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Stiffness Design of Spring Back Reflectors
Lin Tze Tan∗ and Sergio Pellegrino†

Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK

The recently developed Spring Back Reflector has low stiffness in the deployed config-
uration. A general method of stiffening this type of reflector without changing its folding
properties is presented. The stiffening is achieved by adding a conical skirt around the
edge of the dish; this skirt snaps elastically when the dish is folded. The paper concludes
that it is possible to design spring back reflectors that are up to 80 times stiffer and with
a deployed fundamental frequency up to 8 times higher than in the original design.

Introduction
The newly developed Spring Back Reflector,[1, 2]

shown schematically in Figure 1, consists of a thin-
walled graphite mesh dish with an integral lattice of
ribs and connecting elements. These components, to-
gether with a further stiffening edge beam along the
rim, are made from triaxial plies of carbon-fibre rein-
forced plastic (CFRP). The whole structure is made as
a single piece, without any expensive and potentially
unreliable joints, and typically has a diameter of 6 m,
thickness varying between 0.3 mm and 3.2 mm, and a
total mass of around 20 kg.

The folding concept is both simple and effective:
since there are no joints or hinges, opposite edges of the
reflector are pulled towards each other by about half of
their original distance, and thus the reflector becomes
folded elastically as shown in Figure 1. It can then
be stowed in the normally unused space in the nose
cone of a rocket launcher. Once in orbit, the tie cables
that hold the reflector in its packaged configuration
are released, and the reflector deploys dynamically by
releasing its stored elastic strain energy.

In order to be folded as described, Spring Back Re-
flectors need to have low stiffness but it is precisely
their low stiffness that makes it difficult for them to
achieve and retain a high shape accuracy. Further-
more, shape distortions that occur during the man-
ufacturing of thin CFRP structures —of the order
D/1000 in the present case— make it even more diffi-
cult to meet the stringent shape accuracy requirements
imposed on communications antennas. This is a sig-
nificant problem, and potentially a severe limitation
on the applicability of this type of reflector. The sur-
face accuracy of the reflector could be adjusted with
mechanical devices, but this would defy the simplicity
of the concept and reduce the reliability of the system.

This paper proposes a modification of the original
concept, based on the idea of adding a thin-walled
stiffening element around the edge of the dish. This el-
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Fig. 1 Schematic views of spring-back reflector,
folded and deployed.

ement significantly increases the overall stiffness of the
dish in the deployed configuration, and yet its con-
figuration is such that the stiffened dish can still be
folded elastically. The viability of this approach was
first demonstrated by means of simple physical models.

This paper presents a detailed finite element study
of the effects of changing the various parameters of the
stiffening element from which optimal configurations
of a 1/10th scale model —i.e. about 0.5 m diameter—
reflector are chosen. Two selected configurations have
then been physically realized and their measured prop-
erties are compared with finite element predictions.

Stiffening Method
In general, the stiffer one makes a linear-elastic

structure, the “harder” it becomes to fold it elasti-
cally. This intuitive statement can be formalized using
an argument based on the total strain energy in the
structure being equal to the work done by two equal
and opposite forces that are applied to the structure
in order to fold it. If the “stiffness” is increased, the
strain energy required to fold the structure by a given
amount will increase proportionally. The maximum
stress in the structure will also increase.

A spring-back reflector could be stiffened by increas-
ing the stiffness of the edge rim or the ribs. However,
increasing the thickness of these elements has the ef-
fect of rapidly increasing the maximum stress level in
the folded reflector, whereas increasing their width is
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Fig. 2 Lowest stiffness, incompatible eigenmodes
of dish and skirt.

inefficient in terms of mass.
An alternative, more efficient way of increasing the

stiffness of a structure is to prevent it from deform-
ing in its lowest stiffness eigenmode. In the case of an
“open cap” shell this eigenmode is the inextensional,
or first bending mode sketched in Figure 2(a). The as-
sociated eigenfrequency can be substantially increased
by connecting the original shell to a second shell whose
lowest stiffness eigenmode is geometrically incompati-
ble with that of the first shell. In Figure 2(b) a conical
shape has been chosen.

In practice, this amounts to adding a conical skirt
around the original reflector, but the addition of a con-
tinuous skirt would make the reflector so stiff that
it would no longer be possible to fold it. Therefore,
following an approach put forward by Greschik,[3] we
counteract this effect by introducing a series of cuts,
either in the skirt or in the connection between the
skirt and the dish. There are many different ways of
implementing this idea in practice, and in the follow-
ing section we describe some pilot schemes that were
explored.

Preliminary Studies

Consider a dish that has been stiffened with a small
conical skirt in which some cuts have been intro-
duced. Consider the force-displacement relationship
—see Figure 7 for some examples— when two diamet-
rically opposite points on the edge of the structure
are forced to move closer together. This relationship
is typically linear over a small displacement range; it
then becomes non-linear and, after reaching a local
maximum, the force remains approximately constant
for a considerable range of displacements; for even
larger displacements the force starts to increase.

There are two important parameters to be consid-
ered, as follows.

• The initial stiffness of the structure, related to
its deployed stiffness, which can be characterised
by computing its fundamental natural frequency.
More precisely, we are interested in the ratio be-

tween the fundamental frequency, f , and the orig-
inal frequency, f0, of the unstiffened dish.

• The highest stress in the folded configuration,
σmax.

A series of finite element analyses were carried out to
determine how these two parameters are affected by
different types and sizes of cuts. Further details on
the finite element modelling of the structure will be
given later, in the section Automatic Generation of
Stiffening System.

First we considered the effects of introducing either
two or four radial cuts in the skirt while varying the
skirt width. We found that increasing the number of
cuts has the effect of decreasing both σmax and the
ratio f/f0.

Next we analysed the effects of varying the angle
of the conical shell, i.e. the angle between the skirt
and the vertical, on σmax and f/f0. We found that
σmax decreases when the skirt angle is increased from
30 deg to 110 deg. We also found that a stiffened struc-
ture with four cuts has f/f0 ≈ 1 for all angles in this
range, whereas a structure with two cuts has f/f0 > 2.
Hence, we concluded that only configurations with two
cuts are worth considering.

Thirdly we considered the effect of circumferential
slits along the connection between the skirt and the
original shell, instead of radial cuts. A particular
feature of these slits is that they allow the skirt to
snap through while the reflector is being folded, con-
sequently decreasing the force required to fold the
reflector and thus also significantly reducing the max-
imum stress level. This is due to the fact that the slits
allow a large area of the dish to bend, whereas the ra-
dial cuts tend to localise the deformation around the
apex of the cuts. Furthermore, these slits cause only
a minor reduction in the natural frequency in the de-
ployed configuration, compared to that of a reflector
with a skirt which is continuously attached to the rim
of the reflector.

Optimization
Thus far we have presented a problem, proposed a

particular type of solution which includes some ad-
justable design parameters, and observed some general
trends on how different parameters such as the num-
ber of cuts, the skirt angle and width might affect the
final solution. However, in order to obtain a proper
engineering solution, we need to carry out a more for-
mal search of the design space. Figure 3 defines the
five parameters to be optimised, which are

• the angles α, β defining the length of the two sets
of slits;

• the angle γ defining the inclination of the skirt;

• the width w of the skirt; and
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Fig. 3 Design parameters.

• the length of the cuts (which can be either 0 or
w).

All of these parameters, apart from the length of the
cuts, can be varied over a wide range; more details are
given later in this section.

Due to the number of parameters to be optimized
and the complexity of each step in the optimization
process, considering a simultaneous variation of all pa-
rameters is not feasible. Hence, two types of designs,
which had shown the most promise during the prelim-
inary study, were selected and for each design optimal
configurations were sought. These two designs are as
follows.

• Configuration A. Two cuts and four slits of equal
length (α = β).

• Configuration B. Four slits of general lengths (α �=
β), but no cuts.

Optimization Routine

Because there is no known analytical relationship
between the design parameters, the easiest approach
is the direct search method. The particular optimiza-
tion method that was chosen was the Hooke and Jeeves
(HJ) method,[4] which has the advantage of not requir-
ing the evaluation of gradients of the objective function
and hence is particularly suited for problems where so-
lutions can only be obtained numerically.

Figure 4 lists the various steps and decisions in-
volved in this search method. It is available as a
routine, written in C,[5] which incorporates improve-
ments made by various authors.[6–8]

Verification of Routine and ABAQUS Interface

Haftka and Gürdal[9] consider a linear-elastic can-
tilever beam with uniform, rectangular cross-section
of breadth b and height h, loaded by a unit shear force
at the tip. Their objectives are (i) to minimize the

START

Evaluate objective function 
at initial base point

Make exploratory moves from base point
 i.e. scaled decrements/increments for

 each variable are implemented and the  
improvements retained

Is the present objective function less 
than that at the base point?

Is the present objective function less 
than that at the current base point?

Set a new base point

Make pattern move
i.e. repeat vector from 

the last base point

Make exploratory moves

Decrease step size

Return to previous base point

Is step size smaller 
than halting cirterion?

END

NO YES

NO

NO
YES
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Fig. 4 Flow chart of Hooke and Jeeves method.

beam cross-sectional area, bh, while (ii) also minimiz-
ing the maximum shear stress in the beam, for which
they use the expression τ = 3/2bh.

Considering equal weights for these two objectives,
the objective function is

Fobj = bh +
3

2bh
(1)

and the optimum[9] is b∗h∗ = 1.225, which indicates
that one dimension of the cross-section can be chosen
arbitrarily. The corresponding value of the objective
function is Fobj = 2.45.

As an initial test, to verify that the HJ optimiza-
tion routine is capable of repeatable and correct con-
vergence, the objective function in Equation (1) was
programmed into the HJ routine. Several different sets
of starting points were given and convergence to the
values b∗h∗ = 1.225 and Fobj = 2.45 was obtained in
all cases; two examples are listed in Table 1.

Next, an interface between the optimization rou-
tine and the ABAQUS finite element package[10] was
developed and tested on the same example problem.
However, this time the maximum shear stress in the
beam was taken from the ABAQUS simulation, in-
stead of using the approximate analytical expression
in Equation (1).

This interface, also written in C, reads the maximum
shear stress from the ABAQUS results file from the
previous run, then runs the HJ routine to determine
the next set of values of b and h, and then updates
the ABAQUS input file accordingly; finally it makes a
system call to start the next ABAQUS analysis.
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The beam length was set equal to 50 units. The
cross section dimensions were allowed to vary subject
to the constraints

b > 0.5 (2)
h < 5 (3)
b < h (4)

The latter condition ensures that only beam cross-
sections from deep and narrow up to square are consid-
ered, thus halving the number of possible variations.
These constraints were implemented via a barrier func-
tion routine which returns a very high value for the
objective function if any of the variables exceeds its
bounds.

The beam was modelled with 20 node quadratic
brick elements (C3D20). Since the maximum shear
stress occurs on the neutral axis, both the height and
width of the cross section were subdivided into an odd
number of elements. This is to ensure that there is al-
ways an element right at the centre of the cross-section,
where the highest shear stress is reached. To prevent
ill-conditioning, the number of elements was varied ac-
cording to the values of b and h.

On completion of each analysis, the shear stresses in
all elements were written by ABAQUS into a results
file. The interface then calculates the number of the el-
ement at the centre of the beam, and another function
opens the results file and searches for this particular
element. The shear stress in this element in then re-
turned to the optimization routine.

Convergence was achieved, but initially not to the
expected value, see the case with Poisson’s ratio ν =
0.3 in Table 1. This is due to the fact that the ex-
pression for the maximum shear stress in Equation 1
is only an approximation and becomes less exact for
b ≈ h; in general, the ABAQUS approximation is more
accurate. However, by setting ν = 0 for the ABAQUS
analysis the simple analytical expression becomes more
accurate and hence a value very close to the analytical
optimum was obtained, see Table 1.

Table 1 Results of optimization tests

Calculation Start points Optimized values
of τmax b h b∗ h∗ b∗h∗ Fobj

Analytical 5 5 0.928 1.320 1.225 2.45
1 1 0.993 1.223 1.225 2.45

FE (ν = .3) 1 1 1.119 1.200 1.253 2.38
FE (ν = 0) 1 1 1.105 1.107 1.223 2.46

Automatic Generation of Stiffening System

To carry out the optimization, an automatic method
of changing the design parameters which does not re-
quire any user input was needed.

For each of the two basic designs defined previously
there are four parameters to be optimized, namely
α, β, γ, and w. It is worth noting that none of these

              

Dish
P

Q

Skirt

Nodes left untiedTied nodes

Fig. 5 Schematic of automatic mesh generation.

parameters affects the shape and design of the actual
dish of the reflector; it is intended that the addition
of the skirt be a relatively minor modification of the
spring back reflector design. With this in mind, a quar-
ter mesh of general 3 node shell elements (S3R) was
generated for the reflector dish with PATRAN[11] and
then written to an ABAQUS input file. The nodes
of this mesh were uniformly spaced on the rim, at an
angle of 2 deg apart; the total number of nodes was
around 600.

The skirt was then generated directly in the model
input file by defining a generator starting at a point
P on the rim of the dish and ending at point Q, see
Figure 5. Varying the position of Q enables us to
vary both the skirt angle, γ, and the skirt width,
w. This generator is then rotated around the axis
of the dish to define the skirt nodes in such a way
that the nodes on the inner edge of the skirt are colo-
cated with those on the rim of the dish. If cuts are
to be introduced in the skirt, each separate portion
is formed separately. The skirt and the dish are then
connected by using the type “TIE” from the “MULTI
POINT CONSTRAINT” option in ABAQUS. This op-
tion equates the global displacements and rotations of
the two nodes that are tied together.

A simple way of modelling a slit would be to leave
the corresponding nodes untied. However this would
allow us to consider only slit lengths that are an exact
multiple of the distance between rim nodes; therefore
a more sophisticated technique was needed. Two ad-
ditional, smaller shell elements were generated, one
between each end of the slit and the first pair of
dish/skirt nodes. The location of these smaller ele-
ments is calculated by a routine which, for a given
set of design parameters, locates the two sets of stan-
dard dish/skirt nodes between which the end of the
slit occurs. This allows the length of the slit to be var-
ied continuously. Finally, the nodes at the end of the
slit are connected to the rest of the model by using
the “LINEAR” option from the ABAQUS “MULTI
POINT CONSTRAINT” function. This option speci-
fies the rotation and the displacement of a given node
as a proportion of the two nodes on either side of it.

This method of automatically generating the slits
was tested by considering a configuration in which the
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slits terminated exactly at a dish/skirt node. Hence,
for this case it was possible to use the simpler mod-
elling technique described previously. The frequencies
obtained from the two methods differed by 0.18%. The
difference being due to the fact that the slit in the auto-
matic meshing method leaves a small void in the skirt
and hence the mass of this configuration is slightly
lower.

ABAQUS Simulation

After setting up the ABAQUS input file two differ-
ent analyses were carried out. First, the fundamen-
tal natural frequency of the structure was determined
from a linear eigenvalue analysis, and second a geomet-
rically non-linear, displacement controlled simulation
of the folding process was performed, in order to find
the maximum stress in the structure.

Given a structure that exhibits snapping behaviour,
in general it is not obvious at which stage of folding
the maximum stress, σmax, will be reached. In the
present case, though, an exhaustive numerical study
had shown that —due to the very large deformation
that is imposed after any snaps have taken place—
σmax for the dish occurs always in the final, fully-
folded configuration of the reflector. Typically, in this
configuration the two diametrically opposite points of
the reflector that are pushed closer together are at a
distance of D/2. Therefore, only the stresses in the
final configuration need to be scanned by the interface
routine to find σmax, at the end of the folding simula-
tion.

Note that the highest stress in the skirt given by
the simulation is sometimes higher, but damage of the
skirt can be avoided by carefully folding the skirt by
hand, instead of pulling on the whole reflector with
two concentrated forces.

Objective Function

The aim of the optimization is to maximise the
fundamental natural frequency of vibration of the de-
ployed structure, subject to a limit, σ0, on the maxi-
mum stress in the structure in the folded configuration.
This limit was implemented through a penalty func-
tion which greatly increases the objective function if
the limit is exceeded. Mathematically, this can be ex-
pressed as:

Fobj = −f + exp(σmax − σ0) (5)

Optimization Results
The model to be optimized is a 1 mm thick,

parabolic dish with diameter D = 450 mm and fo-
cal length F = 135 mm, made from Polyethylene
Terephthalate Glycol Modified, PETG (sold in sheet
form, under the trade name Vivak). This mate-
rial is essentially isotropic and has Young’s Modulus
E = 1.86 GPa and Poisson’s ratio ν = 0.36.

The following limits were placed on the design pa-
rameters of the stiffening system

• slit angles, 0.5 ≤ α, β ≤ 30 deg;

• skirt angle, −5 ≤ γ ≤ 150 deg;

• skirt width, 5 ≤ w ≤ 40 mm.

and both Configuration A and Configuration B were
investigated for different values of σ0.

Optimal values were found to have at least a fac-
tor of 3 increase in fundamental natural frequency,
compared to the unstiffened configuration (which has
f0 = 5.8 Hz) for σ0 = 25 MPa, increasing to nearly 8
for σ0 = 40 MPa.

This optimization problem does not have a single
minimum, hence to be reasonably sure that conver-
gence to the global optimum has been achieved, for
a particular value of σ0 several optimization runs —
typically 10 or more— were carried out with different
starting points. At the end, the solutions with the
highest frequency were selected. It was noted that the
optimization usually converges to the maximum value
of w, and hence in some optimization runs w was as-
signed a definite value, instead of being considered as
a variable.

Figure 6 is a plot of the eight optimal values ob-
tained, initially by prescribing different values for σ0
only —points 1 to 4— and then by also prescribing
w = 20 mm —points 5 to 8. The corresponding de-
sign parameters are listed in Table 2. Note that all
eight designs have γ ≈ 90 deg and there is a general
trend for γ to decrease with increasing σ0.
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Fig. 6 Trade off between f and σmax for Configu-
ration B.

Consider the optimal configuration with σ0 =
40 MPa, i.e. point 3 in Figure 6; this configuration
has w = 40 mm. Dividing w by 2 results in a 40%
decrease in f , see point 8.

Points 5-8 in Figure 6 show clearly that the rate
of increase in f in the optimal configurations is much
lower than the associated increase in σ0; the slope of a
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Table 2 Optimal configurations

Point α β γ w f σmax

(deg) (deg) (deg) (mm) (Hz) (MPa)

1 0.1 14.9 93.7 39.5 35.2 26.2
2 2.3 13.2 90.3 40.0 40.2 30.0
3 0.5 9.1 88.9 40.0 43.8 40.1
4 0.5 6.8 88.6 39.8 45.0 49.7
5 6.1 17.4 88.1 20.0 24.0 25.3
6 4.0 14.8 87.9 20.0 24.8 30.5
7 4.1 11.4 87.5 20.0 26.2 35.4
8 2.8 10.6 86.7 20.0 27.0 40.5

Table 3 Mass and frequency for σmax = 25 MPa

w Additional Mass f/f0

(mm) (% of original) (Hz)

20 16 4.1
30 24 5.3
40 33 5.9

best-fit line through points 5-8 is ≈ 1 : 5. The gentle
slope of this line, compared to the sharp curve between
points 1-3, is due to the fact that the configurations
with w = 20 mm are able to reach the maximum at-
tainable stiffness for the given stress limit, whereas the
configurations with w = 40 mm are governed by the
stress limit.

In conclusion, the general trend is

• if σ0 is the controlling factor, θ ≥ 90 deg;

• if σ0 is easily achievable, θ ≤ 90 deg.

This is because pointing the skirt below the level of the
rim of the unstiffened dish is a more efficient way of
increasing the stiffness against first-mode deformation,
but also produces higher stress levels during folding.

The highest stresses in a folded reflector tend to con-
centrate around the edge of the slit; about 90% of the
structure is typically at a stress that is 40% lower.
It should be noted that —in calculating the highest
stress— the elements at the tips of the slits have been
ignored as there is a stress concentration that could
be removed simply by rounding the sharp end of the
slits, as shown in Figure 9.

Since PETG has an ultimate failure stress of around
50 MPa, it was decided to choose σ0 = 25 MPa. At this
point, the final choice of w involved a trade-off between
added mass and stiffness increase. Table 3 compares
three different configurations, all with a stress limit of
25 MPa.

A similar optimization study was carried out for
Configuration A, with two cuts across the skirt and
four slits subtending equal angles. This configuration
tends to suffer from higher stress concentrations, and
so it is more difficult to find design parameters for
which the yield stress of the material is not exceeded.
To alleviate this problem, the six most highly stressed
nodes in the finite element model, which correspond to

a small area around the tip of the cut, were disregarded
in the calculation of σmax, again on the grounds that
high stress concentration issues could be dealt with
by a more careful design of the details. The outcome
is that all optimal designs for this configuration have
γ > 90 deg, which as explained earlier has the effect of
lowering σmax at the expense of decreasing the bend-
ing stiffness in the deployed configuration.

Figure 7 compares the force-displacements relation-
ships of two optimized configurations, A and B, with
that of the original configuration, O. Note that the
displacement plotted on the abscissa is for only one
edge of the dish, hence the distance between the edges
that are brought together during folding changes by
twice this amount. Both of the optimized configu-
rations have σmax = 49.6 MPa and w = 40 mm.
Configuration A has α = β = 0.5 deg, γ = 95 deg,
and f = 17.6 Hz. Configuration B has α = 0.5 deg,
β = 6.8 deg, γ = 89 deg, and f = 45 Hz..

Configuration A

Configuration B

Configuration O
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Fig. 7 Comparison of three configurations.

Note that both configuration A and B are much
stiffer than O near the origin, but then snap and
for larger displacements tend towards the force-
displacement curve of Configuration O. The force re-
quired to hold these reflectors fully folded is only a
little higher than for the original reflector, by 12% for
Configuration A and 7% for Configuration B. It should
be noted that the snapping behaviour that is exhib-
ited by these optimized designs is generally not seen
in non-optimized structures.

In conclusion, Configuration B has the most promise
and makes it comparatively easy to achieve a high
stiffness with stresses below any given limit. This is
because this configuration allows longer slits in the re-
gions of highest elastic curvature of the reflector, which
has the effect of distributing the strain over a wider
region thus decreasing the peak strain. On the other
hand, the presence of a radial cut in the skirt, in Con-
figuration A, tends to form a hinge-like region along
the axis of bending, which is responsible for higher,
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Table 4 Tested configurations

Configuration Cuts Slits α β γ w

(deg) (deg) (deg) (mm)
O - - - - - -
A 2 2 - 4 50 20
B - 4 8 24 90 20

localised strains.
Another attractive feature of Configuration B is that

the two longer slits leave two long “struts” along the
edge of the dish, which buckle and provide the desired
snapping behaviour. This has the effect of lowering
the peak stresses in the fully-folded structure to a level
comparable to that of the original, unstiffened dish.

Experimental Verification
In order to verify selected results from the optimiza-

tion study, two types of experiments were carried out
on small scale physical models:

• static compression tests, to characterize both the
initial stiffness of the structure and the force-
displacement relationship during folding;

• vibration tests, to measure the natural frequencies
of the structure.

The experiments were carried out on PETG dishes
made by vacuum forming on parabolic moulds with
conical edges. The exact dimensions of these moulds
were, diameter D = 452 mm, focal length F = 134 mm
and skirts angles of 50 or 90 deg. Further details are
given in Table 4.

The static tests were carried out in an INSTRON
testing machine with specially machined fittings; the
set up is shown in Figure 8. The connection between
the rim of the dish and the INSTRON is through a
2 mm diameter ball and socket joint, which ensures
that the edge of the dish is free to rotate through a
large angle during folding; a detailed view is shown in
Figure 9.

Modal identification tests were carried out by apply-
ing a random dynamic excitation to the dishes with a
O86D80 ICP impulse hammer fitted with a piezoelec-
tric head, and by measuring the response of the dish
at nine points with a Polytec PSV300 scanning laser
vibrometer. To reduce noise, each measurement was
repeated three times and the results were averaged.
After measuring all the target points, the Fast Fourier
Transform (FFT) of the above signals was computed in
order to obtain the frequency response functions and
the mode shapes.

An indication of the accuracy and validity of this
type of experiment is provided by the coherence, which
is the ratio of the frequency response functions (details
in reference[12]), varying between 1 and 0. A good
experiment should normally lead to values close to 1.

Fig. 8 Static test set up.

Fig. 9 Detail of dish connection.

This was extremely difficult to obtain for the unstiff-
ened dish, which has an infinite number of symmetric
modes; hence for this test only the coherence was ne-
glected. Reasonable values were obtained for tests of
the other two configurations, but only after carefully
adjusting the boundary conditions.

The mode of greatest interest is the lowest bend-
ing mode and hence frequencies for this mode are
presented in Table 6, in the section Results and Dis-
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Fig. 10 Stress-strain relationship of PETG.

cussion.
Two different types of boundary conditions were

used, as follows. (i) Dish vertical, clamped through the
centre to a block; and (ii) dish horizontal and facing
up (“cup up”), suspended from three vertical cords.
The lengths of the elastic suspension cords were such
that the rigid-body vertical mode had a frequency of
1 Hz, to separate the rigid body modes from the flex-
ural modes (which have frequencies of around 10 Hz).
Horizontal elastic ties were used to prevent large rigid
body motions in the horizontal direction.

Experimental Complications
Early on it had been verified that the behaviour of

PETG is very close to linear for stresses in excess of
25 MPa, see Figure 10. The material properties quoted
in the Section “Optimization Results” were obtained
from specimens cut from the same sheets from which
the models had been made.

Several important issues had to be addressed before
the finite-element results could be properly validated.
They are discussed next.

Geometric Inaccuracies

Although the dishes were all manufactured out of
1 mm sheet, the vacuum-forming process stretches the
material and hence the thickness of the model will not
be uniform. One would expect the deformation of the
material to be axi-symmetric, hence the thickness at
the centre of the dish should be 1 mm decreasing ra-
dially outwards.

Figure 11 is a graph of the thickness of the dish at
the intersection between 28 circumferential lines and
8 radii, measured with a dial gauge. Note that the
last two points on each curve are on the skirt. These
measurements follow the expected variation from the
centre of the dish, but also show a considerable asym-
metry; the maximum discrepancy between points on
the same circumference is 0.2 mm.

Considering that the flexural stiffness of a shell is
proportional to the cube of the thickness, this variation
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Fig. 11 Thickness of Configuration B dish.

is not negligible. Since it would have been impossible
to manufacture dishes with uniform thickness using
vacuum forming, the measured thickness distributions
had to be incorporated into the computational model.
Assuming an axi-symmetric distribution would have
been insufficiently accurate, hence the only way of pro-
ceeding was to define the thickness of each and every
node. Thus, the measured thickness distribution had
to be mapped onto the finite element mesh using a
specially-written computer program. The thicknesses
at the nodes were then included into the ABAQUS
model by a “*Nodal Thickness” command.

Mode Shapes and Gravity Effects

Although in the finite element model the dish is
clamped at the centre, the rigid-body modes still show
very clearly as the first three modes, see Figure 12.
These modes are more significantly affected by gravity,
see Table 5. However, gravity effects on the bending
modes, i.e. modes number 4 and 5, are quite small.

a) Mode 1 b) Mode 2

c) Mode 3 d) Mode 4

e) Mode 5 f) Mode 6

Fig. 12 Mode shapes of centrally clamped Config-
uration B dish.
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Table 5 Effect of gravity on frequencies (Hz) of
clamped Configuration B dish

Mode No gravity Horizontal Horizontal Vertical
(cup up) (cup down)

1 2.0 1.7 2.1 1.9
2 2.0 1.7 2.2 2.0
3 2.1 2.1 2.2 2.2
4 16.6 16.8 16.4 16.6
5 18.7 18.8 18.5 18.6
6 41.4 37.3 44.3 38.5

Air-Structure Interaction

When a vibrating structure is immersed in a fluid,
it will invoke vibrations in the fluid surrounding it.
If the acoustic wavelength is larger than the struc-
tural wavelength, a layer of air moves together with
the structure; this air thickness decreases as the fre-
quency of vibration increases. This added-mass effect
can significantly reduce the lower natural frequencies
of a lightweight structure. In order to account for this
interaction, one needs to estimate the added mass of
air.

Assuming that the first bending mode of a shallow
shell can be reasonably approximated with the first
bending mode of a flat, circular plate, we can obtain
a quick estimate of the natural frequency of interest,
ω[13]

ω = k2t

√
E

3ρ(1 − ν2)
(6)

where k is the wave number, and E, ν, ρ, t are the
Young’s Modulus, Poisson’s ratio, density and thick-
ness of the shell, respectively. Solving for k, we get

k =
√

ω

t

(
3ρ(1 − ν2)

E

) 1
4

(7)

A simple estimate of the air thickness that partic-
ipates in the vibration of the plate is ρair/k[14] and,
considering that the plate has air on both sides, we
obtain the following expression for the added mass,
ma

ma =
2ρair

k
πr2 (8)

where r is the radius of the plate.
Finally, assuming that this added mass does not

change the shape of the mode of interest, the natu-
ral frequency of the structure in air, fair, is given by:

fair = fvacuum

√
ms

ms + ma
(9)

Here ms is the total mass of the plate and fvacuum is
the frequency of the structure in vacuum, estimated
by ABAQUS.
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Fig. 13 Comparison of two tests on Configuration
A dish with FE analysis.
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Fig. 14 Comparison of two tests on Configuration
B dish with FE analysis.

Results and Discussion
Figures 13 and 14 show the force-displacement plots

of the two stiffened configurations that were tested —
see Table 4 for details on the corresponding design
parameters— and compares them to the ABAQUS
simulations. Note that both tests of the Configuration
A dish were stopped before attaining the completely
packaged shape, to prevent permanent damage of the
dish.

In both cases there is excellent correlation between
experimental and computational results. The initial
slope of the graphs, corresponding to the stiffness of
the dishes, has been simulated very accurately.

Note that there is a 4% experimental scatter in the
peak force of the Configuration A dish, Figure 13,
which tends to increase in the post-buckling range. In
Figure 14 the scatter is smaller, and it can be noted
that the experimental model buckles marginally later
and at a slightly larger load. Considering that we
are dealing with the large-displacement behaviour of
thin shell structures, which are notoriously challenging
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Table 6 Frequency results (Hz)

Configuration Exp. ABAQUS ABAQUS Error
(vacuum) (air) (%)

O 5.0 5.8 4.8 4.4
A 14.9 17.0 15.0 1.1
B 15.4 16.8 14.9 3.3

to model, these discrepancies are too small to worry
about.

The following observations, made during the course
of the experiments, may provide useful guidance for
the detailed design of the stiffening system, in future.

• Defining the position of the origin, i.e. the config-
uration of zero displacement and zero force was
not a trivial issue. This is because the structure
had to be held vertically during the tests and self-
weight deformation could not be easily cancelled.

• Contact between the buckled skirt and the back
of the dish occurs during the final stages of the
folding process.

• The long slits in the Configuration B dish, which
has β = 24 deg, leave two long unsupported
lengths of skirt. Thus, there are two long and nar-
row flat strips which never regain in full their orig-
inal shape. Changing their cross-sectional shape
to slightly curved may stabilize them without af-
fecting the folding behaviour of the dish.

Table 6 lists the measured frequencies of the first
bending mode of the three configurations listed in Ta-
ble 4. For Configuration B the measurements were
taken with the dish suspended horizontally “cup up”.
These values are compared first with the ABAQUS
predictions in vacuum and then with the frequencies
modified to account for the added mass of air, accord-
ing to Equation 9. The last column gives the error
between the measurements and the predicted frequen-
cies in air.

The results presented in this section have pro-
vided an experimental validation for the finite ele-
ment simulation technique used for the optimization
study. Thus, having confirmed that both the large dis-
placement load-displacement relationship and the first
bending frequency of a stiffened reflector were com-
puted very accurately by the simulation, it can now
be expected that the predictions will be equally accu-
rate for other designs of stiffened reflectors.

Of the two stiffened reflectors that have been tested,
neither of which had particularly well optimized design
parameters, Configuration B has been confirmed to be
the most promising. Although the two configurations
have achieved essentially identical stiffness and natural
frequency in the deployed configuration, the Configu-
ration A dish gave some concern during folding, and
so the fully-folded configuration was never reached for

this one. On the other hand, the Configuration B dish
was folded many times without difficulty.

Conclusions
The stiffness in the deployed configuration of a

Spring Back Reflector can be increased significantly
without compromising its ability to fold elastically.

A particular stiffening system has been proposed
and evaluated. In its most successful implementation,
it consists of a thin-walled conical shell structure that
is attached to the edge of the reflector dish.

By introducing short discontinuities between the
dish and the stiffening element, the behaviour of the
stiffening system can be tuned in order to maximize
the increase in stiffness in the deployed configuration
while minimizing the increase in the maximum stress
in the fully-folded configuration.

Determining the optimal parameters, i.e. the width
and angle of the stiffening structure as well as the
length of the discontinuities along the attachment to
the dish, requires extensive non-linear finite element
simulations and a careful optimization. However, as
a first approximation a flat stiffening structure per-
pendicular to the axis of the reflector is likely to be
near-optimal.

Ten-fold increases in stiffness and three-fold in-
creases in the first bending frequency of a small-scale
reflector have been verified experimentally. Optimized
designs with 80-fold stiffness increases and 8-fold fre-
quency increases have been shown to be possible. Pre-
liminary results for full-scale reflectors, not shown in
this paper, suggest that similar improvements can be
achieved at full scale.
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