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Abstract

This report presents a study of the vibration behaviour of various prestressed
membrane structures. A vibration analysis of at membranes of arbitrary shape
is done using the ABAQUS �nite element package, and compared with analytical
solutions; good agreement between the two solutions is obtained. The �nite ele-
ment model is then extended to the Collapsible Rib-Tensioned Surface Reector,
currently under development by the European Space Agency. Natural frequency
and mode shape estimates are obtained for various reector diameters, hub di-
mensions, number of ribs and prestress levels. The analysis results indicate that
the fundamental natural frequency of the reector decreases with the increase of
diameter of the reector and does not change greatly with the increase of hub
radius. Furthermore, the fundamental natural frequency increases with the in-
crease of membrane prestress. A periodic nature of variation in the results is
observed.
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Chapter 1

Introduction

The type of structures that is of interest in the present study is high-precision
deployables for spacecraft, where there is a growing requirement for furlable re-
ecting surfaces for antennae, reectors and solar arrays. The con�gurations that
are being considered include both at and curved surfaces. The performance ef-
�ciency of these reective surfaces depends not only on the geometric accuracy
of these surfaces but also on their vibration characteristics.

1.1 Scope of the report

The aim of this report is to develop methods for predicting the vibration be-
haviour of prestressed membrane structures of general shape, with a thickness of
only a fraction of a millimetre. Numerical studies of the vibration of at mem-
branes provide a natural way of approaching this �eld. The predictive methods
developed for at membranes are then applied to predict the vibration behaviour
of a deployable membrane reector currently under development in the Deploy-
able Structures Laboratory, at the University of Cambridge.

1.2 Layout of the Report

The layout of this report is as follows. Chapter 2 gives a brief overview of relevant
previous work in the area of deployable membrane structures.

Chapter 3 presents a numerical and analytical study of simple at membranes,
plus a tubular structure consisting of four membrane elements. The modelling of
prestressed membrane structures in ABAQUS is explained, including the selec-
tion of appropriate elements. The �nite element results are compared to available
analytical results for simple membranes and di�erent ways of modelling the mem-
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1.2. LAYOUT OF THE REPORT

brane, e.g. as a grid of truss elements, are considered.

Chapter 4 presents a numerical study of CRTS reectors. Estimates of the in-
vacuum vibration of CRTS reectors are obtained and, since no experimental
results are currently available, the �nite element analysis results obtained using
continuum membrane elements are compared to a truss element model.

Chapter 5 concludes the report and identi�es further work that should be carried
out as a follow-on to this study.
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Chapter 2

Literature Review

2.1 CRTS Reector

A multipurpose deployable reector, called the Collapsible Rib Tensioned Surface
(CRTS) reector, is being developed by the European Space Agency. A CRTS
reector, shown in Figure 2.1, consists of three main parts: a central expandable
hub, a series of thin-walled foldable ribs connected radially to the hub and a
membrane that is supported and tensioned by the ribs.

In the case of a symmetric reector, the membrane consists of identical at gores
bonded together along their curved edges. When the reector is deployed, each
gore takes approximately the shape of a singly-curved cylindrical surface. The
overall shape of a CRTS reector is not an exact paraboloid but only an approxi-
mation to it, the accuracy of which improves as the number of gores is increased.
Each rib consists of a thin slender metal blade with curved cross section. A key
feature of this structural element is that it is continuous, and yet it can be folded
elastically in several di�erent ways.

The vibration characteristics of these reectors, in the deployed con�guration,
are analysed in Chapter 4.

2.2 Periodic Structures

Periodic structures consist of a number of identical repetitive units linked in a
similar pattern. Many complex engineering structures can be included in this
category. The analysis of these structures can be simpli�ed by considering their
periodic nature. Because of the periodic nature of the CRTS reector, previous
work on the vibration analysis of periodic structures is briey reviewed below.

Figure 2.2 shows the natural frequency estimation of an in�nite periodic beam

3



2.2. PERIODIC STRUCTURES

Figure 2.1: CRTS Reector.

from its wave propagation relationship, which was studied by SenGupta [12, 13].

Figure 2.2: Natural frequencies of periodic beam (from SenGupta [13]).
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2.2. PERIODIC STRUCTURES

For a exural wave travelling from one bay to the next, the amplitudes at two
points separated by a periodic distance can be related by

W2 = W1e
�� (2.1)

where � is the propagation constant which is generally complex. The real part
Æ de�nes the rate of decay of the amplitudes from one support to the other and
the imaginary part  denotes the phase di�erence between the quantities at two
successive supports.

Figure 2.2.a shows a typical plot of propagation constant vs. frequency parameter
for a periodically supported in�nite beam.

The natural frequencies of a �ve-span beam clamped at both ends are obtained [12]
by applying boundary conditions on the bending moment at the end supports,
thus obtaining  as

 =
m�

N
(2.2)

where m is an integer which varies from 1 to N and N is total number of spans,
i.e. in this case N=5.

Figure 2.2.b gives the �rst two groups of natural frequencies of the �ve-span
beam. The results are obtained from Equation (2.2) and Figure 2.2.a. An im-
portant feature of these results is that the number of normal modes (or natural
frequencies) in a given propagation zone (or in a group) is equal to the number of
spans. The natural frequencies of a beam with N -spans can similarly be obtained
from the same plot of  vs. frequency parameter, by dividing the ordinate into
N equal parts and reading the corresponding projections on the abscissa.

As explained above, periodic structures have the advantage of simplifying the
dynamic analysis. But in reality, almost all practical structures have small ir-
regularities because of manufacturing and material tolerances. These structural
irregularities can signi�cantly a�ect the vibration behaviour of nearly periodic
structures, by localising the vibration modes and con�ning the energy to a region
close to the source. This phenomenon is generally called mode localisation.

The mode localisation of a 15 m diameter space reector with various number of
ribs has been investigated numerically by Cornwell and Bendiksen [4]. In their
study, the 18-rib reector did not localise in the �rst mode but the higher modes
did, and the localisation became progressively more severe with increasing mode
number. When the number of ribs was increased to 48, the localisation became
even more severe. This indicates the importance of considering mode localisation
on a large space reector having many ribs. More recent references in the area of
mode localisation and energy con�nement can be found in Yap and Cebon [14].
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Chapter 3

Analysis of Membrane Structures

This chapter describes a numerical study of the vibration of at membranes and
a simple membrane tubular structure. Natural frequencies of at membranes are
obtained from three di�erent methods, one analytical and two computational,
in Section 3.1. In Section 3.2 the two di�erent approaches are applied to the
calculation of the natural frequencies of a simple tubular structure consisting of
four at membranes.

3.1 Flat Membranes

Three at membrane shapes (square, triangle and L-shape) are studied, focusing
in particular on the variation of the fundamental natural frequency with the level
of pre-tension.

The fundamental natural frequencies are calculated using three di�erent methods:
an analytical method, the Finite Element (FE) method using membrane elements
and the FE method using truss elements. The results obtained with membrane
elements are compared to analytical results and FE results with truss elements.

3.1.1 Analytical Method

The natural frequencies of the rectangular, triangular and L-shaped membranes
shown in Figure 3.1 are obtained as follows.

Consider the transverse vibration of a thin and uniform rectangular at membrane
that is in equilibrium, in a planar con�guration, under a uniform tension T per
unit length. The transverse displacement of any point on the membrane is in
the direction normal to the reference surface and is assumed to be small; as a
result the tension in the membrane can be assumed to be constant. De�ning a

6



3.1. FLAT MEMBRANES

y

o
a

b

x

(a) Rectangle

y

a

a

x

(b) Triangle

a

o
x

y

a a

a

(c) L-shape

Figure 3.1: Flat membranes.

coordinate system O; x; y with origin O at a corner and axes parallel to the sides
of the rectangle shown in Figure 3.1(a), the governing equation of transverse
motion can be written as [6, 11];

T (
@2�

@x2
+
@2�

@y2
) = M

@2�

@t2
(3.1)

where � is the transverse displacement of the membrane at point (x; y), T is the
uniform surface tension per unit length and M is the mass per unit area of the
membrane.

For steady-state vibration at a frequency !, the transverse displacement at a
point (x; y) at time t can be speci�ed as,

�(x;y;t) = �(x;y) cos!t (3.2)

For a simply supported rectangular membrane �=0 along the boundaries, hence
the mode shape is sinusoidal in both directions. Therefore, the transverse dis-
placement � at a point (x; y) has the expression

�(x;y;t) = sin
m�x

a
sin

n�y

b
cos!t (3.3)

Substituting Equation (3.3) into Equation (3.1) and solving for the natural fre-
quency of vibration !, we obtain

!mn = �c

r
m2

a2
+
n2

b2
(3.4)

where m, n are integers, c the wave propagation velocity in the membrane, and
c is de�ned as

c =

r
T

M
(3.5)
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3.1. FLAT MEMBRANES
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Figure 3.2: Quarter portion of square membrane.

Similarly, the analytical expression for the natural frequency of the right-angled
triangular membrane shown in Figure 3.1(b) is [1]

!mn = �c

r
m2 + n2

2A
(3.6)

where A is the area of the triangle.

The L-shaped membrane shown in Figure 3.1(c) has the following fundamental
natural frequency [1]

!1 � �c
1:717p

A
(3.7)

where A is the area of the L-shaped membrane.

3.1.2 FE Analysis with Membrane Elements

The formulation of an analytical model for a membrane structure, although
straightforward for the rectangular at membrane described in the previous sec-
tion, can be extremely diÆcult for structures having complex geometry. The
�nite element (FE) method overcomes these diÆculties. A detailed explanation
of the FE method in structural dynamics can be obtained from references [2,3,5].

Flat membranes of three di�erent shapes (square, triangular and L-shaped) were
analysed using the FE package ABAQUS [7]. The square membrane has a side
length of 0.2 m and a thickness of 0.1 mm; it is supported on knife edges, which
act as simple supports along all four edges. Only one quarter of the membrane
is considered, as shown in Figure 3.2, since the membrane is symmetrical.
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3.1. FLAT MEMBRANES

0.2 m

0.2m

0.1 m

0.2m

0.2 m

0.1 m

(a)        (b)

Figure 3.3: Triangular and L-shaped membranes.

The triangular membrane has base length of 0.2 m and height of 0.2 m; it is
supported on knife edges along all three edges, see Figure 3.3(a). The L-shaped
membrane (base length of 0.2 m) is also supported on knife edges along all six
edges, see Figure 3.3(b).

These three membranes are modelled using two di�erent elements available in
ABAQUS: the M3D4 membrane element, a 4 node quadrilateral element, and
the M3D3 membrane element, a 3 node triangular element. Both are plane stress
elements that transmit in-plane forces only (no moments) and have no bending
sti�ness. This means that it is necessary to prestress these elements before any
vibration analysis is carried out. The material is assumed to be Kevlar-reinforced
Kapton foil whose properties are tabulated in Table 3.1.

The mesh for the square membrane, shown schematically in Figure 3.2, consists
of square elements. Note that the number of elements will be kept at 100, as only
a small variation in frequency was observed when the number of elements was
increased to 1600, which |of course| required much longer computation times.

The following boundary conditions are applied: the nodes along edges CD and BD
are restrained in the 3-direction (vertical direction) to simulate simple supports,
the nodes along edge AB are restrained in the 2-direction because of symmetry,
and similarly the nodes along edge AC are restrained in the 1-direction. All other
nodes are unrestrained.

Uniform biaxial prestress is applied to the membrane elements directly, using the
*INITIAL CONDITIONS, TYPE=STRESS option. This option is used before
applying any of the *STEP options. To account for the geometric sti�ness induced
by the prestress, non-linear calculation procedures are used. Hence, before the
eigenvalue extraction calculations a non-linear static analysis step is carried out by
using the *STEP, NLGEOM option after the *INITIAL CONDITIONS option.
In the above static analysis step, the applied initial prestress is maintained by

9



3.1. FLAT MEMBRANES

initially restraining the outer edges of the membrane. Then, in the next step
(frequency extraction step), the boundary conditions are changed to the actual
ones, described above, by using *BOUNDARY, OP=NEW option.

The frequency analysis step is a linear step, therefore the non-linear option is
not used here. In this option, the user can request the number of eigenvalues
to be extracted, and the choice of eigensolver. Of the two solution methods
available in ABAQUS, the subspace iteration method and the Lanczos method,
the Lanczos eigensolver is faster and more e�ective for models with many degrees
of freedom [7,9] and therefore it was chosen. A sample ABAQUS script is included
in Appendix A.

3.1.3 FE Analysis using Truss Elements

This analysis was performed to test the accuracy of the membrane element re-
sults, because in the case of complex membrane structures there is no reliable
analytical estimate. The idea is to establish the accuracy of the truss model for
at membranes, so that it can be used to produce independent estimates, later
on.

The equivalent truss model for static problems was initially implemented by Hren-
niko� [8] and later used by Phaal [10] to analyse shell structures. The basic idea
of the method consists in: (i) replacing a continuous elastic body by a truss of
pin-jointed bars, arranged according to a de�nite pattern, whose elements are
endowed with elastic properties suitable to the type of problem; (ii) analysing
the framework; and (iii) spreading the bar stresses over the corresponding areas
of the continuous body, in order to obtain the stresses in the original body. The
framework so formed is given the same external outline and boundary restraints,
and is subjected to the same loads as the solid body. Hrenniko� [8], has developed
this analogy for elasto-statics, but the equivalence of density was not discussed
in his paper. In the present study the density of the truss model is important
for the frequency analysis. This problem is solved by considering the volume of
material in a membrane panel and in the corresponding equivalent truss model.
It is important, of course, to check that the two models have equal mass.

The equivalent truss model set up by Hrenniko� is based on the doubly-braced
square framework shown in Figure 3.4(b), it has the same properties in both
directions of the axes and has two characteristic cross-sectional areas A and A1.
Consider a membrane of Young's Modulus E, Poisson's ratio �, thickness t and
density �.

10



3.1. FLAT MEMBRANES

l l

l

 

Equivalent Truss

(b)(a)
Membrane Element

y

x
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A

d
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A
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Figure 3.4: Equivalent truss model.

The values of A and A1 can be derived from [8];

A =
3

4
lt (3.8)

A1 =
3

4
p
2
lt (3.9)

where t is the thickness of the membrane. In the derivation E and � are assumed
to be same for both membrane element and equivalent truss.

The density of the bars of the truss (�t) is estimated by equating the masses of
the membrane and its equivalent truss model, hence

�t =
1

3
� (3.10)

Table 3.1: Properties of membrane and equivalent truss model.

Parameter Membrane Truss

Density (kg/m3) 790 263

Young's Modulus (GPa) 11.9 11.9

Poisson's Ratio 0.3 0.3
Thickness (mm) 0.1 |

The equivalent truss shown in Figure 3.5 has been modelled using the 3-D truss
elements (T3D2) available in ABAQUS. The biaxial prestress of 10 N/m is applied
in the horizontal and vertical directions, i.e. 0.05 N in each horizontal bars, 0.035
N in each diagonal bars and 0.05 N in each vertical bars, using initial conditions

11



3.1. FLAT MEMBRANES

and procedures similar to those explained in the description of the membrane
element.

1

2

3 1

2

3

axis of symmetry

A
axis of symmetry

0.1 m

0.1 m

B

DC

Figure 3.5: Equivalent truss model for square membrane.

3.1.4 Results

The fundamental natural frequency of the square membrane has been calculated
for prestress levels of 10, 20, 30, 40 and 50 N/m, for 100 element and 1600 element
models. The truss model shown in Figure 3.5 has also been analysed. The results
are tabulated in Table 3.2.

Table 3.2: Estimates of fundamental natural frequency of square membrane.

Prestress (N/m)
FE Membrane (Hz)

FE Truss (Hz) Analytical (Hz)
100 Elements 1600 Elements

10 39.66 39.76 39.73 39.78
20 56.08 56.23 56.19 56.25
30 68.69 68.87 68.81 68.90
40 79.31 79.52 79.46 79.56
50 88.67 88.90 88.84 88.95

The fundamental natural frequencies of the triangular and L-shaped membranes
with prestress of 10 N/m have been calculated also with ABAQUS and with
Equations (3.6) and (3.7). Their values are tabulated in Table 3.3.

Table 3.3: Estimates of fundamental natural frequency of various membranes.

Model FE (Hz) Analytical (Hz)
Square 39.66 39.78
Triangle 61.60 62.90
L-shape 55.44 55.77

12



3.2. SIMPLE MEMBRANE STRUCTURE

3.2 Simple Membrane Structure

The structure shown in Figure 3.6 consists of two main parts: four 1 m long
vertical ribs �xed at the bottom, and a thin membrane square tube that is sup-
ported and tensioned by the ribs. The ribs have circular cross-section of 2 mm
radius; the membrane has a thickness of 0.1 mm and each panel is 0.5 m wide.
The membrane is prestressed by applying a biaxial tension of 100 N/m in the
horizontal and vertical directions before the frequency analysis is carried out.

0.5 m

1 m  long ribs

Membrane

0.5 m

Rigid  base

Figure 3.6: Simple membrane structure.

The natural frequencies of this structure, obtained from two di�erent approaches,
are compared to check the accuracy of the membrane element calculations in
ABAQUS.

3.2.1 FE Analysis

The ribs are modelled with B33 beam elements. These are Euler-Bernoulli beam
elements based on cubic interpolation functions, which do not allow for transverse
shear deformation. They are reasonably accurate for cases involving distributed
loading along the beam. The material of the ribs is steel, see Table 3.4. The mem-
brane is modelled using the four node membrane elements (M3D4) described in
Section 3.1.2. The material properties of the membrane are speci�ed in Table 3.4.

A biaxial prestress of 100 N/m is applied to all four faces of the structure, as
already mentioned in Section 3.1.2. When the prestress is applied, all four edges
of the membranes are held �xed. Therefore, the prestress is \locked" into the
membrane before the frequency analysis is carried out. In the frequency analysis
step, the previously �xed edges are released and the actual boundary conditions
are applied.

13



3.2. SIMPLE MEMBRANE STRUCTURE

Table 3.4: Properties of ribs and membrane.

Parameter Rib Membrane

Density (kg/m3) 7000 1

Young's Modulus (GPa) 200 20

Poisson's Ratio 0.3 0.3

The analysis has been repeated using the truss element model shown in Figure 3.7.
The model consists of 3-D truss elements (T3D2) with an initial biaxial prestress
of 100 N/m in the horizontal and vertical directions, i.e. 5 N in each horizontal
bar, 3.54 N in each diagonal bar and 5 N in each vertical bar.

1
2

3

1
2

3

1 m

0.5 m

Figure 3.7: Equivalent truss model.

3.2.2 Results

Table 3.5 lists the natural frequencies obtained from the two methods, for biaxial
prestress of 100 N/m.

The �rst four mode shapes of the membrane structure are plotted in Figures 3.8
and 3.9.
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3.2. SIMPLE MEMBRANE STRUCTURE

Table 3.5: Natural frequencies of simple structure.

Modes
Natural Frequency (Hz)

Membrane Model Truss Model

1 289.54 288.04

2 309.80 309.51

3 309.83 309.51

4 333.11 334.42

5 804.18 785.12

6 828.95 826.84

7 828.95 826.84

8 828.95 829.59

9 828.95 829.59

1

2

3 1

2

3

(a) Mode 1 (289.54 Hz)

1

2

3 1

2

3

(b) Mode 2 (309.80 Hz)
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Figure 3.8: Top views of �rst four mode shapes.
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Figure 3.9: Isometric views of �rst four mode shapes.

3.3 Discussion

For the at membrane results note |Table 3.2| that the FE results for di�erent
mesh densities show only a very small di�erence in frequency, although the �ner
mesh requires a much large computational time. Therefore, these results justify
the use of moderately coarse meshes in further work.

The three sets of results in Table 3.2 show good agreement between FE and
analytical solutions. This suggests that ABAQUS can be used reliably to estimate
natural frequencies using the four node membrane elements M3D4. It can also be
concluded that the truss model based on element T3D2 is broadly in agreement
with the other models. Finally, Table 3.2 shows that the fundamental natural
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3.3. DISCUSSION

frequency of the membrane increases with the applied prestress; this is because
its geometric sti�ness increases with prestress. Similar observations can be made
from Table 3.3, for the triangular and L-shaped membranes.

For the simple membrane structure of Section 3.2 it can be observed in Table 3.5
that the membrane model and the truss model give similar results, with the
exception of the �fth mode.

From these studies, it is clear that the ABAQUS membrane element M3D4 can
be used to analyse membranes and membrane structures of any shape.
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Chapter 4

Analysis of CRTS Reectors

This chapter presents a study of the natural frequencies of a deployable mem-
brane reector antenna, in the deployed con�guration. The e�ects of changing
the diameter, hub radius and membrane prestress on the fundamental natural
frequency are studied using ABAQUS. Results are presented for 1.5, 5 and 10 m
diameter reectors with 6, 12 and 24 ribs. Section 4.1 briey introduces the re-
ector. The modelling and analysis of the reector with ABAQUS are explained
in Section 4.2. Section 4.3 presents the results that have been obtained, including
a comparison between membrane and truss element models. A discussion of these
results follows in Section 4.4.

4.1 Introduction

CRTS reectors are generally lightweight and exible, and there is the possibil-
ity that vibration of the reector in the deployed con�guration, induced by the
attitude control system of the spacecraft, may degrade its intended performance.
The dynamic response of a structure is mainly dependent on the coupling be-
tween dynamic loads exerted on the structure and the dynamic characteristics
of the structure itself. If the frequency of the exciter is close to one of the nat-
ural frequencies of a structure, the maximum response of the structure will be
induced. Therefore in the design of large deployable appendages it is custom-
ary to change the mass and sti�ness distribution of the appendage to move the
natural frequencies away from the rigid-body frequencies of the spacecraft. This
approach is widely used in the dynamic design of reector structures and, there-
fore, knowledge of the natural frequencies of CRTS reectors plays an essential
role in their design.

A special feature of symmetric CRTS reectors (not those with o�set con�gu-
ration) is their periodic nature. A symmetric reector consists of a number of
identical repetitive units, or substructures. Therefore its analysis can be simpli-
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4.2. FINITE ELEMENT MODELLING

Table 4.1: Material properties of ribs and membrane.

Parameter Ribs Membrane

Density (kg/m3) 8400 790

Young's Modulus (GPa) 131 11.9

Poisson's Ratio 0.3 0.3
Thickness (mm) 0.2 0.1

�ed considerably by considering its periodic nature [12, 13]. But in the actual
model perfect periodicity cannot be achieved and even small imperfections in the
model can cause the predictions of the natural frequency and mode shapes to be
completely incorrect [4]. Although this is beyond the scope of the present study,
it is clear that an experimental analysis will have to be carried out later on.

Returning to the vibration problem, it is impossible to obtain analytical (exact)
solutions of the reector, hence �nite element (approximate) solutions will be
used. The accuracy of these solutions will be assessed by modelling the reec-
tor using both membrane elements (M3D4) and truss elements (T3D2) in the
ABAQUS simulations, and by comparing the results.

4.2 Finite Element Modelling

The shape of the reector is assumed to be a paraboloid, whose equation is given
by

Z =
X2 + Y 2

4F
(4.1)

where Z is the height above the X � Y plane, and the X, Y the Cartesian co-
ordinates are measured from the centre of the reector. F is the focal length, D
the diameter. Reectors with

F

D
= 0:78 (4.2)

are considered. The membrane of the reector is Kevlar-reinforced Kapton foil
and the ribs are made of Copper-beryllium. Their material properties are given
in Table 4.1.

Several di�erent con�gurations of the reector are considered: 6, 12, 24 ribs,
and 1.5, 5 and 10 m diameters. The membrane is assumed to be singly-curved
between neighbouring ribs.

The nodal coordinates of a gore are de�ned using a MATLAB program. These
nodes de�ne a set of triangular elements. The nodal co-ordinates of the remaining
gores are created using the *NCOPY, SHIFT, MULTIPLE=\no. of gores" option
available in ABAQUS. After de�ning the element numbers for the �rst gore, the
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4.2. FINITE ELEMENT MODELLING

element numbers of the remaining gores are simply created using the ABAQUS
option *ELCOPY, OLD SET=() , SHIFT NODE=() , ELEMENT SHIFT=() ,
NEW SET=().

It is necessary to de�ne a local axis parallel to the base of each gore in order
to be able to de�ne a prestress in the \hoop" direction. The initial prestress is
applied in each gore in the local axis direction-1, parallel to the base, using the
option *INITIAL CONDITIONS, TYPE=STRESS. Along the ribs two sets of
coinciding nodes are de�ned, one in each gore; these nodes are tied together using
the option *MPC .

The triangular membrane elements are modelled using M3D3 membrane ele-
ments. The ribs are modelled with B33 beam elements. The ribs have open-
section with 0.2 mm thickness; their cross-section is shown in Figure 4.1. The rib
cross-section is speci�ed using the option *BEAM SECTION, SECTION=ARBITRARY
and the 5 points of the cross-section are speci�ed in the next line of the input
�le. Figure 4.1 shows the actual cross-section of the rib, and the approximated
cross-section. The orientation of the beam cross-section is de�ned in terms of a
local, right handed axis system. This is achieved by de�ning the approximate rib
direction in the option *BEAM SECTION.

11.5 mm

137

in  ABAQUS

Modelled Section

Actual Cross−Section

o

Figure 4.1: Actual and modelled shape of rib cross-section.

The �nite element model of a 1.5 m diameter reector with 12 ribs is shown in
Figure 4.2.

1
2
3

1
2
3

1
2
3

1
2
3

                      Ribs     Finite Element Model

Figure 4.2: Model of 1.5 m diameter reector with 12 ribs.
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4.2. FINITE ELEMENT MODELLING

For the 1.5 m diameter reector the frequency analysis has been done also for
prestress levels of 50 N/m and 200 N/m, using the minimum value of the hub
radius for each given number of ribs. This value is calculated by considering the
minimum hub size required to accommodate the required number of ribs, but
without allowing for the hub expansion during prestressing. Figure 4.3 shows a
top view of the hub region de�ning the minimum hub radius for the case of 6
ribs.

l/2

B

O

A C

O

A

B

C

r

Figure 4.3: Minimum hub radius con�guration.

Consider triangle OAB,

tan
�

2
=

l

2r
(4.3)

then,

r =
l

2 tan
�

2

(4.4)

For a reector with 6 ribs, each 21.4 mm wide, Equation 4.4 gives r = 18:5 mm.
Similarly, for 12 ribs (� = 30Æ), r = 40 mm and for 24 ribs (� = 15Æ), r = 82 mm.

Two di�erent analyses have been carried out. First, by extracting the natu-
ral frequencies immediately after applying the prestress, without �rst checking
that equilibrium is satis�ed. This is the most straightforward, although not fully
correct method of analysis. Second, by carrying out a series of equilibrium iter-
ations before extracting the frequencies. This allows the membrane and ribs to
settle down, but achieving the intended state of prestress is by no means a trivial
achievement.
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4.2. FINITE ELEMENT MODELLING

4.2.1 Analysis without Equilibrium Check

An initial uniaxial prestress of 100 N/m is applied in the hoop direction, in each
gore, but no initial moments are applied in the ribs. In the dummy static analysis
step the nodes along the ribs are restrained. Then, in the frequency analysis
step, the boundary conditions are released while the nodes at the base of the ribs
are restrained using the *BOUNDARY, OP=NEW option. In this analysis, the
membrane prestress remains constant because no equilibrium iteration is carried
out; therefore there the ribs remain unstressed.

The natural frequencies of a 10 m diameter reector were analysed for di�erent
hub radii. Detailed results are presented in Sections 4.4.1 - 4.4.4, including a
comparison of the natural frequencies of a 1.5 m diameter reector with 6 ribs,
computed using the equivalent truss model approach.

4.2.2 Analysis with equilibrium check

As the above analysis does not represent the actual stress state of the reector,
a more careful analysis of a 1.5 m diameter reector with 6 ribs has been carried
out, including an equilibrium iteration in the second step, i.e. before the linear
frequency analysis step. The second step is a non-linear static analysis step, with
the actual boundary conditions of the reector.

When this second step is carried out, the membrane prestress applies uniform
horizontal forces on the ribs, directed towards the axis of the reector. There-
fore, the ribs bend inwards, like the curved cantilever shown in Figure 4.4, but
this causes a loss of prestress in the membrane. To maintain the original shape
and prestress distribution, this deformation should be avoided. Therefore, it is
necessary to apply the corresponding bending moments as initial bending mo-
ments in the ribs; their values can be calculated either analytically |from simple
equilibrium consideration| or by using ABAQUS. There is an approximation
involved in doing this as, even though the bending moment varies along a rib,
only average values can be applied in each rib element. The results are shown in
Section 4.4.5 and discussed in Section 4.5.5.

w Rib profile

Figure 4.4: Pro�le of a rib with uniform loads.
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4.3 Results

4.3.1 Reector with Smallest Possible Hub

The �rst �fteen natural frequencies of a 1.5 m diameter reector with three dif-
ferent numbers of ribs are tabulated in Table 4.2. The prestress is 100 N/m in
the hoop direction. The �rst nine mode shapes of the reector with 6 ribs are
plotted in Figures 4.5 and 4.6.

Table 4.2: Natural frequencies of 1.5 m diameter reectors with F=D = 0:78.

Mode
Frequency (Hz)

6 ribs 12 ribs 24 ribs

1 16.46 17.78 17.40

2 16.46 17.78 17.40

3 17.51 18.05 20.64

4 17.51 18.05 20.64

5 22.16 27.93 29.22

6 23.57 27.93 29.22

7 23.71 37.66 41.50

8 24.61 37.66 41.50

9 24.61 39.87 41.95

10 25.04 42.11 43.95

11 25.04 42.11 43.95

12 29.78 42.13 43.97

13 31.59 42.13 43.97

14 31.59 42.13 43.98

15 34.67 42.13 43.98
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Figure 4.5: Mode shapes of 1.5 m diameter reector with 6 ribs.
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Figure 4.6: Outline of mode shapes shown in Figure 4.5.

Table 4.3 lists the �rst �fteen natural frequencies of a 5 m diameter reector with
three di�erent numbers of ribs. The �rst nine mode shapes of the reector with
12 ribs are plotted in Figures 4.7 and 4.8.
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Table 4.3: Natural frequency of 5 m diameter reector with F=D = 0:78.

Mode
Frequency (Hz)

6 ribs 12 ribs 24 ribs

1 3.14 2.97 2.85

2 3.14 2.97 2.85

3 5.09 4.55 4.01

4 5.09 4.55 4.01

5 6.74 6.60 5.96

6 6.89 6.60 5.96

7 7.12 8.61 8.04

8 7.47 8.61 8.04

9 7.47 9.41 10.18

10 7.54 10.36 10.18

11 7.54 10.39 11.87

12 7.60 10.39 12.33

13 8.49 11.30 12.33

14 9.00 13.75 12.69

15 9.30 14.18 14.43
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Figure 4.7: Mode shapes of 5 m diameter reector with 12 ribs.
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Figure 4.8: Outline of mode shapes shown in Figure 4.7.

Table 4.4 shows the �rst �fteen natural frequencies of a 10 m diameter reector
with di�erent numbers of ribs. The �rst nine mode shapes for 24 ribs are plotted
in Figures 4.9 and 4.10.

27



4.3. RESULTS

Table 4.4: Natural frequency of 10 m diameter reector with F=D = 0:78.

Mode
Frequency (Hz)

6 ribs 12 ribs 24 ribs

1 1.54 1.43 1.32

2 1.54 1.43 1.32

3 2.72 2.47 2.23

4 2.72 2.47 2.23

5 2.78 3.35 3.21

6 2.93 3.48 3.21

7 3.56 3.56 3.99

8 3.74 3.56 4.21

9 3.75 4.63 4.21

10 3.75 4.63 4.57

11 3.76 5.63 5.21

12 3.84 5.63 5.21

13 3.84 6.26 6.21

14 4.52 6.87 6.21

15 4.56 6.98 7.20
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Figure 4.9: Mode shapes of 10 m diameter reector with 24 ribs.
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Figure 4.10: Outline of mode shapes shown in Figure 4.9.

4.3.2 10 m Reector with Di�erent Hub Sizes

The �rst nine natural frequencies of the 10 m diameter reector have been cal-
culated for di�erent hub radii. Detailed results are given in Table 4.5.

Table 4.5: Natural frequencies of 10 m diameter reector with di�erent hub radii.

Frequency (Hz)

Mode 6 ribs 12 ribs 24 ribs

20mm 40mm 80mm 40mm 80mm 160mm 82mm 150mm 300mm

1 1.54 1.54 1.55 1.43 1.44 1.46 1.32 1.34 1.42

2 1.54 1.54 1.55 1.43 1.44 1.46 1.32 1.34 1.42

3 2.72 2.71 2.72 2.47 2.47 2.47 2.23 2.23 2.23

4 2.72 2.72 2.72 2.47 2.47 2.47 2.23 2.23 2.23

5 2.78 2.91 3.07 3.35 3.41 3.56 3.21 3.21 3.21

6 2.93 3.56 3.56 3.49 3.56 3.56 3.21 3.21 3.21

7 3.56 3.75 3.75 3.56 3.56 4.17 3.99 4.21 4.21

8 3.74 3.75 3.75 3.56 4.63 4.63 4.21 4.21 4.21

9 3.75 3.76 3.76 4.63 4.63 4.63 4.21 4.45 5.21
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4.3.3 Variation of Frequency with Prestress

The natural frequencies of 1.5 m diameter reectors with minimum hub radius
and hoop prestress of 50, 100 and 200 N/m have been calculated. The results are
tabulated in Table 4.6.

Table 4.6: Natural frequency of 1.5 m diameter reector with di�erent prestress.

Frequency (Hz)

Mode Stress = 50N/m Stress = 100N/m Stress = 200N/m

6 ribs 12 ribs 24 ribs 6 ribs 12 ribs 24 ribs 6 ribs 12 ribs 24 ribs

1 14.63 15.87 16.14 16.46 17.78 17.40 18.27 19.12 19.56

2 14.63 15.87 16.14 16.46 17.78 17.40 18.27 19.12 19.56

3 14.65 17.37 20.30 17.51 18.05 20.64 21.66 20.96 21.21

4 14.65 17.37 20.30 17.51 18.05 20.64 21.66 20.96 21.21

5 16.72 24.94 27.48 22.16 27.93 29.22 27.02 32.28 32.12

6 16.77 24.94 27.48 23.57 27.93 29.22 33.08 32.28 32.12

7 17.98 30.91 39.15 23.71 37.66 41.50 33.54 39.64 42.11

8 17.98 30.91 39.15 24.61 37.66 41.50 34.49 41.84 44.09

9 18.87 32.04 41.87 24.61 39.87 41.95 34.49 41.84 44.09

4.3.4 Comparison of Membrane and Truss Models

The natural frequencies of a 1.5 m diameter reector with 6 ribs have been cal-
culated by two di�erent approaches. First, naturally the membrane elements
and second with a triangular framework of pin-jointed elements, as explained in
Section 3.1.3. The results are tabulated in Table 4.7.

Table 4.7: Comparison of natural frequencies of 1.5 m diameter reector with 6 ribs.

Mode
Frequency (Hz)

Membrane Model Truss Model

1 16.46 16.11

2 16.46 16.11

3 17.51 17.06

4 17.51 17.06

5 22.16 21.75

6 23.57 22.87

7 23.71 22.92

8 24.61 22.95

9 24.61 22.95
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The �rst nine mode shapes are plotted in Figure 4.11.

Mode 6

Mode 9Mode 8

Mode 5

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

Mode 2 Mode 3

Mode 7

Mode 1

Mode 4

Figure 4.11: Mode shapes of 1.5 m diameter reector with 6 ribs modelled as a frame-
work.

4.3.5 1.5 m Reector with Equilibrium Check

The natural frequencies of a 1.5 m diameter reector with 6 ribs have been anal-
ysed. Membrane prestress levels between 100 N/m and 30 N/m have been applied,
with the corresponding bending moments on the ribs, but the membrane prestress
is 40 N/m or above, ABAQUS fails to converge during the equilibrium check (it is
thought that this is due to buckling of the ribs). Therefore, the analysis has been
completed only for a prestress of 30 N/m. The results are plotted in Figures 4.12
and 4.13.

The plot of hoop stress in Figure 4.12 shows that most of the membrane is under
tension, except for a very small portion near the hub of the reector. The stress
values decrease continuously from the outer edge towards the hub. Almost half
of the outer surface remains close to the applied prestress of 30 � 105N=m2,
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corresponding to 30 N/m, but towards the hub the stress rapidly decreases and
the smallest tensile stress is approximately ten times smaller than the applied
initial stress. As the distance between two adjacent ribs decreases, near the hub,
the reduction of prestress increases. E�orts to improve the stress distribution are
continuing at the time of writing.
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Figure 4.12: Hoop stress of 1.5 m diameter reector with 6 ribs for prestress of 30 N/m.
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Figure 4.13: Radial stress of 1.5 m diameter reector with 6 ribs for prestress of 30
N/m.

The radial stress plot in Figure 4.13 shows a considerable zone of compressive
stress near the hub and along the ribs. This e�ect is related through Poisson's
ratio to the loss of hoop prestress already discussed.
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Figure 4.14: Mode shapes of CRTS Reector of 1.5 m diameter with 6 ribs.

The �rst nine mode shapes of the model are plotted in Figure 4.14. Consecutive
modes have equal frequencies but di�erent mode shapes. This is related to the
periodic nature of the reector.

4.4 Discussion

The natural frequency variation of the 1.5 m diameter reector with the number
of ribs is shown in Table 4.2. Generally frequencies increase with the number of
ribs, although a slight reduction is seen in the �rst two frequencies of the reectors
with 12 and 24 ribs.

Table 4.3 shows that the natural frequency of a 5 m diameter reector decreases
when the number of ribs is increased, but a variation to this pattern is observed
for the last three modes. The same behaviour is observed |Table 4.4| also for
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the �rst four modes of the 10 m diameter reector, but only a complex variation
is observed for the remaining modes.

The natural frequency of a structure depends on its sti�ness and mass. When
the number of ribs is changed, both the sti�ness and mass of the reector change.
This explains why the behaviour discussed above does not show a single trend. It
should also be noticed that in increasing the number of ribs no attempt has been
made to optimise the design of the structure, e.g. by decreasing the cross-section
of the ribs or increasing the level of prestress.

It is also observed that the natural frequencies of the reector decrease when the
diameter is increased. This is because both the sti�ness of the reector decreases
and the mass of the reector increases.

An important common feature is that two di�erent modes exist at a given natural
frequency. It can also be seen that the number of ribs in a reector is equal to
the number of normal modes observed in a group, e.g. a 6 rib reector has 6
normal modes in a group and a 12 rib reector has 12 normal modes in a group,
although the number of natural frequencies in a group is less than the number
of ribs. This observation con�rms that the number of normal modes in a given
propagation zone is equal to the number of substructures or identical repetitive
units. This observation agrees with the observation made by SenGupta [13],
already discussed in Section 2.3.

Table 4.5 shows that the natural frequencies of the 10 m diameter reector do not
change greatly with the hub radius, although in a very few cases it is not. Overall,
a small increase in frequency is observed when the hub radius is increased.

Table 4.6 shows that the natural frequencies of 1.5 m diameter reectors with
initial stress of 50, 100, 200 N/m increases with the increase of prestress. The
increase of frequency is less in the lower modes than in the higher modes.

Table 4.7 shows the natural frequencies of 1.5 m diameter reectors (6 ribs) with
membrane and framework elements. Similar results are observed from both types
of analysis, which is reassuring. This con�rms the accuracy of the membrane
model.

It was expected that hoop stress should be 30 N/m uniformly throughout the
membrane, with practically no stress in the radial direction. But, after carrying
out the equilibrium iteration the stress distribution is found to be considerably
di�erent.
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Figure 4.15: Variation of fundamental natural frequency with membrane prestress for
1.5 m diameter reector with 6 ribs.

Figure 4.15 is a logarithmic plot of the fundamental natural frequency (without
equilibrium iteration) of the 1.5 m diameter reector with 6 ribs vs. the applied
prestress. Because of the approximately linear �t, we have

y = 0:16x+ 0:89 (4.5)

which can be written as,
f / T 0:16 (4.6)

where f is fundamental natural frequency and T the membrane prestress.

If one considers the variation in frequency due to including the equilibrium iter-
ations, this relationship becomes

f / T 0:18 (4.7)

It turns out that the fundamental natural frequency of the reector with and
without equilibrium iterations is not signi�cantly di�erent. Therefore it is rea-
sonable to decide not to carry out this tedious additional analysis in a preliminary
design situation.
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Chapter 5

Conclusion

A numerical study of the vibration behaviour of CRTS reectors has been done.
The natural frequencies generally increase with the number of ribs and prestress
level, but increase in frequency is less for lower modes than for higher modes
decrease with the diameter of the reector, and practically una�ected by the
diameter of the hub.

An important common feature that has been observed is the existence of two
di�erent modes at a given natural frequency, and hence of an in�nity of modes
at the same frequency, obtained by taking a linear combination of the two modes
given by ABAQUS. It has also been observed that the number of normal modes
in a given propagation zone is equal to the number of ribs, but the number of
natural frequencies is less than the number of normal modes. This clearly shows
the periodic nature of the reector.

5.1 Further Work

Because of the periodic nature of symmetric CRTS reectors, they will be very
sensitive to even small irregularities due to manufacturing and material toler-
ances.

Such irregularities can a�ect the vibration behaviour signi�cantly, by localising
the vibration modes and con�ning the energy to a region close to the source. Mode
localisation in symmetric CRTS reectors could cause the numerical predictions of
their natural frequencies and mode shapes to be completely incorrect. Therefore
an experimental analysis of the CRTS reector will be required.
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Appendix A

Sample ABAQUS Script

The following ABAQUS script was written to �nd out the fundamental natural
frequency of the at membrane shown in Figure 3.2 by using membrane elements.

*HEADING
MEMBRANE
Units: N m kg
*NODE
1, 0.0, 0.0, 0.0
11, 0.100, 0.0, 0.0
201, 0.0, 0.100, 0.0
211, 0.100, 0.100, 0.0
*NGEN, NSET=A1
1, 11, 1
*NGEN, NSET=A2
201, 211, 1
*NSET, NSET=A3, GENERATE
1, 201, 20
*NSET, NSET=A4, GENERATE
11, 211, 20
*NFILL
A1, A2, 10, 20
*ELEMENT, TYPE=M3D4
1, 1, 2, 22, 21
*ELGEN, ELSET=B1
1, 10, 1, 1, 10, 20, 10
*MEMBRANE SECTION, ELSET=B1, MATERIAL=KEVLAR
1E-4
*MATERIAL, NAME=KEVLAR
*DENSITY
790
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*ELASTIC, TYPE=ISOTROPIC
11.9E9, 0.3
*INITIAL CONDITIONS, TYPE=STRESS
B1, 10E4, 10E4
*RESTART, WRITE
*STEP, NLGEOM
*STATIC
*BOUNDARY
A2, ENCASTRE
A4, ENCASTRE
A1, ENCASTRE
A3, ENCASTRE
*EL PRINT,POSITION=INTEGRATION POINT,FREQ=0
*EL FILE, FREQ=0,POSITION=INTEGRATION POINT
*NODE FILE, FREQ=0
*NODE PRINT, FREQ=0
*END STEP
*STEP
*FREQUENCY, EIGENSOLVER=LANCZOS
1
*BOUNDARY, OP=NEW
A1, 2
A3, 1
A4, 3
A2, 3
1, 1, 2
*EL PRINT, POSITION=INTEGRATION POINT, FREQUENCY=0
*EL FILE, FREQ=0,POSITION=INTEGRATION POINT
*NODE FILE, FREQ=0
*NODE PRINT, FREQ=0
*END STEP
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