AAReST Coresat Detailed Design Review

September 11 2017
AAReST Subsystems

MirrorsSat (×2)
- Reconfigurable free-flyers
- U. of Surrey

CoreSat
- Power, Comm., Telescope ADCS
- U. of Surrey

Reference Mirrors (×2)
- Fixed figure mirror segments
- Caltech

Deployable Boom
- Composite structure provides 1.2 m focal length
- Caltech

Deformable Mirrors (×2)
- Active mirror segments
- Caltech

Camera
- Imaging, Wavefront Sensing and Control
- Caltech

Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td><40 kg</td>
</tr>
<tr>
<td>Launch Volume</td>
<td>46 × 34 × 30 cm</td>
</tr>
<tr>
<td>Camera</td>
<td>10 × 10 × 25 cm</td>
</tr>
<tr>
<td>Boom</td>
<td>Ø 3.8 cm, 1.5 m long</td>
</tr>
<tr>
<td>Prime focus telescope</td>
<td>465 nm – 615 nm bandpass</td>
</tr>
<tr>
<td>Field of View</td>
<td>0.34°</td>
</tr>
<tr>
<td>Focal length</td>
<td>1.2 m</td>
</tr>
<tr>
<td>UHF down</td>
<td>9600 bps</td>
</tr>
<tr>
<td>VHF up</td>
<td>1200 bps</td>
</tr>
<tr>
<td>S-Band & Zigbee ISL</td>
<td></td>
</tr>
<tr>
<td>Ref. orbits</td>
<td>~650 km SSO</td>
</tr>
<tr>
<td>ISS (400 km, 52 deg. incl.)</td>
<td></td>
</tr>
</tbody>
</table>
Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem
Outline

- Review of Optomechanical Design
- Telescope Requirements
- Optical Systems status
 - RMs, DMs, Camera Lens Assembly
- Overview of Active Element Control
 - Rigid Body Actuation
 - DM actuator control and measurement with SHWFS
Baseline Requirements

• Science Camera field of view: 0.34° across diagonal
• PSF of each mirror Segment: 80% encircled energy in 50μm diameter circle.
• Signal to Noise ratio: >100/lenslet for 50μs exposure on Shack-Hartmann WFSs and >100 on science imager for magnitude 2 stars or brighter
Optical System Overview

- Collimating lens group
- Wavefront sensors
- Focusing lens group
- Primary Mirror segments (both rigid and deformable)
- Camera Optics
Camera
Mirror Boxes
Active Element Control

Segmented primary mirror

Segment Rigid Body Motion control through imaging detector measurement

Deformable Mirror shape control through Shack-Hartmann measurement

Camera package
Optical Systems Status

• Theoretical performance prediction
 – Science cam SNR = 116
 – WFS SNR = 110/lenslet

• Camera Lens assembly
 – Verify lenses are manufactured and aligned correctly

• Rigid Mirrors
 – Integration into testbed with science imager for coarse alignment and SHWFS for fine WFE measurement

• Deformable Mirrors
 – Characterization using high order wavefront sensing
 – Integration into testbed with SHWFS readout
 – Active control in testbed using some flight like electronics.
Active Element Control

• Rigid body control with three linear actuators per mirror segment
 – Flight like electronics complete
 – Active in mirror boxes on testbed

• Deformable Mirror actuators controlled using proto-flight electronics
 – Flight like electronics and software ready for integration
 – Shape measurement with SHWFS
Summary

• Optical system has been shown be designed to meet baseline requirement.
• Camera Assembly and lenses are verified.
• Throughput has been computed to meet requirements (test results to follow).
• Rigid mirrors alignment and figure have been verified to produce a PSF that meets requirements and matches simulation.
• DMs are in progress and actuator control is being integrated.
Future Work

• Bond rigid mirrors to mirror plate and remove temporary mounts
• Execute calibration and closed loop control of DMs using flight camera and SHWFS.
Presentation Agenda

• Telescope Overview
• Deformable Mirrors
• Camera Instrument
• Mirror boxes Overview
• Electronics
• Software
• Boom Subsystem
Requirements

In closed loop, DM must focus 80% of point source energy to <50 μm diameter spot at focal plane

• Initial shape
 – Measured 2.6 μm RMS shape error. (<30 μm RMS defocus is correctable)
 – Radius of curvature (+/-6 inch RoC is correctable)
 – High order error (dimples etc.)
 • Must be measurable with SHWS
 • Minimal impact on encircled energy

• Actuation
 – For perfectly spherical optic we need ~3 μm stroke to achieve hyperboloid optical prescription
 – To test real mirror with shape error, we will test with AAReST camera in telescope testbed
DM design - PZT and glass

200 μm slumped D263 Schott glass

10 μm glass bead filled Epotek 301 epoxy

300 μm curved piezoceramic meniscus (PZT5A NCE51 from Noliac)

Ground plane

41 patterned electrodes

Routing flex circuit

HV Multiplexer

Side view
Fabrication - Vacuum bag bonding

1.5 mm overhang

Masked ground
Fabrication - Electrical routing layer bonding

- Electrical routing layer
 - 0.5 oz copper
 - 1 mil base Kapton
 - 1 mil Kapton coverlay
- Connector
 - TE connectivity
 - 42 pos. 0.5 pitch FFC
- MG Chemicals silver epoxy dripped into vias
 - Add acetone to improve flow
 - Room temperature cure
 - Tape is not tensioned!
Fabricated hardware

DM mount/demount

Phaesics testbed mount

AAREST Deformable Mirrorbox

Test mount constructed from aluminum and acrylic to avoid stray magnetic torques on mirror
Testing - Actuation of PZT1GSF3

-50V actuation

0.21 - 0.96 μm/V
expected
0.80 μm/V measured

0.13 - 0.65 μm/V
expected
0.58 μm/V measured
Testing - Best flattening result

PZT1GSF3 - Resting shape
Initial Surface Error: RMS = 6.55 μm, PV = 53 μm

6.55 μm RMS surface error

Dominated by astigmatism

PZT1GSF3 - Best flattening
IMS Wavefront Error = 1.4491, Surface Error = 724 nm

724 nm RMS surface error

Actuator size limited
Testing - Best flattening result

Residuals are the same size as influences
Testing - Slumped glass dimples

GSF3 10.42 microns

GSF3 modes 1-36 removed 975 nm RMS

Height (microns)

7.4 μm depth
Testing - DM in the AAReST testbed

Mirror errors are within range of AAReST wavefront sensor
Mirror errors are within range of AAReST wavefront sensor.
Testing - DM in the AAReST testbed

Next step is to close the loop with the AAReST testbed...
Testing – PSF and RoC

Surface Error As Measured: Ensquared Energy in 50μm square = 1.7%

PZT1GSF3 simulated PSF

PZT1GSF3 measured PSF
Slumping glass at Caltech (JPL R&TD grant)

Cotroneo et al. (2016) SPIE 99650C-5
Conclusions and future work

• Achievements
 – Designed and built ultra-lightweight deformable mirrors that demonstrate large stroke.
 – Built mirrors that can correct for their own sphere-subtracted shape errors, up to the actuator size limit.
 – Deformable mirrors can be measured and actuated within the AAReST testbed.
• Future work
 – Mid-spatial frequency error in the DM prevents meeting AAReST encircled energy requirement.
 – Bonding procedure imparts focus shift that cannot be actuated away.
 – Continue producing mirrors
Presentation Agenda

• Telescope Overview
• Deformable Mirrors
• **Camera Instrument**
• Mirror boxes Overview
• Electronics
• Software
• Boom Subsystem
Subsystem Requirements

Functional:
- Image star using a sparse aperture primary mirror
- Work to reconfigure primary mirror
- Provide feedback on mirror shape
- Take engineering images of CoreSat during MirrorSat reconfiguration

Constraints:
- Mass < 4kg
- Volume < 10 x 10 x 35 cm
- Power < 5 W

Performance:
- 80% encircled energy radius < 90% diffraction limit
- 0.3° full field-of-view
- Bandwidth: 465 – 615 nm
- SNR > 100

Environmental:
- Survive launch on PSLV with acceptable optical and mechanical performance
- Survive temperatures of -50°C to +50°C
- Function in vacuum environment
• Materials:
 – Titanium for optical mounts; Al6061 for all other parts;
 – Mask gears of dissimilar material to prevent cold welding
 – RTV silicone (low outgassing) padding for B/S and SHWS
• Key accomplishments:
 – Assembly procedures created and executed
 – Fit check, integration with optics, motor functionality, dummy electronic boards
• Mass: 3.1 kg < 4 kg
• Volume: 29.8 X 9.6 X 8.0 cm³ < 35.0 X 10.0 X 10.0 cm³
Mechanical Overview

- **Materials:**
 - Titanium for optical mounts; Al6061 for all other parts;
 - Mask gears of dissimilar material to prevent cold welding
 - RTV silicone (low outgassing) padding for B/S and SHWS

- **Key accomplishments:**
 - Assembly procedures created and executed
 - Fit check, integration with optics, motor functionality, dummy electronic boards

- **Mass:** 3.1 kg < 4 kg
- **Volume:** 29.8 X 9.6 X 8.0 cm³ < 35.0 X 10.0 X 10.0 cm³
Mechanical Overview
Thermal Testing Results

<table>
<thead>
<tr>
<th>Test Criteria</th>
<th>Pass/Fail</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survivability</td>
<td>Pass</td>
<td>No damage in optics, mechanical assembly</td>
</tr>
<tr>
<td>Motor Alignment</td>
<td>Pass</td>
<td>Gears mesh after test cycles</td>
</tr>
<tr>
<td>Science Camera</td>
<td>Pass</td>
<td>Slight shift in spot location; no change in shape/size</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SHWS Performance</td>
<td>Pass</td>
<td>No spots obscured; negligible change in Zernike coefficients (7 nm max defocus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Vibration Testing Results

<table>
<thead>
<tr>
<th>Test Criteria</th>
<th>Pass/Fail</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Survivability</td>
<td>Pass</td>
<td>No damage in optics or mechanical assembly</td>
</tr>
<tr>
<td>Motor Alignment</td>
<td>Pass</td>
<td>Gears mesh after test cycles</td>
</tr>
<tr>
<td>Science Camera Performance</td>
<td>Pass</td>
<td>Slight shift in spot location; no change in shape/size</td>
</tr>
<tr>
<td>SHWS Performance</td>
<td>Pass</td>
<td>Slight shift in spot location; No spots obscured; negligible change in Zernike coefficients (17 nm max defocus)</td>
</tr>
</tbody>
</table>
Conclusion and Remaining Tests

• Camera meets all requirements
 – Mechanical, functional requirements met
 – Optical performance as expected
 – Environmental testing done to show survivability and functionality

• Remaining work:
 – New optics and B/S have arrived. Installation happening now!
 – Vibration testing to check electronics survivability
 – Fabrication of external interfaces
 – Verification of power requirement (currently met by operating in various modes)
Presentation Agenda

- Telescope Overview
- Deformable Mirrors
- Camera Instrument
- Mirror boxes Overview
- Electronics
- Software
- Boom Subsystem
Mirror Boxes Overview

Requirements Overview

- House mirrors and electronics
- Restrain mirrors during launch
- Provide rigid body rotation and axial motion of the mirrors
- Respect weight limit of 1 kg each
Outline

• Accomplishments
• Rigid mirror box tests
 − Vibration tests
 − Bond strength tests
• Deformable mirror box tests
 − Vibration tests
 − Failure analysis and new design
• Separation device tests
• Picomotors position control
• Summary and systems readiness level
Accomplishments

Assembly

• Fully assembled mirror boxes from CAD models
• Assembly procedures

Testing

• Vibration tests of both mirror boxes
• Bond strength tests between rigid mirror and supporting plate
• Separation device tests

Integration

• Integration of rigid mirror box on optical testbed
• Optical alignment
New Mirror Mounts Design

<table>
<thead>
<tr>
<th>Old Design</th>
<th>New Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>ball bearing</td>
<td>Custom ball bearings</td>
</tr>
<tr>
<td>deformable mirror</td>
<td>deformable mirror</td>
</tr>
<tr>
<td>spherical magnet</td>
<td>cylindrical magnet</td>
</tr>
</tbody>
</table>

| Spheres radius: $R_{\text{sphere}} = 2.38\,\text{mm}$ | Semi-spheres radius: $R_{\text{new}} = 7.65\,\text{mm}$ |
|--|
| Magnet pull force (including mirror thickness): $f_{\text{magnet}} = 3.11\,\text{N}$ | Magnet pull force (including bearing and mirror thickness): $f_{\text{new}} = 4.67\,\text{N}$ |
| Contact pressure (based on NASA-qualification loads [-6dB]): $p_0 = 1.02\,\text{Gpa}$ | Contact pressure (based on PSLV-qualification loads): $p_{0\text{new}} = 0.407\,\text{GPa}$ |
| Contact area (from Hertzian theory): $a = \frac{2\sqrt{3F}}{2\pi p_0} = 76.2\,\mu\text{m}$ | Contact area (from Hertzian theory): $a = \frac{2\sqrt{3F}}{2\pi p_{0\text{new}}} = 98.4\,\mu\text{m}$ |
Picomotors Position Control

Encoders help estimate mirror position within an interval

Encoder interval: **41 μm**
Encoder Shaft

- Encoder shafts laser engraved at micron pitch. Markings validated on transducer.
- Alignment procedure with non-contact laser measurement.
- Integrated into RM box on testbed and awaiting testing.

428 lines 0.845deg:
Engraved line: 30.5587±1.14217
Reflective interval: 38.6588±1.93625
Angular pitch of rotary jig: 0.833151deg
Flight parts

• Flight mirrorbox parts arrived from manufacturing

• Aluminum bead blasted and hard black anodized
 – Reduces stray light around optics
 – Electrically insulates burnwire mechanisms

• Invar parts bead blasted and coated with 0.0005” high-phos. electroless nickel
 – Protects invar from corrosion
Flight parts
Systems Readiness Level

<table>
<thead>
<tr>
<th>Rigid Mirror Box</th>
<th>Deformable Mirror Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed</td>
<td>Completed</td>
</tr>
<tr>
<td>- Assembly procedure</td>
<td>- Assembly procedure</td>
</tr>
<tr>
<td>- Successful vibration tests of box structure in all shaking directions</td>
<td>- Preliminary vibration tests (successful up to -6dB NASA standard)</td>
</tr>
<tr>
<td>- Mirror bonding procedure</td>
<td>- New mirror mounts design</td>
</tr>
<tr>
<td>- Successful bonding tests</td>
<td>- Vibration tests with new mounts, spherical DM, and flight electronics (using PSLV standard)</td>
</tr>
<tr>
<td>- Integration and mirror alignment on optical testbed</td>
<td>Future Work</td>
</tr>
<tr>
<td>Future Work</td>
<td>Future Work</td>
</tr>
<tr>
<td>- Vibration tests with flight electronics and flight mirror (using PSLV standard)</td>
<td>- Integration on optical testbed</td>
</tr>
<tr>
<td>- Separation device tests with flight electronics, in vacuum</td>
<td>- Separation device tests with flight electronics, in vacuum</td>
</tr>
</tbody>
</table>
Optical Alignment Fixture

Needs

• Temporarily support rigid mirror in vertical position when box is mounted onto optical table for alignment procedure
• Free rotation of the mirror and highly sensitive in plane adjustment (µm level sensitivity)
• Fix mirror in its new position, after alignment, to allow for bonding procedure
Presentation Agenda

• Telescope Overview
• Deformable Mirrors
• Camera Instrument
• Mirror boxes Overview
• Electronics
• Software
• Boom Subsystem
Overview

• Telescope Electronics Overview
• Current Status
• Mirror Electronics
 – Multiplexer board
 – HV board
 – Microcontroller board
• Camera Electronics
 – Motherboard
 – Shack Hartmann board
• Interface
Mirror Electronics Overview

- **Multiplexer Board**: 41 optoisolator switches and multiplexer for routing electrode and bias voltages

- **HV Board**
 - Picomotor Drivers x3
 - Picomotor Power (150 V)
 - Mirror Variable Bias (0-240 V)
 - Mirror Variable Electrode Supply (0-480 V)

- **Microcontroller Board**
 - Voltage Regulators
 - Microcontroller
 - XBee
 - Separation Device
 - Current Limiters

- **Contact Switch**
- **Thermopiles**

caltech.edu
Camera Electronics Overview

- Shack Hartmann Board
 - Optics
 - UART + Power
 - Temp. Sensor
 - SHWS 1
 - Mask Motor
 - SHWS 2

- Boom Inspection Camera
- Science Camera
- Daughter Board
- Motherboard
 - USB
 - GigE, 12 V, 0.3 A
- Baumer Camera
- XBee

USB

caltech.edu
Current Status

<table>
<thead>
<tr>
<th>Board</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror Electronics</td>
<td></td>
</tr>
<tr>
<td>Multiplexer board</td>
<td>Flight boards ready and tested</td>
</tr>
<tr>
<td>HV board</td>
<td>Flight boards ready and tested</td>
</tr>
<tr>
<td>Microcontroller board</td>
<td>V2.0 functional, too much in-rush current</td>
</tr>
<tr>
<td>Camera Electronics</td>
<td></td>
</tr>
<tr>
<td>Motherboard</td>
<td>V1.0 functional, designing V2.0</td>
</tr>
<tr>
<td>Shack-Hartmann board</td>
<td>V1.0 functional, need minor changes for V2.0</td>
</tr>
</tbody>
</table>
Mirror Electronics

I/O Expander
Picomotor connector
Picomotor driver x3
Encoder connector
Temp. Sensor
Current limiting switch
Voltage regulator
Boost converter
Programming header

FFC connector for electrode routing layer on the mirror
Optoisolator switch
Picomotor power
Electrode HV supply
Mirror bias supply
Camera Electronics

- Camera Motherboard
- Shack Hartmann Switch Board
- Baumer Support Board

- LVDS Switch
- Mask motor driver
- Connector for motor and thermistors
- CoreSat interface connector
Future Work

• Redesign motherboard with new ethernet port, USB connectors and UART interface
• Change burn wire circuit and resolve boost converter related startup issues in mirror electronics
• Complete cabling for camera and mirrorboxes
• Integrate temperature sensors, encoders, separation detection switches and other electronics inside mirrorboxes
Presentation Agenda

• Telescope Overview
• Deformable Mirrors
• Camera Instrument
• Mirror boxes Overview
• Electronics
• Software
• Boom Subsystem
Outline

• Requirements
• Mirror box
 – Software architecture
 – Driver update
• Camera
 – Driver update
• Telescope startup procedure
• Error handling
• Future work
Requirements of AAReST OBSW

• Mirror software
 – Communicate with camera through XBee and with MirrorSat through UART as backup
 – Automated failure detection and safe mode reset
 – Actuate picomotors and electrodes

• Camera software
 – Communicate with CoreSat through UART (USB or SSH protocol)
 – Communicate with 4 mirrors through XBee
 – Automated failure detection and safe mode reset
 – Take images and analyze them

Both software run in non hard real time mode
Mirror Box Software Architecture

Data parsing
1. Save data
2. Error check
3. Parsing

Update Scheduler List

Execute Schedule
1. Execute action function
2. Send feedback
3. Report in Register file

Register file

Command from camera
0x05 0x01 0x01 0x00000064 0x01

Loaded by bootloader from external EEPROM

Mirror Scheduler

Algorithm
Position a picomotor
Actuate an electrode
Health keeping

Driver
Picomotor driver
HV driver
Multiplexer driver
Temperature driver

Interface
SPI Interface
I2C Interface
UART Interface
ADC Interface

Picomotor driver
HV driver
Multiplexer driver
Temperature driver

0x05 0x01 0x01 0x00000064 0x01

0x01

0x00

0x00

0x00

0x00

0x00

0x00

0x00
Mirror Box Software update

• Hardware testing of mirror deformation and HV supplies control
• Scheduler implemented, integrated with algorithm and driver layer
• Undergoing tests with flight hardware
Camera Software Architecture

- Each layer creates independent processes; monitored by telescope “scheduler”, terminate itself at end of execution
- Each process owns a dedicated log
- Each layer accessible through CoreSat – camera interface
Camera software updates

• Implementation of Algorithm and Drivers on flight CPU
• Preliminary tests of Algorithms with Flight Hardware
• Scheduler layer framework updated, under implementation
Future work

• Camera side
 – Implementation of camera scheduler layer
 – Finish and test camera drivers on telescope CPU
 – Tailoring of Linux kernel

• Mirror side
 – Flight operation testing on telescope testbed
Detailed discussions for this week’s review

- Framework of Camera scheduler layer
- Failure identification and recovery (FIDR) strategy for camera
- Comm protocol between coresat and camera
- How often to save health and safety data
- General system level testing strategies
Presentation Agenda

• Telescope Overview
• Deformable Mirrors
• Camera Instrument
• Mirror boxes Overview
• Electronics
• Software
• Boom Subsystem
Subsystem Overview

Purpose:
- Guarantee successful deployment of the composite boom
- Ensure alignment of optical systems after deployment

Main components:
- Kinematic mounts
- Separation device
- Composite boom
Subsystem Overview

Kinematic Mount allows adjustment of camera relative to CoreSat before final storage; it corrects for misalignments.

Separation Device constrains boom during storage and releases stage 1 during deployment.
Boom Subsystem Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal length [1]</td>
<td>1163 ± 1 mm</td>
</tr>
<tr>
<td>Maximum admissible lateral offset [2]</td>
<td>± 3 mm</td>
</tr>
<tr>
<td>Maximum admissible angular offset [2]</td>
<td>± 1°</td>
</tr>
<tr>
<td>Maximum lateral tip deflection (dynamic) [3]</td>
<td>± 0.20 mm / s</td>
</tr>
<tr>
<td>Maximum longitudinal tip deflection (dynamic) [3]</td>
<td>± 0.05 mm / image</td>
</tr>
</tbody>
</table>

Boom testing

• Previous review
 – Viscoelasticity
 – Stage 1 and 2 deployments
 – Launch vibration (NASA qualification level)
 – Separation device
 – Deployment accuracy

• New results
 – New boom length
 – Folding fixture
 – Offloading jig
 – Kinematic mount redesign
Stage 1 Deployment

Objectives:

• Demonstrate reliable and repeatable stage 1 deployment
• Validate the kinematic mount and the separation device
Stage 1 Deployment
Stage 2 Deployment Test

Objectives:

- Ensure a reliable and repeatable stage 2 deployment
- Determine maximum acceleration due to deployment
Stage 2 Deployment
New Boom Length

- **Objective:** optimize the boom length, and the camera and kinematic mount positions based on the following constraints:
 - Keep the same spacing between the hinges
 - Respect the designed optical focal length
 - Reduce stress in the first hinge from the kinematic mount by increasing as much as possible the length of the first segment
New Boom Length

- **Main Parameters**
 1. Focal length: 1163 mm
 2. Camera-to-collar optical offset: 82.575 mm
 3. Mirror box optical offset: 77.1026 mm
 4. Mirror box total height: 105 mm
 5. Distance between top of structure and KM collar: 155.75 mm
 6. Length of Coresat (excluding clearance): 325 mm
 7. Length of camera: 296 mm
 8. Offset between front of camera and collar: 84 mm
New Boom Length

Camera as low as possible (without going into the clearance)

~113 mm

~85.3 mm

~200 mm

~90 mm
Old Boom Length

Dimensions:
- 1449 mm
- 1139 mm
- 790 mm
- 454 mm
- 120 mm
- 50 mm
Folding fixture

- **Objective:** provide a reliable and repeatable way of folding the hinges that does not create cracks
Folding fixture

- Fixed
- Screw to control movement
- Slide
Folding jig

- Tested with old hinges first, then new hinge (never folded)
Folding jig

- Tested with old hinges first, then new hinge (never folded)
Folding jig

- Tested with old hinges first, then new hinge (never folded)
Folding jig

- No visible damage appeared at the hinge location (folded 3 times)
- Folding is sometime a bit unstable (usually the inside tape spring flatten first, but it can be the opposite)
- You need to manually force the boom to fold in the right direction
- When fully flatten, the 2 tape spring are not always well aligned for complete folding (they need to slip to get to the right position for folding)
- Seems to provide a way to fold the boom with better repeatability
Boom Offloading Rig

• The objective of the offloading rig is to prevent the boom from deflecting under gravity loading. This will ensure that the boom alignment done on the ground will remain valid once in space.
Boom Offloading Rig

- Offloading rig
- Kinematic Mount
- CoreSat
- Boom
- Optical table
- Boom/camera interface
Boom Offloading Rig

- Stiff frame (8020)
- Linear bearing
- Low friction pulley
- Weight
- Cable
- Adapter

caltech.edu
Offloading Jig

- 2-axis sliding platform
- Pulley
- Offloading weight
- Camera interface
Offloading Jig

• Measure planes 1 and 2, and cylinder with the Faro arm scanner
• Clean point clouds and fit planes and cylinder
• Project cylinder axis on plane 2 to obtain an origin
• Use plane 1 normal as the rotational orientation
New Kinematic Mount Design

• **Problem:**
 • When folded, boom cross-section width increase
 • Aging seems to amplify this phenomenon
 • Therefore, the boom can be stuck inside the collar mounts

• **Objective:**
 • Ensure reliable boom deployment even if boom change cross-section due to aging

• **Modifications:**
 • Removed one side of the collar mount
 • Increased size of remaining support
 • Changed Vectran cable path
New Kinematic Mount Design

5mm (Previously 4mm)

caltech.edu
New Kinematic Mount Design
Summary

• We completed the design of the boom subsystem
• We studied the viscoelastic behavior of the composite boom
• We successfully performed:
 – Vibration testing
 – Deployment testing (both stages)
 – Accuracy testing following aging
Future Work

• Anodize kinematic mount parts
• Cut the boom to final length
• Vibration of full folded boom