1. (a) If \(\{T_\alpha(X)\} \) is a collection of topologies on \(X \), show that \(\bigcap T_\alpha(X) \) is a topology on \(X \). Is \(\bigcup T_\alpha(X) \) a topology on \(X \)?

(b) Show that there is a unique smallest topology on \(X \) containing all collections \(T_\alpha(X) \), and a unique largest topology contained in all \(\{T_\alpha(X)\} \).

(c) If \(X = \{a, b, c\} \), let \(T_1 = \emptyset, X, \{a\}, \{a, b\} \) and \(T_2 = \emptyset, X, \{a\}, \{b, c\} \). What are the smallest and largest topologies, as defined above?

2. For \(T(X) \) and \(T'(X) \) two topologies on \(X \), such that \(T'(X) \) is strictly finer than \(T(X) \), what can you say about the corresponding subspace topologies induced on \(Y \subset X \)?

3. Show that for the basis \(B(X) \), the topology it generates is the intersection of all topologies on \(X \) that contain \(B(X) \). Prove the same if \(B(X) \) is a subbasis.

4. (a) Show that
\[
B_1(\mathbb{R}) = \{(a, b) | a < b, a, b \in \mathbb{Q}\}
\]
generates the standard topology on \(\mathbb{R} \).

(b) Show that
\[
B_2(\mathbb{R}) = \{[a, b) | a < b, a, b \in \mathbb{Q}\}
\]
and
\[
B_3(\mathbb{R}) = \{[a, b) | a < b, a, b \in \mathbb{R}\}
\]
do not generate the same topology. Note that \(B_3 \) generates the lower limit topology.

5. A map
\[
f : X \to Y
\]
is an open map if for every open set \(U \in T(X) \), the image \(f(U) \in T(Y) \). Let \(\pi_1 : X \times Y \to X \) and \(\pi_2 : X \times Y \to Y \) be projection maps such that \(\pi_i(x_1, x_2) = x_i \). Describe a topology on \(X \times Y \) such that \(\pi_1 \) and \(\pi_2 \) are open maps.