to be hyperbolic if all of the eigenvalues of DF(xy) have
non-zero real part. Around hyperbolic fixed points the dynamics of the system are always well-
approximated by those of the linearization: When F' is smooth a very strong statement to this
effect is given by the Hartman-Grobman theorem, which states that for each hyperbolic fixed
point there exists ¢ > 0 and a homeomorphism (continuous bijection with continuous inverse)
h: B.(xg) — R? from the ball of radius ¢ around xq to R? mapping the connected components
of the trajectories of F' inside B.(z) to the trajectories of the linearization DF'(z).

Example 9.6. Consider the undamped pendulum equation f” = —asin(f) for « > 0. Physi-
cally «v is equal to g/¢ where g is the gravitational constant and ¢ is the length of the pendulum.
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As usual, we consider this as a first order equation in phase space

(1 _ (asin(n) _
()
2 <x> _ (—a sin(y)) .

Yy x

This ODE has equilibrium points at a,, = (0, n7) for every integer n. The derivative of F' is

DF = (% d8_2> _ <0 —Ozcos(y)>
dFy  dFy 1 0 )
ox dy

so that at each equilibrium point a,, we have that

0 —«
DF(a,) = :
() )
This matrix can be diagonalized

b 3)- (0 L) (5 0)
1 0 -t 1 0 —iva -1 1 ’

so that the trajectories of the linearized ODE (f — a,,)’ = DF(a,)(f — a,) are ellipses around
a,, of the form

ay, + ({? \/f) (e”o\/a e_g\/@) (f \/ia>_ (?j) teR

Since this fixed point is not hyperbolic, the linearization does not tell us whether or not the

where

fixed point is stable. Let us focus on the fixed point at (0,0). The physical nature of the
problem saves us by inspiring us to write down a Lyapunov function for the system: the
energy! If we write down the function

x 1
E = — (%2 1—
(y) 2€ z° + gl(1 — cosy)

where the first term represents the kinetic energy of the system and the second term represents
the gravitational potential energy of the system, we can check by calculus that our solutions

satisfy

d
—E(£) = 0.
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In other words, energy is conserved. One can deduce from this that the trajectories of our ODE
are exactly the level lines of the energy, and form ”approximate ellipses” around (0,0). As
such, in this example the linearization does give a good approximation to the true behaviour
of the system around the equilibrium, even though this equilibrium is not hyperbolic.

Example 9.7. The ODEs governed by the vector fields

() _ [ vre@®+y)
v —z +y(@ +y7)
v\ _ [ y—o(®+y?)

¢ <y> - (—x —y(a* + y2))

have the same linearization around the equilibrium point at (0,0), but the first is unstable

and

and the second is asymptotically stable.
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Figure 9: Unit vector field representations of six different linear autonomous systems in R?
that are diagonalizable with non-zero eigenvalues. Clockwise from top left: Sink, Saddle,
Source, Spiral Sink, Center, Spiral Source.

Sink: Negative real eigenvalues. Example: f' = f

Saddle: Real eigenvalues of different signs. Example: f' = f

Source: Real positive eigenvalues. Example: f' = f

Spiral Source: Complex eigenvalues, positive real parts. Example: f' = f

Center: Complex eigenvalues, zero real parts. Example: f' = 10 f

Spiral Sink: Complex eigenvalues, negative real parts. Example: f' = ;é :1 f
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Figure 10: Left:
value.

A linear vector field with one zero eigenvalue and one negative real eigen-

non-diagonalizable vector field with negative real eigenvalue.
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Center: A non-diagonalizable vector field with positive real eigenvalue.

Right: A
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