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Abstract— We compare multicast network coding and routing
for a time-varying wireless network model with interference-
determined link capacities. We use dynamic back pressure
algorithms that are optimal for intra-session network coding
and routing respectively. Our results suggest that under such
conditions, the gap in multicast capacity between network coding
and routing can decrease relative to a collision-based wireless
model with fixed link capacities.

I. I NTRODUCTION

In this paper we consider dynamic multicasting in time-
varying wireless networks. We investigate the capacity benefit
of network coding relative to multicast routing, i.e. forwarding
and replication over one or more multicast trees. Network
coding has been shown to be necessary for achieving multicast
capacity in some wired networks such as the multicast network
of Figure 1 [1]; many known examples of such networks are
extensions or generalizations of this basic example. Refer-
ence [16] gives an analogous example, shown in Figure 2, of a
static wireless network with fixed link rates and a half-duplex
constraint, i.e. each node can either send or receive a single
transmission at any one time. In this example, the optimal
network coding solution, shown in Figure 3(a), achieves 4/3
times the multicast throughput of the optimal routing solution,
shown in Figure 3(c).

As we consider more realistic wireless network models, we
move progressively further from the static wireless model that
is closest to the original wired model. For instance, if we
consider the effect of interference on link capacities, it is not
clear to what extent the network coding and routing solutions
of Figure 3 are affected, since their transmit scenarios involve
different sets of interfering links. Also, channel conditions
often vary and traffic is usually bursty because either the
sources generate traffic in bursts or the network nodes employ
queuing and scheduling across multiple sessions. In such
scenarios, optimal scheduling, routing and coding should vary
dynamically depending on the current state of the network –
channel conditions and buffer occupancy.

Routing, scheduling, rate, and power control in networks
with bursty traffic has recently received significant attention
in the context of wireless networks [2], [10], [12], [13], [14],
[15], [19], [21], [22]. Much of the recent work in this area
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Fig. 1. Wired multicast network example, with a single node A multicasting
information to two sink nodes E and F.

builds on the ideas of [3], [18] that describe algorithms for
routing and scheduling flows using queue sizes, or differences
in queue size between the queues at the source and the
destination of a link, as the metric to select between different
flows. Such an approach is usually said to beback-pressure
based since heavily loaded nodes downstream slow down the
flow coming down from nodes upstream. Such approaches are
optimal in the sense of allowing transmission at the maximum
possible arrival rates into the network for which the queues at
the various network nodes can be stabilized.

While the back-pressure approach has mostly been applied
in the context of unicast transmissions, it has also been
extended to the case of multicast transmissions [2], [17].
However, in the multicast case without network coding the
algorithms are significantly more complex, even for wired
networks.

We have recently extended the above back-pressure based
dynamic routing and scheduling algorithms to include network
coding and correlated sources [8]. Random network coding
[6], introduced for the flow model, extends naturally to a time-
varying network with bursty traffic and provides a distributed
implementation. For networks with one or more multicast



Fig. 2. Wireless multicast network example, with a single node A multicast-
ing information to two sink nodes E and F. The coordinates represent physical
distances which are varied in our simulation experiments.

Fig. 3. Examples of typical schedules for coding (a)-(b) and routing (c)-(d).
Each box shows a set of wireless links that can be simultaneously activated,
termed a transmit scenario (TS). (a) and (c) give the optimal coding and
routing schedules respectively for a static wireless model with fixed link rates
and a half-duplex constraint.

sessions, each consisting of a set of sources and sinks such
that data from all the sources is intended for all the sinks,
our algorithm for routing, network coding, scheduling and
rate control achieves stability for all input rates that can be
stabilized with intra-session network coding.

Apart from the potential capacity gain of allowing network
coding within multicast sessions, we also obtain much reduced
complexity compared to the existing algorithms of [17], which
involves enumeration of all multicast trees used, and [2], which
involves maintaining a virtual queue for every subset of sinks
for every session. In our approach, each node has just one
virtual queue for each sink of each session (for independent
sources) or for each source-sink pair of each session (for
correlated sources). Routing, network coding and scheduling
decisions are made locally by comparing, for each link, the

difference in length of corresponding virtual queues, summed
over each session’s queues. For correlated sources, the sinks
locally determine and control transmission rates across the
sources. This gives a completely distributed algorithm for
wired networks; in the wireless case, scheduling and power
control among interfering transmitters is done centrally.

This paper is organized as follows. We present the system
and network coding model in Section II. Optimal back pressure
algorithms for multicast with and without network coding are
described in Section III. In Section IV, we compare the two
algorithms on the example of Figure 2. We conclude with a
summary in Section V.

II. M ODEL

A. Wireless network model

We use a model similar to that in [15]. We consider a
network composed of a setN of N = |N | nodes with
communication links between them that are fixed or time-
varying according to some specified ergodic processes, and
transmission of a set of multicast sessionsC through the
network. Each sessionc ∈ C is associated with a setSc ⊂ N
of sources, and an exogenous process of data arrivals at
each of these sources which must be transmitted over the
network to each of a setTc ⊂ N of sinks. Transmissions are
assumed to occur in slotted time, with time slots of lengthT .
Decisions on routing, scheduling, etc. are made at most once
a slot. For simplicity, we assume fixed length packets and link
transmission rates that are restricted to integer multiples of the
packet-length/time-slot quotient. That is, an integer number of
packets can be transmitted in each slot.

The link transmission rateµij from node i to node j,
with other nodesn ∈ N transmitting independent information
simultaneously, is given by the Shannon formula [5]

µij(P , S) = log
(

1 +
PiSij

N0 +
∑

n∈N PnSnj

)

wherePl is the power transmitted by nodel, Slj is the channel
gain from nodel to nodej andN0 is additive white Gaussian
noise power over the signaling bandwidth. We assume that
the channel conditions are fixed over the duration of a slot,
and known at the beginning of the slot. For simplicity of
exposition we assume that the channel and arrival processes
are independent and identically distributed across slots; a
straightforward generalization to ergodic processes is possible
using a similar approach as that in [15].

We denote by(a, Z) a wireless broadcast link wherea is
the originating node andZ is the set of receiving nodes. Link
ratesµ(P , S) = (µaZ(P , S)) are determined by the vector of
transmit powersP (t) = (PaZ(t)) and a channel state vector
S(t). S(t) is assumed to be constant over each time slot, i.e.,
state transitions occur only on slot boundariest = kT , k
integer. We also assume thatS(t) takes values from a finite set
and is ergodic; we denote byπS the time average probability
of stateS. P (t) is also held constant over each time slot, and is
chosen from a compact setΠ of power allocations representing
limits on transmit power per node and/or across nodes.



B. Network coding

We use the approach of distributed random linear network
coding [4], [6], [7], in which network nodes form output
data by taking random linear combinations of input data. The
contents of each packet, as a linear combination of the input
packets, are specified by acoefficient vectorin the packet
header, updated by applying to the coefficient vectors the same
linear transformations as to the data. The coefficient vector is
thus a function of the random code coefficients specifying the
linear combinations at intermediate nodes. A sink is able to
decode when it receives a full set of packets with linearly
independent coefficient vectors.

For simplicity, we consider the case where no restrictions
are placed on coding among packets from the same multicast
session. This asymptotically achieves optimal capacity, but in
the worst-case decoding may not be possible until the end of
the entire session.

III. D YNAMIC BACK -PRESSURE ALGORITHMS

A. Multicast with intra-session network coding

In [8] we give a dynamic algorithm that uses queue state
information to make network coding and transmit scenario
decisions, without requiring any knowledge of the input or
channel statistics.

Back-pressure policy
In each time slot[t, t + T ), the following are carried out:
Scheduling: For each link(a, Z), one session

c∗aZ = arg max
c





∑

β∈Tc

max
(

max
b∈Z

(
U cβ

a − U cβ
b

)
, 0

)



is chosen. Let

w∗aZ =
∑

β∈Tc∗
aZ

max
(

max
b∈Z

(
U

c∗aZβ
a − U

c∗aZβ
b

)
, 0

)
. (1)

Power control: The stateS(t) is observed, and a power
allocation

P (t) = arg max
P∈Π

∑

a,Z

µaZ(P , S(t))w∗aZ (2)

is chosen.
Network coding: For each link(a, Z), a random linear

combination of data corresponding to each (session, sink) pair
(c∗aZ , β ∈ Tc∗aZ

) for which maxb∈Z

(
U

c∗aZβ
a − U

c∗aZβ
b

)
> 0

is sent at the rate offered by the power allocation. Each
destination noded ∈ Z associates the received information
with the virtual buffers corresponding to sinksβ ∈ Tc∗aZ

for

which d = arg maxb∈Z

(
U

c∗aZβ
a − U

c∗aZβ
b

)
. If the originating

queues are empty within the time slot, no data is sent.
In a network where simultaneous transmissions interfere,

optimizing (2) requires a centralized solution. In practice, the
optimization (2) can be done heuristically using a greedy
approach similar to that in [11], [20] but with the added
guidance of weightsw∗aZ for prioritization among candidate
links (a, Z). If there are enough channels for independent

transmissions, the optimization can be done independently for
each transmitter.

This algorithm stabilizes any set of input rates stabilizable
with intra-session network coding [8]:

Theorem 1:If input rates(λc
i ) satisfy (λc

i + ε) ∈ Λ, the
back-pressure policy stabilizes the system and guarantees an
average total buffer occupancy upper bounded byTBN

ε , where

B =
τmax

2


 1

N

∑

i,c

E

{(
Ac

i

T

)2
}

+ (µout
max + µin

max)2




B. Back pressure algorithm for multicast routing

We compare our back pressure multicast network coding
algorithm with a back pressure algorithm for optimal multicast
routing, for the case of a single multicast session with two
sinks. The routing algorithm is similar to that in [2] in that
each node maintains a queue for every subset of sinks. The
algorithms differ in their policies for updating queues, as the
algorithm of [2] is for adversarial wired networks, whereas
our algorithm is for non-adversarial wireless networks.

In general, the number of queues is exponential in the
number of sinks. We describe the algorithm for the case of two
sinks, where each node maintains three queues: two individual
queues containing data that is to be transmitted to each of
the sinks and a common queue containing data that is to be
transmitted to both sinks. We denote byU

(k)
i , k = 1, 2, 3,

respectively the lengths of these three queues at nodei, and
refer to data in the respective queues as commodityk = 1, 2, 3
data. Back pressure is used to control the branch points of the
multicast distribution trees used.

In each time slot[t, t + T ), the following are carried out:
Balancing: At the start of each timeslot, for each non-

sink node i, if U
(3)
i − U

(1)
i − U

(2)
i > 0, then an amount(

U
(3)
i − U

(1)
i − U

(2)
i

)
/3 of data is removed from the com-

mon queue and the same amount of data is added to each of
the individual queues ati.

Scheduling: For each link(a, Z),

k∗aZ = arg max
k

max
b∈Z

(
U (k)

a − U
(k)
b

)
.

If

max
b∈Z

(
U

(k∗aZ)
a − U

(k∗aZ)
b

)
> U (3)

a −
2∑

j=1

min
b∈Z

U
(j)
b ,

then we set

w∗aZ = max
b∈Z

(
U

(k∗aZ)
a − U

(k∗aZ)
b

)
.

Otherwise, we setk∗aZ = 0 and

w∗aZ = U (3)
a −

2∑

j=1

min
b∈Z

U
(j)
b .



Power control: The stateS(t) is observed, and a power
allocation

P (t) = arg max
P∈Π

∑

a,Z

µaZ(P , S(t))w∗aZ

is chosen.
Routing: For each link (a, Z), if k∗aZ 6= 0 and

maxb∈Z

(
U

(k∗aZ)
a − U

(k∗aZ)
b

)
> 0, commodity k∗aZ data is

sent from a to arg maxb∈Z

(
U

(k∗aZ)
a − U

(k∗aZ)
b

)
at the rate

offered by the power allocation. Otherwise, ifk∗aZ = 0
and U

(3)
a − ∑2

j=1 minb∈Z U
(j)
b > 0, data from the common

queue ata is broadcast on(a, Z) at the offered rate, and a
corresponding amount is added tominb∈Z U

(j)
b , j = 1, 2. If

the originating queues are empty within the time slot, no data
is sent.

This algorithm asymptotically achieves the optimal multi-
cast throughput for routing. The proof is omitted for brevity.

IV. SIMULATION EXPERIMENTS

A. Experimental setup

We run the two multicast algorithms of the previous section
on the network of Fig 2, with a single node A multicasting
information to two sink nodes E and F. We assume a com-
mon transmission power and a half-duplex constraint at each
network node. The channel gain for from nodei to nodej is
modeled as:

Sij =
|fij |2
dk

ij

(3)

where|fij | is the Rayleigh fading state anddij is the distance
betweeni andj, andk is the propagation power loss exponent.
We assumeµ = E[|f |2] is the same for all(i, j). Suppose
Pl = P for all links l, and let SNR= P

N0
.

The two algorithms asymptotically achieve, for linear cod-
ing and routing respectively, the optimal multicast throughput
achievable with the following thirteen transmit scenarios,
chosen so as to cover the network coding and routing schedules
of Figure 3:
• transmit scenario 1, where A transmits to B, and C

broadcasts to D and F.
• transmit scenario 2, where A transmits to C, and B

broadcasts to D and E.
• transmit scenario 3, where D broadcasts to E and F.
• transmit scenario 4, where A broadcasts to B and C.
• transmit scenario 5, where B transmits to E, and C

transmits to F, respectively.
• transmit scenario 6, where B transmits to E.
• transmit scenario 7, where C transmits to F.
• transmit scenario 8, where A transmits to B.
• transmit scenario 9, where A transmits to C.
• transmit scenario 10, where B broadcasts to D and E.
• transmit scenario 11, where C broadcasts to D and F.
• transmit scenario 12, where D transmits to E.
• transmit scenario 13, where D transmits to F.

To investigate the effects of network geometry and SNR, the
two algorithms were run for a number of different values for
parametera2, defined in Figure 2, and SNR. Here we takek =
2 andµ = 1.5. For each choice of parameter values, a series
of simulation runs was carried out to find the maximum stable
multicast rate. For each run, the throughput was increased
by 0.01, until the source queue became unstable, giving an
approximate maximum transmission rate ofR, defined as the
maximum value for which the network is stable at rateR
and unstable at rateR + 0.01. The network was considered
stable for a given transmission rate and policy if the maximum
backlog in all queues of all nodes was bounded by 200 when
run for 20,000 timeslots.

B. Results

The simulation results are summarized in Table I. The
results show that under this time-varying wireless interference
network model, the capacity gain of network coding over
routing is lower than the 4/3 factor obtained by [16] in the
fixed-rate collision model, and that the gain tends to decrease
with decreasing SNR. Table 1 also shows the proportion of
different transmit scenarios used by the two policies, which
varies depending on the SNR and network geometry. In the
network coding case, the proportion of different transmit sce-
narios, particularly TS3 which shows significant use by coding
but not routing, gives a rough indication of the proportion of
time network coding is used.

V. CONCLUSION

We have compared multicast network coding and routing
for a time-varying wireless network model with interference.
Our results suggest that when link capacities are affected by
interference, and power control, scheduling, network coding
and routing are dynamically controlled in response to network
conditions, the gap in multicast capacity between network
coding and routing can decrease relative to a collision-based
wireless model with fixed link capacities. In such cases, the
main advantage of network coding may be the reduction
in complexity of optimization and operation. The coding
advantage may also increase in situations where routing, power
control and scheduling are not done optimally, as has been
shown for the multiple unicasts case [9].
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