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Isogeometric analysis of thin shells can provide higher continuity and exact geometric
description. It is shown in the existing literature that isogeometric analysis converges with fewer
degrees of freedom than I0−continuous finite elements that use Langrange polynomial shape
functions, but the speed of the solutions has not been previously assessed. In this research, the
geometrically nonlinear bending of a thin shell deployable structure, a tape spring is studied,
using both NURBS-based and I0−continuous finite elements. The complex deformation of
a tape spring makes it a perfect case study to compare the computational efficiency of the
mentioned techniques. The simulations are carried out in the commercial software ABAQUS
and LS-DYNA, and it is found that isogeometric analysis is at least three times slower than the
I0−continuous finite element methods.

Nomenclature

?, @ = polynomial degrees of NURBS basis functions
\ = total rotation applied
" = reaction moment
-,., / = global Cartesian coordinates
*,+,, = displacements in -,., / directions
Θ- ,Θ. ,Θ/ = rotations about -,., / axes
RP1,RP2 = reference points
! = length of tape spring
' = radius of circular cross-section
C = thickness of tape spring
U = angle subtended by the cross-section
� = Young’s modulus
a = Poisson’s ratio

I. Introduction

Thin shell structures have unique properties [1] and are widely used in many fields, including architecture and
aerospace. There have been many studies [2] and for many years much emphasis has been placed on failure analysis,

studying the initial buckling and post-buckling of thin shells. Recently, there has been an increasing number of studies
and engineering applications in which the post-buckling behavior of thin shells [3, 4] is the key to achieving certain
specific features. Examples include dampers [5, 6], actuators [7, 8], deployable structures [9–11] and morphing structures
[12, 13]. These applications require extensive, highly geometrically non-linear simulations and the computational
effort for design optimization is currently mostly beyond reach. Enabling further developments in these areas requires
new computational tools, and the present paper reports on a study of deployable thin shells using one of the latest
developments in computational structural mechanics.

For background, it should be noted that the properties of thin shell structures are very sensitive to geometric
imperfections [14], and finite element approximation of curved shell geometries introduces geometric imperfections
because of inexact spatial discretization. Standard thin shell elements are formulated using Lagrange polynomials,
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which provide at most �0 continuity at the element boundaries and make discretization errors inevitable. Very fine
meshes are needed to reduce the effect of these errors, which is the source of higher computational costs.

Isogeometric analysis was recently developed [15] and is regarded as a promising solution to better approximate
curved surfaces. This technique uses the same functions to approximate both the deformation of a shell and its initial
geometry. Irrespective of the size of the mesh, the geometry of the shell is defined almost exactly, even for the most sparse
choice of variables, thus greatly reducing the errors related to shape discretization. The shape functions—B-Splines,
Non-Uniform Rational B-Splines (NURBS) or other parametrizations used in CAD—naturally span across multiple
knot intervals (or ‘elements’) maintaining inter-element continuity which can be easily controlled. An early study of
a shell element formulation based on isogeometric analysis is [16], followed by [17–22]. Despite the use of smooth,
high-order shape functions, NURBS-based shell elements are not free from locking, although there have been successful
attempts to avoid geometrical locking effects at the theory level [23, 24].

Several authors have already noted the advantages of isogeometric analysis to study buckling of plates and shells
[25–28]. These studies have shown that NURBS-based analysis converges to accurate solutions and, in many cases,
with fewer degrees of freedom compared to finite element analyses based on Lagrange polynomials. However, so far
there has been no comparison of computational effort nor has there been any application of NURBS-based analysis
to thin shell deployable structures. This article fills this gap by studying the quasi-static nonlinear bending of a tape
spring—a straight and transversely curved strip of uniform thickness—that is the most basic deployable thin shell
structure [29–31].

Tape springs can be deformed in their longitudinal planes to form localized elastic folds. If the bending is in the
opposite sense to the natural transverse curvature, the tape spring undergoes a sudden snap-through buckling that
results in the formation of a localized fold. When the bending is in the same sense of the transverse curvature, the
fold formation is gradual. In both of these cases, the elastic fold is bounded on either sides by relatively undeformed
sections of the tape spring. When released from the folded configuration, the tape spring locks back into its straight,
undeformed position. Owing to the simplicity of their geometry, repeatable self-actuation, and ease of manufacturing,
tape springs have found several applications in aerospace engineering [9, 29, 30, 32–35]. The present study focuses on
the simulation of opposite sense bending of an isotropic tape spring with initially circular cross-section, using both
NURBS-based analysis software and standard finite element analysis. Convergence analyses are performed using both
these techniques and the corresponding CPU times are compared. It will be shown that NURBS-based isogeometric
analysis converges for fewer variables but is computationally more expensive.

The paper is organized as follows. Section II discusses the commercial finite element software used for the study,
along with the elements and solvers used. Section III discusses the properties of the tape spring chosen for the analysis
and discusses the applied boundary conditions. Sections IV and V present the results obtained from the finite element
simulations with �0−continuous finite elements (with Lagrange polynomial shape functions) and NURBS-based
elements, respectively. The conclusions of the research are presented in Section VI.

II. Software Tools
Simulations of the displacement-controlled opposite-sense bending of an isotropic tape spring were carried out

with the commercial finite element software ABAQUS and LS-DYNA. The analysis involves small strains and large
rotations. The computational efficiency of the NURBS-based elements in LS-DYNA was compared with that of the
�0−continuous shell elements in both ABAQUS and LS-DYNA. This section outlines the elements and solvers used for
the simulations.

A. ABAQUS
S4R is a reduced integrated, 4-node, bilinear, flat shell element with six degrees of freedom per node and includes

hourglass stabilization. It is a member of the ABAQUS library of general-purpose conventional shell elements and can
be used for shells of any thickness. They are suitable for nonlinear analyses with large rotations and hence are ideal
for the current study. For the behavior of S4R elements in popular benchmark problems for geometrically nonlinear
analysis of shells, see [36].

Quasi-static simulations were performed in ABAQUS 2020 using the in-built Riks solver, with no parallel processing
i.e., using only 1 CPU. All the default settings for the Riks solver, with automatic incrementation, were used. The initial
arclength provided to the solver is 0.1 (10% of the total arclength) unless specified otherwise.
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B. LS-DYNA
Quasi-static finite element simulations were also performed using the LS-DYNA (version R11.1) type-16 shell

elements, recommended by the developers for implicit simulations. This element, also denoted as ELFORM=16, is a
2 × 2 integrated planar element based on Reissner-Mindlin kinematics and Hughes-Liu shell element formulation [37].
It has five degrees of freedom per node in the local coordinates.

NURBS-based isogeometric analysis is available inLS-DYNA through the keyword ∗Element_Shell_Nurbs_Patch.
A surface may be both modeled and meshed with NURBS-based elements, and there is the option of using the LS-DYNA
user interface or to import a NURBS patch in .iges format. The latter was done in this study using an open source
toolbox [38]. The elements used were based on Hughes-Liu shell theory, without rotational degrees of freedom. Both
full Gauss integration with (? + 1) × (@ + 1) integration points and uniformly reduced Gauss integration with ? × @
integration points are investigated, with ? and @ denoting the polynomial degrees of the basis functions in the two
parametric directions.

LS-DYNA offers three arc-length solvers: Crisfield, Ramm, and modified Crisfield, but they all failed to go past the
limit point. Therefore, for all of the simulations in LS-DYNA, i.e. including both NURBS-based elements and bilinear
planar elements, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton solver with automatic incrementation
and no arc-length control was used. All solution control parameters and boundary conditions were kept constant
throughout the analysis. LS-DYNA offers many control options for the solver and numerous control parameters must be
chosen. The parameters that worked for all simulations presented in this study are listed in Table 1. The default values
were used for the parameters not mentioned in the table.

The keyword files were compiled on LS-Run with one CPU and double precision (note that LS-DYNA implicit does
not support single precision).

∗Control_Implicit_Auto

IAUTO ITEOPT ITEWIN DTMIN DTMAX
1 25 20 0.01 1.0

∗Control_Implicit_General

IMFLAG DT0 FORM
1 0.05 0

∗Control_Implicit_Solution

NSOLVR ILIMIT MAXREF DCTOL ECTOL DNORM
12 21 25 0.0001 0.001 1

Table 1 Parameters used for the keyword ∗Control in the LS-DYNA implicit simulations. Default values were
used for any parameters not listed here.

III. Case Study
A tape spring is a longitudinally straight cylindrical shell with a circular arc cross-section. When the ends are

rotated, the tape spring exerts monotonically increasing bending moments until a dynamic snap occurs and the moments
suddenly decrease. From this point on, an elastic fold develops and the tape spring behaves like a constant-moment
elastic hinge. This behavior is shown schematically in Fig. 1(c) and Fig. 6. The geometric properties (shown in Fig. 1)
and the material properties (Young’s modulus � and Poisson’s ratio a) of the specific tape spring that was studied are
listed in Table 2.

To facilitate the application of displacement boundary conditions, two reference points (massless nodes) RP1 and
RP2 (in Fig. 1(a)) were introduced at the intersections of the centroidal axis of the tape spring, in the initial configuration,
with the end cross-sectional planes. All the nodes (or control points) at an end cross-section are kinematically constrained
to the reference point corresponding to that end. Therefore, the ends undergo rigid body rotations about the respective
reference points.

In the ABAQUS simulations, RP2 was fixed in space while RP1 was allowed to translate along a straight line
coinciding with the initial centroidal axis of the tape spring. A rotation of \/2 around the positive X−axis was applied
at both reference points, and the reaction moments at the ends were obtained from the analysis output. Under static
equilibrium conditions, the two moments are equal in magnitude and opposite.
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Fig. 1 (a) Schematic of tape spring of length !, radius of cross-section ', thickness C and angle subtended U.
Reference points RP1 and RP2 are placed at the end cross-sections. (b) Boundary conditions on the nodes of
rotation-free NURBS-based elements, (c) buckled tape spring under opposite sense bending, and (d) schematic
depicting the total rotation applied.

In the case of rotation-free isogeometric analysis in LS-DYNA, the control points of one end cross-section were
constrained to the reference point using the keywords ∗Extra_Nodes_Set or ∗Constrained_Nodal_Rigid_Body.
Although the control points carry only displacement degrees of freedom, the reference point is allowed to carry rotations
as well. Since it was not possible to obtain the reaction moments at a reference point constrained using the described
keywords, the total rotation \ was applied at RP1 and the other end was clamped. The reaction moment " (around the
centroidal axis) at the clamped end was computed from the reaction forces in the /− direction.

A knot vector is called open or clamped when the first and the last knots are repeated ? + 1 times, ? being the degree
of polynomial. When an open knot vector is used in a parametric direction, the NURBS surface is tangent to the control
net (matrix of control points; faceted surface represented by dashed lines in Fig. 1(b)) at either ends, in that direction
[15]. This property was exploited in applying the fully clamped boundary condition shown in Fig. 1(b).

! ' C U � a

200 mm 10 mm 0.1 mm 110◦ 131 GPa 0.3
Table 2 Properties of tape spring for the case study.

IV. Simulations with I0−Continuous Finite Elements
The moment-rotation relationships for the opposite-sense bending of the tape spring, obtained from the simulations

using uniform meshes of bilinear quadratic shell elements described in Section II are presented in this section.
Figure 2 shows the convergence analysis performed in ABAQUS using the S4R elements, and in LS-DYNA using

the type-16 shell elements. As mentioned earlier, the resisting moment " increases with the applied rotation \ until a
limit point is reached. In this case, the peak moment of about 300 Nmm occurs at a rotation \ ≈ 12.5 deg. After going
past the limit point, the tape spring undergoes a dynamic buckling and an elastic fold is formed. The resulting hinge
offers a steady resistance of approx. 29 Nmm against further rotation.

While arc-length solvers can trace the equilibrium path during the snap, the obtained data is non-physical and cannot
be verified experimentally. Hence, this data was ignored when deciding on the convergence (Fig. 2(a)). Quasi-Newton
methods do not predict this behavior, so a sharp fall in the moment " is seen in Fig. 2(b).

Notice, in Fig. 2, that the results converge for a uniform mesh of 40×15 elements, i.e., 40 elements in the longitudinal
direction and 15 in the circumferential direction, in the finite element simulations with both softwares. In addition, both
softwares have converged to the same solution. To justify the choice of 15 elements along the arc, results have been
presented for varying number of elements along the arc while keeping the number of elements along the length constant
at 50, see Fig. 3. In the following, the " − \ curve for the 200 × 40 S4R mesh is used as a reference.
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Fig. 2 Convergence analysis using uniform meshes of (a) ABAQUS S4R, and (b) LS-DYNA type-16 shell
elements. The moment–rotation curve for 200 × 40 S4R mesh is chosen as the reference. In the legends, m × n
refers to m and n uniformly distributed elements in the longitudinal and circumferential directions, respectively.
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The CPU times for the simulations presented in Fig. 2 are listed in Table 3. The ABAQUS simulations for all of the
mesh sizes listed in Table 3, except 30× 15, failed for an initial arclength of 0.1 and hence this parameter was set to 0.05
for those mesh sizes. If the initial arc length of 0.1 had been successful, the computations would have been faster than
the results listed in Table 3. Remember that S4R elements have 6 degrees of freedom per node while the type-16 shell
elements of LS-DYNA have only 5. These results are compared against those for NURBS-based analyses presented in
the following sections.

Mesh size
ABAQUS S4R LS-DYNA shell type-16

Degrees of freedom CPU time (s) Degrees of freedon CPU time (s)
30×15 2976 24.7 2480 16
40×15 3936 28.9 3280 23
50×15 4896 45.2 4080 34
100×20 12726 121.9 10605 187

Table 3 CPU times for ABAQUS and LS-DYNA simulations with uniform S4R and shell type-16 meshes.
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Fig. 3 Effect of the number of elements in the circumferential direction in (a) ABAQUS S4R and (b) LS-DYNA
shell type-16 meshes. Along the length of the tape spring, the number of elements is kept constant at 50.
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V. Simulations with NURBS-Based Elements
This section presents the results obtained from the LS-DYNA implicit simulations using the NURBS-based elements.

Open knot vectors were used with the multiplicity of all interior knots set to 1. Therefore, the degree of continuity
at the interior knots was � ?−1 and �@−1 in the directions with polynomial degrees ? and @, respectively. If linear
B-Splines had been used to construct the NURBS surface, continuity at the interior knots would have been �0 and the
surface would have interpolated all the control points. In addition, all the control points would have lied on the element
boundaries. This leads to a faceted modeling of the curved surface and the exact geometric representation allowed by
the splines would not be utilized.

The tape spring was meshed with either biquadratic (? = @ = 2) or bicubic (? = @ = 3) elements, uniformly
distributed over the surface. A fully integrated element has (? + 1) × (@ + 1) integration points and uniformly reduced
integration implies ? × @ integration points.
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Fig. 4 Convergence analysis using (a) fully integrated and (b) reduced integrated biquadratic NURBS. In the
legends, m × n refers to m and n uniformly distributed elements ((m + 2) and (n + 2) control points) in the
longitudinal and circumferential directions, respectively.

Figure 4 presents the moment-rotation curves obtained with biquadratic NURBS-based elements. Discretizing the
arc with only 10 quadratic elements, independently of the number of elements along the length, leads to a stiffer response
indicating membrane locking. This was eliminated by using a finer discretization in the circumferential direction or by
reduced integration, Fig. 4(b), or by using higher order splines, Fig. 5. In Table 4, note that reduced integrated elements
are computationally less expensive in most cases and, therefore, in the following only results obtained with reduced
integrated elements are discussed.
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Figure 4(b) shows that 10 elements along the arc and 100 elements along the length are needed to obtain accurate
results. Although having fewer elements along the length gives rise to an oscillating response in the post-buckling
regime (for reasons unknown), the maximum deviation from the reference steady-state moment with respect to the
peak moment is only 2%. Therefore, convergence is assumed to have been achieved with the 50 × 10 mesh. The same
oscillation is seen also in Fig. 5 for the �2−continuous bicubic elements, except for the meshes with 100 elements along
the length. The maximum deviation from the reference in this case is approx. 2.5% and it is assumed that convergence
is achieved with a 50× 10 mesh. The onset of buckling and the evolution of the elastic fold corresponding to the 50× 10
biquadratic NURBS mesh are illustrated in Fig. 6.
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Fig. 5 Convergence analysis using (a) fully integrated and (b) reduced integrated bicubic NURBS. In the
legends, m × n refers to m and n uniformly distributed elements ((m + 3) and (n + 3) control points) in the
longitudinal and circumferential directions, respectively.

The CPU times for the converging solutions were 76 s and 147 s for reduced integrated biquadratic and bicubic
elements, respectively. Comparing these with the CPU times for 40 × 15 mesh of classical finite elements, see Table 3,
NURBS-based analysis was at least 4.75 times more expensive than the LS-DYNA type-16 shell elements and 3.08
times more expensive than the ABAQUS S4R elements. This proves that although NURBS-based elements converge for
fewer degrees of freedom, they are computationally more expensive compared to classical finite elements.
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Mesh size Degrees of freedom CPU time, fully integrated CPU time, reduced integrated
Biquadratic NURBS

50×10 1873 81 s 76 s
50×20 3432 173 s 143 s
100×10 3672 250 s 200 s
100×20 6732 533 s 409 s

Bicubic NURBS
50×10 2067 176 s 147 s
50×20 3657 379 s 301 s
100×10 4017 363 s 459 s
100×20 7107 1003 s 838 s
Table 4 CPU times for LS-DYNA implicit simulations with NURBS-based elements.

Fig. 6 Deformed configurations of tape spring meshed with 50 × 10 biquadratic NURBS-based elements.
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VI. Conclusions
This research has applied isogeometric analysis to the geometrically nonlinear analysis of deployable thin shell

structures. A tape spring under opposite sense bending was used as a means to compare the computational efficiency of
higher order NURBS-based elements with that of the �0−continuous finite elements. The elements compared were
�1−continuous biquadratic, and �2−continuous bicubic NURBS-based elements in LS-DYNA; �0−continuous 4-node
bilinear elements in ABAQUS; and fully integrated bilinear quadrilateral (type-16) elements of LS-DYNA. It was
observed that although the higher-order and smooth NURBS-based elements converge with fewer degrees of freedom,
they are computationally more expensive than the �0−continuous finite elements utilizing Lagrange polynomial shape
functions.
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