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Abstract This paper presents a constitutive thermoviscoelastic model for thin films

of linear low-density polyethylene subject to strains up to yielding. The model is

based on the free volume theory of nonlinear thermoviscoelasticity, extended to or-

thotropic membranes. An ingredient of the present approach is that the experimen-

tally inaccessible out-of-plane material properties are determined by fitting the model

predictions to the measured non-linear behavior of the film. Creep tests, uniaxial ten-

sion tests, and biaxial bubble tests are used to determine the material parameters. The

model has been validated experimentally, against data obtained from uniaxial ten-

sion tests and biaxial cylindrical tests at a wide range of temperatures and strain rates

spanning two orders of magnitude.

Keywords Nonlinear viscoelasticity · Free volume model · Polymer thin film

1 Introduction

The present study was motivated by the need for accurate phenomenological models

for thin polyethylene films used in the NASA superpressure balloons. These strato-

spheric balloons, with a diameter in the range 100-150 m, consist of a polyethylene

closed envelope constrained by stiff meridional cords[1][2]; they are operated over
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a wide range of temperatures and are subjected to multiple day-night pressurization

cycles. The design verification of these balloons requires an accurate material model

that captures both time and temperature dependence, to provide accurate estimates of

the evolution of stress and strain during a flight.

The film that is the focus of this study is designated as StratoFilm 420. It is a three

layer co-extrusion of linear low density polyethylene (LLDPE) with a total thickness

of 38 μm. It is produced by Charter NEX Films, Inc. from an extrusion process where

the DOWLEX resin ( http://www.dow.com/polyethylene/eu/en/prod/dowlex.htm ) is

extruded from a circular die and simultaneously stretched in the transverse direction

to achieve near-balanced properties. An ultraviolet inhibitor (UVI) is added to the

resin of the two outer layers, in order to provide long duration protection of the in-

ner layer from exposure to ultraviolet radiation. The center layer is 60% of the total

thickness. This film was selected for the NASA superpressure balloons because of

its strength and ductile behavior at low temperature. Its glass transition temperature

is -95◦C and, since the range of operational temperature for stratospheric balloons is

above -80◦C, the present study covers the behavior of the film in the rubbery state.

The aim of the present study is to develop a constitutive model that captures

the nonlinear thermoviscoelastic and anisotropic behavior of LLDPE up to the point

where non-recoverable deformation begins. A wide range of constitutive models have

been developed for the nonlinear thermoviscoelastic behavior of polymers. Contin-

uum models based on multiple integrals were first proposed but found limited usage

due to the complexity of the resulting equations. The first widely adopted single in-

tegral formulation was proposed by [3][4] [5], who introduced thermodynamically

permissible stress or strain dependent material functions into the linear thermovis-

coelastic constitutive equations. [6] [7] [8] developed constitutive models based on

the activation energy barriers for polymer networks. [9] developed a thermodynami-

cally consistent formulation for the nonlinear behavior of glassy polymers based on

the configurational internal energy. A comprehensive overview of the mathematical

aspects of existing models was presented by [10].

StratoFilm was first characterized and modeled on the basis of Schapery’s theory

[11], including a stress-dependent nonlinear correction. Anisotropy and biaxial load-

ing effects were considered [12] [13], and the biaxial model was then implemented

in finite element software that was verified with an experimental study of the time

varying strains in a pressurized balloon [14]. These initial models were found to be

quite accurate at small strain levels, but the analysis of large-strain regions of a bal-

loon, such as the interfaces between the film and the apex/base fittings or the the film

and the meridional cords, required models capable of larger strain predictions.

An alternative approach using the free volume model first proposed by [15] was

initiated by [16]. Instead of introducing nonlinear functions tailored to experimen-

tally observed deviations from the linear model predictions, the free volume model

postulates a relation between the macroscopic, thermoviscoelastic behavior of the

film and its free volume. [16] were able to obtain accurate viscoelastic predictions

over the temperature range −10◦C to 0◦C in a model that combined Rand’s linear

viscoelastic model with a free volume formulation.

The present paper extends the previous study by [16] to a much wider range of

temperatures and stress states. The paper begins with a focused review, in Section 2,
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of linear and nonlinear thermoviscoelasticity. This review provides the foundation

for the proposed nonlinear thermoviscoelastic model of StratoFilm. The experimental

and numerical procedures to determine the model parameters are described in Sec-

tions 3 and 4, respectively. Section 5 presents an extensive validation of the model

against experimental results for a range of temperatures, strain rates, and loading con-

ditions that include many cases that were not included in the initial determination of

the model parameters. The effects of making different choices for the volumetric co-

efficient of thermal expansion during the development of the model are specifically

discussed. Section 6 concludes the paper.

2 Foundation of Proposed Model

The starting point for the proposed model is the standard theory of linear thermo-

viscoelasticity, coupled with an expression for the time shift factor that depends on

changes in free volume that includes both dilatational and distortional effects.

This section presents a brief summary of the linear theory, formulated in one

dimension, and followed by the definition of the free volume and the way it intro-

duces nonlinearity in the time and temperature dependent, large-strain behavior. The

remaining parts of the section discuss three additional topics: the limitations of lin-

ear viscoelastic models for StratoFilm based on dynamic tests, a linear model for

orthotropic thin films, and the thermal expansion of StratoFilm.

2.1 Linear Thermoviscoelasticity

In linear thermoviscoelasticity, the stress-strain relation for uniaxial deformation is

expressed in terms of the Boltzmann superposition integral, [17]

ε(t) =
∫ t

0
D(t − s)

dσ
ds

ds+
∫ t

0
α

dT
ds

ds, (1)

where ε is the total strain, assumed to be infinitesimally small, σ is the nominal

stress, and D is the time-dependent creep compliance. The second term accounts

for the thermally induced strain with respect to a reference temperature T0; T is the

temperature and α is the linear coefficient of thermal expansion.

For the analysis of real materials over a wide range of time scales, the creep

compliance is often described by means of a series of exponential terms, known as

the Prony series [18], where each exponential term effectively represents the variation

of the creep compliance over a certain time range. The Prony series representation is

given by

D(t) = D0 +
n

∑
j=1

D j(1− e−t/τ j), (2)

where t is time, D0 is the instantaneous compliance, D j are the Prony coefficients,

and τ j are the corresponding retardation times.

The rate of creep of a polymer is significantly affected by changes of tempera-

ture. Considering the reference temperature T0; at T > T0 the creep rate is higher;
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at T < T0 the creep rate is slower. If all processes contributing to the viscoelas-

ticty of a material are equally accelerated by temperature changes, the material is

described as thermorheologically simple [17]. Such materials obey time-temperature

superposition, which states that any temperature change corresponds to a shift in time.

Hence the thermoviscoelastic behavior of a thermorheologically simple material

across a range of time and temperatures can be described in terms of its behavior

at the reference temperature T0, by introducing a change in the time variable. This

modified time variable is known as the reduced time, t ′, which is defined as

t ′(T0) =
t(T )
a(T )

, (3)

where a is a suitable function, known as the shift factor. A widely accepted, empirical

expression for the time shift factor of polymers is the Williams-Landel-Ferry (WLF)

equation [17],

loga =− c1(T −T0)

c2 +(T −T0)
, (4)

in which c1 and c2 are material parameters.

The creep compliances at two different temperatures are then related by

D(t,T ) = D
( t

a
,T0

)
. (5)

which states that the compliance at temperature T and time t is equal to the compli-

ance at the reference temperature T0 and reduced time t ′. Hence, if a set of creep com-

pliance measurements at different temperatures are available, they can be converted

to a single reference temperature. On a log-log plot of compliance versus time, this

conversion is equivalent to carrying out horizontal shifts by loga(T ).
By carrying out such a conversion to a single temperature we obtain the compliance

master curve, which fully describes the small-strain uniaxial behavior of a thermorhe-

ologically simple material.

The above formulation can be extended to non-isothermal conditions by express-

ing the reduced time as a time integral. Equation 3 is then replaced by

t ′ =
∫ t

0

ds
a(T (s))

. (6)

and Eq. 1 can then be expressed in terms of reduced time to account implicitly for

temperature variations,

ε(t ′) =
∫ t ′

0
D(t ′ − s)

dσ(s)
ds

ds+
∫ t

0
α

dT
ds

ds. (7)
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2.2 Nonlinear Thermoviscoelasticity

For finite deformations the formulation in Section 2.1 is not accurate. A single-

integral approach to capture the effects of large strains was proposed by Knauss

and co-workers [15] [19] [20]. The key additional variable introduced in this model,

known as free volume model, is the variation in the intermolecular space within the

solid. It is argued that varying this space changes the time scale of molecular chain

motions in response to imposed deformation, changing the macroscopic rate of ther-

moviscoelastic response. As the free volume increases, the molecular chains become

more mobile and thus can accommodate any imposed deformation more quickly.

Macroscopic volume changes associated with mechanical dilatation, thermal expan-

sion, moisture swelling, etc. are all linked to changes in free volume and hence they

influence the time shift factor.

The fractional free volume is defined in terms of the total volume, v0, of the solid

and the free volume, v f , as

f =
v f

v f + v0
∼ v f

v0
(8)

The time shift factor is assumed to be related to the fractional volume through

[21],

loga =
Bd

2.303

(
1

f
− 1

f0

)
, (9)

where Bd is a material constant and f0 is the fractional volume in the reference con-

dition (unstressed, at temperature T0).

The free-volume model is based on the hypothesis that f can be expressed as

f = f0 +αv(T −T0)+δv ·θ , (10)

The parameters that appear in Eq. 10 are as follows:

– αv is the volumetric coefficient of thermal expansion;

– θ is the mechanical dilatation

θ = ∑εk, (11)

where εk is the diagonal component of the mechanical strain tensor;

– δv is a constant that relates changes in mechanical dilatation to changes in free

volume.

Combining Eq. 9 and Eq. 10 gives

log a =− Bd

2.303 f0

(
αv(T −T0)+δv ·θ

f0 +αv(T −T0)+δv ·θ
)
. (12)

Equation 12 assumes that nonlinear effects originate only from dilatational ef-

fects. However, it was later found that distortional, or shearing, deformation is also

a source of nonlinear behavior [22] [23]. Such effects can be included in the model

by including in Eq. 12 an additional term, and abandoning the physically based free

volume f0 for two model parameters, fd , fs:

log a =− Bd

2.303 fd

(
αv(T −T0)+δv ·θ

fd +αv(T −T0)+δv ·θ
)
− Bs

2.303 fs

(
εe f f

fs + εe f f

)
. (13)
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The present study follows the approach in [22] [23] but represents the shear deforma-

tion by means of the effective deviatoric mechanical strain,

εe f f =

√√√√2

3

[(
ε1 − θ

3

)2

+

(
ε2 − θ

3

)2

+

(
ε3 − θ

3

)2

+κε2
6

]
(14)

where ε6 is the in-plane shear strain component, Bs, fs,κ are additional, distortional

material parameters to be determined experimentally.

The determination of Bd , fd , Bs, fs, κ in Eqs. 13-14 requires experiments in which

dilatational and distortional effects are separated [23], e.g., confined compression

tests and shear tests. However, shear tests are not applicable to thin films, which tend

to wrinkle instead of deforming in shear. Therefore, in the present study Eq. 13 was

modified to the equivalent, alternative form:

log a =− B
2.303 f0

(
αv(T −T0)+δv ·θ +δs · εe f f

f0 +αv(T −T0)+δv ·θ +δs · εe f f

)
. (15)

Here, there is a single parameter, B, instead of Bd ,Bs, and the additional parameter

δs relates changes in effective deviatoric strain to changes in free volume, usually

δs < 1. An advantage of using this equivalent expression of the time shift is that it is

easier to obtain initial estimates of the new parameters, for details see Section 4.4.

It should be noted that, regardless of the kind of problem of interest, the nonlin-

ear models described in this section require knowledge of the full three-dimensional

strain state in a material.

Lastly, it should be noted that the coefficient of thermal expansion used in the free

volume model, Eq. 10, refers to the total thermal strain from the reference tempera-

ture. Hence it is defined as:

αv =
εT

T −T0
(16)

It is not defined from differential increments in temperature and thermal strain.

2.3 Model for Orthotropic Film

The properties of an orthotropic thin film are defined with respect to the in-plane

material axes, 1, 2, and the out-of-plane axis, 3. In the case of blown films such as

StratoFilm 420, the material axes are respectively the direction of extrusion, denoted

as MD (machine direction), and the orthogonal in-plane direction, denoted as TD

(transverse direction).

The model is formulated in terms of the engineering strain ε and nominal stress σ
tensors. For plane stress the out-of-plane stress is zero and the in-plane shear compo-

nents are denoted with the subscript 6, hence the constitutive relation in Eq. 7 takes

the form

ε(t ′) =
∫ t ′

0
D(t ′ − s)σ̇(s)ds+

∫ t

0
αṪ (s)ds, (17)
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where

ε(t ′) =

⎡
⎢⎢⎣

ε1(t ′)
ε2(t ′)
ε3(t ′)
ε6(t ′)

⎤
⎥⎥⎦ (18)

σ(t ′) =

⎡
⎢⎢⎣

σ1(t ′)
σ2(t ′)

0

σ6(t ′)

⎤
⎥⎥⎦ . (19)

and

α=

⎡
⎢⎢⎣

α1

α2

α3

0

⎤
⎥⎥⎦ (20)

Note the inclusion of ε3 in the model. It is needed to compute the mechanical

dilatation and distortion, which are needed for the computation of the time shift,

Eq. 15.

The creep compliance matrix D(t) that appears in Eq. 17 is given by

D(t) =

⎡
⎢⎢⎣

D11(t) D12(t) D13(t) 0

D12(t) D22(t) D23(t) 0

D13(t) D23(t) D33(t) 0

0 0 0 D66(t)

⎤
⎥⎥⎦ . (21)

Note that the present model is defined in terms of four strain and stress com-

ponents, to fully capture the in-plane deformation of the film (3 variables), as well

as the out-of-plane deformation needed to determine the mechanical dilatation and

distortion (1 variable). Hence, the creep compliance matrix is 4× 4, which requires

7 independent compliance functions of which 3 are out-of-plane compliance terms

(D13, D23 and D33). Note that D33(t) is not needed, as the out-of-plane stress is al-

ways zero. This advantage would have been lost if the dual approach, in terms of

the relaxation modulus matrix, had been chosen. Also note that each entry in D(t) is

represented by a Prony series of the type defined by Eq. 2.

To summarize, the proposed model describes the nonlinear thermoviscoelastic

behavior of an orthotropic thin film by means of Eqs. 2, 6, 15, 11, 14 and 17.

2.4 Complexity of StratoFilm

An initial assessment of the linear properties of StratoFilm was carried out at the

NASA Goddard Space Flight Center (GSFC) using a Dynamic Mechanical Anal-

yser (DMA). DMA tests were carried out in both MD and TD, at temperatures from

−110◦C to 50◦C in increments of 10◦C, and in the frequency range from 100 Hz

to 0.1 Hz for each temperature. From the test data, the storage modulus, E ′, and the

damping coefficient, tanδ , were obtained for each temperature and frequency [24].
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A detailed study of LDPE has shown that it is not thermo-rheologically simple

over many decades of time [25], which raised doubts about generating the compli-

ance master curves of StratoFilm by conversion to the time domain of dynamically

measured properties. Capodagli and Lakes [25] have used a comparison of master

curves for storage and damping moduli in their study. Following this approach, the

storage modulus data obtained from the DMA tests was temperature-shifted to form a

continuous, smooth curve as shown in Fig. 1 for MD loading. A damping coefficient

master curve was then generated assuming the same shifts that had been used for the

storage modulus curves and the results are also plotted in Fig. 1.
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Fig. 1 Master curves of storage modulus and damping coefficient at 20◦C in machine direction. The

damping coefficient plot is based on the shifts used for the storage modulus.

The figure shows that the damping curves do not form a continuous curve, which

indicates that StratoFilm does not obey time-temperature superposition in general. It

has been shown that in such cases the time shift factor a becomes dependent on both

temperature and frequency [26].

For this reason, as well as unsuccessful attempts to set up a general thermo-

viscoelastic model of StratoFilm using material properties based on DMA data, it

was decided to use data from creep tests, which are much closer to the balloon oper-

ating conditions than DMA tests, to obtain the in-plane creep compliances.

2.5 Thermal Expansion of StratoFilm

Another material property required by the free volume model is the volumetric coef-

ficient of thermal expansion. αv can be obtained by adding the linear coefficients of

thermal expansion (CTE) in three orthogonal directions,

αv ≈ α1 +α2 +α3, (22)

The in-plane coefficients of StratoFilm 420, α1 and α2, were measured by Young

[27], see Fig. 2(a), and independently verified in the present study. They are repre-
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Table 1 Polynomial representation of in-plane coefficients of thermal expansion.

j p1, j [K−1] p2, j [K−1]

0 -2.069691×101 1.720772×101

1 1.183351×100 -1.010550×100

2 -3.065068×10−2 2.692250×10−2

3 4.755522×10−4 -4.302432×10−4

4 -4.922242×10−6 4.593443×10−6

5 3.580707×10−8 -3.451674×10−8

6 -1.877228×10−10 1.871957×10−10

7 7.146794×10−13 -7.383200×10−13

8 -1.961127×10−15 2.102008×10−15

9 3.783162×10−18 -4.213295×10−18

10 -4.870561×10−21 5.644505×10−21

11 3.757961×10−24 -4.538553×10−24

12 -1.314349×10−27 1.656629×10−27

sented by polynomial functions,

αi =
N

∑
j=0

pi, jT j, (23)

where pi, j are the polynomial coefficients listed in Table 1.

The out-of-plane coefficient, α3, was measured during the present study. This

measurement is challenging due to the small thickness of StratoFilm. Direct mea-

surements were performed with a TA Instruments thermomechanical analyzer (model

Q400 0400-0017). The film was cut into 5×5 mm2 squares and a stack of 20 squares

was used to amplify the thermally induced thickness change. The heating rate was set

at 2◦C/min from -125◦C to 55◦C.

Choosing an appropriate preload level is crucial, as it is necessary to fully com-

pact the stack before starting the tests, while avoiding significant creep deformation

of the test sample. The preload applied to the stack of film layers by the probe of the

thermomechanical analyzer was varied between 20 mN and 400 mN. It was found

that with a preload of 400 mN the total initial thickness was 0.790 mm, only 4%

larger than the thickness of 20 sheets (0.038×20 = 0.760 mm). Three test runs were

performed for each preload condition and the results were averaged.

The values of α3 measured for each preload are plotted in Fig. 2(b). The results

were found to depend on the preload, the measurements at higher preloads showed

broad convergence to

α3 ≈ 1×10−4K−1 (24)

and this is the value that was chosen for the StratoFilm model. The overall effects

on the material model of making alternative choices for α3 will be discussed in Sec-

tion 5.3.
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Fig. 2 (a) In-plane and (b) out-of-plane coefficients of thermal expansion. The out-of-plane coefficients

were measured under different preloads.

3 Experimental Apparatus and Test Procedures

Three different tests were carried out to characterize the thermomechanical behavior

of StratoFilm, including simpler, i.e. uniaxial, stress conditions as well as biaxial

stress. Specifically, the following tests were conducted:

– uniaxial tension creep tests to determine the linear in-plane creep compliance

master curves;

– uniaxial tension tests at constant strain rate, to activate the nonlinear behavior of

the film at larger strains; and

– biaxial bubble tests, to characterize the film behavior under stress conditions that

are more representative of the operational conditions in a balloon.

All tests were carried out in an Instron 3119-506 environmental chamber. An In-

stron 5569 electromechanical materials testing machine was used for the tension tests,

and a pressure box placed inside the thermal chamber was used for the bubble tests.

Thermocouples were placed close to the top and bottom edges of the test samples to

monitor the temperature of the test sample throughout each test.

A three-dimensional digital image correlation (3D-DIC) system [28] was used

to measure the biaxial distribution of in-plane strains in the test samples throughout

each test. 3D-DIC measure both in-plane and out-of-plane displacements of the film,

and hence the correct strains are obtained even in the case that the film is wrinkled.

The test samples were lightly sprayed with black paint to provide a random speckle

pattern for the 3D-DIC. The images obtained during each test were processed in Vic-

3D with a correlation subset of 21×21 pixels and the strain field was computed from

an 8-tap B-spline interpolation of the displacement field [29].

The test samples for the uniaxial tests were 10” by 1” strips cut from a single piece

of StratoFilm 420 with a JDC Precision Cutter (Thwing-Albert Inc.). The samples

were oriented in three directions, MD, TD and 45◦, to capture the orthotropy of the
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material. The bubble test samples were 10” by 10” squares cut from the same piece

of film. The edges of the squares were parallel to the MD and TD.

The creep tests were performed at constant temperatures in the range -70◦C to

40◦C, at increments of 10◦C. A dead load arrangement was used to maintain a con-

stant stress, as the control system in the testing machine was unable to achieve suf-

ficiently uniform conditions and the measurement of small forces was noisy; the test

configuration is shown in Figure 3. The load was applied by connecting the bottom

end of the sample to a weight, in the range 0.88 N to 9.68 N depending on the tem-

perature, to keep the final strain smaller than 1.5%. This particular strain limit was

chosen on the basis of creep tests at NASA Wallops Balloon Research and Devel-

opment Laboratory, which measured the creep behavior under step increases in the

applied stress. A conclusion from these tests was that a longitudinal strain of 1.5%

is within the linear creep regime. In the present tests, the top end of the sample was

attached to the loading beam of the testing machine and during cooling the beam was

held at a lower height, such that the weight was resting on the support block. Thus,

the sample remained unstressed throughout the cooling phase. The alignment of the

sample grips was carefully checked to minimize any eccentricity in the loading ar-

rangement. Once the test temperature had been reached and it had stabilized within

±0.3◦C, the test started by lifting the loading beam 6 mm at a constant rate of 20

mm/min. The displacement of 6 mm was sufficient to avoid that the weight came

into contact with the bottom of the chamber during the test. The sample was then

held under constant load for 3 hours. Load transients were monitored by the load cell

attached to the loading beam of the testing frame.

Load head

Wires Hook

Film

Fixtures

Dead 
Weight

Support 
block

Fig. 3 Small strain creep test configuration.
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The imaging rate on the 3D-DIC system was set at 15 sec for these tests. From

the load readings it was found that the initial ramp only lasted 5 sec. According to the

“ten-times” rule, data recorded after a delay of 50 sec would not show any transient

loading effects, which left at least two decades of valid test data at each temperature.

Due to the long duration of the small strain creep tests, only two tests were performed

at each temperature and the results were averaged in each case.

Figure 4 shows a typical strain field from a creep test in the MD at 20◦C. Varia-

tions of strains due to boundary effects and experimental noise can be observed. The

strain field was averaged over a window near the center of the sample; different sizes

of the averaging window were considered but typically the variation of the average

strain was less than 3%.

(a)

(b)

Fig. 4 Strain contour plots from DIC for a small-strain creep test in MD at 20◦C: (a) longitudinal strain,

(b) transverse strain. The sample width is 1 inch.

The configuration for the uniaxial tests at constant strain rates was similar to the

creep tests, but this time the bottom end of the sample was held fixed and the loading

beam was continuously moved at a rate such that the test sample was subjected to a

nominal strain rate of 0.1% s−1. The tests were continued well beyond the onset of

plastic deformation. These tests lasted less than 100 sec and the imaging rate on the

3D-DIC system was set at 0.25 sec to record sufficient data. These tests were carried

out at -50◦C, -30◦C, -10◦C and 10◦C.
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Three samples were tested and averaged for each condition. The nominal stress

was calculated from the measured load divided by the initial cross section area of the

sample.

The thermal strains were not measured in these tests, as a reference image of the

test sample in a slack condition was taken after cooling the sample. Hence, the DIC

strain measurements for these tests provided directly the mechanical strain of the

sample. Apart from a small difference due to the fact that the initial reference lengths

were measured at the test temperature these strain measurements are comparable to

those obtained after subtraction of the thermal strains from the total strains (as was

the case of the bubble tests, described next). Three specimens were tested under each

condition and the plots show little sample variations.

Bubble tests were carried out at -50◦C, -30◦C, -10◦C and 10◦C, by clamping

StratoFilm samples over an air pressure box with a central hole of diameter 100 mm.

The box was connected to an Omega IP610-030 pressure controller to regulate the

inlet pressure. The pressure in the box was measured with an Omega DPG409-015G

electronic pressure gauge. A National Instruments USB-6221 BNC data acquisition

(DAQ) module generated the control signal for the pressure controller and received

the signal from the pressure gauge. An Analog Devices AD694JN voltage-to-current

(0-10V to 4-20mA) converter was used to convert the voltage signal from the DAQ

module to the current signal for the pressure controller. The DAQ module was con-

nected to a personal computer that also processed the deformation measurements

from the 3D-DIC and the temperature measurements from the thermocouples, see

Fig. 5.

The mechanical strain in the bubble tests was obtained by subtracting the thermal

strain, estimated from the second term in Eq. 1, from the total strain measured with

DIC.

Because there is a significant mismatch between the thermal expansion coeffi-

cients of StratoFilm and the aluminum plate to which the film is clamped, rather

large thermal stresses build up during the cooling phase. The nominal stress in the

bubble, assumed to be isotropic, was obtained from

σ =
pR
2h

(25)

where h is the initial thickness of the film and R is the mean radius of curvature,

obtained from 3D-DIC.

A small overpressure was maintained in the pressure box during cooling to main-

tain positive curvatures throughout. To avoid initial transient pressure loading effects

during cooling, which would complicate the analysis of the measured data, the over-

pressure was applied 30 min before cooling. Cooling lasted 30 min, then the pres-

sure was increased at a constant rate for 10 min until it reached a specified maximum

value, after which the pressure was held constant for 10 min and then it was decreased

to zero over 10 min. DIC images were acquired every 5 sec through the whole cool-

ing and testing process; the temperature was also recorded every 5 sec. The window

to average the strains and curvatures was located around the apex of the bubble. Typ-

ical profiles of pressure and temperature are shown in Fig. 6. Note that the sensitivity



14 Jun Li et al.

of the pressure controller did not allow us to achieve sudden pressure transitions, or

maintain a constant pressure while the temperature was varied.

(a)

Pressure controller

Current converter

DAQ

Pressure

gauge

Test

box

PC

Air line

(b)

Fig. 5 Bubble test configuration (a) pressure box, (b) schematic of test control.

4 Model Development

The linear orthotropic model outlined in Sections 2.1 and 2.3 consists of the in-plane

creep compliance master curves, D11,D22,D12,D66. As explained in Section 2.4,

these master curves were derived from uniaxial tension creep tests at a series of tem-

peratures.

The nonlinear orthotropic model presented in Sections 2.2 and 2.3 includes the

free volume model constants B, f0, δv, δs, and the out-of-plane creep compliance

master curves D13, D23. Due to the small thickness of StratoFilm direct measurement

of the out-of-plane material functions D13 and D23 would be very challenging. Hence

all of the nonlinear model parameters were found by fitting the model predictions to

an extensive set of measurement from tests that had activated the nonlinear response

of the film.
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Fig. 6 Profile of pressure and temperature during a bubble test.

4.1 Linear Orthotropic Model

The in-plane creep compliances D11 and D22 were obtained from the longitudinal

strains measured from the creep tests in MD and TD, respectively. D12 was obtained

by averaging the transverse strains measured during both of these tests. D66 was ob-

tained from tests in the 45◦ direction, which applies a shear stress —in the material

coordinate system— in addition to in-plane normal stress components.

The procedure for determining the creep compliance is described next. Let (x,y)
denote the axes of the test sample, where the y-axis is aligned with the loading direc-

tion; let (1,2) denote the material axes MD and TD, respectively, as already defined

in Section 2.3.

First, the nominal x,y stress components were obtained from the applied load:

⎡
⎣σxx

σyy
σxy

⎤
⎦=

⎡
⎣ 0

P/wh
0

⎤
⎦ . (26)

where P is the applied load (dead weight) and the w ·h is the cross-sectional area of

the test sample, measured at the reference temperature.

Second, the mean x,y strain components in the central region of the test sample

were obtained from the 3D-DIC measurements, at time intervals of 15 sec for the

uniaxial creep tests, 0.25 sec for the constant strain rate tests, and of 5 sec for the

bubble tests. The “smooth” function available in Matlab was used to smooth the test

data. It uses a moving average filter of 5 data span.

Next, for the tests in the 45◦ direction, stress and strain transformations were

carried out, since in this case the loading axes are rotated by an angle θ = 45◦ with

respect to the material axes. The transformations are:

⎡
⎣σ1

σ2

σ6

⎤
⎦= [T ]

⎡
⎣σxx

σyy
σxy

⎤
⎦ ;

⎡
⎣ ε1

ε2

ε6

⎤
⎦= [R] [T ] [R]−1

⎡
⎣ εxx

εyy
γxy

⎤
⎦ . (27)
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where [R] = diag{1,1,2} and

[T ] =

⎡
⎣ cos2 θ sin2 θ 2cosθ sinθ

sin2 θ cos2 θ −2cosθ sinθ
−cosθ sinθ cosθ sinθ cos2 θ − sin2 θ

⎤
⎦ . (28)

Finally, the creep compliances were calculated from:

D11 = ε1/σ1 (29)

D12 = ε2/σ1 = ε1/σ2 (30)

D22 = ε2/σ2 (31)

D66 = ε6/σ6 (32)

The creep compliances derived in this way provided a set of separate curves,

each corresponding to one particular temperature. These curves were plotted on a

logarithmic time scale and time shifts were applied until each set of curves provided

a reasonably continuous and smooth compliance master curve, as shown in Fig. 7. It

was found that all four in-plane compliances could be made sufficiently continuous

and smooth with the same set of time shifts, which indicates that StratoFilm obeys

time-temperature superposition, at least for the creep compliance.

The time shift factors used to generate the master curves have been plotted in

Figure 8. They were fitted by Eq. 4, using the Levenberg-Marquardt algorithm to

determine the WLF constants c1 and c2: c1 = 382.2, c2 = 3539.3 K. It is interesting

to compare these results with the universal WLF curve for polymers [30] (c1 = 8.86,

c2 = 101.6 K), which is also shown in Fig. 8. It can be seen that at cold temperatures

the time shift factors of StratoFilm are much smaller than for a standard polymer.

The final step in the development of the linear model was the computation of the

Prony series. Before fitting each experimentally-derived master curve with a Prony

series, local waviness was removed by presmoothing the experimental data by means

of polynomials, as suggested in [31]. The reason for doing this is that waviness in

the master curves for the diagonal coefficients of the creep compliance matrix results

in some negative Prony coefficients in Eq. 2. Such negative coefficients indicate an

unstable material, which is not physically admissible before the material yields.

For convenience in the implementation of the model, the same values of the

retardation times were selected for all four in-plane compliances using one-decade

intervals to cover the entire time range of the master curves. This choice has been

reported to be adequate for practical applications [32]. The coefficients of the Prony

series were obtained by a least squares fit of 37 evenly spaced points selected (2

points per time decade) from each pre-smoothed, experimentally based master curve.

The resulting Prony series fit is quite accurate, see Fig. 9. The coefficients of the

Prony series are presented in Table 2.

4.2 Experimental Data for Nonlinear Model

The larger strain uniaxial tension tests at constant strain rate and the bubble tests were

used to develop the nonlinear model.
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Fig. 7 Compliance master curves at T0 = 20◦C (a) D11, (b) D22, (c) −D12 and (d) D66.
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Fig. 8 Comparison of time shift factors from creep tests to universal WLF curve.

Figure 10 shows plots of three sets of longitudinal stress vs. longitudinal strain

measurements obtained from uniaxial tension tests at a nominal strain rate of 0.1% s−1,

at four different temperatures. The nonlinear behavior of StratoFilm at larger strains

is evident. Defining yielding as the first point where the stress becomes locally con-

stant in a plot of stress vs. mechanical strain, yielding occurred at a strain of around
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Fig. 9 Prony series fit of compliances (a) D11, (b) D22, (c) −D12 and (d) D66.

7% for 10 ◦C, and at a strain of around 3% for -50◦C although the yield stress at this

lower temperature was higher.

Figure 11 shows plots of transverse vs. longitudinal strain from the same tests.

Overall, these plots are approximately linear, with a slope close to 0.5. This obser-

vation indicates that as a first approximation it may be reasonable to assume a time-

independent relationship (Poisson’s ratio ν12 ∼ 0.5). A more detailed observation of

these plots, however, shows significant orthotropy, nonlinearity and time-dependence.

Figure 12 shows the biaxial total strains (i.e., including both mechanical and ther-

mal strains) and the curvatures measured during a bubble test at −10◦C. Note that

both sets of plots are almost identical, which indicates that, although the material

is orthotropic, the overall structural behavior is close to isotropic. Thus it has been

shown that the shape of the bubble is very close to a sphere, and hence that it was

reasonable to use Eq. 25 to calculate the stress in the film.

Figure 13 shows plots of nominal stress (computed from Eq. 25) vs. nominal me-

chanical strain (obtained by subtraction of the thermal strain, computed from Eq. 23,

from the total strain obtained form the 3D-DIC measurements), for the full set of bub-

ble tests. As the temperature was decreased between 2000 s and 4000 s, see Fig. 6, the
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Fig. 10 Longitudinal stress vs. longitudinal strain measured during uniaxial tension tests at a strain rate of

0.1% s−1 in (a) MD and (b) TD.
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Fig. 11 Transverse strain vs. longitudinal strain measured during uniaxial tension tests at a strain rate of

0.1% s−1 in (a) MD and (b) TD.
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Table 2 Prony coefficients for D11, D22, D12 and D66 [MPa−1]. In the nonlinear model D12 = −0.5D11

was assumed.

j τ[s] D11, j D22, j −D12, j D66, j

0 0 3.0×10−4 3.0×10−4 1.5×10−4 1.2×10−3

1 1×10−9 1.7427×10−4 1.0998×10−4 6.1737×10−6 1.1586×10−4

2 1×10−8 6.5109×10−6 5.8649×10−5 2.7396×10−5 2.4240×10−4

3 1×10−7 6.2843×10−5 2.4143×10−5 5.1691×10−5 3.9937×10−6

4 1×10−6 1.0754×10−4 4.2218×10−5 5.7504×10−5 1.1845×10−4

5 1×10−5 5.8577×10−5 1.5063×10−4 9.2453×10−6 1.0870×10−3

6 1×10−4 1.5508×10−4 9.6093×10−5 1.3158×10−4 5.9741×10−4

7 1×10−3 2.8439×10−4 2.5980×10−4 1.9545×10−4 8.9132×10−4

8 1×10−2 4.5672×10−4 4.4622×10−4 2.4264×10−4 1.5361×10−3

9 1×10−1 6.4614×10−4 4.7934×10−4 3.9097×10−4 2.2114×10−3

10 1×100 8.6980×10−4 5.9115×10−4 5.3432×10−4 3.3219×10−3

11 1×101 1.0174×10−3 7.5112×10−4 6.8591×10−4 3.9984×10−3

12 1×102 1.1201×10−3 1.2374×10−3 6.4146×10−4 5.3721×10−3

13 1×103 1.0881×10−3 1.2622×10−3 5.7814×10−4 5.0113×10−3

14 1×104 8.6245×10−4 6.4408×10−4 6.4545×10−4 3.4808×10−3

15 1×105 1.0593×10−3 8.2460×10−4 6.1626×10−4 3.6546×10−3

16 1×106 1.1495×10−3 9.4359×10−4 6.1421×10−4 3.8416×10−3

17 1×107 1.4144×10−3 1.7422×10−3 1.0500×10−3 7.2953×10−3

18 1×108 9.2623×10−4 7.7978×10−4 5.3076×10−4 3.3653×10−3

19 1×109 1.3703×10−4 9.7438×10−5 6.8429×10−5 4.2106×10−4
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Fig. 12 Biaxial strains and curvatures vs. time for bubble test at -10 ◦C: (a) strain and (b) curvature.

(relatively small) mechanical strains in MD and TD are significantly different, due to

the thermal anisotropy of StratoFilm. Note that some of the plots in Fig. 13 extend

well beyond the point of first yielding for all four tests shown. Also note that during

the test at −50 ◦C condensation behind the window of the environmental chamber

caused the stress values, which were obtained from the measured curvatures, to be-

come inaccurate around 4700 s.
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Fig. 13 Variation of strain and stress during bubble tests: (a) MD mechanical strain; (b) TD mechanical

strain; (c) mean stress.

4.3 Nonlinear Orthotropic Model

The free volume model parameters B, f0, δv and δs in the nonlinear thermoviscoelas-

tic model were determined, together with the out-of-plane creep compliance master

curves D13,D23, through a numerical optimization process that maximizes the fit of

the model to the experimental results outlined in Section 4.2. In essence, the model

parameters were determined by defining an error norm that compares the predictions

of models with trial values of the model parameters to data from both uniaxial ten-

sion tests and bubble tests. An optimizer was used to search for the set of model

parameters that minimize the error norm.

The model implementation was based on a recursive algorithm for linear ther-

moviscoelastic integrals [33], modified for the free volume model. This approach

minimizes the storage and operation count to perform the time integration, as the

only history variables required to evaluate the current stress state are the values at the

previous time step.

Let the subscripts t ′ and t ′−Δ t ′ denote variables at the current (reduced) time step

and at the previous time step, respectively. The numerical integration is explained
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here for the case of a uniaxial stress state. Following Lai and Bakker [33] Eq. 1 (but

including only the mechanical strains) and Eq. 2 can be written in terms of reduced

time, in the following form:

εt ′ = D̃t ′σt ′ − ft ′−Δ t ′ , (33)

where

D̃t ′ = D0 +
n

∑
j=1

D j −
n

∑
j=1

D j
1− e−Δ t ′/τ j

Δ t ′/τ j
, (34)

ft ′−Δ t ′ =
n

∑
j=1

D j

(
e−Δ t ′/τ j q j,t ′−Δ t ′ −

1− e−Δ t ′/τ j

Δ t ′/τ j
σt ′−Δ t ′

)
. (35)

Here q j,t ′ is a hereditary integral expressed by

q j,t ′ = e−Δ t ′/τ j q j,t ′−Δ t ′ +(σt ′ −σt ′−Δ t ′)
1− e−Δ t ′/τ j

Δ t ′/τ j
. (36)

Note that the hereditary integrals q j,t ′−Δ t ′ and stress σt ′−Δ t ′ for ft ′−Δ t ′ have been

computed in the previous step. Also note that the reduced time increment Δ t ′ in the

current step is computed assuming the time shift factor is constant over Δ t

Δ t ′ =
Δ t

at ′−Δ t ′
, (37)

where the time shift factor at ′−Δ t ′ in is determined from the free volume model rela-

tionship (Eq. 15):

log at ′−Δ t ′ =
−B

2.303 f0

(
αv(T −T0)+δv ·θt ′−Δ t ′ +δs · εe f f ,t ′−Δ t ′

f0 +αv(T −T0)+δv ·θt ′−Δ t ′ +δs · εe f f ,t ′−Δ t ′

)
. (38)

The mechanical dilatation and distortion have also been determined in the previ-

ous step, hence:

θt ′−Δ t ′ ∼= ε1,t ′−Δ t ′ + ε2,t ′−Δ t ′ + ε3,t ′−Δ t ′ (39)

εe f f ,t ′−Δ t ′ ∼=
√√√√2

3

[(
ε1,t ′−Δ t ′ −

θt ′−Δ t ′

3

)2

+

(
ε2,t ′−Δ t ′ −

θt ′−Δ t ′

3

)2

+

(
ε3,t ′−Δ t ′ −

θt ′−Δ t ′

3

)2

+κε2
6,t ′−Δ t ′

]
.

(40)

The multi axial version of Eq. 33 is obtained from Eqs. 17-21⎡
⎢⎢⎣

ε1

ε2

ε3

ε6

⎤
⎥⎥⎦

t ′

=

⎡
⎢⎢⎣

D̃11 D̃12 0

D̃12 D̃22 0

D̃13 D̃23 0

0 0 D̃66

⎤
⎥⎥⎦

t ′

·
⎡
⎣σ1

σ2

σ6

⎤
⎦

t ′

−

⎡
⎢⎢⎣

f11 + f21

f22 + f12

f13 + f23

f66

⎤
⎥⎥⎦

t ′−Δ t ′

(41)

where

fi j =
n

∑
k=1

Di j,k

(
e−Δ t ′/τk qi j,k − 1− e−Δ t ′/τk

Δ t ′/τk
σi

)
(42)

with

qi j,k = e−Δ t ′/τk qi j,k(t ′−Δ t ′) + (σi −σi,t ′−Δ t ′)
1− e−Δ t ′/τk

Δ t ′/τk
(43)
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4.4 Model Fitting and Regularization

For any trial set of model parameters, the numerical implementation of the model

outlined above can be used to compute the in-plane stress components σ1,σ2,σ6

given the in-plane strains ε1,ε2,ε6. An issue is that, without direct measurements of

thickness changes, θ and δv are not distinguishable by the model. Hence, to avoid

the non-uniqueness in the determination of θ and δv (from D13 and D23), we fixed

δv = 1.

The problem of determining the best set of model parameters, which define the

optimization vector x = [B, f0,δs,κ,D13(t),D23(t)], defines the following optimiza-

tion problem:

minF(x) := ∑
j∈U

ω1(ŷ j(x)− y j)
2 + ∑

j∈B

ω2(ŷ j(x)− y j)
2 (44)

where y j is the jth measured stress data point, in the set of uniaxial tension tests U
or bubble tests B; ŷ j(x) is the jth stress data point predicted by the model, ω1 and

ω2 are weight factors to bias the optimization more towards the results of the uniaxial

tension tests or the bubble tests. Since biaxial stress states are more representative of

the balloon operating conditions, ω1 = 1 and ω2 = 1.5 were chosen. For convenience

D13(t) and D23(t) were expressed by Prony series with the same retardation times

as D11, D22 and D12, leaving 19 unknown Prony coefficients for each compliance

function. Hence, the total number of unknowns in the vector x, to be determined by

the optimizer, was 43.

Since there are no known restrictions on the material parameters the problem was

treated as an unconstrained optimization problem. Also, since the objective function

in Eq. 44 does not lend itself to an analytical expression, it was assumed that the prob-

lem is non-convex. Because of the relatively large number of variables, an efficient

optimization algorithm known as Covariance Matrix Adaptation Evolution Strategy

(CMAES) [34] was selected. The CMAES optimizer is available in Matlab [35].

A two-step optimization process was selected. First, the evolutionary algorithm

was used to search the global space. Then a local and efficient simplex optimization

algorithm (Matlab’s function fminsearch) was used starting from the candidates sug-

gested by CMAES. In fact, it was found that equally good answers could be obtained

with “fminsearch” starting from a random initial guess.

A simple initial guess for D13 and D23 can be made assuming a time-independent

Poisson’s ratio of 0.5, which gives D13 =−0.5D11, and D23 =−0.5D22. As for B and

f0, simple initial estimates can be obtained by neglecting the volumetric strain and

using Eq. 4 for the time shift factor. The corresponding constants are then related by

B
2.303 f0

= c1, (45)

f0

αv
= c2. (46)

where c1 and c2 had the values determined in Section 4.1. Hence, the above equations

provide an appropriate initial guess for B and f0. The initial guess of δs was chosen

as 0.5.
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The optimization of the material parameters was carried out for

– sets of 440, 240, 190, 180 uniaxial test data points and 300, 260, 200, 180 uniaxial

test data points at temperatures of 10◦C, -10◦C, -30◦C, -50◦C, respectively for

MD and TD, respectively;

– sets of 766, 825, 806, 810 bubble test data points at temperatures of 10◦C, -10◦C,

-30◦C, -50◦C.

For the bubble tests the first 360 data points, obtained before cooling, and the data

points 361-720 obtained during cooling, i.e. , were weighted less, ω2 = 0.02, than the

data points 721 onwards, ω2 = 0.05, because the initial set of points corresponded to

relatively low pressures.

The initial evaluation of the function F in Eq. 44 gave a value of ∼ 600, which was

reduced to ∼ 100 after 105 iterations (set as the limit for the number of iterations).

δs = 0.5 was used as initial guess. δv = 1, fixed for convenience . The initial conver-

gence of error function was fast but then slowed down and after about 103 iterations

F became almost constant. The results of the optimization were B = 1.605× 103,

f0 = 1.995, and δs = 0.450.

It was found that a better fit to the experimental data could be obtained, and

particularly the transverse stress predicted for the uniaxial tension tests could be kept

closer to zero, by using D12 = −0.5D11, instead of using an independent expression

for D12 based on its own set of Prony coefficients. This finding is consistent with the

observation that the polymer approaches an incompressible rubbery state at larger

deformation.

The corresponding Prony series coefficients for D13 and D23 are listed in Table 3

and these functions are also plotted in Fig. 14.

Figures 15 and 16 compare the uniaxial tension test and the bubble test results to

the predictions from the model. Overall, the model fitting captures well the results of

both uniaxial tension tests and bubble tests in MD and TD. Note that uniaxial tension

tests show somewhat anisotropic material behavior along MD and TD, while for the

bubble tests it was assumed that the stress is isotropic, for simplicity.

 

 

Before regularization

After regularization

10
−8

10
−4

10
0

10
4

10
8

−4

10
−3

10
−2

Reduced Time [s]

C
o

m
p

lia
n

c
e

 [
M

P
a

-1
]

10

 

 

 

10
−8

10
−4

10
0

10
4

10
8

−4

10
−3

10
−2

Reduced Time [s]

C
o

m
p

lia
n

c
e

 [
M

P
a

-1
]

10

Before regularization

After regularization

Fig. 14 Creep compliance functions obtained from optimization of material parameters and regularized

versions of these functions: (a) D13; (b) d23.
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Table 3 Prony series representation of compliances D13 and D23.

j τ[s] D13, j[MPa−1] D23, j[MPa−1] D13, j[MPa−1] D23, j[MPa−1]
(before regularization) (after regularization)

0 0 -8.6222×10−6 -3.4712×10−4 -8.6222×10−6 -3.4712×10−4

1 1×10−9 -1.2140×10−4 -5.6068×10−5 -1.1309×10−4 -2.9719×10−5

2 1×10−8 4.4365×10−6 -9.5061×10−6 -3.1279×10−5 -2.3536×10−5

3 1×10−7 -9.5209×10−5 4.0485×10−6 -4.9324×10−5 -3.6809×10−6

4 1×10−6 1.0630×10−5 -1.0945×10−6 -8.0107×10−6 -1.7406×10−6

5 1×10−5 -3.0625×10−6 3.4154×10−5 -3.3796×10−5 -3.7588×10−7

6 1×10−4 -1.7025×10−4 2.4615×10−4 -9.5429×10−5 -2.5080×10−5

7 1×10−3 -1.3420×10−4 -4.7976×10−4 -2.3780×10−4 -1.0514×10−4

8 1×10−2 -2.7006×10−4 -1.8750×10−5 -1.3354×10−4 -1.3075×10−4

9 1×10−1 -4.2438×10−4 -2.6123×10−4 -5.7668×10−4 -1.4002×10−4

10 1×100 -6.5437×10−4 -1.2881×10−4 -5.2079×10−4 -2.2724×10−4

11 1×101 -7.0132×10−5 -8.6797×10−4 -1.5645×10−4 -8.7732×10−5

12 1×102 -1.1214×10−3 2.0297×10−3 -1.1399×10−3 -1.8575×10−5

13 1×103 -9.4755×10−4 -7.1174×10−3 -7.6641×10−4 -5.0877×10−3

14 1×104 -1.0329×10−3 -2.0916×10−5 -1.3667×10−3 -6.0499×10−4

15 1×105 -1.3129×10−3 -1.2051×10−6 -8.5309×10−4 -3.3549×10−6

16 1×106 5.2028×10−4 1.1557×10−3 -8.6753×10−8 -5.6042×10−5

17 1×107 -2.1542×10−3 -3.8565×10−3 -1.6979×10−3 -1.9555×10−3

18 1×108 -1.7316×10−3 2.1278×10−4 -2.0645×10−3 -8.1855×10−4

19 1×109 -2.2497×10−4 -1.1180×10−4 -1.4236×10−5 -5.9677×10−6
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Fig. 15 Comparison of model predictions to measurements from uniaxial tension tests at strain rate of

0.1% s−1 in (a) MD and (b) TD.

The waviness in the model predictions, which can be seen in the plots of these

compliance functions in Fig. 14, comes from alternating positive and negative Prony

series terms in D13 and D23.

The model fitting had been carried out as an unconditional optimization, which

allowed sign changes in the parameters. However, the waviness in the model pre-

dictions is undesired, as it indicates unstable material behavior. An alternative would
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Fig. 16 Comparison of predictions from two versions of nonlinear model with measurements from bubble

tests.
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Fig. 17 Comparison of regularized nonlinear model with measurements from uniaxial tension tests at 45◦
from MD, at a strain rate of 0.1% s−1; (a) MD stress vs. MD strain, (b) TD stress vs. TD strain, and (c)

shear stress vs. shear strain.
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have been the use of a conditional optimizer, but this was found to be computationally

rather inefficient.

A more efficient approach is to regularize the Prony series obtained from the

unconditional optimization, by subsequently imposing the constraint that the coef-

ficients should all have the same sign. 19 evenly spaced points (one per each time

decade) of D13 or D23 were selected and fitted by Prony series using the constrained

least squares fit method (Matlab’s function “lsqnonneg”). The functions obtained be-

fore and after regularization are plotted in Fig. 14.

The last step in the model fitting is to determine the distortional parameter κ .

Recall from Eq. 14 that κ is decoupled from the on-axis uniaxial tests and the bubble

tests, because ε6 = 0 in all of these tests. Therefore, κ was determined by fitting the

model independently to the off-axis tests (i.e. uniaxial tension tests at constant strain

rate, with the load axis at 45◦ to MD or TD) after all other model parameters had

been determined. Note that, as discussed in Section 4.1, the off-axis uniaxial loading

results in non-zero stress components in the material axes σ1 = σ2 = σ6 = P/(2wh).
The model implementation employed values of ε1,ε2,ε6 from the experiments to

calculate σ1,σ2,σ6, and iterated over different values of κ to find the best value.

The value of κ was obtained by providing 10 random guesses in the range 0 to 1.0 to

the “fminsearch” Matlab function. The value that was obtained form this process was

κ = 0.24.

The response of StratoFilm, up to yielding, has been plotted in Fig. 17, to compare

the large strain predictions of the model against the experimental results. It can be

seen that all model predictions are within 10% of the experiments, including the shear

stress versus shear strain comparison, in Fig. 17(c). This last result is remarkable

since the shear strains are 6 to 10 times larger than the MD or TD strains, indicating

that the shear deformation is dominant.

5 Model Validation and Discussion

The validity of the thermoviscoelastic model developed in the previous sections was

assessed by comparing its predictions with experiments involving uniaxial tension

tests at different strain rates and also biaxial cylinder tests at different temperatures.

None of these test data had been considered during the development of the model,

and hence the objective of this validation was to establish the performance of the

model when applied to a new situation.

5.1 Validation of Linear Model

The compliance master curves obtained in Section 4.1 were validated against uniaxial

tension tests at a constant strain rate of 0.1% s−1. Full results of these tests have

already been plotted in Figure 10 and the small strain response (i.e. for longitudinal

strains < 1%) was extracted and compared to the model predictions for the smaller

strain range. The comparisons are shown in Figs 18-20.

From these comparisons it is found that the linear model provides the correct

initial slopes for all of the experiments and at all temperatures. However, the close
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Fig. 18 Validation of linear model for case of longitudinal stress vs. longitudinal strain response in uniaxial

tension tests at strain rate 0.1% s−1 in (a) MD and (b) TD.
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Fig. 19 Validation of linear model for case of longitudinal stress vs. transverse strain response in uniaxial

tension tests at strain rate 0.1% s−1 in (a) MD and (b) TD.

match between measured and predicted stress values is limited to longitudinal strains

of < 0.4% and transverse strains < 0.2%. For strain magnitudes of 1% the linear

model is approximately 30% stiffer. These limits are lower than those used to design

small strain creep tests, in Section 3; however it should be noted that the present load

condition is different.

The nonlinear model does an excellent job in capturing the strain softening be-

havior seen in the test data.
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Fig. 20 Validation of linear model for shear stress vs. shear strain response in uniaxial tension tests along

45◦ from MD at strain rate 0.1% s−1.

5.2 Validation of Nonlinear Model

The nonlinear model with regularized compliance master curves, obtained in Sec-

tion 4.4, was validated against uniaxial tension tests at constant strain rates that cov-

ered two orders of magnitude, as well as cylindrical tests at different temperatures.

The comparison for uniaxial tension included three different strain rates, 0.01% s−1,

0.1% s−1, and 1% s−1, and temperatures of −20◦C and 10◦C. The results are pre-

sented in Fig. 21; they show the predictions to be very close to the experimental

measurements in all cases.
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Fig. 21 Validation of nonlinear model in MD by means of uniaxial tension tests at different temperatures

and strain rates. Plots of longitudinal stress vs. (a) longitudinal strain and (b) transverse strain.

An additional validation case was provided by a set of experiments done at the

NASA Wallops Balloon Research and Development Laboratory. Leyland Young car-

ried out a series of tests on StratoFilm cylinders held inside an environmental tem-
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perature. The cylinders were fixed to a horizontal plate at the bottom and to a plate

attached to a horizontal beam, through a pulley and weight system that provided an

offset for the weight of the plate, at the top. The axial loading on the cylinder was con-

trolled by increasing or decreasing the total weight applied at the end of the pulley,

allowing different ratios between the circumferential and longitudinal stress compo-

nents to be achieved. Each test lasted on the order of 2 mins. Figure 22 shows plots

of the mechanical hoop strain vs. the hoop stress computed from the applied pres-

sure, for stress ratios of 2:1 and at two different temperatures. The model predictions

corresponding to these tests are also shown in the figure. The agreement is typically

within 5%.
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Fig. 22 Validation of nonlinear model for cylinder tests with circumferential/longitudinal stress ratios of

2:1.

5.3 Sensitivity to Volumetric CTE

A distinguishing feature of the proposed model is that the thermal strain and the

mechanical strain are combined in the expression for the time shift factor. Hence, the

predicted value of the volumetric coefficient of thermal expansion is important to the

performance of the model and since, the measurements of α3 presented in Section 2.5

have left its actual value somewhat uncertain, the sensitivity of the model predictions

to the value of α3 was investigated.

Three values of α3 were considered:

– model A, with α3 = 1×10−4 as used for the model presented in Section 4;

– model B, with α3 = 0;

– model C, with α3 = (α1 +α2)/2.

For each value of α3, the parameters of the nonlinear thermoviscoelastic model

[B, f0,δs,κ,D13(t),D23(t)] were computed following the approach presented in Sec-

tion 4.4.
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A comparison of the predictions from Models A, B, and C, shown in Fig. 23(a) for

the specific case of tension tests at a temperature of −20◦C and with a strain rate of

0.1% s−1 shows practically identical results for the predicted in-plane behavior of the

film. However, note that the out-of-plane strains predicted by these models are very

different, see Fig. 23(b). Hence, it can be concluded that accurate knowledge of α3 is

not necessary to set up an accurate model of the in-plane behavior. Measurements of

the actual out-of-plane response of the film would need to be conducted to determine

the actual values of D13 and D23.
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Fig. 23 Comparison between models with different values of α3, for uniaxial tension tests of (a) longitu-

dinal stress versus longitudinal strain and (b) out-of-plane strain vs. longitudinal strain at T=-20◦C strain

rate 0.1% s−1 in MD.

6 Conclusion

A nonlinear orthotropic thermoviscoelastic model for the large-strain constitutive be-

havior of the LLDPE film StratoFilm 420 has been developed and validated in this

paper. The key feature of the model is that the dependence of the material on time,

temperature and strain is captured by a time shift factor that accounts for both di-

latational and distortional deformations, assumed to be related to the free volume

of the material. The in-plane behavior of the film is characterized by the in-plane

compliance functions D11,D22,D12,D66, expressed in terms of Prony series with dif-

ferent coefficients but equal retardation times. These functions are obtained from

small-strain creep tests that generate master curves (based on the assumption that it

is acceptable to superpose time and temperature effects). The out-of-plane behavior

of the film, which would be difficult to characterize experimentally in a direct way, is

obtained by numerically matching the predictions of the nonlinear model to experi-

mental measurements obtained from specially devised test configurations that induce

significant nonlinear material behavior. Hence, the parameters of the nonlinear model,

B, f0,δs,κ and the out-of-plane compliances D13,D23 are obtained from a two-step
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optimization scheme that combines an evolutionary algorithm with a simplex opti-

mization. The out-of-plane compliances presented in this paper were regularized by

requiring that there should be no sign changes in the coefficients of each Prony series,

to remove excessive oscillation in the model predictions.

Nominal stress and engineering strain definitions were used throughout this study,

for both experimental data and model implementation. In principle, the model can be

developed in terms of finite strains, however the approach presented in this paper is

particularly convenient as the effects of thickness changes in the current configuration

on the stress and strain measures, which would further complicate the process of

determining the model parameters, are avoided.

A mechanically (but not thermally) isotropic version of the model has also been

developed, although not presented here. Finding a smaller set of parameters that avoid

spurious oscillations is easier in this case, but the overall accuracy of the predictions

is decreased.

The present model has been validated against uniaxial tension tests at different

temperature and strain rates and pressurized cylinder tests at different temperatures.

Three important issues should be noted. First, LLDPE is not a thermorheologi-

cally simple solid as it has been demonstrated by analyzing DMA test results. LLDPE

is semi-crystalline, as it includes both amorphous and crystal phases. For thermorhe-

ologically complex materials the time-temperature principle breaks down and the

temperature shift factors depend on frequency. In the development of the present

model, the same temperature shifts were applied to all creep compliance compo-

nents obtained directly from creep tests and this approximation worked well with the

creep master curves. For dynamic loading at high frequencies the material behavior

can be expected to deviate from the creep tests, hence the master curves may not be

applied to such loading cases. Second, the out-of-plane thermoviscoelastic proper-

ties were obtained by calibrating the model parameters with the measured nonlinear

behavior of different kinds of test samples. It is not known if the optimization prob-

lem from which the model parameters were obtained is mathematically well posed.

This is a topic for further investigation. Third, the predicted out-of-plane behavior

of StratoFilm has been shown to be strongly dependent on the particular value cho-

sen for the out-of-plane CTE, although the in-plane behavior is rather insensitive. It

would be interesting to carry out direct out-of-plane measurements of StratoFilm to

understand its behavior more fully.
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