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Abstract. This paper investigates the wrinkling of square isotropic membranes subject to copla-
nar pairs of equal and opposite corner forces. These membranes are initially stress free and
perfectly flat. Two wrinkling regimes are observed experimentally and are also reproduced by
means of finite-element simulations. A general methodology for making preliminary analytical
estimates of wrinkle patterns and average wrinkle amplitudes and wavelengths, while also gaining
physical insight into the wrinkling of membranes, is presented.
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1 INTRODUCTION

Thin, prestressed membranes will be required for the next generation of spacecraft, to provide
deployable mirror surfaces, solar collectors, sunshields, solar sails, etc. Some applications require
membranes that are perfectly smooth in their operational configuration; other applications can
tolerate membranes that are wrinkled with a known, small deviation from the nominal shape.
Because the design of membrane structures with biaxial pretension, which have a smooth surface,
significantly increases the overall complexity of the structure, for those applications in which
sufficiently small wrinkles are acceptable, engineers need to estimate the extent, wavelength and
amplitude of the wrinkles.

The wrinkling of membranes has attracted much interest in the past, starting from the
development of the tension field theory.1 Simpler formulations and extensions of this theory
were later proposed.2−7 All of these formulations, with accompanying numerical solutions,8,9

model the membrane as a no-compression, two-dimensional continuum with negligible bending
stiffness. Several studies of membrane wrinkling have been carried out during the past three
years, and have been presented at the 42nd, 43rd, and 44th AIAA SDM Conferences.10−12

This paper considers a uniform elastic square membrane (which is a simple model of a square
solar sail) of side length L and thickness t that is prestressed by two pairs of equal and opposite
concentrated forces, T1 and T2, uniformly distributed over a small length d at the corners, as
shown in Figure 1. This membrane is isotropic with Young’s Modulus E and Poisson’s ratio ν;
it is also initially stress free and perfectly flat (before the application of the corner forces).

T1, δ1
L

L

d

T1, δ1T2, δ2

T2, δ2

Figure 1: Membrane subjected to corner forces.

We use this problem to present a general and yet simple analytical method for making
preliminary estimates of wrinkle patterns and average wrinkle amplitudes and wavelengths in
membrane structures. We also present a finite element simulation method for making more
accurate estimates. The results from both our analytical approach and finite element simulations
are compared with experimental measurements.

The paper’s layout is as follows. Section 2 describes two regimes of wrinkling that were
observed experimentally. Section 3 presents our methodology for tackling wrinkling problems
analytically, and hence derives solutions for the square membrane problem. Section 4 presents
a finite-element simulation technique, whose results are compared with measurements and ana-
lytical results in Section 5. Section 6 concludes the paper.
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2 EXPERIMENTAL OBSERVATIONS

Figure 2 shows photographs of the wrinkle patterns in a Kapton membrane with L = 500 mm,
t = 0.025 mm, and d = 25 mm. For symmetric loading (T1 = T2), Figure 2(a), the wrinkle
pattern is fairly symmetric, with wrinkles radiating outward from each corner; the central region
is free of wrinkles. For a load ratio of T1/T2 = 2 the wrinkles grow in amplitude but remain
concentrated at the corners. Then, for T1/T2 = 3 a large diagonal wrinkle becomes visible,
whose amplitude grows further for T1/T2 = 4.

(a) (b) (c) (d)

Figure 2: Wrinkled shapes for T1 equal to (a) 5 N, (b) 10 N, (c) 15 N, and (d) 20 N; T2 = 5 N in all cases.

3 ANALYTICAL APPROACH

Our analytical approach is in four parts, as follows.
First, we identify a two-dimensional stress field that involves no compression anywhere in

the membrane; the regions where the minor principal stress is zero are then assumed to be
wrinkled and the wrinkles are assumed to be along the major principal stress directions. Ideally,
both equilibrium and compatibility should be satisfied everywhere by the selected stress field,
but analytical solutions in closed-form —obtained by tension field theory— exist only for very
simple boundary conditions. We have recently shown13 that a carefully chosen, simple stress
field that satisfies only equilibrium can provide quick solutions that are useful for preliminary
design. More accurate stress fields can be obtained from a two-dimensional stress analysis with
membrane finite elements, as briefly discussed in Section 4.

Second, we note that the bending stiffness of the membrane is finite, although small, and
hence a compressive stress will exist in the direction perpendicular to the wrinkles. Because of
its small magnitude, this stress was neglected in our previous analysis of the stress field. We
assume that this compressive stress varies only with the wavelength of the wrinkles and set it
equal to the critical buckling stress of a thin plate in uniaxial compression. Thus, the stress
across the wrinkles is a known function of the wrinkle wavelength.

Third, we enforce equilibrium in the out-of-plane direction. Since the stress distribution is
known, except for the wrinkle wavelength, a single equation of equilibrium will determine the
wrinkle wavelength.

Fourth, the wrinkle amplitudes are estimated by considering the total strain in the membrane
as the sum of two components, a material strain and a wrinkling strain.

3.1 Stress Field
Figure 3 shows three equilibrium stress fields that can be used to analyse membranes under

(a) a symmetric loading, (b) an asymmetric loading with T1/T2 ≤ 1/(
√

2 − 1), and (c) an
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asymmetric loading with T1/T2 ≥ 1/(
√

2−1). In each case the membrane is divided into regions
which are subject to simple stress states.
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Figure 3: Stress fields.

The stress field in Figure 3(a) is purely radial in the corner regions, with

σr =
T√
2rt

(1)

where r < L
2 is the radial distance measured from the apex. Hence, σr is uniform on any

circular arc and all other stress components are zero. The central region, defined by circular
arcs of radius R = r1 + L/2, is subject to uniform biaxial stress of magnitude T/

√
2Rt.

Note that near the point of application of each corner load a small, biaxially stressed region
bounded by the radius r1 = d√

2
has been defined. In these regions both normal stress components

are given by T/dt.
For moderately asymmetric loading, see Figure 3(b), we consider corner stress fields similar

to those given by Equation 1, hence

σr =
Ti√
2rt

(2)

but vary the outer radii such that the radial stress is still uniform on the four arcs bounding the
central region. Hence we need to choose R1 and R2 such that R1/R2 = T1/T2 and R1 + R2 =
L + 2r1. This approach is valid until the two larger arcs reach the centre of the membrane,
which happens for

R1

R2
=

T1

T2
=

1√
2 − 1

(3)

For larger values of T1/T2 we consider the stress field shown in Figure 3(c); note that the
diagonal region between the two most heavily loaded corners of the membrane is subject to zero
transverse stress, and hence a single diagonal wrinkle can form. Also note that the edges of the
membrane are now unstressed. The stress in each corner region is now given by

σr =
Ti

2rt sin θi
(4)
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and hence for the central region to be biaxially stressed we need to satisfy the condition

σr =
T1

2R1t sin θ1
=

T2

2R2t sin θ2
(5)

Given T1 and T2, one can find —by geometry together with Equation 5— a unique set of values
for the half-angles defining the corner regions, θ1, θ2, and for the radii, R1, R2, thus fully defining
the stress field.

The values of θ1 and θ2 remain constant for any particular value of T1/T2, and so the only
variable in Equation 4 is r. Hence, the slack regions will grow as the load ratio is increased.
Finally, it should be noted that both of our earlier stress fields can be obtained as special cases
of the last one.

3.2 Wrinkle Details
A critical compressive stress, σcr, must exist in the direction transverse to the wrinkles. We

will assume that this stress is given by the buckling stress of an infinitely long plate of width λ

σcr = −π2

λ2
Et2

12(1 − ν2)
(6)

In the case of fan-shaped wrinkles we will set λ equal to the half-wavelength mid way between
the corner and the edge of the fan.

w
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2A

Figure 4: Corner wrinkles: (a) overall shape; (b) central cross section.

To estimate the wrinkle details, we begin by considering a simple analytical expression for
the wrinkled surface. For example, in the case of a symmetrically loaded membrane we assume
that at each corner there is a set of uniform, radial wrinkles whose out-of-plane shape can be
described in the polar coordinate system of Figure 4 by

w = A sin
π(r − r1)
Rwrin − r1

sin 2nθ (7)

where A is the wrinkle amplitude, n the total number of wrinkles at the corner —each subtending
an angle of π/2n— and θ is an angular coordinate measured from the edge of the membrane.
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Since the stress in the corner regions is uniaxial there is the possibility of wrinkles forming
there. The radial strain is

εr = σr/E (8)

where σr is given by Equation 1. The corresponding radial displacement, u(r) (positive out-
wards), can be obtained from

u =
∫

εrdr + c (9)

where the constant of integration c can be obtained by noting that u ≈ 0 at r = R, i.e. at the
edge of the biaxially stressed region. Therefore,

u =
T√
2Et

ln
r

R
(10)

The hoop strain required for geometric compatibility is

εθg =
u

r
(11)

and the hoop material strain is
εθm = −ν

σr

E
(12)

Wrinkles will form when εθg is larger in magnitude than εθm (note that both strains are
negative), hence combining Equations 1, 10–12, we obtain

ln
R

r
≥ ν (13)

The radius of the wrinkled region, Rwrin, is the largest r for which Equation 13 is satisfied.
Within the wrinkled region, i.e. for r < Rwrin, an additional “wrinkling” strain is required

εθg = εθm + εθwrin (14)

The wrinkling strain is related to the wrinkle amplitude, and for the wrinkle shape defined by
Equation 7 it can be shown that at r = (Rwrin − r1)/2

εθwrin = −π2A2

4λ2 (15)

Substituting Equation 10 into Equation 11 and Equation 1 into Equation 12, and then both into
Equation 14 we find that A has to satisfy

√
2T

Et(Rwrin − r1)
ln

Rwrin − r1

2R
= −

√
2νT

Et(Rwrin − r1)
− π2A2

4λ2 (16)

Next, we work out the number of wrinkles by considering out-of-plane equilibrium of the
wrinkled membrane at a point of maximum out-of-plane displacement, e.g. at r = (Rwrin −
r1)/2, θ = π/4n. The equilibrium equation is

σrκr + σθκθ = 0 (17)
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where κr and κθ are the curvatures in the radial and hoop directions, respectively, which can be
obtained by differentiating Equation 7. Hence,

κr = − Aπ2

(Rwrin − r1)2
and κθ = − 16An2

(Rwrin − r1)2
(18)

The transverse stress component σθ is set equal to σcr. Substituting Equations 1, 6 and 18 into
Equation 17 gives √

2T

(Rwrin − r1)t
− 4Et2n2

3(1 − ν2)λ2 = 0 (19)

Since λ is related to the number of wrinkles by

λ =
Rwrin − r1

2
π

2n
(20)

we can substitute for λ into Equation 19 and solve for n to obtain

n =
4

√
3
√

2π2T (Rwrin − r1)(1 − ν2)
64Et3

(21)

Given Equations 20 and 21 we can predict the wrinkle amplitude A by solving Equation 16,
which gives

A =
2λ

π

√ √
2T

Et(Rwrin − r1)

(
ln

2R

Rwrin − r1
− ν

)
(22)

In the case T1 �= T2 it is straightforward to generalize Equations 19 and 22 to find the
wavelength and amplitude of the wrinkles in each corner region. However, for T1/T2 ≥ 1/(

√
2−1)

the two larger corner stress fields come into contact, see Figure 3(c), and hence a single diagonal
wrinkle can form between the two most heavily loaded corners. This much larger wrinkle can be
analysed following a similar approach13 to obtain the following expressions for half-wavelength
and amplitude

λ = 4

√
2π2R1(R1 − r1)2Et3 sin θ1

3(1 − ν2)T1
(23)

and

A =
2
√

λ(δ1 + δ2)
π

(24)

Here δ1 and δ2 are the radial displacements of the corners loaded by T1 and T2, respectively;
these corner displacements can be estimated from

δi ≈ Ti

2Et sin2 θi

[
θi ln

∣∣∣∣Ri

r1

∣∣∣∣+ (1 − ν)

(
A

R2
i

+ θi − 1
2

tan θi

)]
i = 1, 2 (25)

More refined estimates can be obtained from a two-dimensional finite-element analysis, see
Section 5.
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4 FINITE-ELEMENT SIMULATIONS

We have recently shown14 that wrinkling of a thin membrane can be accurately modelled
using the thin shell elements available in the commercial finite-element package ABAQUS.15

The analysis is carried out by introducing initial geometrical imperfections, obtained from an
initial eigenvalue analysis, followed by a geometrically non-linear post-buckling analysis using
the pseudo-dynamic *STABILIZE solution scheme. This approach, although expensive in com-
putational terms, is so far the only method that can reveal full wrinkle details and can be relied
upon as an almost exact replication of physical experimentation. An alternative approach is the
Iterative Modified Properties (IMP) method9 which uses a combined stress-strain wrinkling cri-
terion in a two-dimensional membrane model. The IMP method has been recently implemented
as an ABAQUS user subroutine and has been shown to accurately predict the extent of the
wrinkled regions and the two-dimensional stress distribution —but of course not the details of
the wrinkles.

Both of these modelling techniques were used to simulate a 0.025 mm thick, 500 × 500 mm2

square Kapton membrane (E=3530 N/mm2 and ν = 0.3). The membrane was loaded at each
corner through a spreader beam by a 0.1 mm thick, 25 mm × 20 mm Kapton tabs—as in the
experiment of Section 2.

A uniform mesh of 200 by 200 square elements was used to model the whole structure, in
order to capture the fine wrinkle details in the corners.

In the shell model, the Kapton membrane and the corner tabs were modelled using S4R5
thin shell elements of different thickness. At the corners, the shell elements were connected
to “Circ” beam elements through the *MPC, TIE function. The central node was constrained
against translation in the x- and y-direction; all side edges were left free. Both the out-of-plane
rotations of the membrane and all in-plane bending degrees of freedom of the corner beams were
restrained. The corner loads were applied as distributed loads along the truncated corners of
the membrane.

In the IMP model, the membrane was modelled using M3D4 membrane elements, whose con-
stitutive behaviour was modelled through a UMAT subroutine. The corner tabs were modelled
with S4 shell elements and the same beam elements as for the shell model were used.

4.1 Simulation Details
Two load steps were applied, first a symmetric loading of T1 = T2 = 5 N. Second, T2 = 5 N

was maintained while T1 was increased up to 20 N.
The analysis procedure was essentially identical for all of the simulations. First, a uniform

prestress of 0.5 N/mm2 was applied, to provide initial out-of-plane stiffness to the membrane.
This was achieved by means of *INITIAL CONDITION, TYPE=STRESS. Next, a non-linear-
geometry analysis was carried out, with *NLGEOM, to check the equilibrium of the prestressed
system. Then, a linear eigenvalue analysis step was carried out (for the thin shell model only) in
order to extract possible wrinkling mode-shapes of the membrane under a symmetrical loading.
Four such mode-shapes were selected, based on their resemblance to the expected final wrinkled
shape, and were introduced as initial geometrical imperfections. Finally, an automatically sta-
bilised post-wrinkling analysis was performed, with *STATIC, STABILIZE. This analysis is very
sensitive because the magnitude of the wrinkles is very small, hence an increment of 0.001 of the
total load had to be selected. The default stabilize factor was reduced to 10−12 to minimise the
amount of fictitious damping; this was the smallest amount required to stabilise the solution.

Figure 5(a) shows the symmetrically wrinkled shape obtained for T1 = T2 = 5 N. The wrinkle
amplitudes are very small and have been enlarged 100 times for clarity. Figure 5(b) shows the
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Figure 5: Wrinkled shapes for (a) T1/T2 = 1 and (b) T1/T2 = 4.

corresponding shape for T1/T2 = 4. Here the distinguishing feature is a large diagonal wrinkle
between the two more heavily loaded corners, a number of smaller wrinkles can also be seen
near the corners with smaller loads.

Figure 6 shows the wrinkle profiles measured at three different cross sections, for T1/T2 = 4,
plotted against those obtained from the simulations. Note that experiments and simulations
match closely in the central region; the wrinkle wavelengths, in particular, are predicted quite
accurately. But ABAQUS predicts smaller displacements of the edges of the membrane, due
to the fact that the initial shape of the physical model has not been captured with sufficient
accuracy (the edges of a Kapton sheet are naturally curled).
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Figure 6: Comparison of experimental measurements with ABAQUS results for T1/T2 = 4 and for cross
sections at distance of (a) 105 mm, (b) 177 mm, (c) 346 mm from corner.

5 VALIDATION OF ANALYTICAL AND FINITE-ELEMENT MODELS

Table 1 compares the predicted wrinkle half-wavelengths and amplitudes from Equations 20–
22 with experimental measurements for a symmetrically loaded membrane, i.e. for T1/T2 = 1.

For the load case T1/T2 = 4, Table 2 compares the analytical predictions for the large diagonal
wrinkle at the centre of the membrane, for two different membrane thicknesses, with predictions
from ABAQUS and experimental measurements. The wavelength predictions are very close.
The wrinkle amplitudes have been estimated first using only analytical solutions, Equation 24
with δ1 and δ2 from Equation 25, and second using Equation 24 but with corner deflections
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n λ at r = 70 mm A
T (N) Eq. 21 Exp. Eq. 20 Exp. Eq. 22 Exp.

5 9.6 8 11.6 11.0 0.16 0.12
20 13.6 11 8.3 9.7 0.22 0.14

Table 1: Wrinkles under symmetric loading (all dimensions in mm)

λ A
t Eq. 23 Exp. FE Eqs 24, 25 Eq. 24+FE4 Exp. FE5

0.025 24.6 23.8 22.3 3.5 2.8 1.9 2.0
0.050 41.3 33.9 35.6 3.2 2.1 1.8 1.6

Table 2: Wrinkle half-wavelengths and amplitudes for T1/T2 = 4 at r = 346 (all dimensions in mm)

from a 2-D IMP analysis. We can see that the fully analytical estimates are up to 88% higher
than those measured experimentally, but if we use the corner displacements from the 2D finite-
element analysis we obtain estimates that are only 48% and 16% higher than the measurements.

6 DISCUSSION AND CONCLUSIONS

The wrinkling of square membranes subject to coplanar pairs of equal and opposite corner
forces has been investigated. It has been shown that two wrinkling regimes exist. The first regime
occurs for symmetric loading and asymmetric loading up to approximately T1/T2 = 2.41, and
it is characterised by relatively small, radial corner wrinkles. The second regime occurs for
asymmetric loading with approximately T1/T2 > 2.41, and is characterised by a single, large
diagonal wrinkle, plus small radial wrinkles at all four corners. Each regime has been observed
experimentally and also reproduced to great accuracy in a finite-element simulation.

A general methodology for gaining insight into the wrinkling of membranes, which was first
proposed for uniformly wrinkled membranes in shear,16 has been presented. For the first wrin-
kling regime (T1/T2 < 2.41) it is reasonable to assume uniform, fan-shaped wrinkles expressed
in terms of sine functions. With these assumptions, analytical expressions have been derived for
the number of corner wrinkles and their average maximum amplitude. For the second wrinkling
regime (T1/T2 > 2.41) an analogous derivation leads to an expression for the amplitude of the
central wrinkle. These expressions have been found to overestimate wrinkle amplitudes by up
to 50%, and hence they appear to be sufficiently accurate for preliminary design.

Finite element analysis using thin shell elements has been shown to be able to replicate real
physical experimentation with an accuracy typically better than 10% on amplitude. However, a
very fine mesh had to be used to resolve the small corner wrinkles; hence a complete simulation
takes up to several days on a 2GHz Pentium 4 PC.

4Membrane model with IMP.
5Shell model.
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