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Abstract

The stability of a spinning thin elastic disk has been widely studied due to its central importance

in engineering. While the plastic deformation and failure of an annular disk mounted on a rigid and

accelerating circular shaft are well understood, shear-induced elastic buckling of the disk due to this

‘spin-up’ is yet to be reported. Here, we calculate this buckling behavior within the framework of

the Föppl–von Kármán equations and give numerical results as a function of the disk’s aspect ratio

(inner-to-outer radius) and Poisson’s ratio. This shows that shear-induced elastic buckling can

dominate plastic failure in many cases of practical interest. When combined with existing theory

for plastic failure, the results of the present study provide foundation results for a multitude of

applications including the characterization of accelerating compact disks and deployment of space

sails by centrifugal forces.
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I. INTRODUCTION

Rotating thin elastic disks are widely used in engineering, which has motivated numerous

investigations into their mechanical stability and dynamics [1]. These include studies of disk-

brake squeal [2], vibration and friction-induced instabilities [3], stability under transverse

loading [4, 5], buckling under a gravitational load [6, 7], finite strain analysis of anisotropic

rotating disks [8], plastic yielding of rotating disks [9–11], elastoplasic buckling of stationary

anisotropic disks [12], parametric resonance [13] and the effect of rigid body tilt [14]. It is now

well understood that these rotating structures induce internal stresses that can lead to plastic

deformation and/or fracture. This is perhaps most strikingly evident in the mechanical

failure of a thin circular disk that is rotating at high angular velocity, e.g., a rotating

compact disk [15].

Directly related to these problems, which involve steady rotation, is the angular acceler-

ation or ‘spin-up’ of a thin elastic disk. Early work by Stern [16] and Tang [17] determined

the shear stress in a thin annular disk that is clamped at its inner edge to an accelerating

rigid circular shaft, with its outer edge free; this solution built on established results for the

normal stresses [1]. Tang [17] showed that angular acceleration of the rigid circular shaft

about its axis leads to maximal shear stress at the disk’s inner edge. Subsequent work by

Reid [18] utilized this derived stress state to study the stability of a rotationally accelerat-

ing disk due to plastic deformation [18], extending previous results for the steady rotation

problem discussed above.

A problem related to the stability of a rotationally accelerating elastic disk is stability of

a thin annular disk subjected to a time-independent (static) shear. This problem was first

calculated by Dean [19] who considered the inner and outer edge of the disk to be rigidly

clamped and subject to different static angular displacements. The resulting shear stress

and elastic buckling behavior of the disk displayed good agreement with measurements.

This initial work was extended more recently to include polar-orthotropic plates [20] and

various disk boundary conditions [21]. In the latter study, a specified and fixed shear stress of

τ/(2πr2), where τ is the torsional moment and r is the radial coordinate from the disk center,

is applied; see Eq. (7) of Ref. [21]. A range of canonical boundary conditions for the inner

and outer edges of the disk are reported, e.g., clamped-clamped, clamped-simply supported,

clamped-free etc. But the assumed shear stress in that study is for uniform loading at the
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inner and outer edges of the disk, which is apparently contradictory to the usual definitions

of some of these boundary conditions. For example, the zero traction condition at a free

edge strictly requires the shear stress to vanish at that position. Thus, the various boundary

conditions studied in Ref. [21] must be considered in that context. Work has also focused on

the practical case of tension (in the radial direction) between the inner and outer edges of

the disk [22–25]. These studies show that raising this applied tension increasingly confines

the buckled mode to the inner edge of the disk.

The spin-up (angular acceleration) of a thin annular disk, such as a compact disk, gen-

erates a shear stress which in principle should lead to buckling behavior similar to that

observed for static shear of an annular disk [19–25]. Importantly, the buckling behavior

of a disk undergoing spin-up cannot be determined from these previously reported static

shear solutions [19–25]—due to the fundamental difference in boundary conditions, which

does not allow for a mapping of the present problem onto these published solutions; this is

discussed in Section III D. Furthermore, while calculation of the plastic failure of an elastic

disk undergoing spin-up has been performed (see above), the corresponding shear-induced

buckling of a thin elastic disk in spin-up is yet to be reported. This therefore represents a

significant omission in the applied mechanics literature of a canonical problem that is rele-

vant across a multitude of engineering applications; the relative importance of shear-induced

elastic buckling and plastic failure is examined in Section III C.

The aim of this article is to fill this gap in the literature and provide numerical results that

can be used in application. This calculation is achieved within the framework of the Föppl–

von Kármán equations [26], which intrinsically allows a general plane stress distribution to

be specified; see Ref. [27] for a discussion and critique of these equations. As in studies that

investigated static shear-induced buckling of an annular disk [19–25], the effects of body

forces normal to the disk surface (e.g., gravity) are ignored. This is relevant to applications

in microgravity environments and also when the induced in-plane stress due to rotation

greatly exceeds internal stresses generated by any external body force. We show that the

plane stress distribution in the accelerating disk [1, 16, 17] is decoupled from the subsequent

buckling problem; this differs from a rotating circular disk that is loaded by forces normal to

its surface [7]. Results are given for the critical angular acceleration at which buckling occurs

for both zero and nonzero instantaneous angular velocity of the disk. This is performed as

a function of the disk’s aspect ratio (inner-to-outer radius) and Poisson’s ratio; see Fig. 1.
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FIG. 1. Schematic illustration of the thin elastic disk showing its inner and outer radii. It is rigidly

clamped at its inner radius, which is moving with angular velocity, ω, and acceleration, Ω, about

the central axis of the disk. The disk is composed of an isotropic elastic material and its geometric

aspect ratio is a ≡ δ/R.

These results for shear-induced elastic buckling are then compared to existing literature

for plastic failure, which shows that both mechanisms must be considered in the design of

rotating disks. The stability of very thin disks such as floppy disk is found to be dictated

by shear-induced elastic buckling. The post-buckling behavior of the annular disk is not

considered, i.e., we focus on the buckling loads and their associated mode shapes.

II. ANALYSIS

A schematic illustration of the thin elastic disk and its rotary motion is given in Fig. 1.

The buckling behavior of this disk is to be solved using the Föppl–von Kármán equations [26,

27] for a thin elastic plate:

D∇4w = h∇ · (T · ∇w) , (1)

∇ ·T = −ρb, (2)

where D ≡ Eh3/(12[1− ν2]) is the flexural rigidity of the plate (disk), E, ν, ρ and h are its

Young’s modulus, Poisson’s ratio, density and thickness, respectively, w is the displacement

function normal to the disk, T is the in-plane stress tensor in the disk and b is the applied

body force per unit mass. We consider the problem in the rotating (non-inertial) frame of

the disk which then experiences an instantaneous body force per unit mass,

b = r
(
ω2r̂ − Ωφ̂

)
, (3)
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where Ω and ω are the instantaneous angular acceleration and angular velocity of the disk,

respectively, r and φ are the radial and azimuthal coordinates in the disk’s plane, respec-

tively, and r̂ and φ̂ are the corresponding basis vectors.

While the in-plane stress evolves in time as the disk spins up, this stress is always in a

state of quasi-equilibrium within the framework of the present thin plate theory; a result

that we prove in Section II A. Solving the corresponding equilibrium equation, Eq. (2), then

gives the results reported in Refs. [1, 16, 17]; this solution is reproduced in Appendix A

for convenience. The quasi-equilibrium assumption is justified provided the time scale for

stress to propagate through the disk is relatively small, i.e., Ω � E/(ρR2), where ρ and R

are the disk density and radius, respectively. This condition arises from a scaling analysis

of Navier’s equation and is always satisfied for a disk of infinitesimal thickness—a primary

assumption underlying Eq. (1)—at its buckling point; see Section II A for a discussion of the

practical relevance of this condition. Hence, the quasi-equilibrium property of the in-plane

stress distribution is formally consistent with Eq. (1).

The problem is non-dimensionalized using the following scales,

r ∼ R, Trr, Tθθ ∼ ρω2R2, Trφ ∼ ρΩR2, (4)

from which Eq. (1) becomes

∇4w = Ω̄

(
∂w

∂φ
+ 2Trφ4wrφ

)
− ω̄2

(
r
∂w

∂r
− Trr4wrr − Tφφ4wφφ

)
, (5)

where

4wrr ≡
∂2w

∂r2
, 4wφφ ≡

1

r

∂w

∂r
+

1

r2
∂2w

∂φ2
, 4wrφ ≡

1

r

∂2w

∂r∂φ
− 1

r2
∂w

∂φ
, (6)

with all variables referring to their dimensionless quantities, where the dimensionless angular

acceleration and angular velocity are respectively given by

Ω̄ ≡ ρhR4Ω

D
, ω̄2 ≡ ρhR4ω2

D
. (7)

Equation (5) is to be solved for w, subject to the clamped boundary condition at the

disk’s inner edge,

w|r=a =
∂w

∂r

∣∣∣∣
r=a

= 0, (8)

and the corresponding free-edge condition at the outer edge:[
∂2w

∂r2
+ ν

(
1

r

∂w

∂r
+

1

r2
∂2w

∂φ2

)]
r=1

=

[
∂

∂r
∇2w +

1− ν
r

∂2

∂r∂φ

(
1

r

∂w

∂φ

)]
r=1

= 0. (9)
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Due to linearity, Eq. (5) is solved using the ansatz

w(r, φ) = W (r) exp (inφ) , (10)

where n is an integer (periodicity in φ) and i is the usual imaginary unit; the required (real-

valued) buckled mode is specified by the real (or imaginary) part of Eq. (10). Substituting

Eq. (10) into Eqs. (5), (8) and (9) produces the required eigenvalue problem in the form of

a fourth-order ordinary differential equation for W (r),

1

r2
d

dr

(
r2
d3W

dr3

)
− 2n2 + 1

r

d

dr

(
1

r

dW

dr

)
+
n2(n2 − 4)

r4
W

= ω̄2

(
Trr

d2W

dr2
−
[
r − Tφφ

r

]
dW

dr
− n2Tφφ

r2
W

)
+ inΩ̄

(
2Trφ
r

dW

dr
+

[
1− 2Trφ

r2

]
W

)
, (11)

with associated boundary conditions,

W (a) =
dW

dr

∣∣∣∣
r=a

= 0, (12)[
d2W

dr2
+ ν

(
dW

dr
− n2W

)]
r=1

= 0, (13)[
d3W

dr3
+
d2W

dr2
+
(
n2 [ν − 2]− 1

) dW
dr

+ n2 (3− ν)W

]
r=1

= 0, (14)

where Eq. (12) is the clamp boundary condition at r = a, while Eqs. (13) and (14) coincide

with the free edge condition at r = 1.

This eigenvalue problem is to be solved for fixed angular velocity, ω̄, yielding the critical

acceleration, Ω̄, for buckling. Since this problem depends on the mode number, n, the

required buckled mode (and angular acceleration) is specified by that which produces the

smallest Ω̄.

A. Condition for quasi-static in-plane stress

The above-stated condition, Ω � E/(ρR2), for a quasi-equilibrium in-plane stress state

is identical to

Ω̄� 12
(
1− ν2

)(R
h

)2

, (15)

under the scalings defined in Eq. (7). Since the dimensionless buckling acceleration

Ω̄ ≡ Ω̄buckle is finite (see Section III), this inequality always holds in the limit h/R → 0;

this limit is implicit in Eq. (1). Importantly, it holds for many applications, e.g., a floppy
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disk exhibits a typical radius-to-thickness ratio of R/h = 1,000, leading to the requirement,

Ω̄� 107; which is well-satisfied in the results to be presented in Section III.

III. RESULTS AND DISCUSSION

Equations (11) – (14) are solved numerically using a spectral method involving Chebyshev

polynomials [28]; the number of polynomials is systematically increased to achieve conver-

gence better than 99.99%. This numerical method represents the radial displacement func-

tion, W (r), as an expansion in Chebyshev polynomials with (to be determined) unknown

coefficients. Substituting this expansion into Eqs. (11) – (14), and using the orthogonal

properties of Chebyshev polynomials, enables the eigenvalue problem to be converted into

an equivalent matrix system involving the unknown coefficients. Standard linear solvers are

then used to determine the eigenvalue and associated coefficients in the Chebyshev poly-

nomial expansion—giving the required buckling accelerations and associated modes (via

Eq. (10)). We employ the Mathematica implementation in Ref. [28] of this spectral method.

For each disk aspect ratio, a (defined in Fig. 1), and Poisson’s ratio, ν, the buckling ac-

celeration, Ω̄, is calculated for a range of mode numbers, n ≥ 1, as a function of angular

velocity, ω̄. The required (lowest) buckling acceleration, Ω̄ ≡ Ω̄buckle, and associated mode

number, n ≡ nbuckle, at a specified angular velocity, ω̄, are then evaluated using a simple

numerical search procedure—this involves computing the buckling accelerations for a range

of mode numbers, n, and identifying the mode with the lowest acceleration. Results of this

calculation are given in Fig. 2.

A. Buckling acceleration

Figures 2(A, B) give results for Ω̄buckle with a Poisson’s ratio of ν = 1/4, whereas Figs. 2(C,

D) illustrate the dependence on Poisson’s ratio over the range 0 ≤ ν ≤ 1/2, which is found

to be weak. This insensitivity of Ω̄buckle to Poisson’s ratio, ν, (and similarly for the flexural

rigidity, D) is advantageous in practice because it allows for robust design and application

without the need for precise knowledge of ν.

The results in Figs. 2(A, C) show that increasing the disk aspect ratio, a, enhances

the buckling acceleration, Ω̄buckle. This is expected because an increase in aspect ratio, a—
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FIG. 2. Numerical results for the buckling acceleration, Ω̄buckle, and associated mode number,

nbuckle = bNrefc, (where b...c specifies the integer part), for a thin annular disk rotating with

instantaneous angular velocity, ω̄. Results for Poisson’s ratio of ν = 1/4 and aspect ratios, a =

0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 (A, B). Results showing effect of various Poisson’s ratio,

ν = 0, 1/4, 1/2 (C, D).

corresponding to a decrease in radial width of the disk, for fixed outer radius (see examples of

this change in geometry in Fig. 3)—also increases the disk’s out-of-plane stiffness. Similarly

the buckling acceleration, Ω̄buckle, increases with angular velocity, ω̄. This is due to cen-

tripetal acceleration of the disk, which generates tensile (membrane) in-plane stresses—see

Appendix A—that also stiffen the disk.
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FIG. 3. Buckled mode shapes as a function of disk aspect ratio, a, and instantaneous angular

velocity, ω̄. A. Three-dimensional deformation plots. B Corresponding contour plots. Results

given for a Poisson’s ratio, ν = 1/4.

B. Buckled mode number

Results for the associated buckled mode numbers, nbuckle, are given in Figures 2(B, D)

and increase with angular velocity, ω̄. This increase is again due to tensile in-plane stresses

which serve to localize the buckled mode to the inner edge of the disk. This effect is evident

in Fig. 3 and is discussed in detail next. The shear deformation of the modes is also clear

with the disk accelerating (and rotating) in a counterclockwise direction. We remind the

reader that the required buckled mode (observed in practice) is given by the mode with the

lowest buckling acceleration.

As noted above, increasing the instantaneous angular velocity confines the buckled mode

towards the disk’s center. The radial extent of this deformation zone, Lext, thus decreases,

which in turn sets the azimuthal wavelength of the dominant buckled mode, i.e., the wave-

length in the φ-direction; this effect is evident in Fig. 3. This reduction in azimuthal wave-
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length increases the buckled mode number, nbuckle, which is captured by the scaling relation,

nbuckle ≈ b
A

min(1− a, Lext)
c, (16)

where b...c specifies the integer part, and the constant A is expected to be order one in

magnitude for dimensional reasons [29]; comparing Eq. (16) to the numerical data in Fig. 2

for ω̄ = 0, yields good agreement with A ≈ 5/3, for all Poisson’s ratios. Note that Lext = 1−a

for ω̄ = 0, because the deformation zone spans the entire disk in that case; see Fig. 3.

We now examine the mechanism leading to confinement of the buckled modes towards the

disk center, as the angular velocity is increased; see Fig. 3. This behavior is also observed

in independent calculations for the static shear loading of an annular disk, discussed in

Section I—an applied radial tension in that (different) static problem confines the buckled

mode towards the inner edge of the disk, e.g., see Figs. 2, 3 and 4 of Ref. [25]. Importantly,

the in-plane shear stress, Trφ, in the spin-up problem is generated by the angular acceleration

of the disk, while the normal in-plane stresses, Trr and Tφφ, are due to the instantaneous

angular velocity—these normal and shear components are decoupled; formulas for which

are given in Appendix A. The normal stress components are always tensile and finite, see

Eqs. (A2) and (A3), and act to stabilize the disk. In contrast, the shear stress increases in

magnitude monotonically towards the disk’s inner edge; in the limit, a→ 0, the shear stress

is singular at the inner edge; see Eq. (A4). Thus, the disk is most susceptible to deforming

near its inner edge. Increasing the instantaneous angular velocity will therefore drive the

buckling deformation mode towards the inner edge of the disk—leading to the buckling mode

confinement observed in Fig. 3.

Increasing the angular velocity is found to increase the number of modes that possess

similar buckling accelerations. We illustrate this phenomenon by considering some numerical

examples, for a disk of aspect ratio a = 0.1 with a Poisson’s ratio ν = 1/4. Accelerating

the disk from rest, yields a buckled mode number of nbuckle = 1 with a buckling acceleration

of Ω̄buckle = 26.0; see upper left mode in Figs. 3(A, B). The mode with the closest buckling

acceleration Ω̄ = 238 possesses n = 2 (not shown). In contrast, spinning the same disk at an

angular velocity of ω̄ = 70 gives a buckled mode number of nbuckle = 4 with Ω̄buckle = 569;

upper right mode in Figs. 3(A, B). The nearest neighbor modes (with n = 3 and 5) have

buckling accelerations of Ω̄ = 581 and 592, respectively (again not shown); other modes

have higher buckling accelerations. Consequently, the critical mode number (observed in
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practice), nbuckle, at high angular velocity can be susceptible to non-idealities in the disk,

e.g., disk imperfections and material anisotropy. This of course does not significantly affect

the critical buckling acceleration, Ω̄buckle, which is the primary variable of interest in design

and application.

This similarity with respect to mode number can be understood from energy considera-

tions, because the buckling acceleration arises from a balance of the destabilizing in-plane

stresses and stabilizing bending stresses. The buckling acceleration, Ω̄, for any mode num-

ber, n, can be formally expressed as a ratio of the strain energies arising from these two

processes (due to in-plane and bending stresses), e.g., by constructing the Rayleigh quo-

tient of Eq. (11). For small n, which coincides with small angular velocity, the ratio of

these strain energies will change significantly if the mode number n is changed by one, i.e.,

n→ n+1. This is simply because the relative change in n is large in such cases. The buckled

modes themselves are also qualitatively different in this limit, which is well illustrated for

the nbuckle = 1, 2, 3 modes at ω̄ = 0 in Fig. 3 (first three rows). This highlights the difference

in the ratio of the above-mentioned strain energies which depend explicitly on these mode

shapes. However in the limit, nbuckle � 1, corresponding to high angular velocity and tight

confinement of the buckled modes towards the disk center, the relative change in the ratio

of these strain energies under n → n + 1, is of course much smaller. The buckled modes

themselves, and hence the ratio of the strain energies, are also similar; see Fig. 3. As such,

the number of modes that exhibit nearly identical buckling accelerations must increase with

increasing angular velocity.

For aspect ratios, a, near unity we observe that the buckled mode deformation does not

decay to zero at the disk’s outer edge (for the angular velocities considered in Fig. 3), i.e.,

Lext = 1− a. This produces a buckled mode whose azimuthal spatial wavelength is similar

to the radial extent of the disk’s annular region, which also leads to an enhanced buckled

mode number, nbuckle, relative to disks of small aspect ratio; see Eq. (16). The buckling

accelerations of modes in the limit, a → 1, are close for identical reasons to those given

above. That is, the buckling mode number, nbuckle, is high and the mode shapes are similar

as n is varied around n = nbuckle; see example in Fig. 4, which shows the variation in the

buckling acceleration versus mode number. We remind the reader that the mode with the

smallest buckling acceleration, Ω̄buckle, and its associated mode number, nbuckle, is the one

observed in practice.
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FIG. 4. Buckling accelerations, Ω̄, as a function of mode number, n, for a disk with a = 0.7,

ω̄ = 0 and ν = 1/4. The required buckling acceleration and mode number for the disk, observed

in practice, are specified by the lowest acceleration, Ω̄buckle.

C. Plastic failure or elastic buckling?

We now compare the above results for shear-induced elastic buckling to existing literature

for the plastic failure of a rotating and accelerating disk [18]. Both theories give a critical

acceleration at which failure occurs, for a specified angular velocity, and can be used to

determine the stability of thin disks. Importantly, the theory that gives the lower critical

acceleration specifies the dominant failure mechanism. For a steadily rotating disk, i.e., zero

angular acceleration, obviously only plastic failure remains; this is explored below.

Reid [18] theoretically studied the plastic failure of a thin disk undergoing spin-up, using

the Tresca yield criterion, and reported the following yield curves (in the notation and

scalings of the present study—this corresponds to Case I of Ref. [18]),√
(1− ν)2T 2

1 ω̄
4 + T 2

2 Ω̄2 = Q, if ω̄2 ≤ S Ω̄,

(1 + ν)T1ω̄
2 +

√
(1− ν)2T 2

1 ω̄
4 + T 2

2 Ω̄2 = 2Q, if ω̄2 > S Ω̄, (17)

where Y is the tensile yield stress of the disk, and

T1 =
(1− a2) (3 + ν + a2[1− ν])

4a2 (1 + ν + a2[1− ν])
, T2 =

1− a4

2a4
,
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Q =
12 (1− ν2)

a2

(
R

h

)2
Y

E
, S =

T2
2
√
ν T1

. (18)

Equation (17) is easily solved to give the following explicit formula for the yield curve,

Ω̄ =
1

T2
min

(√
Q2 − (1− ν)2T 2

1 ω̄
4, 2
√

(Q− T1ω̄2) (Q− νT1ω̄2)

)
, if ω̄ ≤

√
Q

T1
, (19)

which specifies the maximum acceleration, Ω̄ = Ω̄max, for a given angular velocity, ω̄, below

which the disk deforms purely elastically; Ω̄ ≥ 0 is assumed throughout. Note that yielding

occurs for all ω̄ ≥ ω̄max ≡
√
Q/T1, regardless of the angular acceleration, Ω̄, i.e., there

exists a maximum angular velocity for any thin disk above which plastic failure always

occurs. It is evident from Eq. (19) and the definition of Q in Eq. (18) that a thin disk,

i.e., h/R� 1, is needed for elastic deformation. This is entirely consistent with a principal

assumption underlying the Föppl–von Kármán equations in Eqs. (1) and (2); see discussion

in Section II A.

We proceed by way of example and consider the practical case of a thin disk composed of

Kapton—whose stability under steady rotation and in the presence of gravity was recently

examined [7]. The Kapton disk studied in Ref. [7] has a radius-to-thickness ratio of R/h =

4,000 and a tensile yield stress of Y ≈ E/20. Figure 5(A) gives the (plastic) yield curve,

Eq. (19), of this disk for the same range of disk aspect ratios, a, as in Fig. 2. The yield

curve for a = 0.02 is the only one visible on the axes scales shown; yield curves for all other

aspect ratios lie above this curve. A Poisson ratio of ν = 1/4 is also used for convenience

while noting that this material parameter exerts a relatively weak effect.

The curves in Fig. 5(A) for plastic failure (only a = 0.02 appears, see above) are to

be compared to those in Fig. 2(A) for shear-induced elastic buckling, at identical values of

aspect ratio, a. If the curve in Fig. 2(A) lies below the corresponding curve for a = 0.02 in

Fig. 5(A), stability of the disk is dictated by shear-induced elastic buckling—otherwise, the

disk will fail plastically as it accelerates. This comparison establishes that for the angular

velocity and aspect ratio ranges used, 0 ≤ ω̄ ≤ 100 and 0.02 ≤ a ≤ 0.8, respectively,

shear-induced elastic buckling completely dictates stability, with plastic failure playing no

role.

Results for a smaller radius-to-thickness ratio of R/h = 1,000, typical for a floppy-disk,

are given in Fig. 5(B), which shows that all yield curves are lowered, i.e., they occur at
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FIG. 5. Yield curves for plastic failure of a thin disk that is undergoing rotation at angular velocity,

ω̄, and angular acceleration, Ω̄. Subscript ‘yield’ denotes the critical value for plastic failure. These

curves are to be compared to results for shear-induced elastic buckling in Fig. 2(A); see text. Results

given for disk aspect ratios of a = 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and a Poisson’s ratio

ν=1/4, as per Fig. 2(A); identical axes scales to Fig. 2(A) are also used to facilitate comparison.

(A) Radius-to-thickness ratio, R/h = 4,000 [7], (B) R/h = 1,000, and (C) R/h = 100.

smaller angular accelerations (and smaller angular velocities, as will become evident below).

Comparison of the curves in Figs. 2(A) and 5(B) still shows that all yield curves lie above

the corresponding curves (at identical a) for shear-induced elastic buckling. Thus again,

shear-induced buckling dictates stability for the angular velocity and aspect ratio range

shown.

Figure 5(C) gives results for the even smaller radius-to-thickness ratio of R/h = 100,

where the yield curves are lowered further; this results in very different behavior. First, we

note that the yield curve for a = 0.02 is not visible in Fig. 5(C)—it lies below the bottom

horizontal axis and therefore does not intersect the corresponding curve for shear-induced

buckling in Fig. 2(A). This establishes that plastic yielding dictates the stability of this disk.

In contrast, the yield curve for a = 0.05 in Fig. 5(C) intersects the shear-induced buckling

curve in Fig. 2(A) at ω̄ ≈ 4.4. Thus, shear-induced elastic buckling governs stability for

ω̄ <∼ 4.4 while plastic yielding controls stability above this angular velocity range. Indeed, a

similar picture emerges for all larger aspect ratios studied with shear-induced elastic buckling

dictating stability in the lower angular velocity range while higher angular velocities are

controlled by plastic failure. Unlike the data in Figs. 5(A, B), the data in Fig. 5(C) now
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clearly shows the existence of the maximum angular velocity, ω̄max, where the yield curves

are vertical. Operation using angular velocities above this maximum value will result in

plastic failure, regardless of the angular acceleration.

We remind the reader that the present analysis for shear-induced elastic buckling (and

that for plastic failure [18]) implicitly assumes a large radius-to-thickness ratio, i.e., R/h� 1;

see Section II A. Strictly, the radial extent of the elastic disk must greatly exceeds its

thickness, i.e., (1 − a)R/h � 1, which provides a stronger practical constraint on R/h

especially for large aspect ratios, i.e., a ≈ 1.

Collectively, the analysis and results reported in this section show that shear-induced

elastic buckling (rather than plastic failure) can dominate the stability of many disks found in

practice. This key finding has obviously implications to practical disk design and operation.

D. Comparison to a statically loaded disk

We conclude with a cautionary note. The buckled modes in Fig. 3 for an accelerating

annular disk bear a resemblance to those generated by a static loaded annular disk; for

example, see Refs. [19–25]. This is not surprising given both buckling phenomenon are

driven by shearing mechanisms: in the present case, shear stress is due to plate inertia while

for static loading the shear stress is generated by restraint of both inner and outer edges of

the disk. However, the present spin-up problem induces a shear stress and radial tension in

the disk that both vanish at the outer edge, due to the zero traction boundary condition at

that position; namely, r̂ ·T |r=1 = 0, which gives Trr = Trφ = 0 at r = 1, a property that

is evident in Eqs. (A2) and (A4). This differs from existing solutions [19–25] that impose

a static nonzero shear (and tension in some cases) at the outer edge of the disk, e.g., via

a solid boundary, giving Trr, Trφ 6= 0 at r = 1. Thus, while these spin-up and static shear

problems display some qualitative similarities, they are essentially different and one cannot

be derived from the other.

IV. CONCLUSION

We have studied the shear-induced buckling of a thin annular disk undergoing spin-up.

Numerical results were provided as a function of the disk’s aspect ratio (inner-to-outer ra-
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dius), Poisson’s ratio and instantaneous angular velocity. The calculations show that the

buckled mode number increases with angular velocity of the disk, while the buckled defor-

mation mode becomes progressively confined to the disk’s inner edge. The number of modes

with nearly identical buckling accelerations also increases with the disk’s instantaneous an-

gular velocity—this has implications to the buckled mode exhibited in practice, due to the

inevitable presence of non-idealities, i.e., imperfections in the disk. This property does not

significantly affect the associated buckling acceleration.

The theory and the numerical results presented here for shear-induced elastic buckling

are complementary to those of the widely studied plastic failure problem. Combination

of these theories is expected to find utility in engineering design and application because

both mechanisms can dominate stability depending on the disk dimensions and material

properties. Interestingly, the stability of practical thin disks such as floppy disks are found

to be controlled by shear-induced elastic buckling rather than plastic failure.

ACKNOWLEDGEMENTS

The authors thank Debadi Chakraborty for interesting discussions and acknowledge

support from the Australian Research Council Centre of Excellence in Exciton Science

(CE170100026), the Australian Research Council Grants Scheme and the Northrop Grum-

man Corporation.

Appendix A: In-plane stress distribution

The dimensionless solution to Eqs. (2), (3) and (4), for a thin annular disk undergoing

spin-up that is subject to zero radial displacement and traction at r = a and r = 1,

respectively, is [1, 16, 17]

T = Trrr̂r̂ + Tφφφ̂φ̂+ Trφ(r̂φ̂+ φ̂r̂), (A1)

where

Trr =
([3 + ν] [(1 + ν)r2 + a2(1− ν) (1 + r2)]− a4 [1− ν2]) (1− r2)

8 (1 + ν + a2 [1− ν]) r2
, (A2)

Tφφ =
a4 (1− ν2) (1 + r2)− a2(1− ν) (3 + ν + [1 + 3ν] r4) + (1 + ν) (3 + ν − [1 + 3ν] r2) r2

8 (1 + ν + a2 [1− ν]) r2
,

(A3)
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Trφ =
r4 − 1

4r2
, (A4)

and a is the ratio of the inner to outer radii of the disk.
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