The exercises are taken from the text, Abstract Algebra (third edition) by Dummit and Foote.

Page 231.7. Let Z denote the center of R. Then if $a, b \in Z$, $(ab)r = a(br) = a(rb) = r(ab)$, $(a + b)r = ar + br = ra + rb = r(a + b)$, so $ab, (a + b) \in Z$. Clearly $1 \in Z$. Also, $(-1)r = -r = r(-1)$, and $-1 \in Z$. Now $(-a)r = (-1)(ar) = (-1)(ra) = r((-1)a) = r(-a)$, and each element in Z has an inverse. Since R is associative and distributive, so is Z. Therefore Z is a subring containing the identity. If R is a division ring, then for $a \in Z$, there is an multiplicative inverse a^{-1} of a. Now $ar = ra$ so $ra^{-1} = a^{-1}r$. Therefore, $a^{-1} \in Z$, and Z is a field.

Page 231.13. a) $(ab)^k = a^k b^k = (a^k b) b^{k-1} = nb^{k-1} \equiv 0 \pmod{n}$

b) Suppose every prime divisor of n also divides a. Write $n = p_1^{m_1} p_2^{m_2} \cdots p_n^{m_n}$, and $a = p_1^{m'_1} p_2^{m'_2} \cdots p_n^{m'_n} q$, where q is not divisible by any p_i. Take $M = \max\{m_1, m_2, \cdots, m_n\}$, then clearly a^M is divisible by n, and \bar{a} is nilpotent in Z/nZ.

Conversely, suppose $a^k = nl$ for some integer l. Since a^k and a share the exact same prime factors, if there exists some prime factor p of n not dividing a then p does not divide a^k. But this is impossible since n divides a^k. Therefore every prime divisor of n is a divisor of a is a necessary and sufficient condition.

$72 = 2^3 3^2$. Following the above argument, the nilpotent elements of $Z/72Z$ are 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 0.

c) Suppose R has a nonzero nilpotent element $f : X \to F$, with $f^k = 0$. Since f is nonzero, $f(x)$ is nonzero for some $x \in X$. But $0 = f^k(x) = f^{k-1}(x)f(x) = 0$, which means $f(x)$ is a zero-divisor. But F is a field. Contradiction. Therefore such nonzero nilpotent element cannot exist.

Page 231.27. By definition, R is all rational numbers $\frac{a}{b}$ such that $v_p(\frac{a}{b}) \geq 0$ together with zero. Therefore, R consists of all rationals $\frac{a}{b}$ with b has no factor of p. For a unit $u \in R$, with $u = \frac{a}{b}$, since the
inverse of u is $\frac{b}{a}$, which must also be in R, we must have that both a and b have no factors of p.

Page 238, 4. Take any two nonzero elements $f, g \in R[[x]]$, then we can write $f = x^A \sum_{i=0}^{\infty} a_i x^i$ and $g = x^B \sum_{j=0}^{\infty} b_j x^j$, with a_A, b_B nonzero. Then $fg = x^{A+B} \sum_{k=0}^{\infty} c_k x^k$, where $c_k = \sum_{l=0}^{k} a_l b_{k-l}$. In particular, since R is ID, $c_0 = a_A b_B$ is nonzero, and fg is nonzero. Hence $R[[x]]$ is also ID.

Page 247, 2. Suppose there is an isomorphism $f : \mathbb{Q}[x] \to \mathbb{Z}[x]$. Since only the trivial field is contained in $\mathbb{Z}[x]$, and the image of a field must also be a field, we have $f(\mathbb{Q}) = 0$, and f is not an isomorphism.