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Statistical mechanics is used to describe the observed information processing complexity of nonlinear
dynamical systems. We introduce a measure of complexity distinct from and dual to the information-
theoretic entropies and dimensions. A technique is presented that directly reconstructs minimal equa-
tions of motion from the recursive structure of measurement sequences. Application to the period-
doubling cascade demonstrates a form of superuniversality that refers only to the entropy and complexi-

ty of a data stream.
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Prior to the discovery of chaos, physical processes were
broadly described in terms of two extreme models of be-
havior: periodic and random. Both are simple, but in
distinct senses: the former since the behavior is tem-
porally repetitive; the latter since it affords a compact
statistical description. The existence of chaos demon-
strates that there is a rich spectrum of unpredictability
spanning these two extremes. Information-theoretic
descriptions of this spectrum, (say) using the dynamical
entropies, measure the raw diversity of temporal pat-
terns: Periodic behavior has low information content;
random, high content. What this misses, however, is the
statistical simplicity of random behavior. Said more
directly, the dynamical entropies do not capture the com-
putational effort required in modeling complex behav-
ior.! For example, periodic processes are readily forecast
by using a stored finite pattern; stochastic processes by
using a source of random numbers. Behavior between
these extremes, while of intermediate information con-
tent, is more complex in that the most concise descrip-
tion is an amalgam of regular and stochastic processes.

To address the deficiency of conventional entropies
this Letter introduces a measure of complexity that
quantifies the intrinsic computation of a physical process.
The basis of our approach is an abstract notion of com-
plexity: the information contained in the minimum num-
ber of equivalence classes obtained by reducing a data
set modulo a symmetry. In the following this is given
concrete form for the case of data sets produced by non-

linear dynamical systems and reduced by time transla-
tion invariance, the symmetry appropriate to forecasting.
Central to this is a procedure for reconstructing compu-
tationally equivalent machines, whose properties lead to
quantitative estimates of complexity and entropy. This
is developed using the statistical mechanics of orbit en-
sembles, rather than focusing on the computational com-
plexity of individual orbits.?~> As an application exam-
ple, we find that the period-doubling route to chaos ex-
hibits a A-like phase transition with a second order com-
ponent and that at the accumulation point the behavior
has infinite complexity, but is not computation universal.

The first step is obtaining a data stream. The (un-
knowable) exact states of an observed system are
translated into a sequence of symbols via a measurement
channel.® This process is described by a parametrized
partition M, of the state space, consisting of cells of size
¢ that are sampled every 7 time units. A measurement
sequence consists of the successive elements of M, visited
over time by the system’s state. Using the instrument
{M., 1}, a sequence of states {x;,} is mapped into a se-
quence of symbols {sn:5, € A}, where A=1{0, ... ,k—1}
is the alphabet of labels for the k (=¢ ") partition
elements and myeq is the data set’s embedding dimen-
sion.' A common example, to which we shall return, is
the logistic map of the interval, x,+,=rx,(1 —x,), ob-
served with the binary generating partition M.
=1{[0,0.5),[0.5,11} whose elements are labeled with
A=1{0,1}.7 We shall refer to the computational models
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reconstructed from such data as e-machines, in order to
emphasize their dependence on the measuring instru-
ment.

Given the data stream in the form of a long measure-
ment sequence, the first step in machine reconstruction is
the construction of a tree. A tree T=1n,1} consists of
nodes n=1{n;} and directed, labeled /inks 1 =1{/;} connect-
ing them in a hierarchical structure with no closed paths.
An L-level subtree TE at node n is a tree that starts at
node n and contains all nodes that can be reached within
L links. To construct a tree from a measurement se-
quence we simply parse the latter for all length-L se-
quences (L-cylinders) and from this construct the tree
with links up to level L that are labeled with individual
symbols up to that time. We add probabilistic structure
to the tree by recording for each node n; the number
N;(L) of occurrences of the associated L-cylinder rela-
tive to the total number N(L) observed, p[(L)
=n,(L)/N(L). This gives a hierarchical approximation
of the measure in orbit space. Tree representations of
data streams are closely related to the hierarchical algo-
rithm used for measuring dynamical entropies.®’

The e-machines are represented by a class of labeled,
directed multigraphs, or /-diagraphs.® They are related
to the Shannon graphs of informative theory,”® to Weiss’s
sofic systems'® in symbolic dynamics, to discrete finite
automata (DFA)'! in computation theory, and to regu-
lar languages in Chomsky’s hierarchy.!'? In the most
general formulation, we are concerned with probabilistic
versions of these. Their topological structure is described
by an I-digraph G ={V,E} that consists of vertices
V={v} and directed edges E=1{e} connecting them,
each of which is labeled by a symbol s € A.

To reconstruct a topological ¢ machine we define an
equivalence relation, subtree similarity, denoted =, on
the nodes of the tree by the condition that the L-sub-
trees are identical: n; = n; if and only if Gff) T, =T,fj.
Subtree equivalence means that the link structure is
identical. This equivalence relation induces a set of
equivalence classes {CFf: I=1,...,K} given by Cf
={n€n:n € CF and n; € C} iff m; =n;}. We refer to
the archetypal subtree link structure for each class as a
morph. A graph G is then constructed by associating a
vertex to each tree node L-level equivalence class. Two
vertices vy and v; are connected by a directed edge if the
transition exists in the tree between nodes in the
equivalence classes, n,— n;: n; € Cf, n; € C}. The cor-
responding edge is labeled by the symbol(s) associated
with the tree links connecting the tree nodes in the two
equivalence classes.

In this way, e-machine reconstruction deduces from
the diversity of individual temporal patterns “generalized
states,”” associated with the graph vertices, that are op-
timal for forecasting. The topological e-machines so
reconstructed capture the essential computational as-
pects of the data stream by virtue of the following in-
stantiation of Occam’s razor.
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Theorem— Topological reconstruction of G; produces
the minimal machine recognizing the language and the
generalized states specified up to L-cylinders by the mea-
surement sequence.

The generalization to reconstructing metric e-ma-
chines that contain the probabilistic structure of the data
stream follows by a straightforward extension of subtree
similarity. Two L-subtrees are § similar if they are topo-
logically similar and their corresponding links individual-
ly are equally probable within some §= 0. There is also
a motivating theorem: Metric reconstruction yields
minimal metric e-machines.

In order to reconstruct an e-machine it is necessary to
have a measure of the “goodness of fit” for determining
& 1, 6, and the level L of subtree approximation. This is
given by the graph indeterminacy, which measures the
degree of ambiguity in transitions between graph ver-
tices. The indeterminacy® I; of a labeled digraph G is
defined as the weighted conditional entropy

Io= X p. 2 pGlo) X pw'|vis)logp '] vss),
t€EV sE€EA v'EV

where p(v'| v;s) is the transition probability from vertex
v to v’ along an edge labeled with symbol s, p(s|v) is
the probability that s is emitted on leaving v, and p, is
the probability of vertex v; logarithms are to the base 2.
An e-machine is reconstructable from L-level equiva-
lence classes if I;, vanishes. Finite indeterminacy, at
some given L, ¢, 7, and §, indicates a residual amount of
extrinsic noise at the level of approximation.

We now turn to the statistical-mechanical description
of e-machines, the central result of which is a natural
definition of complexity that is dual to the dynamical
entropies and dimensions. We define the partition func-
tion for n-cylinders {s"} as

Za(n) = Zealogp(s") ,
fsn}
where a is a formal parameter related to the inverse tem-
perature of statistical mechanics. The a-order total Re-
nyi information,® or free information, in the n-cylinders
is given by H,(n) =(1 —a) ~'logZ,(n). The dynamical
a-order entropies are given by the thermodynamic (large
orbit space volume) limit
he=lim (1—a) "'n"'ogZ,(n) .
n— oo

An e-machine is described by a set {7¢): s € 4} of
transition matrices, one for each symbol s € 4, where
T(5)={Ps,ij} with p;;; =p(; |vi;s). We define the pro-
babilistic connection matrix as T,={t;} =X e 4T,
where the parametrized matrix T.,(S) = {pﬁij}. T defines a
Green’s function on the tree of measurement sequences.
The eigenvalue spectrum S[7,] will be denoted fA;(a)}.
The largest eigenvalue A, of T, is real for e-machines.
The associated eigenvector p,={p% v € V} has non-
negative elements that give the asymptotic vertex proba-
bilities.
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As a measure of the information processing capacity
of an e-machine, we define the a-order graph complexity
as the Renyi entropy of p,,

C.=(1—a) 'log X pc.
rEV
This is an intensive thermodynamic quantity that mea-
sures the average amount of a information contained in
the morphs. It also quantifies the informational fluctua-
tions in the data stream. Fluctuations in the free infor-
mation are measured via the total excess (a) entropy for
L-cylinders'3~'3

L
F,(L)=H,\L)—h,L= Y [H,(n)—H,(n—1)—h,].

n=1|

It is useful in its own right since if a machine is finite,
i.e., F\(L) is finite, the process is weak Bernoulli.'*
F,(L) is a measure of fluctuations of finite cylinder set
statistics from asymptotic. In the thermodynamic limit,
L — oo, the a-order complexity is simply proportional to
F,. Heuristically speaking, the complexity measures the
average amount of mathematical work required to pro-
duce a fluctuation.

Developing the partition function in terms of eigenval-
ues of T,, the a-order total entropies can also be ex-
pressed in terms of the e-machine eigenvalue A,:
H,(n)=(1—a) 'log\?, n— o. The Renyi entropy
spectrum is then h,=(1 —a) ~'logh,. For completeness,
we note that the spectrum d, of Renyi dimensions can be
similarly related to the reconstructed e-machine via the ¢
scaling of H,.

There are two important cases for the a-order graph
complexity that we now explicitly consider. The first is
the topological case, when a =0. T is the digraph’s con-
nection matrix, the Renyi entropy Ao =loglo is the topo-
logical entropy A, and the graph complexity is the proba-
bilistic algorithmic complexity, Co(G) =log|V|. In the
case of cellular automata and assuming one has the
equations of motion, this quantity has been referred to as
the algorithmic complexity.'® It is important, however,
to distinguish C¢ from the Chaitin-Kolmogorov complex-
ity, which goes under the same name and describes the
complexity of individual measurement sequences.?™>
The quantities that we have defined here are probabilis-
tic and referred to Turing machines with a random inter-
nal register.

The second (metric) case of interest is the ‘“high-
temperature limit,” when a=1. Here, h, is the metric
entropy: h, =lim,_. 1h,=—d\,/da. C, is the graph
complexity, C; = — X e vip. logp,, that is, the Shannon
entropy of p;.'>!7

We demonstrate the practical implementation of &-
machine reconstruction and the foregoing formalism on
the well-studied period-doubling cascade, as exhibited by
the logistic map. Figure 1 displays topological e&-
machines for several notable parameter values. Figure 2
shows the graph complexity C,(L) versus the specific en-

(c)
@
4O Y
FIG. 1. Topological e-machine /-digraphs for the lo-

gistic map at (a) the first period-doubling accumulation
re=3.569945671..., (b) the band merging r2z—is
=3.67859..., (c) the “typical” chaotic value » =37, and (d)
the most chaotic value r =4. (a) and (c) show approximations
of infinite e-machines. The start vertex is indicated by a dou-
ble circle; all states are accepting; otherwise, see Ref. 11.

tropy L ~'H,(L) for the metric case, a =1, at parameter
values associated with period-doubling cascades of vari-
ous periodicities. Of particular interest is the appear-
ance of a phase transition as a function of specific entro-
py. The observed divergence in C, indicates a form of
“superuniversality” for the transition, since we are only
considering the complexity’s dependence on the
information-theoretic characterization, viz, H, of the
measurement sequences, and not the dependence on pa-
rameter value. The lower bound on C,, attained for
periodic behavior and at band mergings, indicates a A-
like phase transition with a second-order component.
The remaining chaotic data are always significantly
above the lower bound.

This example shows that C, is a measure of complexi-
ty distinct from and dual to standard information mea-
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FIG. 2. Graph complexity C, vs specific entropy H,(16)/16,
using the binary, generating partition {[0,0.5),[0.5,11}, for the
logistic map at 193 parameter values r € [3,4] associated with
various period-doubling cascades. For most, the underlying
tree was constructed from 32-cylinders and machines from 16-
cylinders. From high-entropy data sets smaller cylinders were
used as determined by storage. Note the phase transition
(divergence) at H* =0.28. Below H* behavior is periodic
and C,=H,=log(period). Above H*, the data are chaotic.
The lower bound C,=log(B) is attained at B— B/2 band
mergings.

sures of dimension d, and entropy h,. The latter, given
by the e-machines’s eigenvalue, simply measures the
diversity of observed patterns in a data stream: the more
random the source, the more patterns, and so the higher
the information content. The graph complexity, howev-
er, given by the e-machine’s eigenvector, measures the
computational resources required to reproduce a data
stream.'® It vanishes for trivially periodic and for purely
random data sets. A reconstructed s-machine reflects a
balanced utilization of deterministic and random infor-
mation processing. We claim this model basis is the
proper one for describing the computational complexity
of physical processes, since the latter always have some
residual extrinsic fluctuations.

The extension of e-machines beyond regular languages
to context-free languages and higher levels in Chomsky’s
hierarchy'? is the next major step. It can be shown, for
example, that despite its infinite graph complexity
period-doubling accumulation has a finite-stack machine
description and so is not computation universal. The ap-
plication of machine reconstruction using spatial transla-
tion symmetry and the associated statistical mechanics to
estimate spatiotemporal machines is straightforward.'
Reconstructing language hierarchies for data sets and
minimal machines for spatial systems will be reported
elsewhere.

We have argued for a chaotic measurement theory
that exploits the intimate relationship between informa-
tion, computation, and forecasting.'"f"7 This Letter es-
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tablishes the connections constructively and within the
framework of statistical mechanics. With a direct mea-
sure of an g-machine’s complexity, the theory gives a
computation-theoretic foundation to the notions of model
optimality and, most importantly, a measure of the com-
putational complexity of estimated models.! The gen-
erality of e-machine reconstruction and its ability to
infer generalized states from a data stream suggest that
it captures essential aspects of learning. That it can be
put into a statistical mechanical framework, therefore,
suggests the existence of a complete theoretical basis for
*“artificial science”: the fully automatic deduction of op-
timal models of physical processes. '
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