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This paper explores the possibility of using spin-stabilized membrane structures for large
phased array microwave antennas (typically L-Band or S-Band from 1 GHz to 4 GHz).
The biggest challenge is to be able to sufficiently stabilize the system in order to limit its
sensitivity to space disturbances (maneuvering, reaction wheels, and other imposed forces)
and manufacturing imperfections. First, a flatness requirement for microwave antennas is
derived. Then a frequency analysis of isotropic flat structures spinning at different angular
velocities and with different bending stiffnesses is carried out. These analyses, together
with finite element simulations, are used to derive scaling laws to study the behavior of
large spinning structures. A test case, based on a spinning structure perturbed at the hub,
is considered. An analytical solution of the free vibration of this test case is compared
to the results of finite-element method simulations with Abaqus/Standard. Finally a test
setup to study the dynamics of scaled spinning membranes in the laboratory is presented.
Gravity effects in such an experiment are expected to be small.

Nomenclature

a Inner Radius γ Non dimensional frequency

b Outer radius η Gravity parameter

D Bending stiffness κ Stiffness parameter

E Young’s modulus λ Wavelength

f Frequency ν Poisson’s ratio

g Gravity ρ Density (kg.m−3)

h Thickness σr Radial component of in-plane stress due
to centrifugal force

n Number of nodal circles σθ Circumferential component of in-plane
stress due to centrifugal force

p0 Perturbation σg
r Radial component of in-plane stress due

to gravity

s Number of nodal diameters σg
θ Circumferential component of in-plane

stress due to gravity

w Out of plane displacement ω Angular velocity

α Radius ratio

I. Introduction and Background

Membrane-like space structures are used for many applications, such as sunshields, solar sails, patch
antennas and solar arrays. In recent years there has been significant activity and many advance in solar
sails. In 2005 NASA tested two square sails under thermal vacuum conditions, the ATK 20 m concept (figure
1) and the L’Garde 20 m concept (figure 2). Both of these prototypes were deployed and stabilized by means
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of deployable booms. Ultra-light graphite coilable booms were used for the ATK system and inflatable
lightweight booms with sub-Tg rigidization for the L’Garde system. In 2010 JAXA deployed in space a 20
m diagonal spinning solar sail for a deep space mission. Instead of using booms to deploy the IKAROS sail,
the deployment was actuated by the centrifugal forces generated by four tip masses attached to the vertexes
of the square sail. After deployment the system continues to spin at 1-2 rpm.

Figure 1: ATK 20 m Figure 2: L’Garde 20 m Figure 3: IKAROS 14 m

The aim of the paper is to study the dynamics of spinning membrane-like structures for applications such
as space-based microwave phased array antennas. As a specific example, a continuous isotropic structure
clamped to a central hub is considered. Following the derivation of a coarse stability requirement for phased
array antennas, an analytical study of the linearized dynamics of a perfect spinning membrane subject to a
specific type of disturbance is presented. The study considers the asymptotic behaviors of thick membranes,
whose behavior is dominated by bending stiffness, and thin membranes, whose behavior is dominated by the
inertia forces generated by spinning membranes. Numerical simulations that include geometrically non-linear
effects are also carried out with the Abaqus/Standard finite element software. The influence of numerical
damping on the precision of several implicit integration schemes is evaluated and the influence of large
amplitudes on the natural frequencies of vibration of the membrane is investigated. Finally, a design of a
laboratory scale experiment to study the dynamics of spinning membrane with only minimal gravity-induced
disturbances is carried out.

II. Stability Requirement for Microwave Phased Array Antennas

Figure 4: Radiation pattern of flat structure.
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Figure 5: Efficiency sensitivity to shape deforma-
tion on the first 4 vibration modes

The stability requirement for an antenna depends on its size, purpose and wavelength of operation.
For example, consider a phased array of square patch antennas on a grid of λ

2 with λ ≃ 30 cm (1 GHz
microwaves), attached to a 60 m diameter spinning membrane structure. The antennas are synchronized to
emit coherently, in order to transmit power in a narrow beam. If the calibration of the antennas is carried out
assuming that the membrane structure is perfectly planar, a subsequent distortion of the structure distorts
the radiation pattern and causes some power to be lost.

The efficiency of the array antenna is defined as the capability of transferring power in a chosen direction,
which corresponds to the direction of the main beam if the antenna is perfectly planar. Figure 4 shows the
normalized radiation pattern (normalized radiation intensity in every direction) of a calibrated flat structure
for λ=1 m (faster simulations). Figure 5 shows the power transmission efficiency of the 60 m antenna array
respectively deformed on each of the first vibration modes of a spinning membrane as a function of the
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deformation amplitude along with random deformation of various amplitudes. The x-axis is the amplitude
of the mode (maximum out-of-plane deformation) divided by the wavelength. In particular, for λ=30 cm
the figure shows that a shape error of 18 cm over a 60 m structure decreases the power efficiency by a factor
of two for at least one mode. This observation drives the requirement that the structure must be stable to
a few centimeters for this application.

Figure 6: Radiation pattern for structure de-
formed according to Mode 1, with amplitude λ

2 .
Figure 7: Radiation pattern for structure de-
formed according to Mode 2, with amplitude λ

2 .

Figure 8: Radiation pattern for structure de-
formed according to Mode 3, with amplitude λ

2 .
Figure 9: Radiation pattern for structure de-
formed according to Mode 4, with amplitude λ

2

This example highlights the importance of maintaining geometrical stability in large spinning membrane-
like structures.

III. Dynamics of Spinning Membrane Structures

There are two effects that stabilize the spinning membrane structure shown in figure 10, centrifugal force
and bending stiffness. We can solve the linear dynamic equation for both of these asymptotic behaviors
using a series expansion in one case and Bessel functions in the other. The actual structure behavior can be
analyzed using finite element methods.

Figure 10: Definition of geometry and variables.
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A. Static Plate Behavior

The linear dynamics of a thin annulus is a classical problem that has been solved analytically. Leissa6 solves
a wide range of problems, in particular the annulus clamped at the hub and free at the edge using Bessel
functions. The classical differential equation of motion for the transverse displacement w of a thin plate is
given by:

D∇4w + ρh
δ2w

δt2
= 0 (1)

where D is the bending stiffness:

D =
Eh3

12(1− ν2)
(2)

The boundary conditions are:

clamped at r = a :

{

W (a, θ) = 0
δ
δr
W (a, θ) = 0

free at r = b :

{

Mr(b, θ) = 0

Vr(b, θ) = 0

where Mr is the bending moment and Vr the Kelvin-Kirchhoff edge reaction.
For free vibration we expand w in terms of Fourier components in θ and thus the solution takes the

following form:

w = cos(2πft)W (r, θ) (3)

= cos(2πft)(

∞
∑

s=0

Ws(r) cos(sθ) +

∞
∑

s=0

W ∗

s (r) sin(sθ)) (4)

Where s is the number of nodal diameters. Substituting equation 3 into equation 1 we find an identical
system of equations for Ws and W ∗

s , whose solutions are expressed in term of the Bessel’s functions:

Ws1 = AsJs(kr) +BsYs(kr) (5)

Ws2 = CsIs(kr) +DsKs(kr) (6)

with

k4 =
ρh(2πf)2

D
(7)

As, Bs, Cs, Ds are obtained by considering the boundary conditions.
For a non-trivial solution to exist the determinant of the 4×4 matrix expressing the boundary conditions

must be zero. From this condition we can solve for the non-dimensional frequencies γ = kb defined as

γ2 = b22πf

√

ρh

D
(8)

We solve the problem with Matlab for s = 0, . . . 4 and n = 0, . . . 3 (n is the number of nodal circles).
Figure 11 shows a plot of γ for different values of α = a/b and for ν = 0.34.

B. Spinning Membrane Behavior

If the structure is thin then its bending stiffness can be neglected and the dynamics are dominated by the
pre-stress due to the centrifugal force. The linear equation of the out of plane deformation w is then governed
by the second-order equation

h

r

δ

δr
(rσr

δw

δr
) +

h

r2
δ

δθ
(σθ

δw

δθ
)− ρh

δ2w

δt2
= 0 (9)

4 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

U
B

U
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
N

ov
em

be
r 

26
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

5-
14

03
 



0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

a
b

γ

 

 

s=0, n=0,1,2,3
s=1, n=0,1,2,3
s=2, n=0,1,2,3
s=3, n=0,1,2,3
s=4, n=0,1,2,3

Figure 11: Non-dimensional frequencies of circular plate with ν=0.34.

The stress components σr and σθ have the expressions

σr(r) = ρω2b2(A[ν](
r

b
)2 +B[ν, α] + C[ν, α](

b

r
)2) (10)

= ρω2b2Pν,α[r̄] (11)

σθ(r) = ρω2b2(D[ν, α](
r

b
)2 + E[ν, α] + F [ν, α](

b

r
)2) (12)

= ρω2b2Qν,α[r̄] (13)

with r̄ = r/b.
The boundary conditions are

{

W (a, θ) = 0

W (b, θ) = finite

We once again expand the solution in terms of Fourier components in θ. The resulting second-order
equation and boundary conditions constitute a Sturm-Liouville problem with a regular singular point. We
refer to the technical note by Eversman4 to solve the problem by series expansion. We first do a change of
variable to express W between 0 and 1 and put the singularity at 0:

ζ =
1− r̄2

1− α2
(14)

with boundary conditions:
{

W (0) = finite

W (1) = 0

This problem can be solved with the following series expansion:

W =

∞
∑

n=0

Cnζ
n (15)

Hence we evaluate with Matlab the non-dimensional frequencies for s = 0, . . . 3 and n = 0, . . . 2 according
to α ∈ [0, 0.5] and ν=0.34. The results are plotted in figure 12. It should be noted that there may exist
lower frequencies, corresponding to higher values of s, which have not been calculated.

We also plot the radial variation of the first five axisymmetric modes in figure 13.
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Figure 12: Non-dimensional frequencies of circular membrane spinning at ω with ν=0.34.
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Figure 13: Radial variation of first five axisymmetric modes for a spinning membrane with ν=0.34.

C. Spinning Plate Behavior

The differential equation of motion for the transverse displacement w of a spinning plate is given by:

D∇4w − h

r

δ

δr
(rσr

δw

δr
)− h

r2
δ

δθ
(σθ

δw

δθ
) + ρh

δ2w

δt2
= 0 (16)

which gives for free vibrations:

D∇4W − h

r

δ

δr
(rσr

δW

δr
)− h

r2
δ

δθ
(σθ

δW

δθ
) + ρh(2πf)2W = 0 (17)
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The associated boundary conditions are:


















W (a, θ) = 0
δ
δr
W (a, θ) = 0

Mr(b, θ) = 0

Vr(b, θ) = 0

We can non-dimensionalize this equation for each mode by using r̄= r
b
and t̄ = ωt, and obtain the following

equation for the eigenmodes of the system.

κ∇4W − 1

r̄

δ

δr̄
(r̄Pν,α(r̄)

δW

δr̄
)− 1

r̄2
δ

δθ
(Qν,α(r̄)

δW

δθ
) +W = 0 (18)

With the associated non-dimensional boundary conditions:


















W (α, θ) = 0
δ
δr̄
W (α, θ) = 0

Mr(1, θ) = 0

Vr(1, θ) = 0

and the stiffness parameter

κ =
Eh2

ρb4ω2
(19)

Thus, the eigenmodes of the spinning plate depend only on α, ν and κ.

10
−2

10
0

10
2

10
0

10
1

κ

2
π
f

ω

Figure 14: Influence of stiffness parameter on the first non-dimensional frequencies, for the case α=0.1 and
ν=0.34.

The first non-dimensional frequencies of a spinning plate are plotted in figure 14 according to κ (with
α=0.1 and ν=0.34). In particular, when κ is very small we find the linear dynamics of a spinning membrane
and:

2πf

ω
= Ci (20)

When κ is large we are in the static plate regime and:

2πf

ω
= Di

√
κ (21)

where Ci and Di depend on the mode, α and ν. Ci is plotted in figure 12 and Di=
γ2

12(1−ν2) in figure 11.
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The red dots in figure 14 represent, for each mode, the value of κ at which the frequency is within 10%
of the spinning membrane case and the green dots mark the values of κ at which the frequency is within
10% of the static plate solution.

More generally two systems with the same κ have the same linearized dynamics. This is the criterion we
use to scale our experiments. In particular, the dynamics of a 60 m diameter, 3 mm thick Kapton membrane
with a 3 m diameter hub, spinning at 1 rpm has κ = 2×10−4. Any system with κ = 2×10−4 would have the
same linearized dynamics and, at least for the first 16 modes —plotted in figure 14— the dynamic regime is
that of a spinning membrane.

IV. Description and Analytical Solution of a Test Case

Consider a circular membrane spinning at ω = 150 rad s−1. The membrane is initially flat and clamped
to a central the hub, figure 10. We apply a vertical step displacement, p0, at the hub and let the structure
vibrate freely. Only the axisymmetrical modes are excited. We solve this problem analytically by mode
superposition to evaluate the weight of each axisymmetric mode on the vibration.

The spatial boundary condition being non-homogeneous, we apply the modal expansion that we found
in Section III-B. The imposed boundary conditions are:

{

W (a) = P (t)

W (b) = finite

with
{

P (t) = 0 t < 0

P (t) = p0 t ≥ 0

and the initial conditions are:
{

W (r, θ, 0) = 0

Ẇ (r, θ, 0) = 0

Hence, the out-of-plane displacement is independent of θ and can be expressed as:

W (r, t) = Wqs(r, t) +

∞
∑

n=0

ηn(t)W0,n(r) (22)

where Wqs(r, t) = p0 is the quasi-static solution and W0,n(r) are the normalized eigenmodes for s=0.
As the initial conditions are zero and there is no body force we can express equation 22 as:

W (r, t) = p0 +
∞
∑

n=0
W0,n(r)cos(ω0,nt)

∫

V
ρW0,n(r)(−p0)dV (23)

= p0 − p0ρh2π
∞
∑

n=0
W0,n(r)cos(ω0,nt)

∫ b

a
W0,n(r)rdr (24)

To find the weight of each mode we first normalize the mode shapes from Section III-B with:

∫ b

a

ρ2πhW 2
0,n(r)rdr = 1 (25)

The weight of each mode at r = b is
Bn = AnW0,n(b) (26)

with

An = ρ2πh

∫ b

a

W0,n(r)rdr (27)

The results are plotted in figure 15 for the particular case ω = 150 rad s−1. This results are our baseline
solution to validate the finite element method simulations presented in the next section.

8 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

U
B

U
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
N

ov
em

be
r 

26
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

5-
14

03
 



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

frequency (Hz)

B
2 n

Figure 15: Weight of first modes on the response at r=b

V. Numerical Simulations

We have set up the study case described in Section IV in the finite element software Abaqus/Standard.
We use this example to study the influence of numerical damping on the precision of the results and the
time of the simulation. Then we study the non-linear effects of the response of the system for the first
axisymmetric modes.

A. Simulation Description

We consider a 40 cm diameter, 50 µm thick disk made of Kapton with a 4 cm diameter hub at the center.
Its properties and dimensions are provided in Table 1. They correspond to the ones of the experimental
setup as explained in the next part. The hub is defined by a set of constrained nodes using the RIGID
BODY option. We use a regular mesh with 10 elements radially and 40 circumferentially. The elements
used are shell elements S4R (a 4-node thick shell element, with reduced integration, hourglass control, finite
membrane strain formulation).

E 2.5 GPa

ν 0.34

ρ 1420 kg m−3

h 50 µm

b 20 cm

a 2 cm

Table 1: Geometry and properties of test case.

We simulate the non-linear dynamics with the NLGEOM option. We impose the initial conditions using a
PREDEFINED FIELD and then run a dynamic implicit step. The predefined field corresponds to a perfectly
flat structure spinning at 150 rad s−1.

We use three integration schemes to compute the dynamic response: Backward Euler, HHT (Hilbert,
Hughes and Taylor) with α=0.33, HHT with α=0.05, HHT with α=0. After 0.1 s we perturb the hub
vertically, moving it by p0=1 µm over 0.0004 s. We then let the simulation run for 0.3 s with a maximal
increment step of 0.0004 s (to be able to perform a precise fft on the obtained signal).
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Figure 16: External work.
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Figure 17: Kinetic energy.

B. Numerical Damping

We compare the time needed to execute the simulation for a perturbation p0=1 µm, provided in table 2,
and the precision of the results of the various integration schemes. The Backward Euler and the HHT
integrations for α = 0.33, 0.05 take about 5 min while HHT with α = 0 takes 30 min.

Scheme CPU Time (s)

Backward Euler 376

HHT-α=0.33 303

HHT-α=0.05 302

HHT-α=0 2461

Table 2: Simulation times.

Figures 16 and 17 show plots of the total external work and kinetic energy of the whole structure. The
external work should remain constant, but only the simulations with the lowest damping captures this
behavior almost correctly (green plot, which however was obtained from a simulation with a heavier hub).

Figure 18 shows a plot of the out of plane displacement at the extremity of the disk. As only the
axisymmetric modes are excited we have plotted the displacement at a material point on the membrane, as
in this particular case there is no difference if we follow a point on the spinning disk.

Figure 19 presents the Fourier transform of the signal, computed with the fft function in Matlab. Note
that the solution based on the Backward Euler scheme identifies only the two dominant modes; the remaining
are heavily damped. The HHT scheme with α = 0.05 identifies at least the first 9 modes. The analytical and
simulated results are compared in table 3. All the results are within an error smaller than 9%. The HHT
scheme with α = 0 identifies many more modes, possibly because non-symmetric modes have been excited
due to the difficulty of setting up perfect initial conditions, or because of convergence/noise issues during
the integration.

Finally, figure 20 compares the relative weight of the first modes obtained with HHT-α=0.05 with the
analytical ones. Notice that the higher frequencies components identified by the analytical solution are over-
damped in the numerical solution. Despite this drawback, the HHT scheme with α=0.05 was chosen for the
next set of simulations as it is fast, robust to initial imperfections and gives good precision for the first two
frequencies.
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Mode no. Analytic (Hz) HHT-α=0.05 (Hz)

1 16.46 16.6

2 54.69 53.03

3 89.36 83.84

4 123.42 112.4

5 157.258 144.6

6 190.96 178.4

7 224.59 218.2

8 258.18 251.6

9 291.74 294.8

Table 3: Comparison of frequencies below 300 Hz.
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Figure 18: Out of plane displacement at the extremity.
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Figure 19: Dominant frequencies of the response.
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Figure 20: Frequency content of responses obtained from analytical solution (blue) and simulation with HHT
with α = 0.05 (red).
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C. Non-Linear Effects

When the amplitude of the perturbation is increased the deformation of the membrane grows bigger and
hence the small amplitude hypothesis doesn’t hold anymore as the behavior becomes non-linear. To study
this effect, we run our simulation for p0 between 1 µm and 2 mm. The results are shown in figure 21. In
figure 22 we plot the weight of the modes in each signal normalized by the weight of the modes obtained in
the linear case. In these two sets of plots, notice a shift in the frequencies and relative amplitudes. Using
these results, we can also estimate that the range of disturbances for which the response remains linear is
up to 100 µm (twice the thickness of the membrane).
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Figure 21: Free vibration for different amplitudes
of perturbation
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Figure 22: fft of the free vibration for different
amplitudes of perturbation

VI. Experiments

We would like to recreate in the laboratory the dynamics of a 60 m spinning membrane with low gravity
effects. It was explained in Section III that this problem can be scaled to a smaller geometry. To maintain
the same linearized dynamics we need to keep κ = 2 × 10−4 while rescaling. In this section we study the
influence of gravity on our system and the range of test parameters for which gravity effects can be neglected.
Another challenge is the design of an experiment that creates the appropriate initial conditions for a spinning
test.

A. Gravity Effect

We can either spin the structure horizontally (gravity out of plane) or vertically (gravity in plane). We
describe here the influence of gravity in these two cases and derive a criterion for neglecting gravity.

1. In-plane Gravity

When we spin the membrane in a vertical plane, gravity acts in-plane and changes the equilibrium stress
within the structure. The dynamical equation is the same as equation 16 with a modified equilibrium stress.
If the structure stays vertical (centrifugal effects larger than gravitational effects) the stress can be expressed
by superposition as:

σ(r, θ) = σ(r) + σg(r, θ) (28)

where
σg(r, θ) = ρgbfg[

r

b
, θ, ν] (29)

12 of 15

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 A

U
B

U
R

N
 U

N
IV

E
R

SI
T

Y
 o

n 
N

ov
em

be
r 

26
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

5-
14

03
 



Hence, the linearized dynamics can be expressed in non-dimensional form as:

κ∇4W − 1

r̄

δ

δr̄
(r̄Pν,α(r̄)

δW

δr̄
)− 1

r̄2
δ

δθ
(Qν,α(r̄)

δW

δθ
)− η(

1

r̄

δ

δr̄
(r̄fg,r

δW

δr̄
) +

1

r̄2
δ

δθ
(fg,θ

δW

δθ
)) +W = 0 (30)

with:
η =

g

bω2
(31)

In this case, the linearized dynamics are controlled by the two parameters κ and η.
We evaluate with Abaqus the error introduced by in-plane gravity on the response of the lowest modes.

The largest influence is on the fourth frequency (over the first five) and is shown in figure 24. In particular,
for κ = 2× 10−4 if η is smaller than 0.1, gravity introduces an error smaller than 10 %.

We obtain the two following relations to design our experiment:

κ = 2× 10−4 (32)

η < 0.1 (33)

Hence, if we choose a Kapton membrane with diameter of 40 cm, we find that to satisfy these conditions
we need to spin a 50 µm thick structure at 23 rad s−1.
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Figure 23: Variation of fourth natural frequency
with κ and η, for α=0.1 and ν=0.34
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Figure 24: Variation of error on fourth natural
frequency with κ and η, for α=0.1 and ν=0.34

2. Out-of-plane Gravity

When we spin the membrane in a horizontal plane, gravity acts out of plane and the stress distribution is
changed. Instead of carrying out a general study, we have considered the influence of gravity on a 40 cm
diameter Kapton membrane with a 4 cm hub. The variables in our design are the thickness and angular
velocity. We would like the angular velocity to be as small as possible which would simplify the image
acquisition and a thickness that corresponds to existing Kapton film (as thick as possible to limit the
sensitivity to imperfection and kinks).

We have evaluated with Abaqus/Standard the error due to gravity on the first 5 modes for ω ∈ [80
300] rad s−1 and h ∈ [10 µm 1 mm]. The relative error for the first frequency is presented in figure 25. The
green line corresponds to the membrane approximation limit defined by the red dots in figure 14 and the
red line corresponds to the value of κ we are interested in. On figure 26 we represent the 10 % error limit
for the first 5 modes.

In particular, a 40 cm diameter membrane with a 4 cm hub, 50 µm thick spinning at 150 rad s−1 would
recreate the linearized dynamics of a 60 m system with minimal gravity effects.

In principle it seems easier to spin the membrane vertically. Nevertheless it is easier to keep the structure
flat using a support plate if we spin it horizontally, as described in next section. For now, we consider for
our experiments a 40 cm diameter, 50 µm thick Kapton membrane with a 4 cm hub, spinning at 150 rad s−1

horizontally.
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Figure 25: Error due to out of plane gravity
on mode 1.
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Figure 26: 10% error limit on first 5 modes.

B. Setup Description

The main challenges of setting up a lab experiment are to decouple the source of rotation (electric motor)
from the vertical motion (shaker) and to set up a flat or nearly flat membrane spinning at 150 rad s−1. We
decouple rotation and linear motion with a system of gears and ball splines (a related study can be found in
reference12).

To keep the membrane flat during spin up we support it on an aluminum plate. This support is removed
once the structure has sufficiently high inertia-induced stresses to be able to sustain itself and gravity effects
are negligible on the linear dynamics (which happens when the membrane spins at 150 rad s−1).

A compact test setup, shown in figure 27, has been designed. It can be automatized to fit and operate in
a vacuum chamber. The blue components move only vertically; red components rotate only; and the purple
parts (mainly the shaft and the hub) and the orange part (membrane) both rotate and move vertically. The
height of the support plate is controlled by three vertical rods attached to vertical actuators (only one is
represented in the figures); each rods is terminated with a ball bearing. We lower the support plate after
spinning up the membrane, the rods are lowered by 1 cm. Note that this test rig allows unobscured views
of the top side of the membrane, which can be imaged with a high speed digital image correlation system to
identify the vibration modes.

Figure 27: Views of experimental setup.
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VII. Conclusion

Phased array antennas operating at 1 GHz have been considered and it has been shown that efficient
performance requires that the antenna stays flat to an accuracy of a few centimeters. These antennas can be
recalibrated electronically if they deform statically, but if the deformation occurs rapidly electronic correction
becomes more challenging.

The case of spinning antenna structures has been considered and their dynamics have been investigated.
For a diameter of 60 m it has been shown that a thin spinning structure can be modeled as a membrane
when studying the linear dynamics. Notably, a criterion to scale from 60 m to a laboratory experiment scale
has been determined, in terms of the stiffness parameter κ.

The dynamics of such a structure subject to a step perturbation at the hub have been investigated. We
have found that the results of finite element simulations are sensitive to the integration scheme used and that
it is difficult to recreate the full dynamics for the mesh and elements tested, as high frequencies are easily
damped. This problem can be studied experimentally by spinning the structure fast enough that gravity
effects become negligibly small. We have define the geometry and the experimental parameters to recreate
experimentally the dynamics of such a structure. The design of an experimental setup that should be able
to realize such an experiment, with appropriate flatness conditions, has been presented. The results of these
experiments will be presented in future publications.
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