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Abstract

Including air effects in the finite-element model of large
deployable membrane structures can lead to consid-
erable simplification in the ground testing of these
structures, by removing the need to carry out exten-
sive tests in vacuum chambers. This paper presents
a finite-element modelling technique which simulates
very accurately the air-membrane interaction. Results
obtained with the ABAQUS package are compared
with three test cases, which include a closed-form an-
alytical solution and two sets of experiments.

Introduction

Thin membranes are increasingly being considered for
large deployable space structures applications, due to
the growing requirement for furlable reflecting surfaces
for solar sails, space radars and reflector antennas.
These structures are generally very flexible, and there
is a need to have accurate models to predict their vi-
bration behavior, which impacts their geometric accu-
racy and hence their performance, and may also lead
to dynamic coupling with the attitude control system
of the spacecraft.

It is well-known that large lightweight membrane
structures vibrating in air have lower natural frequen-
cies and higher damping than in vacuum, hence in
general ground tests on these structures need to be
done in a vacuum chamber. However, this is expen-
sive and far from straightforward. For example, re-
cent tests of a large membrane sunshield for the Next
Generation Space Telescope! posed considerable chal-
lenges, due to: (i) size limitations of existing vac-
uum chambers, (ii) difficulty of measuring whole model
response through the glass portholes of the cham-
ber, and (iii) difficulty of operating dynamic shakers,
etc. under vacuum. Additional difficulties have been
identified.? Therefore, it is of interest to develop pro-
cedures whereby at least some experiments are con-
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ducted in air and validated against numerical models.
Of course, the presence of air around the membrane
needs to be properly included in these models. Once
validated in this way, the numerical models could then
be used to predict the vibration behavior in vacuum.

The vibration of a large membrane structure sur-
rounded by an unbounded volume of air is a coupled
fluid-structure interaction problem. Because the air
displacements are small, the air can be treated as an
acoustic medium which interacts with the vibrating
surface through the acoustic pressure that it applies
on it. Also, since we are only interested in finding the
effects on the structure of the presence of the fluid,
effects such as acoustic scattering or radiation in the
fluid need not be considered.

The aim of this paper is to present a technique
for modelling prestressed membrane structures vibrat-
ing in air by means of a standard finite element pack-
age. The accuracy of the model will be checked against
three separate test cases, one based on a closed-form
analytical solution and two based on experiments.

The layout of this paper is as follows. First, a brief
review of relevant literature is presented. Second, a
closed-form analytical solution is derived to estimate
the natural frequencies of an infinite flat membrane
in air. Third, experiments carried out on triangular,
prestressed membranes to measure their resonant fre-
quencies and corresponding mode shapes in air are pre-
sented. Fourth, a finite element modelling technique is
presented and validated against the analytical solution
and experimental results. A discussion concludes the

paper.
Background

Most previous work on the vibration of elastic struc-
tures surrounded by a fluid has been focussed on
plates; only recently has work specific to membranes
been published.'~* However, because the same general
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approach can be applied to both types of structures, it
is appropriate to begin by reviewing some key results
for plates.®

The vibration response of an infinite plate in an
unbounded fluid medium changes at the so-called coin-
cidence frequency.® At this transition the fluid loading
effect on the vibrating plate changes from providing
a non-structural mass to providing radiation damp-
ing. When the plate vibrates below the coincidence
frequency, it accelerates and compresses a small layer
of fluid,>~® whose thickness decreases as the frequency
increases. An analytical solution can be obtained® by
assuming that the natural modes of the fluid loaded
plate are identical to the modes in vacuum. Plates of
finite size are slightly damped by the fluid even be-
low the coincidence frequency, as well as showing an
added mass effect.” This is because edge effects cause
acoustic radiation.®

Fluid-structure interaction problems are normally
solved by combining a finite element (FE) model of
the structure with a model of the fluid, computed us-
ing either FE or boundary element (BE) methods. In
the case of a structure fully submerged in an infinite
fluid medium, a FE representation of the fluid requires
a very large mesh. Boundary element methods tend to
be more attractive, as a 3-D infinite medium can be
modelled with 2-D surface elements.!*~1? Reference!?
gives a thorough explanation of how to find the nat-
ural frequency of any structure submerged in an infi-
nite air medium using a combined FE/BE model. It
also points out that achieving convergence to the natu-
ral frequency can prove troublesome; several iterations
are often required. Two major disadvantages of BE
methods'® are that they remain computationally ex-
pensive because of the non-bandedness of the stiffness
matrix, in spite of the reduction in dimensionality, and
also because the formulation becomes singular at the
coincidence frequency. On the other hand, FE rep-
resentations of an infinite fluid medium using a finite
domain with carefully chosen boundaries have been
shown to be possible, without affecting the acoustic
field.'"* =15 Any artificial exterior acoustic boundaries
should be placed above a minimum distance from the
vibrating surface. The distance and type of the exte-
rior boundaries need to be selected such that they do
not interfere with the origin of the acoustic waves.!6

Membranes have negligible out-of-plane stiffness,
unless they are prestressed. A study of the effects of
prestress and air pressure on the vibration of a trian-
gular membrane with edge cords® determined the nat-
ural frequencies and the corresponding mode shapes
at different air pressures, i.e. in vacuum, at 0.61 atm
and at 1 atm. A physical model was excited by an
electrodynamic shaker attached to a corner of the tri-
angle, and the dynamic response was measured using
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a non-contact capacitance device. These experiments
indicate significantly lower and more closely spaced
natural frequencies at higher air pressures, and also
some distortion of the mode shapes in vacuum. The
experimental results presented in this reference are a
very valuable benchmark against which to test new so-
lutions. FE predictions of the in vacuo mode shapes
were obtained. An approximate analytical method was
also proposed, which simulates air effects by adding a
non structural mass equal to the volume of air con-
tained in an envelope defined by the radius of the
largest circle inscribed in the triangle. This method
was able to predict the accuracy of the fundamental
natural mode to an accuracy of 10% but was much
less accurate for higher modes. For example, the sixth
natural frequency in air was underestimated by 27%
and the corresponding mode shape was also poorly es-
timated.

The lack of agreement between the experimental
results and the approximate method in Ref. 3 is mainly
due to the assumption of the same air mass for each
mode. In reality, the air mass participating in the
membrane vibration decreases with the increase of
mode number®. This points to the need for a proper
criterion for estimating the added mass. Several at-
tempts at refining Ref. 3 were made at the early stages
of the present study'” but, although some improve-
ments were indeed achieved, it was concluded that sim-
ple geometric criteria cannot provide high accuracy.

An Analytical Solution

The scope for analytical solutions is very limited,
hence we turn to the standard solution for an infinite
flat plate surrounded by a fluid® which can be adapted
to infinite membranes, as shown next. It is assumed
that the in vacuo modes are preserved in air. The cou-
pling is achieved by assuming the same wavelength for
the membrane and the air, and by matching the trans-
verse response of the membrane to the air pressure at
the interface.

Membrane Vibration in Vacuum

Consider a thin, flat membrane in an x,y coordinate
system. It is subject to biaxial tension T per unit
length, which will be assumed to remain constant when
the membrane vibrates, and mass per unit area msg.

Denoting by w(z,y,t) the out-of-plane displace-
ment of point (z,y) at time ¢ and neglecting the bend-
ing stiffness of the membrane, the differential equation
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of motion has the form!®

2
T <8w+

O

Py o
oy ) o2

If the membrane is either infinitely long in both x and
vy, or of finite dimensions but of rectangular shape, the
general steady-state solution of Equation (1) is of the
form

(1)

te—i(ksmx+ksyy) (2)
where w is the displacement amplitude, kg, and ks,
are the elastic wave number components along the x
and y directions —of dimension (length=!)—, and w
is the particular frequency of interest. Note that the
subscript s stands for structure.

w = we"”

These wave number components are related to the
corresponding wave lengths, A, and Ay, of the vibra-
tion mode shape in the z and y directions by

2w
Asy

27
ksw = ;
Asz

kay =

(3)

Substituting Equation (2) into (1), we obtain
msw?

kszz ks 2=

(4)

and defining the elastic wave number, k;, of the mem-
brane at frequency w

kY =k, + K, (5)

we obtain

T

ms

w=ks

(6)

Note that this corresponds to a one-dimensional
wave in a particular direction &, defined by the vector

sum of Ay, and Ay, with wave length Ay = 27 /ks,.

Pressure Waves in Air

Steady-state pressure waves in one or more dimen-
sions, in a medium of density p and bulk modulus B
satisfy the Helmholtz equation.” We are particularly
interested in two-dimensional waves, hence

(V2 +k*)p=0 (7)
where p = p(&,n) is the pressure at point (£, 7), vary-
ing with time at frequency w, and k, is the acoustic

wave number
p
k, = —
“\'B

(8)

3

The general solution of Equation (7) is a harmonic
function of horizontal distance, £, and vertical dis-
tance, 1, with acoustic wave numbers kq¢ and kq, in
the two directions, hence

p= 'ﬁei‘ute*i(ka&f+kan77)

9)

Substituting Equation (9) into (7) leads to a relation-
ship between the acoustic wave numbers that is anal-
ogous to Equation (5)

I e (10)

Coupled Vibration

The response of a membrane with air on one side only
can be analysed as follows. The two solutions pre-
sented above, which are valid for any frequency w, are
coupled by imposing that the acoustic wave compo-
nent along the £-direction matches the structural wave
along the &-direction. Therefore, the corresponding
wave numbers must also match, hence

ks = kag (11)
It follows that from now on the 7-direction will be
perpendicular to the membrane and the corresponding
wave number is then obtained by substituting Equa-
tion (11) into Equation (10). Noting that for thin
membranes in air the elastic wave number k; is higher
than the acoustic wave number k, gives

kan = —i\/ks® — k° (12)
In the presence of air, Equation (1) becomes
Pw  w 0%w
T (22420 ) —p=m, 13
<8x2+8y2) T (13)

where it can be shown” that the pressure p on the
membrane is coupled to the motion of the membrane
through

0w

op __ Pw
P o2

at n=20

Differentiation of Equation (9) with respect to 7 yields,
after substituting Equation (9)

Op _

5y = ~ikanp (15)
Then, substitution into Equation (14) gives
p 0%w
= r v 16
P= ik 02 (16)
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Substituting Equation (16) into Equation (13),

Pw 9w p O0%w 0w
T - = my 1
<8x2 * 8y2> iy o~ Mg U7
Substituting Equation (12) for k4, and re-arranging
0w 0w P 0%w
TS24+ 20 = 1
<0w2 i 8y2> (ms = kg) oz (%)

Thus, comparing Equation (18) with Equation (1) it
can be seen that the presence of air introduces an addi-
tional air mass m, into the equation of motion, where
_r

k2 — k2’

S a

i kg > kg (19)

Mg =

This amounts to saying that a layer of air of thick-
ness 1/4/k2 — k2 vibrates together with the mem-
brane. If ks < k, the added air mass is imaginary,
which means that air adds to the damping of the sys-
tem. It is noted that when the frequency of vibration
increases, then ks and k, increase proportionally, thus
the air mass m, decreases.

In conclusion, an infinite membrane of mass my
per unit area which is subject to biaxial tension T has
infinitely many sinusoidal vibration modes. For any
chosen mode, of wave lengths Ay, and Ay, we can cal-
culate the wave number from Equations (5, 3)

\/ /\Ex /\Ey

and the corresponding natural frequency of vibration
in vacuum from Equation (6)

(20)

T

= k‘s R
ms

(21)

wvacuum

The ratio of the wave numbers can be written, from
Equations (6, 8), as

k_

Rs ms B
ko

T (22)

It is noted that this ratio is not a function of the fre-
quency of vibration. Therefore, the type of fluid load-
ing effect on the membrane does not change with the
frequency of vibration. Hence, the nature of fluid load-
ing on the membrane depends only on its mass per unit
area and the prestress.

If the membrane vibrates in air, its mode shapes
do not change but the natural frequency of vibration

becomes
/ T
wair = ks -
me + Mg

(23)
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where the air mass is iteratively calculated from

P

24
wgirp/B ( )

mg =

K2 —

If there is air on both sides of the membrane, the same
analysis can be repeated to obtain an equation like
(24), but with a factor of 2 at numerator.

An Experiment

The natural frequencies and mode shapes of a triangu-
lar membrane vibrating in air were measured. A pho-
tograph of the experimental model is shown in Figure 1
and its dimensions are defined in Figure 2.

A triangular steel framework, rigidly fixed to the
ground, was used to provide a rigid support for the
membrane structure. The membrane itself is made
of 0.05 mm thick aluminized Mylar foil, and has the
shape of a right angle triangle with curved edges with
sag-to-depth ratio is 20. A sleeve is formed along each
edge of the foil, with Kapton tape, and Kevlar cords
with a diameter of 0.92 mm are located inside the
sleeve. Further details on the materials used are given
in Table 1.

Figure 1: Experimental model.

Table 1: Material properties of experimental model.

Membrane Cord Connector
Material Mylar Kevlar Al-alloy
Density (kg/m3) 1070 1450 2700
E (kN/mm?) 3.5 131 70
v 0.35 0.30 0.33
Mass (g) 5.1 1.3 12.2

The two cords that meet at each corner of the trian-
gle are joined together with a steel loop (but a larger
connector is used near the 90 deg corner) and glued
with epoxy; then they are taken together to a bracket
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attached to the steel frame. Thus, in effect the mem-
brane is connected to the frame by three cables, whose
directions meet at a point, thus satisfying equilibrium.
One of the three cables is connected to a strain-gauged
turnbuckle; the shape of the triangle and the directions
of the cables are such that the membrane is in uniform
bi-axial prestress. All experiments reported in this pa-
per were conducted at a uniform prestress of 20 N/m
in the membrane.

Strain gauged
turnbuckle

Membrane

Figure 2: Schematic diagram of experimental model.

Modal identification tests were carried out, by hit-
ting the surface of the connector with a PCB O86D80
impulse hammer fitted with a piezoelectric head,'® and
by measuring the response of the membrane at 50
points with a Polytec PSV300 scanning laser vibrom-
eter. Non-reflective powder had to be sprayed on the
membrane surface, to avoid the laser beam from being
deflected entirely away from the laser head. To reduce
noise, each measurement was repeated five times and
the results were averaged. After measuring all the tar-
get points, the Fast Fourier Transform (FFT) of the
above signals was computed in order to obtain the fre-
quency response function and the mode shapes of the
model.

Finite Element Modelling

A key issue is how to set up an accurate and yet com-
putationally manageable model of the air surrounding
the membrane. Consider a square, flat membrane vi-
bration with air on one side only, for simplicity. An
air box of finite dimensions is defined above the mem-
brane, as shown in Figure 3. The external boundary
conditions around the box are chosen as follows.

Consider a pressure wave, p, propagating in the
7 direction, i.e. vertically, away from the membrane.
From Equations (9) and (12), for ks > k, p has the
expression

p(n,t) = pe*le™ " (25)

where v = +/ k32 — k:aQ.

5

Free surface boundary

Membrane
Radiation boundary

Figure 3: Finite element domain.

Since p decays with distance from the membrane,
a free surface boundary —with p = 0— can be placed
at a certain height H from the membrane surface. H
can be chosen such that the wave reflected by this free
surface will have negligible effects when it reaches the
membrane.

At the free surface the total pressure is zero. There-
fore, considering both the incident wave p; and the
reflected wave p,.

p(H,t) = pie“te™H 4 preiwte H — (26)

which gives,

B = e
Now, the reflected wave that reaches the membrane
surface is

~ —2’yHeiwt

pr(o’t) = —pic (27)

The height H of the air box will be selected such
that p,./p; = 0, say < 1/400. Hence
e M <25%x107?

Which, substituting

gives

H > (28)

As
2
Here )\ is the wavelength of the fundamental mode of
vibration of the membrane, or of any mode that is of

particular interest.

The boundary conditions on the side faces of the air
box are determined by considering a horizontal pres-
sure wave. For ks > k, Equations (9) and (11) give

p(&,t) = pe™te "t (29)
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which shows that p propagates without decaying.
Therefore, the type of boundary condition that mini-
mizes any interference is a radiation boundary. It has
been found that boundaries of this type, placed on the
sides of the air box, do not affect the frequency of the
membrane if they are at a distance of no less than A\, /2
from the edges of the membrane.

Choice of Elements

The ABAQUS FE package?® was used throughout
this study; here we give some details on the choice
of elements. The membrane was modelled using 9-
node second-order quadrilateral membrane elements
(M3D9) and the air domain with 3D solid acous-
tic elements, either 20-node second-order brick acous-
tic elements (AC3D20) or 15-node triangular prisms
(AC3D15). These elements use acoustic pressure as
a variable. The coupling between acoustic and mem-
brane elements was set up by defining two surfaces
along the interface, i.e. one lying on top of the mem-
brane and the other at the bottom of the acoustic el-
ements, and by tying together the nodes in the two
surfaces (*TIE). An advantage of defining these sur-
faces is that the two element meshes do not need to
have matching densities. The acoustic surface had to
be defined as the “master” surface, because the model
of the membrane was more refined. The horizontal
surface around the membrane was modelled as a “rigid
wall”, which is the default boundary condition applied
by ABAQUS.

Analysis Details

A complete analysis consists of two main steps. First,
a static analysis in which the geometric stiffness of the
membrane, without air, resulting from the prestress is
calculated. Second, a dynamic analysis of the coupled
air-membrane model which estimates the resonant fre-
quencies and corresponding mode shapes.

Prestress of the membrane and any cords is de-
fined as an initial stress (*INITIAL CONDITIONS,
TYPE=STRESS). It is best to begin the analysis with
an equilibrium iteration; if the given prestress distri-
bution is not in equilibrium, ABAQUS will find one,
but it is important to check that the prestress level
has not significantly decreased. Once the prestress is
known in full, a geometrically non-linear static anal-
ysis is carried out (*STEP, NLGEOM), in which the
geometric stiffness matrix is calculated. This geomet-
ric stiffness is automatically included in the following
dynamic analysis.

The FE model of a coupled air-membrane problem
has unsymmetric overall stiffness and mass matrices,

6

although the eigenvalues are real.'® Therefore a com-

plex eigensolver is needed, but this is not available in
ABAQUS.2° A way around is to use a frequency re-
sponse analysis instead (*STEP, *STEADY STATE
DYNAMICS, DIRECT), by applying a unit, steady-
state input load at a chosen node of the membrane
and by varying the frequency over the range of inter-
est. The responses of all membrane nodes to this input
are recorded over the whole range of frequencies. The
response amplitudes at a chosen node are plotted as a
function of frequency and the peaks in this plot iden-
tify the resonant frequencies. The corresponding mode
shapes are obtained from the real part of the response
of each node. Because damping is small, out-of-phase
effects are neglected.

Although computationally more expensive than
mode-based steady-state dynamic analysis, this
method is more accurate. A further advantage is that
proportional material damping can be easily incorpo-
rated as complex mass and stiffness matrices are no
problem.

Three Test Cases

Comparison with Analytical Solution

Consider an infinite membrane with air on one side,
vibrating in a mode with A;; = Asy = 0.4 m, see Fig-
ure 4. Let the membrane be a 0.05 mm thick Mylar
foil, mass per unit area of 0.0535 kg/m?, with a uni-
form, biaxial prestress of 20 N/m. The properties of
air are p = 1.2256 kg/m® and B = 1.42 x 10° N/m?.

"‘;;l,
S
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LA
T7FZERR

RN
LN
TRBERX
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R

Figure 4: Chosen mode shape of infinite membrane.

From Equations (20) and (21) the in vacuo fre-
quency is

Sfvacuum = 68.36 Hz

The ratio of wave numbers, from Equation (22) is

k
= =178
ka

Therefore, air will act as a non-structural mass on the
vibrating membrane. The frequency in air is estimated
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iteratively from Equations (23) and (24), as

Fair = 47.95 Hz

Square membranes with side lengths of 0.2, 0.6,
1, 1.4, 1.8 and 2.2 m, simply supported around all
four edges and with uniform prestress, were defined
in ABAQUS. Note that the dimensions of these mem-
branes are all exact, odd multiples of the first; hence
these structures will all admit a natural mode with the
same wavelength of A\;; = Ay = 0.4 m. This mode has
an analytical in vacuo frequency of 68.36 Hz and, for
an infinite membrane, an analytical in air frequency of

47.95 Hz.

In each case, a cubic air box was defined, as shown
in Figure 3. The top and side faces of the box were
placed at a distance of 0.15 m from the membrane;
this is slightly higher than the value, 0.14 m, obtained
from Equation (28).

Element sizes were kept equal to 40 mm in all mod-
els, in order to focus on the effects of using a finite air
box.

The ABAQUS analysis was divided into the follow-
ing two steps:

e Step 1: All edge nodes of the membrane held
fully constrained while an initial, non-linear
equilibrium analysis was carried out by apply-
ing bi-axial uniform prestress of 20 N/m to all
membrane elements.

e Step 2: A linear frequency response analysis was
carried out, initially between 40 and 50 Hz and
then in a smaller range but with higher resolu-
tion. The excitation was applied at a non-central
node of the membrane (to avoid symmetry ef-
fects).

For each membrane, a frequency response function was
plotted and the mode shape corresponding to the ob-
served peak was also plotted, to check that the correct
mode had been identified. The natural frequencies
obtained by this method for all six membranes have
been plotted in Figure 5. The figure shows that the
ABAQUS frequencies converge to the analytical fre-
quency as the sidelength of the membrane is increased.

Comparison with Experimental Results

The experimental frequency response function in the
range 0-100 Hz of the membrane structure described
in the Section “An Experiment”, obtained by averag-

ing the response measured at 50 points, is plotted in
Figure 6.

FE/Analytical

0.9

0.2 0.6 1 1.4 1.8 2.2
Side Length (m)

Figure 5: Ratio between FE and analytical frequencies
for square membranes of different side lengths.

100,

501

Response (m s-1N-1)

)

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

Figure 6: Experimental frequency response function of
structure shown in Figure 1.

Table 2 lists the six resonant frequencies that were
identified, together with the damping of each mode,
expressed as a percentage of critical damping, obtained
using the half-power method.?! Note that the first five
modes are well separated, whereas the sixth is not.
Also note that the damping values, ranging from 0.46
to 1.16%, suggest that radiation damping is small.

Table 2: Experimental frequencies.

Mode Frequency (Hz) Damping (%)
1 32.5 0.62
2 52.5 1.16
3 59.5 0.60
4 70.2 0.46
5 86.6 0.76
6 96.2 0.49

Contour plots of the mode shapes obtained for each
resonant frequency are shown in Figure 7. These mode
shapes were estimated by taking the real part of the
complex responses of each target point.

American Institute of Aeronautics and Astronautics



Mode 1 (32.5 Hz) Mode 2 (52.5 Hz) Mode 3 (59.5 Hz)

/
,/«((’i(@/rfﬁ(\\(\r.\

Mode 4 (70. 2 Hz) Mode 6 (96.2 Hz)

Mode 5 (86.6 Hz)

Figure 7: Experimental mode shapes (nodal lines
shown broken).

An ABAQUS model of this structure was set up.
In addition to the main elements, described previously,
the cords were modelled with truss elements (T3D3).
The connector was modelled as a rigid lamina (R3D3)
of given mass and inertia, after it had been found
that the use of acoustic elements around a small three-
dimensional body gives rise to numerical singularities.
The air box was defined as a 0.6 m high hexagonal
prism with the membrane in the middle; the minimum
distance between the membrane and the boundaries,
0.3 m, had been estimated from the fundamental fre-
quency of the membrane in vacuum. The analysis was
carried out with a mass proportional damping constant
of 2.766 s~! and also without damping.

This time the ABAQUS analysis was carried out
in three steps:

e Step 1: All cable element nodes held fully con-
strained while a bi-axial, uniform prestress of 20
N/m was applied to the membrane and the cor-
responding prestress was applied to the cables.
This step sets up the correct prestress distribu-
tion but, to avoid numerical convergence prob-
lems, without allowing any stress transfer be-
tween the cable and the membrane.

e Step 2: A non-linear equilibrium static analy-
sis was carried out after releasing all constraints
on the cable nodes, apart from the nodes con-
strained to the edge structure. This step ensures
that the cable nodes are in equilibrium.

e Step 3: A linear frequency response analysis was
performed under a unit load applied at the con-
nector, varying between 0 and 100 Hz. The dis-
placement and velocity responses of all nodes
were computed.

The velocity response function is plotted in Figure 8.

30 T

- - - = Without damping H
= — With damping :
Z 20 :

P [}

£ :

Y [

2

g 10

3

* pu :*
0

0 10 20 30 40 50 60 70 80 90 100
Frequency (Hz)

Figure 8: FE velocity response function.

Figure 8 shows the frequency response function for
one particular node, near the right-hand-side corner of
the triangle. Seven resonant frequencies are identified
and the corresponding modes are plotted in Figure 9.

Mode 7 (97.3 Hz)

Figure 9: FE mode shapes (nodal lines shown broken).

Comparing the mode shapes in Figures 7 and 9, it
is noted that the first five are in good agreement, but
the sixth experimental mode corresponds to neither
mode 6 nor made 7 from ABAQUS. Considering that
the experimental frequency response function shows
signs that other modes might exist between 90 and
100 Hz, it seems likely that modal overlap occurs after
the fifth mode. Therefore, only the first five modes are
compared in Table 3.

Table 3: Comparison of experimental and FE results.

Natural Frequency (Hz)

Mode Error (%)
FE vacuum  Experiment FE air
1 44.9 32.5 33.6 3.4
2 60.1 52.5 50.3 -4.2
3 73.4 59.5 57.0 -4.2
4 84.4 70.2 67.1 4.4
5 90.8 86.6 79.9 -7.7

The first four predicted and measured frequencies

American Institute of Aeronautics and Astronautics



differ by around 4% and the fifth by 7.7 %. Note that
the difference between frequencies in air and in vac-
uum is highest —12.4 Hz, corresponding to a decrease
of 26%— for the fundamental mode and decreases with
the mode number.

Comparison with Sewall’s Experiment

The third test case was based on one of the tests re-
ported in Ref. 3. A schematic diagram of the model
structure is shown in Figure 10, and the experimental
mode shapes are shown in Figure 11.

9144 m

.0127 mm thick Mylar

1.6 mm diam.

steel cable )
1.41 m radius

Figure 10: Membrane tested in Ref. 3.

Figure 11: Experimental mode shapes at 93.4 N apex
tension in air at 0.61 atm (from Ref. 3).

This structure was analysed with ABAQUS. The
membrane and cables were modelled as described pre-
viously; the effect of the shaker was modelled as a point
mass. A hexagonal air box, placed at 0.8 m from the
membrane, was defined as discussed in the previous
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section.

The ABAQUS analysis had three steps, as for
the previous test case, and the measured material
damping® was included as a mass proportional damp-
ing constant of 1.704 s~'. The frequency response
function showed 12 modes between 0 and 100 Hz. The
nodal lines of the corresponding 12 mode shapes are

plotted in Figure 12.

Mode 2 (31.5 Hz) Mode 3 (36 9 Hz)

Mode 1 (16 1 Hz)

N. Y. Y

Mode 4 (49.7 Hz) Mode 5 (561.7 Hz)  Mode 6 (61.1 Hz)

N Y

Mode 7 (64.4 Hz) Mode 8 (73.8 Hz) Mode 9 (79.2 Hz)

V.Y Y

Mode 10 (81.9 Hz) Mode 11 (83.2 Hz) Mode 12 (92.6 Hz)

Figure 12: FE mode shapes.

Comparing Figure 12 with Figure 11, the second
experimental mode shape is missing. The reason is
that this mode is anti-symmetric, and hence it is not
excited by symmetric input applied to the ABAQUS
model. The 2nd, 3rd, 4th and 5th modes from the fi-
nite element simulation are in fair agreement with the
3rd, 4th, 5th and 6th modes from the experiment, re-
spectively. The differences in frequency are very small,
from 0.5 to 4%, see Table 4.

Table 4: Comparison of experimental and FE results.

Natural Frequency (Hz)

Mode Error (%)
Experiment FE air
1 16.3 16.1 1.2
2 30.9 — —
3 32.5 31.5 3.1
4 37.1 36.9 0.5
5 47.8 49.7 -4.0
6 52.8 51.7 2.1
Discussion

The analytical solution for the natural frequencies
of infinite flat membranes vibrating in air has provided
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a good insight. When the structural wave number, kj,
is greater than the acoustic wave number, k,, which
is the typical case for thin membranes in air, it has
been shown that a layer of air moves together with
the vibrating membrane; this air thickness decreases
with the increase in frequency of vibration. There-
fore, the natural frequencies of the membrane in air
are lower than its in vacuo frequencies because air acts
as a non-structural mass, which is added to the mass
of the membrane. In the three test cases presented in
this paper the maximum difference was a decrease of
29% for one of the fundamental modes, but the higher
modes show smaller differences.

Unlike thin plates vibrating in air, thin prestressed
membranes do not show a coincidence frequency, be-
cause the ratio between structural and acoustic wave
numbers is not a function of the frequency of vibration
but only of the prestress and mass per unit area of the
membrane.

In the experiment presented as our second test case
we also had ks >> k, and hence air acts mainly (but
not only, due to edge effects) as an added mass. This
is confirmed by the low damping that has been mea-
sured, between 0.4 and 1.2 % of critical.

With this background, we have developed a FE
modelling technique in which the membrane is en-
closed in an air box of finite dimensions; these dimen-
sions are related to the structural wavelength, As. This
modelling technique is reasonably economical of com-
puter resources and has been shown to be very accu-
rate by comparison with an analytical test case and
two sets of experimental results. The first test has
shown that the FE model converges to the analytical
solution for an infinite membrane when the modelled
size of the membrane is increased. The FE solution is
within 2% of the analytical solution when a membrane
size of 1.5 times the structural wavelength or greater is
modelled. The second and third test cases, involving
membrane structures that are representative of pro-
posed applications, have shown that the frequencies
obtained from the FE simulation are typically within
4% of the measured frequencies for our own experi-
mental results, and within 2% of the published results.
Considering that the physical model used for our ex-
periments was about one-third the size of that used in
Ref. 3, it seems reasonable to conclude that the higher
level of error in the second test case is due to experi-
mental error.

Conclusion
The FE simulation technique presented in this paper

predicts the natural frequencies and mode shapes of
membrane structures vibrating in air with great ac-
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curacy. Hence, it is concluded that for model identi-
fication purposes it should be possible to reduce the
amount of testing that needs to be carried out under
vacuum.
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