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Abstract

A tape spring can be held tightly coiled on a circular cylinder by means of a

tension force applied at the tip. This paper determines the smallest value of the

required tension force by means of analytical methods, experiments and detailed

numerical simulations. The minimum force depends on the coiling ratio, defined

as the ratio between the transverse radius of the tape spring and the radius of

the cylinder. It varies with an inverse quadratic relation for coiling ratios smaller

than 1 (bending-dominated regime) and with a linear relation for coiling ratios

greater than 3.424 (tension-dominated regime). For coiling ratios between 1

and 3.424 there is an intermediate behavior, and the required tension force is

non-unique and rather small.

Keywords: packaging, deployment, large strain deployable structures, tape

springs

1. Introduction

Packaging and deployment are central to the design of large spacecraft struc-

tures that have to fit in volume-constrained launch vehicles. Deployable struc-

tures are packaged and deployed through a variety of techniques, such as sliding

mechanisms in telescopic booms (Arenberg et al., 2016), chemical rigidization5

in inflatable cylindrical booms (Schenk et al., 2014), elastic deformation in coil-

∗Corresponding author
Email address: sergiop@caltech.edu (Sergio Pellegrino)
URL: http://www.pellegrino.caltech.edu/ (Sergio Pellegrino)

Preprint submitted to International Journal of Solids and Structures August 25, 2019



able masts that are stowed by deforming the longerons into intertwined he-

lices (Mauch, 1960), and mechanical articulation in pantograph booms (Dailey

et al., 1999). These well-developed deployment schemes involve complex mech-

anisms and often require electric motors.10

A recent approach makes use of the elastic (bending) strain-energy stored

during packaging to deploy composite thin shell structures. The availability of

thin-ply carbon fiber-reinforced plastic (CFRP) composites has made it possible

to realize deployable shell structures with areal density on the order of 100 g/m2.

These shells can be tightly coiled, as in the family of deployable booms developed15

by the German Space Agency (Straubel et al., 2015, 2011). However, realizing in

full the potential advantages of mechanism-free deployable structures requires

a deep understanding of the coiling behavior of thin shells, which have been

shown to exhibit unexpected localization, leading to complex deployment and

potential damage.20

For example, recent studies of Triangular Rollable and Collapsible (TRAC)

booms, which consist of two tape springs bonded along a common edge, have

shown that booms coiled on a cylindrical spool have a tendency to form localized

folds (Leclerc et al., 2017) instead of a uniform coil, unless a small spool diameter

is chosen (Murphey et al., 2017).25

The present study of the coiling behavior of thin shell structures considers

the prototypical strain-energy deployed structure, an isotropic, linear-elastic

tape spring, i.e. a thin cylindrical shell with circular arc cross-section of radius R

that subtends a uniform angle α, as shown in Fig. 1. The Young’s modulus and

Poisson’s ratio of the shell are E and ν, respectively. The simplest example of30

this structure (where, however, close inspection will show that the cross-section

is not perfectly circular) is the widely used steel tape measure.

For a simple example of localization behavior in coiled tape springs, consider

a tape measure tightly coiled on a cylindrical spool, and constrained by an

external cage, Fig. 2(a). As the tape spring deploys, a gap forms between35

the coiled tape spring and the cage, leaving the tape spring free to partially

uncoil and form a series of nested localized folds, Fig. 2(b). This behavior
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Figure 1: Geometry of tape spring and definition of key variables.

can be avoided either by applying a sufficiently large tension force at the tip

of the tape spring, Fig. 2(c), or by constraining the tape spring with radial

springs, Fig. 2(d). The first approach is the focus of the present paper. Both40

approaches have already been used in practical applications, see the tensioning

mechanisms in Straubel et al. (2015) and the spring-constrained deployment

mechanism in Hoskin et al. (2017). Further alternatives are to choose a spool

radius that matches the natural radius of coiling of the tape spring, as explained

in the next section, or to use a bistable tape spring (Pellegrino, 2005; Guest &45

Pellegrino, 2006), exploiting its natural tendency to remain coiled. Of these two

alternatives, the first is a special case of the present study for the case of zero

tension force.

Spool
Localized 

folds

Cage
Tape 

spring

(a) (b) (c) (d)

T

Figure 2: The tightly coiled tape spring in (a) is partially uncoiled in (b) and forms many

localized folds. The folds can be avoided by applying either a tension force (c) or a series of

radial spring constraints (d).

Previous work has focused on tape springs coiled around a spool with radius

approximately equal to the radius R of the tape spring (Seffen & Pellegrino,50
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1999; Hoskin et al., 2017). The deployment of a tape spring with a single

localized fold has also been studied (Seffen & Pellegrino, 1999; Mallol Parera,

2013; Stabile & Laurenzi, 2014). However, there has been no previous study

that explained and/or analyzed the behavior of tape springs coiled around a

spool of arbitrary radius. In any case, this is what happens when coiling a long55

tape spring, where the effective spool radius significantly increases due to the

thickness of multiple turns of tape spring. Furthermore, the effects of a tension

force on the formation of localized folds in tape springs have not been studied.

To understand the range of behaviors that can be exhibited by coiled tape

springs, two different situations are considered in this paper. First, a tape60

spring that is loosely wound on a cylinder, forming several localized folds, is

pulled more tightly by applying a gradually increasing tension force. For this

problem, the relationship between the tension force and the extension of the

tape spring is studied, as well as the sequence of shape transitions of the tape

spring as the number of localized folds gradually decreases. This situation is65

called coiling. Second, a tape spring is tightly wound on a cylinder, by rotating

the cylinder while a large tension force is applied at the tip of the tape spring.

For this problem, the value of the minimum force for which the tape spring

remains uniformly coiled is determined, and the formation of localized folds

as the tension is further decreased is also studied. This situation, which is of70

greater interest for practical applications, is called uncoiling.

Note that coiling and uncoiling, as defined above, are different processes,

and follow different equilibrium paths, resulting in macroscopically different

geometric configurations of the tape spring. It will be shown, however, that the

two approaches lead to tension force values that are rather close.75

This paper focuses on the specific case of isotropic tape springs coiled with

the concave side facing out (opposite sense coiling, as explained in Section 2) and

is laid out as follows. In Section 2 the basic regimes of coiling and uncoiling are

defined and simple analytical models are presented. In Section 3 an experimental

study of the coiling process is presented. Section 4 introduces the numerical80

simulation techniques that were used to study coiling and uncoiling. Section 5
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presents the simulation results. Section 6 concludes the paper. Details on the

numerical studies are provided in the Appendix.

2. Uniform coiling and localized folding

The basic mechanics of tape springs (Seffen & Pellegrino, 1999; Pellegrino,85

2015) is briefly summarized here. A tape spring is bent in the opposite sense

when it is loaded by a uniform bending moment M > 0 that applies a ten-

sile stress along the longitudinal edges and, conversely, it is bent in the equal

sense when the uniform bending moment M < 0 applies an edge stress that

is compressive. Tape springs bent in the two senses are shown in Fig. 3(a).90

For sufficiently small amplitudes of the rotation θ the tape spring is uniformly

curved and its moment-rotation response is linear. For larger end rotations the

tape spring snaps, suddenly in the case M > 0 or through a gradual process

involving bending and twisting in the case M < 0, and the moment greatly

decreases. For further increases of θ, the bending moment remains constant95

while the arc-length of the elastic fold increases. A schematic moment-rotation

relation is shown in Fig. 3(b).

On either side of the elastic fold there are transition regions that can be as-

sumed to be invariant, joining the two transversely curved cylindrical surfaces

to a central, longitudinally curved surface. It has been shown (Calladine, 1988)100

that if the tape spring material is isotropic, the radius of curvature of the longi-

tudinal fold is equal to the transverse radius of the tape spring. Therefore, the

radius R of the tape spring is also its natural radius of folding. A recent study

has shown that, due to the existence of boundary layers on the edges of a folded

tape spring, in which the tape spring retains its original transverse curvature,105

the natural radius of folding differs by 5 to 10% from R, and is actually different

for opposite- and equal-sense bending (Calladine & Seffen, 2019).

The specific objective of the present study is the opposite sense coiling of a

tape spring of radius R around a cylinder of arbitrary radius rc, under a tension

T . It will be explained in the next subsections that there are three different110
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Figure 3: (a) Bending and folding of a tape spring (Pellegrino, 2015). (b) Schematic moment-

rotation relationship.

6



regimes for the tape spring, each characterized by a particular type of variation

for the tension T vs. the ratio rc/R. The three regimes are defined in Fig. 4

and are characterized as follows.
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Figure 4: Three regimes of coiling of a tape spring.

• For rc/R ≤ 1, the behavior is bending dominated, resulting in a quadratic

decrease of T as rc/R→ 1.115

• For 1 < rc/R < 3.424, there is a transition from bending dominated to

tension dominated behavior and T ∼ 0.

• For rc/R > 3.424, the behavior is tension dominated, and T increases

linearly with rc/R.

The rest of this section provides a basic analysis of each regime that leads120

to a simple analytical model. The transitions between different regimes and

the physical significance of the limits rc/R = 1 and rc/R = 3.424 are also

explained. In the following sections, results from these simple analytical models

will be compared to high fidelity numerical simulation results.

2.1. Bending-dominated regime125

The bending-dominated coiling of tape springs was studied in a recent paper

(Hoskin et al., 2017) and independently by one of the present authors (Wilson,

7



2017). Consider a tape spring with a longitudinal fold of uniform radius r that

subtends an angle θ, as shown in Fig. 5. The bending strain energy in the fold

is given by:130

U(r) =
DαRθ

2

(
r

R2
+

2ν

R
+

1

r

)
+ Utransition (1)

where D = Et3/(12(1 − ν2)) is the flexural stiffness of the shell and αR is the

transverse arc-length of the tape spring. Utransition is the strain energy in the

transition regions on either side of the fold.

θ

r

MM

θ

Figure 5: Tape spring with an opposite-sense fold.

It can be shown that the fold radius that minimizes U(r) is r = R (Calladine,

1988), and a straightforward extension to piece-wise curvilinear cross-sections135

of uniform thickness yields the following expression for the natural radius of

folding for a tape spring whose cross-section consists of straight segments and

circular arcs (an example is shown in Fig. 12(a)):

R =

√√√√√√√√
m∑
k=1

wk +
n∑
j=1

Rjαj

n∑
j=1

αj

Rj

(2)

where Rj , αj are the radius and angle subtended by each arc and wk is the

length of each straight piece.140

Next, consider a tape spring loaded by equal and opposite moments, M ,
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such that

0 < M∗
+ < M < Mmax

+

In this range, two different equilibrium configurations of the tape spring are pos-

sible, either uniformly bent (actually, almost straight), or folded with a natural

fold radius R.

The radius of the fold region can be changed to a general radius, r, by

applying two equal and opposite axial forces T at the ends of the tape spring.145

Let the subtended angle be θ = 2π, as shown in Fig. 6. Note that in the present

case it is not required that the tape spring is coiled on a rigid cylinder and hence

no cylinder is considered in the following analysis.

T

θ

r

dr

du

2

du

2

T
MM

Figure 6: A single coil of a tape spring loaded by equal and opposite moments M undergoes

a change of curvature in the coil due to the application of equal and opposite forces T . The

positive sign convention for θ, r, u is shown.

A relationship between T and r can be obtained by considering a small

configuration change, with θ constant and r varying by dr. Each end of the150

tape spring moves by du/2. Note the positive sign convention for T, r, u shown

in Fig. 6.

Differentiating Eq. 1 with respect to r gives:

dU

dr
=
DαθR

2

(
1

R2
− 1

r2

)
(3)

where it has been assumed that Utransition is independent of r, and hence its

derivative is zero.155

The change in strain energy is also equal to the work done by the tension

force for the total extension du of the tape spring:

dU = Tdu (4)
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However, from geometry:

du = −θdr (5)

and therefore
dr

du
= −1

θ
(6)

Combining Eqs 4, 3 and 6 yields:160

T =
dU

du
=
dU

dr

dr

du
=
DαR

2

(
1

r2
− 1

R2

)
(7)

which can also be written as

T =
Dα

2R

(
R2

r2
− 1

)
(8)

Then, introducing inside the coiled tape spring a rigid cylinder of radius

rc = r , the relationship between T and R/rc is the following inverse square

law:

T =
Dα

2R

((
R

rc

)2

− 1

)
(9)

Note that for the mode of coiling analyzed in this section no contact pressure165

between the tape spring and the coiling cylinder is required. Also note that the

key ingredient in deriving the expression for T is the bending strain energy

expression in Eq. 1. For this reason this coiling regime has been denoted as

bending dominated.

Fig. 7 shows a plot of the axial force T to coil a tape spring in this regime.170

According to this figure, T rapidly approaches zero as the coiling ratio tends to

1, and becomes negative when r/R > 1. The value rc/R = 1 corresponds to the

transition from tensile to compressive forces T .

2.2. Loss of uniqueness regime

To form a coil with radius larger than the natural radius of folding of the tape175

spring, rc > R, Eq. 9 requires that a compressive force is applied, which leads to

the possibility that the uniformly coiled configuration of the tape spring may be

unstable. An alternative is for the tape spring to become locally separated from

the cylinder and in this case, when the radius of the cylinder is increased beyond
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Figure 7: Variation of required tension force with coiling ratio for bending-dominated regime

of tape spring with R = 15 mm, α = π/2, D = 0.0192 Nm.

rc = R, the tape spring forms an elastic fold with radius r such that R < r < rc.180

This situations is depicted in Fig. 8(a) for a short length of tape that forms a

single fold, although in a longer tape multiple folds would be formed. Note that,

since r > R, the moment in the tape has to increase and in fact this coiling mode

becomes unstable as lower-energy deformation modes exist, either with a single

localized fold with the natural radius of folding, Fig. 8(b), or two folds, each185

with the natural radius of folding, Fig. 8(c).

The first step to compare the strain energies associated with these different

configurations of the tape spring is defining the basic geometry for each case.

Hence, begin by considering a tape spring with a single fold of radius R that

is coiled around a cylinder of radius rc and subtends an angle θ, as shown in190

Fig. 8(b). The radius mismatch results in a large gap between the cylinder and

the tape spring. The length of the tape spring, see Fig. 9(a), is given by

L = 2(rc −R) tan(θ/2) +Rθ (10)

Starting from the configuration shown in Fig. 9(a), the tape spring can be

coiled a bit tighter by pulling each end by u/2. As u is increased, as shown
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Figure 8: Different equilibrium configurations of short length of tape spring coiled around a

cylinder of radius rc > R. (a) Uniform fold with general radius; (b) single fold with radius R;

(c) two localized folds with radius R. Note that the number of cylinder-to-flat transitions is

two in all three configurations.
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in Fig. 9(b), a specific value is reached for which there are two alternative195

configurations for the same length of tape spring. This value of u is given by:

u = 2
1− cos(θ/2)

1 + cos(θ/2)
(rc −R) tan(θ/2) (11)

θ

rc

R

(rc-R) tan θ/2

θ

(a) Single localized fold

with radius R

θ

u

2

u

2R

R rcr

θ/2

θ/2

(b) Uniform fold of radius r of two

localized folds with radius R

Figure 9: Three equilibrium configurations of coiled tape spring subtending an angle θ. (a)

Initial configuration with natural fold radius and (b) two alternative configurations for a

specific value of shortening u given by Eq. 11. Note that only the generator y = 0 of the tape

spring is shown in the figures.

For the two configurations with a single fold the bending strain energy can

be obtained from Eq. 1. For the configuration with two folds an additional term

that corresponds to the length of flattened shell needs to also be included and,

after the substitution r = R, the strain energy expression can be simplified to200

U = Dαθ(1 + ν) +
Dα

2

L1

R
+ Utransition (12)

where L1 is defined in Fig. 8(c) and has the expression

L1 =u
cos(θ/2)

1− cos(θ/2)
(13)

and Utransition is unchanged from the previous case as the number of transition

regions is still two. Note that in Fig. 8(c) the tape spring is transversely flat

between the two folds.

A comparison of the strain energies for these three different configurations,205

as a function of rc/R, is shown in Fig. 10 for θ = π
2 . The cases of one fold
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(corresponding to the curve labelled U1), two folds (curve labelled U2), and

uniform radius rc (curve labelled Uc) have been plotted. The plots of U2 and Uc

are for tape springs of equal length L−u, where L and u are given by Eqs 10-11.

This plot shows that the configuration with radius rc (curve labelled Uc)210

has a higher strain energy than both other cases. It also shows that the two-

fold configuration (curve labelled U2) becomes the lowest energy configuration

beyond rc/R > 3.424. Based on this result, it is concluded that rc/R = 3.424

is the limit for single-fold configurations of a tape spring. In fact, it has been

found that around this value of rc/R a different type of behavior, described in215

the next section, takes over.

rc / R

U
/(

D
R

 α
)

2

2.5

3

3.5

4

4.5

5

U1

1 2 3 4 5

U2

Uc

3.424

Figure 10: Comparison of bending strain energies for one-fold, U1, two-fold, U2, and uniformly

coiled, Uc, tape spring configurations. The plots shown are all for θ = π/2.

2.3. Tension-dominated regime

The third regime occurs for cylinders with radii rc > 3.424R. This regime

can be understood by considering a tape spring of fixed transverse radius R,

which is coiled on cylinders of increasingly larger radii. Coiling requires the220

transverse flattening of the tape spring, by a fixed amount corresponding to the

curvature change 1/R, followed by a decreasing amount of longitudinal bending

of the flattened tape spring. Since the tension-dominated regime begins for
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rc/R > 3.424, it is reasonable to assume rc >> R and therefore, the longitudinal

bending moment in the flattened tape spring tends to become negligibly small225

in comparison with the transverse bending moment. Instead of being bent

longitudinally by end moments, the tape spring deforms under the action of a

transverse pressure. This pressure against the cylinder is the result of the axial

tension T together with the longitudinal curvature of the tape spring, as shown

schematically in Fig. 11.230

rc

T

T
p

R

(a)

(b)

p

p/2 p/2

(c)

α/2

αR/2

R(1-cos α/2)

Figure 11: Transverse flattening and longitudinal bending of a tape spring with rc >> R. (a)

Unstressed configuration; (b) flattened and longitudinally bent configuration; (c) transverse

loads on a section of tape spring.

Equilibrium of the transversely flattened and longitudinally coiled tape spring

in Fig. 11(b) requires:

T = prc (14)

where p is the pressure per unit length of tape spring.

A simple estimate of the value of p can be obtained by setting the tip de-

flection of a cantilever with length αR/2 and loaded by a tip force of p/2, equal235

to the edge height of the cross-section of the tape spring:

(p/2)(αR/2)3

3D
= R−R cos(α/2) (15)

Substituting p = T/rc from Eq. 14 and solving for T gives:

T =
48D(1− cos(α/2))

α3R

rc
R

(16)
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In conclusion, for a tape spring of given R in the tension-dominated regime

T is proportional to rc/R, as anticipated in Fig. 4.

3. Experimental study of coiling240

This section presents a coiling experiment to obtain a reference result for

the numerical solutions presented in the following sections. The tension needed

to coil a commercial steel tape measure was measured for the specific case of

tension-dominated behavior.

3.1. Experimental setup245

The tape spring tested was a 1 inch wide Contractor Grade steel tape-

measure by Sears Roebuck and Co. The tape’s Young’s modulus was E = 210

GPa and the Poisson’s ratio ν = 0.3. The cross section was piece-wise curvi-

linear, as shown in Fig. 12(a), and the geometric parameters are provided in

Table 1.250

Table 1: Geometry of tested tape spring

R1 19.2 mm

R2 12.2 mm

w1 3 mm

α1 23.2◦

α2 9.5◦

The natural radius of folding of this tape spring, computed from Eq. 2, is

R = 19.2 mm.

The experimental setup is shown in Fig. 12(b). The tape spring was bent

around a steel cylinder (paint can) of radius rc = 82.5 mm, corresponding to a

coiling ratio rc/R = 4.3. The cylinder was attached to the base of an Instron255

materials testing machine through a mounting plate. One end of the tape spring

was attached to the cylinder, then the tape spring was folded around the cylinder
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Figure 12: (a) Piecewise curvilinear cross-section of tape spring used in experiment; (b) setup

for wrapping a tape spring around a cylinder of radius rc = 4.3R.

by creating two localized folds and finally the non-clamped end was attached to

the load cell of the testing machine. The coiling experiment consisted in moving

the cross beam of the machine at a uniform rate (22 mm/min) while measuring260

the force applied to the tape spring. The experiment was repeated three times

and the force profiles measured by the Instron load cell were averaged.

The kinetic friction coefficient between the tape spring and the cylinder was

measured using a 3 mm wide by 500 mm long strip cut from an actual tape

spring. The strip was wrapped once around the cylinder, and a mass of 0.250265

kg was hung at the end. The other end of the strip was attached to the load

cell of the testing machine and was pulled by moving the cross beam at a rate

of 22 mm/min. The test was repeated nine times using the same strip.

The mean force F measured in this test was used to calculate the coefficient

of friction using the capstan equation (Prentis, 1979):270

F = T0e
µγ (17)

where T0 is the force applied by the hanging mass. From Eq. 17:

µ =
1

γ
ln

(
F

T0

)
(18)

where T0 = 2.45 N, and γ = 2π rad is the total angle subtended by the strip

around the cylinder. The measured friction coefficient was µ = 0.18± 0.012.
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3.2. Experimental results

The average force measurement profile from three experiments is shown in275

Fig. 13 and key snapshots from the experiments are shown at the bottom of

the figure. Note that the pulling force was nearly zero until the straight section

between the two localized folds came into contact with the cylinder (photo

labeled a) and then the left localized fold began to increase in radius. This

behavior corresponded to a smooth increase in force between the points labeled280

(a) and (b). At an extension of 26.7 mm the force reached a maximum of 2.4 N,

before beginning to decrease. At an extension of 29.5 mm the left localized fold

bifurcated into two, see the photo labeled (c), as the force suddenly dropped to

0.18 N. The process of smooth increases in force, corresponding to a localized

fold increasing in radius, followed by sharp drops in force corresponding to a285

fold bifurcation, repeated as four, five, and six localized folds formed in the tape

spring, at extensions of 50.5, 56.5 and 59.2 mm, see the photos labeled (d, e, f).

Once six localized folds had formed the folds began to increase in radius until

the whole tape spring conformed to the cylinder surface.

4. Numerical simulation strategies290

Due to the unstable force-extension behavior observed in the experiment

described in Section 3, the coiling and uncoiling behaviors are expected to be

different. To understand and quantify the differences, both coiling and uncoiling

of a particular tape spring on cylinders of different radii, including the configu-

ration tested experimentally in Section 3, were simulated with the commercial295

finite element software LS-Dyna. All solutions were computed using the explicit

solver in LS-Dyna; further details on the analysis are provided below.

All simulations used the same tape spring properties (ν = 0.3, E = 210

GPa, ρ = 8050 kg/m3, and R = 19.2 mm, as in the experiment), varying the

cylinder radius from rc = 10 mm to 400 mm to explore the tape spring behavior300

for a range of coiling ratios. The length of the tape spring in each finite element

model was chosen such that the free length, i.e. the length of tape spring between

18
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Figure 13: Force profile (average of three repeated experiments) corresponding to the wrap-

ping of a steel tape spring around a steel cylinder along with snapshots of key stages in the

experiments, labeled (a)-(f). In these experiments rc = 4.3R.
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the cylinder and the point where the force was applied, exceeded the transition

length. This length was defined as the distance between two spikes in the plot

of the bending energy per unit length of tape spring.305

4.1. Coiling simulation setup

The finite element model of the initial configuration is shown in Fig. 14(a).

Simulations for geometries with rc/R > 3 involve longer tape springs and in

this case one of end of the tape spring can be clamped, as shown in Fig. 14(b).

This boundary condition closely matches the boundary condition of the exper-310

iment presented in Section 3. On the other hand, simulations for geometries

with rc/R < 3 involve shorter tape springs and in this case the clamped bound-

ary condition had to be replaced with a pinned end condition at a distance

LA = 100 mm, to avoid an artificial increase of the force magnitude. The

corresponding folded configuration is shown in Fig. 14(c).315

The tape spring was meshed with 2 mm C0 triangular shell elements.1 The

temporary cylinders and the coiling cylinder were modeled as rigid bodies, fully

constrained in all degrees of freedom. Frictional contact between the coiling

cylinder and the tape spring was modeled with the experimentally determined

friction coefficient µ = 0.18. Contact damping of ξ = 5%, acting perpendicular320

to the contact surfaces was applied to reduce the noise in the force output due

to vibration. LS-Dyna calculates the critical damping as ξ = 2mω where m is

the minimum of the master (mmaster) and slave (mslave) node masses during

contact, and ω =
√
kmslave+mmaster

mslavemmaster
, where k is the interface stiffness (Hallquist,

2007).325

The simulations started with the tape spring in the fully deployed configu-

ration, as shown in Fig. 14(a). To fold the tape spring into the initial two-fold

configuration, Figs 14(b-c), temporary boundary conditions were applied by

means of four temporary cylinders of radius 20 mm to flatten the tape spring at

the two fold locations. After flattening, these temporary boundary conditions330

1Results of a mesh convergence study are presented in the Appendix.
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Temporary Cylinders 

Cylinder

Tape Spring

Clamped End

(a)

(b)

ux,fold, uy,fold

θ

x

z

y
Pinned End

(c)LA

LB

ux

ux

Figure 14: (a) Initial configuration of coiling numerical simulation. Two localized folds are

introduced by imposing the displacements ux,fold, uy,fold as shown and the temporary cylin-

ders are then removed. The results are shown in (b) for rc/R > 3 and (c) for rc/R < 3.

During the following part of the simulation,

the displacement ux shown is applied to coil the tape spring.
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were removed and frictionless contact with the four cylinders was enabled2.

The displacement boundary conditions ux,fold and uy,fold were imposed to

coil the tape spring through an angle θ:

ux,fold =rs(1− cos θ) + (LB − rsθ) sin θ

uy,fold =rs sin θ + (LB − rsθ) cos θ − LB
(19)

Contact with the temporary cylinders was then removed and the tape spring

was allowed to find an equilibrium configuration. Mass nodal damping was335

applied to remove any excess kinetic energy. This simulation technique resulted

in a two-fold configuration, as shown in Fig. 14(b-c). Details of the applied

boundary conditions, contact conditions, and corresponding node sets are given

in Table 3 and Fig. 23 in the Appendix.

As the extension ux of the tape spring was increased, it was critical to340

determine at which stage of the simulation the tape spring would be considered

to be fully coiled. The fully coiled configuration was defined such that the

centerline of the tape spring conformed to the cylinder surface to within three

tape spring thicknesses over a region defined by γmin ≤ γ ≤ γmax. The range

γmin, γmax was chosen to remove localized effects near the the clamped end and345

the first point of contact between the tape spring and the cylinder.

4.2. Uncoiling simulation setup

To investigate the uncoiling behavior, a finite element model was developed

in which the tape spring was fully coiled under a sufficiently large tension force,

and the magnitude of the force was then slowly decreased until a small separation350

between the tape spring and the cylinder had developed. This condition defined

the minimum force required to keep the tape spring fully coiled.

The simulation setup is shown in Fig. 15. The simulation started with the

tape spring in the fully deployed configuration, Fig. 15(a). To fold the tape

spring into an initial single-fold configuration, boundary conditions were applied355

2LS-Dyna keyword: automatic surface to surface.
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to the tape spring edges to flatten it near the intended location of the fold. These

boundary conditions were then removed and contact with the two temporary

cylinders and with the coiling cylinder was enabled. The temporary cylinders

force the tape spring to remain flattened. Displacement boundary conditions

were then applied to the left end of the tape spring, completely constraining the360

motion of this end of the tape spring to the temporary cylinder.

(a) Pinned End

Lateral Restraint 
Cylinder

(b)

T = 60 NUθ= 315o

(c)

Pinned End

(d)

T = 60à0 N over 1.5 s

Pinned End

Midline

Free Tip

x
z

y

Figure 15: Uncoiling simulation setup. (a) Initial configuration, (b) single-fold configuration,

(c) tension force applied to the tape spring tip, and cylinder and pinned end rotated through

angle uθ, and (d) configuration at start of unloading step.

Contact with the temporary cylinders was then removed and the tape spring

was allowed to find an equilibrium configuration. Numerical damping was ap-

plied to remove excess kinetic energy. This resulted in the single-fold config-

uration shown in Fig. 15(b). A tension force of T = 60 N was then applied365

at the end of the tape spring, tightly coiling the tape spring through an arc of

about 90◦. Finally, a rotational boundary condition uθ = 315◦ was imposed on

the cylinder with the end of the tape-spring pinned to it, to obtain the coiled

configuration of Fig. 15(c).

The tension force was then reduced from 60 N to 0 N linearly over a period370
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of 1.5 s and the simulation was monitored to identify the formation of localized

folds. Two different methods were used to identify the formation of localized

folds and hence determine the point at which the tape spring ceased to be fully

conformed to the cylinder: (a) when the distance of the tape spring midline

from the cylinder exceeded 3 times the thickness of the tape spring over the375

region in which the first localized fold forms, i.e. for angles 305◦ < γc < 315◦,

Fig. 16(a); (b) when the first spike in the derivative of the tip deflection with

respect to the force was observed, Fig. 16(b).

5. Simulation results

Results from the coiling and uncoiling simulations are presented in this sec-380

tion. Each type of simulation begins with a preliminary phase during which the

tape spring reaches an initial configuration that either has two folds as detailed

in Section 4.1, or is smoothly coiled as in the case presented in Section 4.2.

The particular simulation that was compared with the experiments had a non-

zero friction coefficient (µ = 0.18), whereas all other simulations had µ = 0 for385

generality.

5.1. Coiling

A simulation for the case rc/R = 4.3 and µ = 0.18 was performed to model

the experiment presented in Section 3. The initial folded configuration is shown

in Fig. 17(a). As the tip extension ux was increased in the simulation, the390

localized folds bifurcated, with the progression shown in Fig. 17. In the initial

configuration, at ux = 0, the folds radius is 19 - 20 mm, in agreement with

the theoretically predicted natural radius of folding, R = 19.2 mm. As ux was

increased, the localized fold closest to the clamped end increased in radius. At

ux = 27.3 mm the fold changed from a constant radius to one having two regions395

of high curvature at each end of the fold, joined by a flattened, almost straight

section in between. At ux = 27.5 mm the fold bifurcated into two distinct folds

of radius ≈ R. At ux = 62.6 mm, see snapshot (f), three of the six localized

folds fully conformed to the cylinder.

24



γc
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Figure 16: Two methods to determine whether the tape spring is fully conformed to the

cylinder. (a) Separation between midline of tape spring and cylinder greater than 3 times

the tape spring thickness over a range of angles γc; (b) spike in derivative of tape spring tip

displacement with respect to force.
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Figure 17: Force vs. extension plot obtained from coiling simulation for rc/R = 4.3 along

with snapshots from simulation at points (a)-(f).

26



A total of 20 simulations were carried out for the same tape spring and400

cylinders of different radii, with coiling ratios in the range 0.4 < rc/R < 5.25.

The minimum tension force required to achieve full coiling has been plotted in

Fig. 18. Note the similarity of this figure with Fig. 4, where the three regimes

of coiling were first introduced.

rc/R
0 1 2 3 4 5 6

F
o

rc
e

 T
 (

N
)

0

1

2

3

4

5

6

7

Clamped

Pinned 
Linear fit
Inverse quadratic fit

Figure 18: Minimum tension force required for a tape spring to fully conform to a coiling

cylinder. The boundary conditions were clamped and pinned, respectively, for data points

marked with circles and crosses.

5.2. Uncoiling405

The force profile for an uncoiling simulation with rc/R = 4.3 is shown in

Fig. 19. As the tension force was decreased, a single localized fold first appeared

at 3.8 N, as shown in snapshot (a). As the force continued to decrease the tape

spring separated further from the cylinder in the region of this fold. Once

the fold had sufficiently developed, a second localized fold developed further410

along the tape spring at a force of 2.4 N, as shown in snapshot (b). This

process continued, with additional folds forming at 1.1 N and below, until seven

localized folds spanned the entire length of the tape spring at a force of 0.53 N.

As the force was decreased further the radius of curvature of the folds started to

increase and the localized folds started to merge to six folds at 0.40 N, snapshot415

(e), and then to five folds at 0.13 N, snapshot (f).

Note that the final configuration, corresponding to F = 0, does not match
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Figure 19: Simulation of uncoiling of a tape spring rc/R = 4.3, along with snapshots of the

simulated tape spring at points (a)-(f). Arrows indicate locations of localized folds, where the

tape spring is more than 3x its thickness away from the hub.
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the initial configuration for the coiling simulation in Section 5.1, where only

two localized folds were present at T = 0. This result shows that the coil-

ing/uncoiling process is path dependent.420

Similar uncoiling simulations were performed for coiling ratios between 3

and 20. The results are summarized in a contour plot, Fig. 20, that shows the

number of localized folds for different values of the coiling ratio, rc/R, and the

applied tension force. Note that the force required to avoid the formation of

the first localized fold increases linearly with the coiling ratio and, for a chosen425

coiling ratio, the number of localized folds for T → 0 also increases.
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Figure 20: Number of localized folds during uncoiling of a tape spring as a function of tension

force and coiling ratio.

Focusing specifically on the force required to maintain a smoothly coiled

tape spring, Fig. 21 shows plots of the force limits obtained with three different

ways of estimating the appearance of the first localized fold. These results were

all obtained for uncoiling from an initial tension of 60 N. In Fig. 21(a) the430

cut off was computed with the tape spring midline method, and using either

γ = 305o or γ = 315o for the angle over which the tape spring has to conform

to the coiling cylinder. In Fig. 21(b) the spike in the force-extension derivative

method was used. Note that both ways of estimating the cut-off lead to results
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that follow a linear trend.435

The coiling ratio range rc/R < 3.424 was also investigated. In particular, for

rc/R < 1, the results provided by the simulations were in good agreement with

the theoretical model developed in Section 2.1. In the range 1 < rc/R < 3.424,

it was not possible to identify a clear trend in the tension force values obtained

from the simulations, as already seen in Fig. 18. The formation of localized440

folds and the existence of multiple competing deformation modes (with different

numbers of folds) is responsible for the lack of a definite trend in this coiling

ratio range.

6. Discussion and Conclusion

The opposite-sense coiling of tape springs around cylinders of different radii445

has been studied. One end of the tape spring was clamped to the cylinder

and a tension force was applied at the tip end, to hold the tape spring coiled.

The question, what is the smallest tension force required for the tape spring to

conform to the cylinder, has been answered.

A key parameter is the coiling ratio, rc/R, i.e. the ratio between the radius450

of the coiling cylinder and the natural radius of folding of the tape spring, which

is equal to the cross-sectional radius of curvature, in the case of isotropic tape

springs with uniform transverse curvature. A wide range of coiling ratios has

been considered, through a combination of analytical studies, experiments and

detailed finite element simulations. Three different coiling regimes have been455

identified bending dominated, tension dominated, and an intermediate behavior

between the two main regimes.

Bending-dominated behavior occurs for rc/R ≤ 1 and leads to an inverse

quadratic relation between the tension and the coiling ratio. From Eq. 9:

T ∝
(
R

rc

)2

− 1 (20)

In this regime the tape spring tends to form a uniform coil, and the coiling and460

uncoiling behaviors coincide.

30



0 5 10 15 20

Coiling ratio rc / R

0

10

20

30

40

50

60

70

F
o

rc
e

 T
 (

N
)

 

γ = 305o

γ = 305o Linear Fit

γ = 315o

γ = 315o Linear Fit

(a)

0 5 10 15 20

Coiling ratio rc/R

0

10

20

30

40

50

60

70

F
o

rc
e

 T
 (

N
)

dux /dT spike

Linear fit

(b)

Figure 21: Tension force required to maintain a fully coiled tape spring using the midline

approach method (a) and the spike in the derivative method (b).
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Tension-dominated behavior occurs for rc/R > 3.424 and leads to a linear

relationship between tension and coiling ratio:

T ∝ rc
R

(21)

The tension force needed for the tape spring to conform to the coiling cylinder

increases linearly with rc/R and becomes infinitely large as rc/R→∞. In this465

tension-dominated behavior, the constant of proportionality depends on how

tightly the tape spring is required to conform to the coiling cylinder.

For intermediate coiling ratios, 1 < rc/R < 3.424 the bending-dominated

analytical model, Eq 20, predicts compressive instead of tensile forces, but in

reality in this range the coiled tape springs become unstable and small tensile470

forces have to be applied to hold them coiled.

The minimum tension force required to maintain a fully coiled tape spring is

important for deployable structures applications. However, it is also interesting

to understand how the number of localized folds relates to the tension force at

lower force levels. The uncoiling simulations in Section 5.2 were used to generate475

Fig. 20, which shows the number of localized folds present during uncoiling, as

a function of coiling ratio and tension force. The first fold consistently forms

near the point of separation between the tape spring and the cylinder. As the

force is decreased, a second localized fold forms, either adjacent to the first

localized fold, or, as observed in Fig. 15, adjacent to the pinned end of the tape480

spring. As the force continues to decrease, localized folds rapidly form along

the entire length of the tape spring. At very low tension forces the number

of localized folds actually starts to decrease, as the folds grow large enough to

merge. However, the larger the coiling ratio, the more localized folds will remain

when the applied force is reduced to zero.485

The finite element simulations of the coiling process are in good agreement

with the experimental results that have been presented. They accurately pre-

dict the sequence of localized folds with increasing tape spring extension and

the force profile as a function of the extension. Table 2 shows an overview of ex-

perimental observations and model predictions for the wrapping of a tape spring490
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with rc/R = 4.3. Similar drops in force were observed after each bifurcation in

both experiments and simulations, Fig. 22.

Localized

Folds

Extension ux (mm) Force (N)

Experiment Simulation Experiment Simulation

3 29.5 27.5 2.4 2.86

4 50.5 51.4 5.1 5.37

5 56.5 54.8 5.96 5.6

6 59.25 59.48 5.58 5.87

Table 2: Comparison of force immediately prior to bifurcation to a given number of localized

folds, and corresponding extension, from experiment and simulation for tape spring with

rc/R = 4.3.
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Figure 22: Comparison of force vs. extension for coiling experiment and simulation.

It is also noted that independent studies of coiling and uncoiling for large

coiling ratios (tension-dominated regime) have given consistent results, both in

terms of the force magnitudes and for the linear variation of the tension force495

required to maintain the tape spring conformed to the coiling cylinder. For

example, the minimum force predicted by an uncoiling simulation for rc/R = 5

was 5.5 N, which is within the range of 4-15 N predicted by coiling simulations

that targeted different degrees of conformity of the tape spring to the coiling

cylinder.500
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Lastly, it is noted that the tension force required to hold a tape spring coiled

is independent of the length of the tape spring, for lengths on the order of one

coiled circumference or greater.
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Appendix - Details of finite element model

(a)

(b)

Tip node 1
Hole nodes

Tip node 2

Edge nodes
Central nodes

Midline nodes

86
22

58
58

22

Figure 23: (a) Initial setup of tape spring coiling simulations in Section 4.1; (b) associated

dimensions (in mm) and node sets.

The mesh sensitivity of the wrapping and unwrapping simulations was in-510

vestigated by comparing the force-extension results between four meshes with

different element edge lengths: 3 mm, 2.5 mm, 2 mm, and 1.5 mm. The results
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Description Time (s) Node Set
Boundary Conditions

Activated

Restrain out of plane

displacement
0 - 0.17 Midline Nodes uz = 0

Restrain out of plane displacement 0 - ∞ Top end node uz = 0

Restrain out of plane displacement 0 - ∞ Bottom end node uz = 0

Edges are displaced to flatten

tape-spring
0 - 0.04 Edge nodes ux = 3.7 mm

Fix midline position as edges are

flattened
0 - 0.06 Midline nodes ux = uy = 0

Contact applied between tape

spring and cylinders
0.04 - 0.16 All nodes

Fix central nodes in Y 0 - 0.20 Central nodes uy = 0

Fix central nodes in X 0.16 - 0.20 Central nodes ux = 0

+Z end node displaced to fold

tape spring around cylinders
0.06 - 0.21 Top end node ux = f1(t), uy = g1(t)

-Z end node displaced to fold

tape spring around cylinders
0.06 - 0.21 Bottom end node ux = f2(t), uy = g2(t)

Damping applied to remove

kinetic energy
0.17 - 0.21 All nodes β = 100 s−1

Fix whole region 0.2 - ∞ All nodes ux = uy = 0

End node held in place 0.20 - 0.21 End node ux = uy = 0

Damping applied to reduce

kinetic energy
0.21 - ∞ All nodes β = 1 s −1

Table 3: Summary of simulation steps for wrapping an isotropic tape spring around a cylinder,

where rc > R. For the simulation results in Fig. 17, β was increased to 100 s−1 at ux = 53

mm to reduce the build up of kinetic energy and correctly capture the bifurcation from four

to five localized folds.

35



of the mesh sensitivity analysis are shown in Figs 24-25 for the wrapping and

unwrapping simulations, respectively.

Extension (mm)
0 10 20 30 40 50 60 70

F
o

rc
e

 (
N

)

0

2

4

6

8

Edge length = 3 mm

Edge length = 2.5 mm

Edge length = 2 mm

Edge length = 1.5 mm

Figure 24: Force-extension for coiling of tape springs meshed with triangular C0 shell ele-

ments with side lengths of 3 mm, 2.5 mm, 2 mm, and 1.5 mm. Mass nodal damping was set

to β = 10 s−1, and the data was smoothed with a 5 point moving average to remove noise.
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Figure 25: Force-extension for uncoiling of tape springs with rc/R = 6.25 meshed with fully

integrated quadrilateral shell elements with side lengths of 3 mm, 2.5 mm, 2 mm, and 1.5

mm.
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