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Abstract

Flexible planar spacecraft, such as solar sails, phased antenna arrays and space

solar power satellites vary their shape in flight and also may not have a known

shape after deployment. To allow applications where spacecraft shapes are

measured to allow the closed-loop correction of flight or payload parameters,

this paper presents a method for measuring shapes with miniature sun sen-

sors embedded within the structure. Two algorithms to reconstruct the shape

of the structure from the two local angles to the sun are presented; the first

one is geometry-based, whereas the second one uses a finite element model of

the structure. Both algorithms are validated on a 1.3 m × 0.25 m structure

with 14 novel miniature sun sensors with an accuracy of 0.5◦, developed for

the present research. The structure was reconstructed to an accuracy better

than one millimeter by both algorithms, after undergoing bending and torsional

deformations. While the geometrically based algorithm is fast and accurate for

small deformations, the finite element based algorithm performs better overall,

especially for larger deformations.
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d = Sun sensor aperture width

dfi = Degrees of freedom of node i

e = Separation of sun sensor photodiodes

F = Vector of external nodal loads

F̃ = Vector of non-zero load amplitudes

Fd = Load redistribution matrix

h,H = Thicknesses of sun sensor

I1, . . . , I4 = Light intensities on photodiodes of sun sensor

K = Stiffness matrix

n(u, v) = Normal to surface parameterized by r(u, v)

N = Number of control points; number of external loads

N(u, v) = Vector of shape functions evaluated at (u, v)

r(u, v) = Position of the surface in the current configuration

r0(u, v) = Position of the surface in the reference configuration

∂r
∂u (u, v) = First tangent vector to surface parameterized by r(u, v)

∂r
∂v (u, v) = Second tangent vector to surface parameterized by r(u, v)

q = Vector of unknowns of FESRA method

qfi = Displacement and rotation components of node i

R = Rotation matrix

Rα, Rβ = Normalized coordinates for sun sensor

t = Thickness of structure

t = Translation vector

u, v = Curvilinear coordinates of surface

ûi, v̂i = Coordinates of inextensibility grid in u-, v-direction for node i

uS , vS = Curvilinear coordinates of sensor S

wi = Out-of-plane displacement of node i

x, y, z = Cartesian coordinates

αS = Angle between sensor at location S and first tangent vector

βS = Angle between sensor at location S and second tangent vector

φk(u, v) = Basis function k
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1. Introduction

Increasing interest in large lightweight space structures for applications such

as solar sails, large antenna arrays and space solar power satellites has led to

proposals of structural designs that are very flexible and subject to deformations5

that could impact their performance. For instance, the guidance of a solar sail

is correlated with its shape as the thrust is produced from the reflection of

sunlight onto the reflective structure. Similarly, a large antenna array requires

co-phasing of the antennas as a non-planar shape would lead to phase errors.

Accurate shape measurement of these space structures can directly impact10

their performance and potentially enable new architectures or types of satellites,

if on-board measurement systems can be incorporated within these structures

without significant effect on the areal mass and operation of the spacecraft.

Commonly used shape measurement methods would require an imaging sys-

tem to be placed in front of a surface. Sets of cameras or laser ranging devices15

generate a point cloud of the surface, from which the surface can be recon-

structed [1, 2]. Simpler hardware, such as a single camera, is used in monocular

surface reconstruction [3, 4, 5, 6, 7, 8, 9, 10]. Methods known as Shape-from-

Template assume inextensibility of the deformation with feature-matching from

an image, and Shape-from-Shading adds implicit measurements of the normals20

to the surface from the light reflected by the surface [8, 9, 10]. Such techniques

require a minimum depth of view in front of the surface to measure. On a

spacecraft, this could be done by either deploying a boom from the structure or

building a second spacecraft that flies in formation. Shallow angle cameras have

been used to measure the displacement of trackers on a surface [11, 12], achiev-25

ing millimeter accuracy. Such methods are, however, susceptible to shading

(physical blocking of the view of the camera due to the deformation), light con-

dition restrictions and use relatively complex image processing software which

limits their applicability.

This paper presents a different approach, which uses embedded angle sen-30

sors distributed over the surface to be reconstructed. The sensors measure the
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local angles at specific locations of the structure, whose shape is then recovered

by spatial integration. The angle measurements alone are not sufficient to re-

construct the shape of the surface because the distances between the sensors

need to be known or predicted to perform the spatial integration. Additional35

constraints are therefore implemented, similarly to vision-based methods such

as monocular shape reconstruction algorithms. Two integration approaches are

introduced in the paper. The first one is purely geometric and assumes inex-

tensibility of the deformation from a known reference configuration (see figure

1). This approach has been used in vision-based research [3, 4, 5, 13, 14, 15].40

The second algorithm replaces the inextensibility assumption with a mechanical

model of the structure. The shape is then reconstructed with unknown bound-

ary conditions that are solved for by matching the solved shape with the angle

measurements.

The practical implementation of these algorithms requires sensors that can45

be readily embedded within a lightweight structure. Potential candidates in-

clude Inertial Measurement Units, or IMUs (a combination of an accelerometer

with a magnetometer), which measure the angles from the gravity direction and

Earth’s magnetic field. Several structural shapes have been reconstructed by

means of distributed IMUs [13, 14, 15, 16, 17]. Also, sun sensors, which mea-50

sure the angle to the sun, have recently been investigated to reconstruct large

surfaces in space [18, 19, 20]. Compared to IMUs, they have the advantage

of being insensitive to acceleration or magnetic field disturbance. Boden and

Hernando-Ayuso [18] considered the problem of reconstructing the shape of a

solar sail using the local sun angles measured with thin-film solar cells and the55

sail geometry was defined by a series of analytic functions. This approach is a

precursor to the present work, but a single set of measurements was insufficient

to determine the shape of the sail and hence a time series of measurements

was required. Overall, the measurement accuracy was much lower than both

approaches presented in this paper.60

A review of sun sensor designs is available in [21]. Most solutions consist of an

array of photodiodes or light-sensing pixels coupled with an aperture mounted
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on top [22, 23, 24, 25, 26, 27]. Their precision varies from a few degrees to less

than an arc minute, but these existing designs are either bulky and expensive

or have low accuracy.65

This gap in available technology has been addressed by the development

of a novel miniature lightweight sun sensor design suited to applications that

require many sensors to be placed on a flexible, ultralight structure. Also, both

algorithms have been implemented and validated on an experimental testbed

that includes the new sensors, to assess the effects of any unmodeled physical70

effects and the limitations of the two algorithms.

The paper is arranged as follows. Section 2 presents the first algorithm that is

used to reconstruct the shape of a surface, assuming the inextensibility of the de-

formation from an initially flat surface, and using the angle measurements from

a set of distributed sun sensors. This algorithm is called Geometric Inextensible75

Shape Reconstruction Algorithm (GISRA). Section 3 introduces the second algo-

rithm, in which the inextensibility contraints are replaced with a finite element

model of plate-like structures. In this model the shape is parametrized in terms

of the applied boundary conditions whose unknown amplitudes are determined

by the angle measurements from the sun sensors. This algorithm is called Finite80

Element Shape Reconstruction Algorithm (FESRA). An experimental setup is

introduced in section 4. The test structure consists of a 1.3 m × 0.25 m thin

aluminum plate fitted with 14 sun sensors. A novel sensor design, consisting

of quad-photodiodes placed under a square aperture to create a simple pinhole

camera, was specifically developed for this experiment. The plate was deformed85

in bending and torsion and, to quantify the overall accuracy of the proposed

reconstruction methods, the RMS error was calculated by comparing the recon-

structed shape to independent, accurate measurements provided by an optical

measurement system. The results of these experiments are presented in section

5. The RMS error is on the order of a millimeter and can be as low as 0.5 mm.90

It is shown that, while faster, GISRA can reconstruct nearly flat surfaces with

good accuracy. FESRA, on the other hand, is able to reconstruct more heavily

deformed surfaces. Section 6 concludes the paper.
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2. Geometric Inextensible Shape Reconstruction Algorithm (GISRA)

The first algorithm used to reconstruct the shape of a surface from angle95

measurements is based on a set of equations that constrain the surface to match

the measured angles at the sensor locations while imposing the inextensibility of

the surface deformation from a given reference configuration. These equations

are presented in the next subsection. Further details on the derivation of these

equations can be found in chapter 2 of [28].100

The practical implementation of this algorithm to real-world applications

requires that the effects of the thickness of the structure, the offset of the sensors

from the surface and the size of the sensors are accounted for. The required

modifications of the equations are presented in the second subsection.

2.1. Surface Reconstruction105

Reference (Flat) Configuration Current Configuration

Inextensible Deformation

Figure 1: Definition of the problem. The 3D surface is a mapping of the 2D coordinates u, v

to 3D. The reference configuration is known while the current configuration is unknown.

Shape Parametrization. A point on a surface is described by its two curvi-

linear coordinates u, v (see figure 1). The current 3D position of the point is
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written as r(u, v) such that:

r : X ⊂ R
2 −→ R

3

(u, v) �−→ r(u, v) =

N∑
k=1

qkφk(u, v)
(1)

where X is the curvilinear space, φk : X → R are basis functions, qk are

unknown 3D points called control points, and N is the dimension of the function

space.

The basis functions selected for the geometric reconstruction are 2D La-

grange polynomials weighted by the control points qk arranged in a 2D grid in110

the (u, v)-space (see grid in figure 2a). Different shape functions could be used,

and Lagrange polynomials were selected for simplicity.

(a) Location of control points.
(b) Location of sensors on the surface. They do

not need to be aligned with the grid.

(c) Inextensibility grid. Each edge retains

its length upon transformation while the angle

around each vertex is constant.

Figure 2: Parameters of the algorithm, defined in the uv-space.

The position of the control points is calculated by solving the following sensor

equations and inextensibility constraints.

Sensor Equations. The sensors measure the angles between the local normals

to the structure and light rays coming from a point source located at the origin
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of the 3D coordinate system. For a sensor located on the surface at a location

(uS , vS) (see figure 2b), the tangents of these angles can be calculated from:

tanαS =
r(uS , vS) · ∂r

∂v (uS , vS)

r(uS , vS) · n(uS , vS)

‖n(uS , vS)‖∥∥∂r
∂v (uS , vS)

∥∥ (2)

tanβS = −r(uS , vS) · ∂r
∂u (uS , vS)

r(uS , vS) · n(uS , vS)

‖n(uS , vS)‖∥∥ ∂r
∂u (uS , vS)

∥∥ (3)

where α, β are the angles between the normal and the u-direction and v-direction,115

respectively, n(uS , vS) =
∂r
∂u (uS , vS) × ∂r

∂v (uS , vS) is the normal to the surface

at the sensor location, and r(uS , vS) coincides with the direction of the light

ray, since the light source is located at the origin of the coordinate system.

Inextensibility Constraints. Inextensibility conditions are derived from a120

discretization of the metric tensor, which is used in differential geometry to

measure the length of segments on curved surfaces [29, 30]. By imposing the

condition that the metric tensor does not change, the length of any segment

drawn on the surface stays the same. The (flat) shape of the surface before the

transformation is called reference configuration, as shown in figure 1.125

A discretization of the metric tensor is performed by defining a regular grid

on the surface (see figure 2c). The coordinates of the grid are ûi and v̂j . Each

edge of the grid is constrained to have the same length in the current and

reference configurations. To keep the angles at each node of the grid invariant,

the dot product of the tangent vectors to the surface has to remain constant.

Hence, the following constraint equations are written:

∫ ûi+1

ûi

∥∥∥∥∂r∂u (u, v̂j)
∥∥∥∥ du =

∫ ûi+1

ûi

∥∥∥∥∂r
0

∂u
(u, v̂j)

∥∥∥∥ du (4)

∫ v̂j+1

v̂j

∥∥∥∥∂r∂v (ûi, v)

∥∥∥∥ dv =

∫ v̂j+1

v̂j

∥∥∥∥∂r
0

∂v
(ûi, v)

∥∥∥∥ dv (5)

∂r

∂u

T

(ûi, v̂j)
∂r

∂v
(ûi, v̂j) =

∂r0

∂u

T

(ûi, v̂j)
∂r0

∂v
(ûi, v̂j) (6)
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where r0 is the reference configuration.

Solution Method. By gathering the sensor equations 2 and 3 at each sensor

location with the inextensibility equations 4, 5 for each edge and equation 6 for

each node of the inextensibility grid, a system of equations with 3N unknowns130

(the three coordinates of the control points) can be written. By including a

sufficiently large number of sun sensors, it is ensured that this system of equa-

tions is overconstrained and in this case the system can be solved using the

Levenberg-Maquard algorithm. It is shown in [28] that the solution converges if

the number of angle measurements (which is twice the number of sun sensors)135

is greater than N and the total number of equations greater than 3N .

Well-Posedness. A study of the singularities of the sensor equations and

inextensibility constraints [28] has shown that the singularities of the two sets

of equations are mutually exclusive except for 3 rigid rotations around the ori-140

gin, which can be eliminated by constraining the motion of some control points.

A fourth singularity is associated with the distance between the surface and

the origin, i.e. the location of the light source. When this distance is large, a

translation of the surface away from the light source has a small impact on the

measured angles. If the light source is considered a “point at infinity” which is145

a valid assumption for the sun, then this translation can be removed by fixing a

control point. Otherwise, this singularity can lead to convergence issues in the

solution, which can be eliminated by determining the position of a control point

or by measuring the distance between the surface and the light source, with a

different type of sensor.150

2.2. Practical Implementation

The previous equations need to be modified to account for the thickness of

the surface, the offset of the sensors from the surface and the sensor size. A

mathematical treatment of these effects is provided next whereas more practical

aspects are considered in section 4.155

9



The surface previously defined by r(u, v), where both the control points

and the inextensibility grid are located, corresponds to the mid-surface of the

structure, which remains inextensional due to the inextensibility constraints

presented in section 2.1. However, it should be noted that actually the front

of the structure is of interest, rather than the mid-surface, and therefore an

offset of half the thickness along the local normal has to be applied during post-

processing. Assuming that the normals to the underformed mid-surface are also

normal to the deformed surface (this is known as the Kirchhoff hypothesis for

thin shells [31]):

s(u, v) = r(u, v) +
t

2

n(u, v)

‖n(u, v)‖ (7)

where s(u, v) is the front surface, t is the thickness of the structure, and n(u, v)

is the local normal.

Mid-surface

Sensor support
Sensing location

Surface

Figure 3: Offset of sensor from the mid-surface of the structure. The fixed offset tS is defined

in the local reference system (in red).

The equations that need to be modified are those related to the angle mea-

surements (equations 2 and 3), because the sensors are not located on the mid-

surface, but are offset by a fixed distance as shown in figure 3. Furthermore,

they can be assumed to be rigid and therefore the local tangent and normal

vectors in the equations are calculated in the middle of the rigid support of

the sensors, which approximates the actual direction of the sensor. The sensing

element is offset, in this local reference system, by a fixed vector tS (see figure
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3). Therefore, the angle equations become:

tanαS =
dS · ∂r

∂v (uS , vS)

dS · n(uS , vS)

‖n(uS , vS)‖∥∥∂r
∂v (uS , vS)

∥∥ (8)

tanβS = −dS · ∂r
∂u (uS , vS)

dS · n(uS , vS)

‖n(uS , vS)‖∥∥ ∂r
∂u (uS , vS)

∥∥ (9)

where dS is the vector between the center of the 3D reference system (with the

light source at the origin) and the center of the light sensor, offset by tS in the

local reference system. This vector can be written as:

dS = r(uS , vS) +RStS (10)

where RS is the local rotation matrix at the sensor location which is defined as

the concatenation of the tangent and normal unit vectors:

RS =

[
∂r
∂u (uS ,vS)

‖ ∂r
∂u (uS ,vS)‖

∂r
∂v (uS ,vS)

‖ ∂r
∂v (uS ,vS)‖

n(uS ,vS)
‖n(uS ,vS)‖

]
(11)

3. Finite Element Shape Reconstruction Algorithm (FESRA)

This section introduces an alternative shape reconstruction where the in-

extensibility conditions of the GISRA algorithm, presented in section 2, are160

replaced with the stiffness equations generated from a finite element model of

the structure. The parametrization of the deformation of the surface is also

generated from this finite element formulation, following an approach similar to

section 2.

The present study is limited to small deformations of plate-like structures,165

such as the structure used in the experiment shown in section 4. A static, linear-

elastic model based on plate finite elements is used to capture the behavior of

the structure.

Shape Parametrization. The undeformed surface, defined locally in the

(x, y, z) reference frame (see figure 4), coincides with the x, y plane. The de-170

formed surface is defined by the degrees of freedom of the nodes of the finite

element mesh, consisting of triangular elements. The shape functions defined

locally for each element interpolate between the nodal degrees of freedom.
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x

y

z X

Y

Z

w(x,y)

Undeformed shape

Figure 4: Definition of reference frames for the problem. The reference configuration has the

light source at the origin and the current reference is used to define the finite element model

of the structure.

x

y

DKT

element

1

2

3

z

Figure 5: Definition of the degrees of freedom used in the formulation of the DKT element.

A plate bending model that neglects the transverse shear deformation of the

structure is considered (Kirchhoff plate theory). Hence, the degrees of freedom

of node i are the out-of-plane displacements and the rotation components around

the x- and y-axes:

qfi =

⎡
⎢⎢⎢⎣

wi

w,xi

w,yi

⎤
⎥⎥⎥⎦ (12)

where w is the out-of-plane deflection, and w,x =
∂w
∂x , and w,y =

∂w
∂y the first

derivatives (slopes). These degrees of freedom are shown in figure 5; note that175

the positive rotation components are defined by the positive slopes.

The reconstructed surface is translated to a reference frame with the light
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source at its origin, in order to use equations 8 and 9 (see figure 4). The position

of a point on the surface in the (X,Y, Z) reference frame is:

r(x, y) = t+

⎡
⎢⎢⎢⎣
x

y

0

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

N(x, y)

⎤
⎥⎥⎥⎦qf (13)

where t is a translation vector, N(x, y) is the row vector of the shape functions

evaluated at (x, y) and qf is the vector of all degrees of freedom of the model.

Note that, since the problem is invariant for any rotation around the light source,

no rotation is necessary.180

The kinematic boundary conditions are chosen such as to ensure small de-

formations in the (x, y, z) reference frame. This approach avoids rigid-body

motions in the formulation. An example of a suitable boundary condition is

clamping a node (i.e., setting all of its degrees of freedom equal to 0). Another

example is setting equal to zero the out-of-plane deflection of three non-aligned185

nodes.

Finite Element Model. A linear, static state equation links the (small) dis-

placement components for all Degrees of Freedom (DoF) to the corresponding

external loads:

Kqf = F (14)

where K is the stiffness matrix of the finite element model, qf is the vector of

degrees of freedom, and F is the vector of external nodal loads (interpolation of

the external loads to the nodal DoF). The total number of degrees of freedom190

in the model is three times the number of nodes, see equation 12.

Different models can be used to derive the stiffness matrix K. The Discrete

Kirchoff Triangular (DKT) element [31] is considered among the best Kirchoff

plate elements [31, 32] and was chosen for the present study. The degrees of

freedom for this element are defined in figure 5.195

The shape functions for the DKT element are complete quadratic polyno-

mials, and their expressions can be found in section 7.1 of [31].
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For the current problem, only concentrated loads are applied as boundary

conditions, without any kinematic boundary conditions other than those de-

scribed above, to remove rigid motions. The location of these concentrated200

loads is known, but their amplitude is not known and hence it is left as an

unknown and it is determined by the angle measurements of the sensors. It

should be noted that these unknown concentrated loads are, in effect, the reac-

tions applied to the structure by kinematic constraints acting on it. The actual

loads applied to the structure, which are mostly distributed, are known and are205

directly accounted for in the solution.

Let N be the total number of external loads (forces and moments). The

force vector F can be re-written as:

F = FdF̃ (15)

where F̃ is a vector of dimension N concatenating the amplitudes of the exter-

nal concentrated loads and Fd is a conversion matrix, with the number of rows

equal to the total number of DoF and the number of columns equal to N , that

redistributes the concentrated loads to their nodal values. The matrix Fd is210

mostly filled with zeros. It has ones to transform each concentrated load into a

set of nodal forces and moments.

Unknowns. Considering equations 13, 14, and 15, the unknowns of the algo-

rithm are:215

1. the degrees of freedom of the nodes

2. the amplitudes of the concentrated loads

3. the translation of the surface

and they can be written as:

q =

⎡
⎢⎢⎢⎣
qf

F̃

t

⎤
⎥⎥⎥⎦ (16)
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The dimension of this vector can be large for dense meshes but it is determined

by an equally large number of equations.220

Constraint and Sensor Equations. The finite element model in equation 14

replaces the inextensibility equations defined in section 2 (equations 4, 5, and

6). The equations for the algorithm are therefore:

1. the state equation from the finite element model, equation 14:

Kqf = FdF̃ (17)

2. the sensor equations, equations 8, 9, which can be re-written as:

tanαS =
dS · ∂r

∂y (xS , yS)

dS · n(xS , yS)

‖n(xS , yS)‖∥∥∥∂r
∂y (xS , yS)

∥∥∥ (18)

tanβS = −dS · ∂r
∂x (xS , yS)

dS · n(xS , yS)

‖n(xS , yS)‖∥∥∂r
∂x (xS , yS)

∥∥ (19)

where dS is defined in equation 10 with r(uS , vS) obtained from equation225

13.

Note that if the sensors are attached to the nodes of the finite element

model, the local tangent and normal vectors have the expressions:

∂r

∂x
(xS , yS) =

⎡
⎢⎢⎢⎣

1

0

w,xS

⎤
⎥⎥⎥⎦

∂r

∂y
(xS , yS) =

⎡
⎢⎢⎢⎣

0

1

w,yS

⎤
⎥⎥⎥⎦ n(xS , yS) =

⎡
⎢⎢⎢⎣
−w,xS

−w,yS

1

⎤
⎥⎥⎥⎦

(20)

which are all unit vectors, to the first order.

Because equation 17 generates a number of equations equal to the number of

degrees of freedom of the finite element model, the number of sensor equations

(which is twice the number of sun sensors) needs to be equal to or greater than230

the number of unknown nodal loads N plus 3, which is the size of the translation

vector.
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Solution Method. The equations 17, 18, and 19 define a system of equations

whose unknown is the vector q (equation 16). This system has been solved235

using the Levenberg-Marquardt algorithm. In practice, the MATLAB function

fsolve was used with default tolerance parameters.

4. Experimental Setup

This section presents the hardware for the experiments and the numerical

parameters for the shape reconstruction.240

4.1. Sun Sensors

A schematic of the sun sensor designed and built for this research is shown in

figure 6a. The geometric parameters of the sensors are defined in the figure. The

sensor consists of a quad-photodiode that measures the light intensity generated

by a light spot created by a square aperture located above the photosensitive245

plane. As the sensor rotates around x and y, with respect to a fixed point light

source, the spot moves over the quad-photodiode which consequently varies the

intensity reading of each photodiode.

(a) Schematic of sun sensor made from a quad-photodiode

(red) and a square aperture.

(b) 4×4 cm board including the sensor

and its electronics.

Figure 6: Details of the sun sensor.

The coordinates of the centroid of the light spot can be calculated from the

intensities of the four photodiodes (named I1 through I4). Let Rβ (respectively
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Rα) be the normalized coordinates in the x-direction (respectively. y-direction):

Rα =
(I1 + I4)− (I2 + I3)

I1 + I2 + I3 + I4
=

(2H + h) tanαS

d− e− h sgnαS tanαS
(21)

Rβ =
(I1 + I2)− (I3 + I4)

I1 + I2 + I3 + I4
=

(2H + h) tanβ

d− e− h sgnβS tanβS
(22)

where sgn(·) is the sign function.

Equations 21 and 22 can be inverted to compute the tangents of the angles

of the sensors as a function of the measured centroids Rα and Rβ :

tanαS =
(d− e)Rα

2H + h+ h sgn(Rα)Rα
(23)

tanβS =
(d− e)Rβ

2H + h+ h sgn(Rβ)Rβ
(24)

where Rβ and Rα are calculated from the measured intensities (equations 21250

and 22).

Figure 6b shows the design of the sensor’s printed circuit board (PCB). The

quad-photodiode is a TT Electronics OPR5911 chip, placed at the center top of

the board. The aperture was made from 0.002” (50 μm) thick black anodized

aluminum foil (Thorlabs BKF12). The anodization prevents reflection inside255

the sensor. The aperture hole is 1.3 mm wide and was cut by a Universal Laser

System XLS10 laser cutter using a 1.06 μm fiber laser. The sensing element

weighs 0.2 g and the total mass of the sun sensor as built is 5 g.

Each photodiode is connected to a two-stage current-to-voltage amplifier

(transimpedance and inverting amplifiers) to create a readable voltage at the pin260

of an Analog-to-Digital Converter (ATtiny84A). The ADC chip also handles the

filtering of the data using an impulse response filter [33] and the communication

to an external computer using the SPI protocol [34].

Two connectors on each side of the board allow multiple sensors to be con-

nected in a daisy chain, sharing power and data lines. This scheme simplifies265

the connection of multiple sensors and reduces the electrical wiring.
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All of the sensors were calibrated in the angle range ±20° before being placed

on the structure. The calibration curves were used to correlate the sensor out-

puts to the measured angles. The uncertainty in the measured angles was esti-

mated to be 0.5◦ (3σ).270

4.2. Structure with Integrated Sensors

Figure 7: Photo of the experiment. A plate with a black and white Digital Image Correlation

(DIC) pattern holds 14 sensors placed on rigid supports. The plate is held by tensioned spring

cables at each end and two linear actuators in the middle (the actuator attached to the center

of the structure is behind the plate).

The structure used for the experiment was a 0.016” (0.41 mm) thick, 50” (127

cm) long and 10” (25.4 cm) wide aluminum plate, figure 7. These dimensions

were chosen such that the plate would fit on an optical table while also allowing

the placement of multiple sensors.275

Each PCB was attached on a 2”× 2” (50.8 mm × 50.8 mm) stiff aluminum

mount and held by four screws in order to avoid damage to the solder joints

from the deformation of the aluminum plate. These mounts also prevent move-

ment of the sensors during the experiment which would introduce errors in the

measurements. The centers of the mounts were placed at a spacing of 8” (20.32280

cm) in both directions, as seen in figure 7.

18



The structure was attached at both ends to steel cables mounted in series

with a spring; a pre-tension of 35 N was applied. These supports effectively

create simply supported boundary conditions for the structure.

The structure was deformed by means of two linear actuators placed in the285

middle (see figure 7). The top actuator was attached to the center of the plate,

behind the structure in figure 7, using a pivot while the bottom actuator was

connected through a pivot and a slide mechanism. When both actuators were

actuated together, the structure underwent bending and when only the bottom

one was actuated, the structure underwent torsion.290

Fourteen sensors were placed on the structure. They shared the same power

and data lines in a daisy chain connection using Flat Flexible Cables (FFC)

with a much lower bending stiffness than the aluminum sheet. An Arduino Due

computer, mounted on a supporting structure, gathered the intensities of the 4

diodes, filtered using an impulse response filter, sent by each sensor, and relayed295

the measurements to a laptop via serial communication.

The light source used in the experiment was a white LED (SSR-90 from Lu-

minus Devices Inc.). It generates about 1000 lumens which is matched with the

gains of the sensors to generate a readable output. In order to avoid reflections

which could affect the reading of the sensors, the whole setup was covered in300

blackout fabric (BK5 from ThorLabs). A mask was placed in front of the LED

to direct the light only towards the sensors, see figure 8.

In order to estimate the performance of the shape reconstruction method,

an independent measurement system consisting of a Digital Image Correlation

(DIC) system from Correlated Solutions was used. It consisted of two cameras305

(Point Grey Grasshopper3, 5MP, Mono), pointed to the structure from a dis-

tance of 2 m (see figure 8). The Vic3D software was used to combine pairs

of images taken simultaneously by the cameras to triangulate black and white

markers on the structure. The accuracy of this system is on the order of 50

μm, i.e., about an order of magnitude better than the expected accuracy of the310

shape reconstruction algorithms.
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Figure 8: Schematic of test setup. The plate with 14 sensors is mounted at one end of an

optical table with an Arduino computer retrieving the measurements, and the LED light is

in an enclosed box at the other end. DIC cameras produce a reference measurement of the

shape of the surface.

4.3. Algorithm Parameters

GISRA. Fifteen control points were used to define the reconstructed shape

together with their respective Lagrange interpolating polynomials. The points

were uniformly spaced on the 5 × 3 grid shown in figure 2. An inextensibility315

grid of 13× 5 was used. Because the surface was located relatively far from the

light source (about 2 m), the algorithm was not able to accurately estimate the

distance, which would have led to large errors in the reconstruction. To remove

this numerical singularity, the central point of the surface was fixed to its 3D

position, obtained from the DIC measurements.320

FESRA. Figure 9 shows the different load boundary conditions that were ap-

plied. They were used to generate the matrix Fd using equation 15. A total

of five loading conditions were considered, corresponding to the boundary con-

ditions imposed on the test structure. In order to fix the shape to its local325

reference frame, the out-of-plane deflection of the nodes shown in blue in figure

9 was set equal to 0. Note that these constraints are associated with reaction

forces that provide load boundary conditions and are explicitly calculated by
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the model.

Out-of-plane force

Out-of-plane displacement to 0

Bending moment around x Bending moment around y

x

y

Figure 9: Boundary conditions of finite element model. The amplitude of each load is left as

an unknown, determined from the angle measurements.

Similarly to GISRA, this algorithm has a numerical singularity which is

associated with the distance from the surface to the light source. This issue was

addressed by measuring the distance of the central point of the surface with

the DIC system. The translation vector in equation 13 was then generated by

introducing two rotation matrices:

t = RxRyt0 (25)

where t0 is the original position of the center of the structure, Rx is the rotation330

matrix around the x-axis, and Ry is the rotation matrix around the y-axis. The

two angles defining the rotation matrices were used in the unknown vector

(equation 16) instead of the 3 coordinates of the translation vector.

5. Experimental Results

Experiments were conducted on the structure presented in the previous sec-335

tion. Three sets of static deformations were imposed using the two actuators,

including pure bending (see subsection 5.1), pure torsion (see subsection 5.2),

and combinations of bending and torsion (see subsection 5.3).

The structure was deformed by moving the linear actuators and held in this

shape. Then, pictures were taken by the DIC cameras under uniform light340

conditions. A total of 20 sets of images were taken to average out the DIC

reconstruction and improve its accuracy. The experimental setup was then
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covered with blackout fabric and the LED light was turned on. A total of

100 independent sets of measurements were taken with the sensors at a rate of

10 Hz, to obtain statistically significant results. The angles of each sensor were345

obtained using their respective calibration data. Each set of angle measurements

was used to generate two reconstructed shapes, with GISRA and FESRA.

5.1. Bending Deformation

The structure was deflected at the center by imposing equal displacements

with both actuators. Figure 10 shows the results of an experiment with a 20350

mm deflection. The shape measured by DIC is shown in figure 10a. Note that

DIC can only measure the central part of the structure as the cables connecting

the sensors obstruct the view of the cameras. Figure 10b shows the mean shape

reconstructed using GISRA, while figure 10c shows the shape obtained using

FESRA. The mean shape was calculated by averaging the 100 reconstructed355

shapes from the 100 measurements.

The results are qualitatively similar as both sets capture the global deflec-

tion. A detailed map of the average error across the surface is shown in figure

11. FESRA does a slightly better job on the left of the structure and lower

right, leading to a better accuracy (0.91 mm vs. 1 mm). The accuracy is mostly360

limited by errors on the right of the structure which may be due to inaccurate

positioning of the sensors in this part of the plate.

5.2. Torsional Deformation

Figure 12 shows the shape reconstruction for the structure undergoing tor-

sion. The bottom actuator was moved 20 mm back while the middle actuator365

remained at its zero position, to impose a 5.2° rotation between the actuators.

Because of the tension in the edge cables, the outer edges of the structure re-

mained relatively straight while the center was twisted.

The results from the two algorithms are almost identical and show that they

are both capable of reconstructing this more complex shape. The error, shown370

in figure 13, is close to zero, with some localized deformation around the center
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(a) Shape measured by DIC system.

(b) Shape reconstructed by GISRA.

(c) Shape reconstructed by FESRA.

Figure 10: Measured and reconstructed shapes for 20 mm deflection at the center of the

structure.
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(a) Mean error of shape reconstructed by GISRA.

(b) Mean error of shape reconstructed by FESRA.

Figure 11: Error of reconstructed shapes for 20 mm deflection at the center of the structure.

and the far right. While FESRA performs better on the left, GISRA is best on

the right. Overall, both algorithms yielded an average RMS error of 0.55 mm.

5.3. Combination of Bending and Torsional Deformations

Both algorithms performed well for relatively small deformations of the375

structure, with average RMS errors under a millimeter. Differences arose when

applying more complex (bending plus torsion), larger deformations to the struc-

ture.

Figure 14 shows the results after displacing the central actuator by −20 mm

and the bottom one by −40 mm. While the overall shape is well captured,380

local features appear around the center of the structure which is reconstructed

differently by the two algorithms. GISRA provides a relatively smooth recon-

struction, see figure 14b, but cannot capture the inflection point shown by the

turquoise outline. FESRA reconstructs this local deformation more accurately.

This is highlighted by the error plot in figure 15. While GISRA gives errors385

of almost 3 mm in amplitude around the center of the structure, FESRA does
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(a) Shape measured by DIC system.

(b) Shape reconstructed by GISRA.

(c) Shape reconstructed by FESRA.

Figure 12: Measured and reconstructed shapes for 5.2° torsion at the center of the structure.
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(a) Mean error of shape reconstructed by GISRA.

(b) Mean error of shape reconstructed by FESRA.

Figure 13: Error of reconstructed shapes for 5.2° torsion at the center of the structure.

not produce such a distinctive pattern, especially on the right. This leads to an

RMS error of 0.97 mm, 20% better than GISRA (1.21 mm).

Additional measurements were carried out for a range of deformations, com-

bining different amounts of bending and torsion of the structure. The results390

are presented in figure 16, showing the average RMS error for all shapes con-

sidered. These deformations span a range of deflection from −20 mm to 20 mm

and torsion from −5.2◦ to 5.2◦. The error for smaller deformations is low and

comparable for both algorithms. As the amplitude of the applied displacement

increases, more local features appear which increases the complexity of the de-395

formation field. GISRA loses accuracy for such shapes, due to the relatively

sparse representation of the deformation caused by the limited number of con-

trol points. FESRA, on the other hand, remains accurate and is less sensitive

to the amplitude and complexity of the deformation.

Overall, figure 16 shows that FESRA provides much better results than400

GISRA with approximately a factor 1.5 increase in accuracy overall. The aver-
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(a) Shape measured by DIC system.

(b) Shape reconstructed by GISRA.

(c) Shape reconstructed by FESRA.

Figure 14: Measured and reconstructed shapes for −20 mm deflection and 5.2° torsion of the

structure.
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(a) Mean error of shape reconstructed by GISRA.

(b) Mean error of shape reconstructed by FESRA.

Figure 15: Error of reconstructed shapes for -20 mm deflection and 5.2° torsion of the structure.

age RMS error for GISRA over the different experiments represented in figure 16

is 1.25 mm and decreases to 0.9 mm with FESRA. The accuracy improvements

are as high as 70% for some specific combinations of deflection and torsion.

5.4. Computational Time405

It took about 150 ms to calculate the position of the control points (45

unknowns) with GISRA on an Intel Core i5-6200U CPU, and about 30 s to

estimate the full set of unknowns (1690) with FESRA. This large difference in

computational times is mostly due to the much larger number of unknowns and

the use of a finite difference scheme to compute most of the Jacobian matrices.410

However, it should also be noted that no attempt was made to optimize the

speed of the algorithms in this research, and the FESRA method could be

significantly sped up through the use of standard model reduction techniques.

Additionally, faster methods than the Levenberg-Marquardt solver and the

explicit calculation of the Jacobian matrix or linearization of the constraints415

are some of the possible ways to increase the speed of the presented shape
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(a) Mean RMS error using GISRA. (b) Mean RMS error using FESRA.

Figure 16: Mean RMS error of the reconstructed shape for a range of applied deflections and

torsions.

reconstruction algorithms.

6. Conclusion and Discussion

This paper has presented and demonstrated two approaches to reconstruct

the shape of a planar structure using distributed sun angle measurements. The420

algorithms were tested on a 1.3 m × 0.25 m aluminum thin plate with 14

embedded sensors, deformed at the center by a few centimeters in a combination

of bending and torsion modes.

The geometric, inextensible shape reconstruction algorithm (GISRA) uses

the sensor measurements together with the assumption that the mid-plane of425

the structure does not stretch. Millimeter level accuracy is achievable, as mea-

sured in the experiments. The method is limited by the complexity of the shape

induced by local deformations; only smooth surfaces can be reconstructed ac-

curately.

To improve the accuracy of the algorithm, a mechanical model of the struc-430

ture was introduced to predict local deformations. The stiffness equations re-

placed the inextensibility conditions of GISRA, and a net improvement of ac-

curacy by over 40% was shown together with an improved sensitivity to local
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deformations. FESRA is however much slower in the present implementation,

which would limit its use for time sensitive applications such as real-time shape435

reconstruction, although it was noted in section 5.4 that model reduction tech-

niques could be used to speed up the FESRA method.

More work still remains to implement these algorithms in flight systems. The

finite element model of FESRA is limited to small deformations and for some

applications it may need to be made more general to include a geometrically440

nonlinear finite element model instead. This would add complexity to the system

of equations and make the algorithm slower, but also suited to a wider range of

applications.

Also, the performance of both algorithms should be tested for more complex

geometries and larger deflections to better understand the limits and range of445

applicability.

Only static shapes were considered for this research and more work could

be undertaken to apply each algorithm to dynamic structural response. Filter-

ing techniques such as Kalman filters could be introduced using the equations

presented in this paper to improve the accuracy of the solution.450

It should be noted that the system of equations in both algorithms can be

linearized if small deformations are expected and if the incident light on the

structure is collimated (which is a good approximation for sunlight). Lineariza-

tion would greatly accelerate the solution process which could be advantageous

for applications where computational resources are limited.455

Turning to the practical implementation of the proposed system, an obvious

next step is the miniaturization of the sun sensor into an integrated circuit.

Also, depending on the specific application, the field of view of the sun sensor

presented in this paper may be deemed too small. Sensors at different angles

could be placed in a row to cover a wider range of angles, or the present design460

could be modified to an extended angle range. The effects of light reflected from

other planets should also be considered. A possible approach would be to con-

sider either the overall effect on system error or, depending on the application,

measurements polluted by a spurious light source could be discarded.
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