SOLUTIONS

[14.3.8] Let \(\alpha \) be a root of \(f(x) = x^p - x - a \), then \(\alpha + k \) is clearly also a root of \(f(x) \) for \(k \in \mathbb{F}_p \). Since \(f \) is of degree \(p \), we get all the roots this way, and the splitting field is given by \(K = \mathbb{F}_p[\alpha] \). Also, \(f \) has no roots in \(\mathbb{F}_p \), so \([K : \mathbb{F}_p] = p\). Furthermore, the Galois group can be seen as generated by the automorphism \(\alpha \mapsto \alpha + 1 \), which also has order \(p \).

[14.4.5] (a) Let \(\bar{L} \) be the Galois closure of \(L \) over \(F \), and \(L_1, \ldots, L_n \) the Galois conjugates of \(L \) over \(F \) in the algebraic closure of \(L \), then \(\bar{L} = L_1 \cdots L_n \). Suppose \(\sigma(L) = L_i \) with \(\sigma \in \text{Gal}(\bar{L}/F) \), since \(K/F \) is Galois, \(\sigma(K) = K \), and \(L_i \) contains \(K \). Note that \(L \) and each \(L_i \) are isomorphic, so all \(L_i \) are Galois over \(K \). Therefore \([\bar{L} : K][L_1 : K] \cdots [L_n : K]\) which is a power of \(p \). Since \(K/F \) is also a \(p \)-extension, we have \([\bar{L} : F]\) is a power of \(p \).

(b) Take \(F = \mathbb{Q} \), \(L = K = \mathbb{Q}(\sqrt{2}) \), then \(\bar{L} \) is of degree 6 over \(F \).

[14.4.6] Let \(K = \mathbb{F}_p(x^p, y^p) \) and \(L = \mathbb{F}_p(x, y) \), then \([L : K] = p^2\).

For \(f \in K \) consider the subfield \(L_f = K(fx + y) \). Since \((fx + y)^p = f^p x^p + y^p \in K\) it follows that \([L_f : K] \leq p \). If \(L_f = L_g \) for some \(f \neq g \), then it is easy to see that \(x, y \in L_f \), so \(L_f = L \). However, this contradicts the degree considerations above.

Consequently, this construction yields an infinite number of intermediate subfields, so by Proposition 24 the extension \(L/K \) is not simple.

[14.5.3] Notice that \(\zeta_5^4 + \zeta_5^3 + \zeta_5^2 + \zeta_5 + 1 = 0 \) implies that \(\zeta_5^4 + \zeta_5^3 + \zeta_5^2 + \zeta_5 + 1 = 0 \), so \((\zeta_5 + \zeta_5^{-1})^2 + (\zeta_5 + \zeta_5^{-1}) - 1 = 0 \) showing that \(\alpha = \zeta_5 + \zeta_5^{-1} \) satisfies the polynomial \(x^2 + x - 1 = 0 \). Thus \(\alpha = \frac{\sqrt{5} - 1}{4} + i\sqrt{\frac{5 + \sqrt{5}}{8}} \).

However, \(\zeta_5 \) satisfies the quadratic \(x^2 - x + 1 = 0 \) over \(\mathbb{Q}(\alpha) \), which gives us

\[\zeta_5 = \frac{\sqrt{5} - 1}{4} + i\sqrt{\frac{5 + \sqrt{5}}{8}}. \]

[14.5.7] Let \(\tau \) be the complex conjugation, then \(\tau(\zeta_n) = \overline{\zeta_n} = \zeta_n^{-1} \). Hence \(\tau \) can be identified with \(\sigma_{-1} \in G := \text{Gal}(\mathbb{Q} / (\zeta_n)/\mathbb{Q}) \) (recall \(\sigma_i(\zeta_n) = \zeta_n^i \)). Now observe that \(\zeta_n \) satisfies the quadratic polynomial

\[x^2 - (\zeta_n + \zeta_n^{-1}) + 1 \in K^+[x] \]

so \([K : K^+] = 2\). But \(H = \{1, \sigma_{-1}\} \subseteq G \) clearly fixes \(K^+ \). Therefore, \(K^+ \) is in fact the fixed field of \(H \), and since conjugation fixes only the real numbers we get \(K^+ = K \cap \mathbb{R} \).