AAReST Coresat Detailed Design Review

September 11 2017

caltech.edu

1

AAReST Subsystems

caltech.edu **14 September**

2017

2

Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem

Outline

- Review of Optomechanical Design
- Telescope Requirements
- Optical Systems status

 RMs, DMs, Camera Lens Assembly
- Overview of Active Element Control
 - Rigid Body Actuation
 - DM actuator control and measurement with SHWFS

Caltech

caltech.edu 14 September 2017

AAReST Payload CDR

5

Baseline Requirements

- Science Camera field of view: 0.34° across diagonal
- PSF of each mirror Segment: 80% encircled energy in 50µm diameter circle.
- Signal to Noise ratio: >100/lenslet for 50µs exposure on Shack-Hartmann WFSs and >100 on science imager for magnitude 2 stars or brighter

Optical System Overview

Camera

Caltech

caltech.edu 14 Sep

14 September 2017 AAReST Payload CDR

8

Mirror Boxes

Active Element Control

Deformable Mirror shape control through Shack-Hartmann measurement

caltech.edu 14 September AAReST Payload CDR 2017

10

Caltech

Optical Systems Status

- Theoretical performance prediction
 - Science cam SNR = 116
 - WFS SNR = 110/lenslet
- Camera Lens assembly
 - Verify lenses are manufactured and aligned correctly
- Rigid Mirrors
 - Integration into testbed with science imager for coarse alignment and SHWFS for fine WFE measurement
- Deformable Mirrors
 - Characterization using high order wavefront sensing
 - Integration into testbed with SHWFS readout
 - Active control in testbed using some flight like electronics.

Active Element Control

- Rigid body control with three linear actuators per mirror segment
 - Flight like electronics complete
 - Active in mirror boxes on testbed
- Deformable Mirror actuators controlled using proto-flight electronics
 - Flight like electronics and software ready for integration
 - Shape measurement with SHWFS

Summary

- Optical system has been shown be designed to meet baseline requirement.
- Camera Assembly and lenses are verified.
- Throughput has been computed to meet requirements (test results to follow).
- Rigid mirrors alignment and figure have been verified to produce a PSF that meets requirements and matches simulation.
- DMs are in progress and actuator control is being integrated.

Future Work

- Bond rigid mirrors to mirror plate and remove temporary mounts
- Execute calibration and closed loop control of DMs using flight camera and SHWFS.

Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem

Requirements

In closed loop, DM must focus 80% of point source energy to $<50 \ \mu m$ diameter spot at focal plane

- Initial shape
 - Measured 2.6 µm RMS shape error. (<30 µm RMS defocus is correctable)
 - Radius of curvature (+/-6 inch RoC is correctable)
 - High order error (dimples etc.)
 - Must be measurable with SHWS
 - Minimal impact on encircled energy
- Actuation
 - For perfectly spherical optic we need ~3 µm stroke to achieve hyperboloid optical prescription
 - To test real mirror with shape error, we will test with AAReST camera in telescope testbed

Caltech

DM design - PZT and glass

Fabrication - Vacuum bag bonding

Caltech

Fabrication - Electrical routing layer bonding

- Electrical routing layer
 - 0.5 oz copper
 - 1 mil base Kapton
 - 1 mil Kapton coverlay
- Connector
 - TE connectivity
 - 42 pos. 0.5 pitch FFC
- MG Chemicals silver epoxy dripped into vias
 - Add acetone to improve flow
 - Room temperature cure
 - Tape is not tensioned!

Fabricated hardware

Test mount constructed from aluminum and acrylic to avoid stray magnetic torques on mirror

AAReST Deformable Mirrorbox

Testing - Actuation of PZT1GSF3

21

Testing - Best flattening result

Testing - Best flattening result

caltech.edu

Caltech

Testing - Slumped glass dimples

Testing - DM in the AAReST testbed

Mirror errors are within range of AAReST wavefront sensor

Caltech

caltech.edu

Testing - DM in the AAReST testbed

Mirror errors are within range of AAReST wavefront sensor

Caltech

Testing - DM in the AAReST testbed

Next step is to close the loop with the AAReST testbed...

Testing – PSF and RoC

Surface Error As Measured: Ensquared Energy in 50μ m square = 1.7%

Slumping glass at Caltech (JPL R&TD grant)

Cotroneo et al. (2016) SPIE 99650C-5

Caltech

caltech.edu

Conclusions and future work

- Achievements
 - Designed and built ultra-lightweight deformable mirrors that demonstrate large stroke.
 - Built mirrors that can correct for their own sphere-subtracted shape errors, up to the actuator size limit.
 - Deformable mirrors can be measured and actuated within the AAReST testbed.
- Future work
 - Mid-spatial frequency error in the DM prevents meeting AAReST encircled energy requirement.
 - Bonding procedure imparts focus shift that cannot be actuated away.
 - Continue producing mirrors

Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem

Subsystem Requirements

Functional:

- Image star using a sparse aperture primary mirror
- Work to reconfigure primary mirror
- Provide feedback on mirror shape
- Take engineering images of CoreSat during MirrorSat reconfiguration

Constraints:

- Mass < 4kg
- Volume < 10 x 10 x 35 cm
- Power < 5 W

Performance:

- 80% encircled energy radius < 90% diffraction limit
- 0.3° full field-of-view
- Bandwidth: 465 615 nm
- SNR > 100

Environmental:

- Survive launch on PSLV with acceptable optical and mechanical performance
- Survive temperatures of -50°C to +50°C
- Function in vacuum environment

caltech.edu 14 September AAReST Payload CDR 32 2017

Mechanical Overview

- Materials:
 - Titanium for optical mounts; Al6061 for all other parts;
 - Mask gears of dissimilar material to prevent cold welding
 - RTV silicone (low outgassing) padding for B/S and SHWS
- Key accomplishments:
 - Assembly procedures created and executed
 - Fit check, integration with optics, motor functionality, dummy electronic boards
- Mass: 3.1 kg < 4 kg
- Volume: 29.8 X 9.6 X 8.0 cm³ < 35.0 X 10.0 X 10.0 cm³

caltech.edu 14 September AAReST Payload CDR 33 2017

- Materials:
 - Titanium for optical mounts; Al6061 for all other parts;
 - Mask gears of dissimilar material to prevent cold welding
 - RTV silicone (low outgassing) padding for B/S and SHWS
- Key accomplishments:
 - Assembly procedures created and executed
 - Fit check, integration with optics, motor functionality, dummy electronic boards
- Mass: 3.1 kg < 4 kg
- Volume: 29.8 X 9.6 X 8.0 cm³ < 35.0 X 10.0 X 10.0 cm³

caltech.edu 14 September AAReST Payload CDR 34 2017

Interface

Mechanical Overview

caltech.edu 14 Se

14 September 2017 AAReST Payload CDR

35

Thermal Testing Results

Test Criteria	Pass/Fail	Comment
Survivability	Pass	No damage in optics, mechanical assembly
Motor Alignment	Pass	Gears mesh after test cycles
Science Camera Performance	Pass	Slight shift in spot location; no change in shape/size
SHWS Performance	Pass	No spots obscured; negligible change in Zernike coefficients (7 nm max defocus)

caltech.edu 14 September 2017 DR

Vibration Testing Results

Test Criteria	Pass/Fail	Comment
Survivability	Pass	No damage in optics or mechanical assembly
Motor Alignment	Pass	Gears mesh after test cycles
Science Camera Performance	Pass	Slight shift in spot location; no change in shape/size
SHWS Performance	Pass	Slight shift in spot location; No spots obscured; negligible change in Zernike coefficients (17 nm max defocus)

Conclusion and Remaining Tests

- Camera meets all requirements
 - Mechanical, functional requirements met
 - Optical performance as expected
 - Environmental testing done to show survivability and functionality
- Remaining work:
 - New optics and B/S have arrived. Installation happening now!
 - Vibration testing to check electronics survivability
 - Fabrication of external interfaces
 - Verification of power requirement (currently met by operating in various modes)

Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem

Mirror Boxes Overview

Requirements Overview

- House mirrors and electronics
- Restrain mirrors during launch
- Provide rigid body rotation and axial motion of the mirrors
- Respect weight limit of 1 kg each

Outline

- Accomplishments
- Rigid mirror box tests
 - Vibration tests
 - Bond strength tests
- Deformable mirror box tests
 - Vibration tests
 - Failure analysis and new design
- Separation device tests
- Picomotors position control
- Summary and systems readiness level

Accomplishments

Assembly

- Fully assembled mirror boxes from CAD models
- Assembly procedures

Testing

- Vibration tests of both mirror boxes
- Bond strength tests between rigid mirror and supporting plate
- Separation device tests

Integration

- Integration of rigid mirror box on optical testbed
- Optical alignment

Caltech

New Mirror Mounts Design

Old Design	New Design	
ball bearing deformable mirror	Custom ball bearings cylindrical magnet	
Spheres radius: R _{sphere} = 2.38mm	Semi-spheres radius: R new = 7.65mm	
Spheres radius. Respiere – 2.30mm	Bearings thickness: t total = 2mm	
Magnet pull force (including mirror thickness): f magnet = 3.11 N	Magnet pull force (including bearing and mirror thickness): f new = 4.67 N	
Contact pressure (based on NASA- qualification loads [-6dB)]:	Contact pressure (based on PSLV- qualification loads): p0 new = 0.407GPa	
p0 = 1.02 Gpa	Safety factor: SF = 2	
Contact area (from Hertzian theory):	Contact area (from Hertzian theory):	
$a = \sqrt[2]{\frac{3F}{2\pi p_0}} = 76.2 \ \mu m$	$a = \sqrt[2]{\frac{3F}{2\pi p_0}} = 98.4 \ \mu m$	
caltech.edu 14 September AAReST Payload CDR 2017	43	

Picomotors Position Control

Encoders help estimate mirror position within an interval

Encoder interval: 41µm

caltech.edu 14 September AAReST Payload CDR 44 2017

Encoder Shaft

- Encoder shafts laser engraved at micron pitch. Markings validated on transducer
- Alignment procedure with non-contact laser measurement
- Integrated into RM box on testbed and awaiting testing

428 lines 0.845deg: Engraved line: 30.5587+-1.14217 reflective interval: 38.6588+-1.93625 Angular pitch of rotary jig: 0.833151deg

Flight parts

- Flight mirrorbox parts arrived from manufacturing
- Aluminum bead blasted and hard black anodized
 - Reduces stray light around optics
 - Electrically insulates burnwire mechanisms
- Invar parts bead blasted and coated with 0.0005" high-phos. electroless nickel
 - Protects invar from corrosion

Flight parts

caltech.edu 14 September 2017

Systems Readiness Level

Rigid Mirror Box

Completed

- Assembly procedure
- Successful vibration tests of box structure in all shaking directions
- Mirror bonding procedure
- Successful bonding tests
- Integration and mirror alignment on optical testbed

Future Work

- Vibration tests with flight electronics and flight mirror (using PSLV standard)
- Separation device tests with flight electronics, in vacuum

caltech.edu

14 September 2017 AAReST Payload CDR

Deformable Mirror Box

Completed

- Assembly procedure
- Preliminary vibration tests (successful up to -6dB NASA standard)
- New mirror mounts design
- Vibration tests with new mounts, spherical DM, and flight electronics (using PSLV standard)

Future Work

- Integration on optical testbed
- Separation device tests with flight electronics, in vacuum

Optical Alignment Fixture

Needs

- Temporarily support rigid mirror in vertical position when box is mounted onto optical table for alignment procedure
- Free rotation of the mirror and highly sensitive in plane adjustment (µm level sensitivity)
- Fix mirror in its new position, after alignment, to allow for bonding procedure

Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem

Overview

- Telescope Electronics Overview
- Current Status
- Mirror Electronics
 - Multiplexer board
 - HV board
 - Microcontroller board
- Camera Electronics
 - Motherboard
 - Shack Hartmann board
- Interface

Mirror Electronics Overview

Camera Electronics Overview

Current Status

Board	Status		
Mirror Electronics			
Multiplexer board	Flight boards ready and tested		
HV board	Flight boards ready and tested		
Microcontroller board	V2.0 functional, too much in-rush current		
Camera Electronics			
Motherboard	V1.0 functional, designing V2.0		
Shack-Hartmann board	V1.0 functional, need minor changes for V2.0		

Mirror Electronics

caltech.edu **14 September** 2017

Camera Electronics

Shack Hartmann Switch Board

Camera Motherboard

0000000000 000112012 CT02/00 0 AAReST Baumer Support Board V1.0 08/11/2017 Mask motor driver **LVDS Switch Connector for motor** and thermistors **CoreSat interface** connector

Baumer Support Board

caltech.edu **14 September** 2017

AAReST Payload CDR

Future Work

- Redesign motherboard with new ethernet port, USB connectors and UART interface
- Change burn wire circuit and resolve boost converter related startup issues in mirror electronics
- Complete cabling for camera and mirrorboxes
- Integrate temperature sensors, encoders, separation detection switches and other electronics inside mirrorboxes

Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem

Outline

- Requirements
- Mirror box
 - Software architecture
 - Driver update
- Camera
 - Driver update
- Telescope startup procedure
- Error handling
- Future work

Requirements of AAReST OBSW

• Mirror software

- Communicate with camera through XBee and with MirrorSat through UART as backup
- Automated failure detection and safe mode reset
- Actuate picomotors and electrodes
- Camera software
 - Communicate with CoreSat through UART (USB or SSH protocol)
 - Communicate with 4 mirrors through XBee
 - Automated failure detection and safe mode reset
 - Take images and analyze them

caltech.edu

^{14 September} software run in non hard real time mode

Mirror Box Software Architecture

Mirror Box Software update

- Hardware testing of mirror deformation and HV supplies control
- Scheduler implemented, integrated with algorithm and driver layer
- Undergoing tests with flight hardware

Camera Software Architecture

Caltech

- Each layer create independent processes; monitored by telescope "scheduler", terminate itself at end of execution
- Each process owns a dedicated log
- Each layer accessible through CoreSat camera interface

caltech.edu Jan 2017 AAReST Telescope 63

Camera software updates

- Implementation of Algorithm and Drivers on flight CPU
- Preliminary tests of Algorithms with Flight Hardware
- Scheduler layer framework updated, under implementation

Caltech

Future work

- Camera side
 - Implementation of camera scheduler layer
 - Finish and test camera drivers on telescope CPU
 - Tailoring of Linux kernel
- Mirror side
 - Flight operation testing on telescope testbed

Detailed discussions for this week's review

- Framework of Camera scheduler layer
- Failure identification and recovery (FIDR) strategy for camera
- Comm protocol between coresat and camera
- How often to save health and safety data
- General system level testing strategies

Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem

Subsystem Overview

Purpose:

- Guarantee successful deployment of the composite boom
- Ensure alignment of optical systems after deployment •

Main components:

- Kinematic mounts
- Separation device
- Composite boom

Subsystem Overview

<u>Kinematic Mount</u> allows adjustment of camera relative to CoreSat before final storage; It corrects for misalignments.

<u>Separation Device</u> constrains boom during storage and releases stage 1 during deployment.

caltech.edu 14 September AAF 2017

Boom Subsystem Requirements

Requirement	Value
Focal length [1]	1163 ± 1 mm
Maximum admissible lateral offset [2]	± 3 mm
Maximum admissible angular offset [2]	± 1°
Maximum lateral tip deflection (dynamic) [3]	± 0.20 mm / s
Maximum longitudinal tip deflection (dynamic) [3]	± 0.05 mm / image

[1] From the CDR (2015)[2] Given by Kathryn Jackson[3] From the PDR (2013)

Boom testing

- Previous review
 - Viscoelasticity
 - Stage 1 and 2 deployments
 - Launch vibration (NASA qualification level)
 - Separation device
 - Deployment accuracy
- New results
 - New boom length
 - Folding fixture
 - Offloading jig
 - Kinematic mount redesign

Stage 1 Deployment

Objectives:

- Demonstrate reliable and repeatable stage 1 deployment
- Validate the kinematic mount and the separation device

caltech.edu 14 S

14 September 2017 AAReST Payload CDR

Stage 1 Deployment

caltech.edu 14 Sep

AAReST Payload CDR

73

Stage 2 Deployment Test

Objectives:

- Ensure a reliable and repeatable stage 2 deployment
- Determine maximum acceleration due to deployment

Caltech

caltech.edu 14 Se

14 September 2017 AAReST Payload CDR

74

Stage 2 Deployment

caltech.edu 14

14 September 2017 AAReST Payload CDR

75

Caltech

New Boom Length

- Objective: optimize the boom length, and the camera and kinematic mount positions based on the following constraints:
 - Keep the same spacing between the hinges
 - Respect the designed optical focal length
 - Reduce stress in the first hinge from the kinematic mount by increasing as much as possible the length of the first segment

New Boom Length

Main Parameters

- 1. Focal length: 1163 mm
- 2. Camera-to-collar optical offset: 82.575 mm
- 3. Mirror box optical offset: 77.1026 mm
- 4. Mirror box total height: 105 mm
- 5. Distance between top of structure and KM collar: 155.75 mm

Calter

- 6. Length of Coresat (excluding clearance): 325 mm
- 7. Length of camera: 296 mm
- 8. Offset between front of camera and collar: 84 mm

New Boom Length

Old Boom Length

caltech.edu

Folding fixture

 Objective: provide a reliable and repeatable way of folding the hinges that does not create cracks

Folding fixture

Tested with old hinges first, then new hinge (never folded)

Tested with old hinges first, then new hinge (never folded)

Tested with old hinges first, then new hinge (never folded)

- No visible damage appeared at the hinge location (folded 3 times)
- Folding is sometime a bit unstable (usually the inside tape spring flatten first, but it can be the opposite)
- You need to manually force the boom to fold in the right direction
- When fully flatten, the 2 tape spring are not always well aligned for complete folding (they need to slip to get to the right position for folding)
- Seems to provide a way to fold the boom with better repeatability

Boom Offloading Rig

 The objective of the offloading rig is the prevent the boom from deflecting under gravity loading. This will ensure that the boom alignment done on the ground will remain valid once in space

Boom Offloading Rig

caltech.edu

Boom Offloading Rig

Offloading Jig

2-axis sliding plateform **Offloading weight**

Camera interface

caltech.edu

Offloading Jig

- Measure planes 1 and 2, and cylinder with the Faro arm scanner
- Clean point clouds and fit planes and cylinder
- Project cylinder axis on plane 2 to obtain an origin
- Use plane 1 normal as the rotational orientation

New Kinematic Mount Design

• Problem:

- When folded, boom cross-section width increase
- Aging seems to amplify this phenomenon
- Therefor, the boom can be stuck inside the collar mounts
- Objective:
 - Ensure reliable boom deployment even if boom change crosssection due to aging

Modifications:

- Removed one side of the collar mount
- Increased size of remaining support
- Changed Vectran cable path

New Kinematic Mount Design

caltech.edu

New Kinematic Mount Design

Summary

- We completed the design of the boom subsystem
- We studied the viscoelastic behavior of the composite boom
- We successfully performed:
 - Vibration testing
 - Deployment testing (both stages)
 - Accuracy testing following aging

Future Work

- Anodize kinematic mount parts
- Cut the boom to final length
- Vibration of full folded boom

