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Prediction of Wrinkle Amplitudes
in Square Solar Sails

Y.W. Wong∗ and S. Pellegrino†

University of Cambridge, Cambridge, CB2 1PZ, UK
K.C. Park‡

University of Colorado, Boulder, CO 80309-0429

This paper considers an idealised solar sail consisting of a uniform, elastic, isotropic
square membrane that is prestressed by two pairs of equal and opposite forces applied at
the corners. Two wrinkling regimes are identified. The first regime occurs for symmetric
and moderately asymmetric loading; it is characterised by small, radial corner wrinkles.
The second regime occurs for strongly asymmetric loading and is characterised by a
single, large diagonal wrinkle, plus small radial corner wrinkles. An analytical method
for predicting wrinkle wavelengths and out-of-plane wrinkle displacements, as well as in-
plane corner displacements of the membrane, is presented. The analytical predictions
are validated against experimental measurements and detailed finite element simulation
results. The accuracy achieved is typically better than 20% on wavelengths and 30%
on amplitudes. Finite element analysis using thin shell elements is shown to be able to
replicate real physical experimentation with an accuracy better than 20%.

Introduction and Background
It is envisaged that ultra-lightweight solar sails will

be used as future interstellar probes, and several stud-
ies of these structures are currently underway [1]. One
of the concepts proposed is the so-called suspension
system in which a square sail with load carrying mem-
branes is prestressed by applying concentrated corner
forces by means of four deployable booms [2].
Stressing the membrane in uniform biaxial tension

everywhere, which would completely avoid the forma-
tion of wrinkles, is not practical. Instead, many studies
currently under way assume that extensive parts of the
membrane will be stressed only uniaxially and hence
will be subject to wrinkling. The magnitude of these
structural wrinkles is of great interest to designers of
solar sails, as the membrane reflectivity is a function of
the wrinkle wavelength and amplitude; hence, depend-
ing on their geometric characteristics, wrinkles may or
may not be acceptable.
This paper considers an idealised solar sail consist-

ing of a uniform elastic square membrane of side length
L and thickness t that is prestressed by two pairs of
equal and opposite concentrated forces, T1 and T2,
applied at the corners, as shown in Figure 1. The
membrane is isotropic with Young’s Modulus E and
Poisson’s ratio ν; it is also initially stress free and per-
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fectly flat (before the application of the corner forces).

T1, δ1
L

L

d

T1, δ1T2, δ2

T2, δ2

Fig. 1 Membrane subjected to corner forces.

An analytical method is presented for estimating the
wrinkle patterns in this membrane, and their ampli-
tude and wavelength, induced by the general loads T1
and T2. Predictions from the proposed method are
validated against experimental measurements and de-
tailed finite element simulation results. This method is
an extension of our previous paper on long, rectangular
membranes under uniform shear [3]. In the previous
study the wrinkles in the central region were parallel,
uniform, and at 45◦ to the edges of the membrane. The
mid-plane stress along the wrinkles (tensile) could be
assumed to be uniform and hence could be expressed
in terms of the applied shear. The mid-plane stress
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transverse to the wrinkles (compressive) was set equal
to the buckling stress of an infinitely wide plate in uni-
axial compression —which, of course, depends on the
bending stiffness of the plate. Finally, the unknown
buckling wavelength of this plate was obtained from
an equation of out-of-plane equilibrium for the wrin-
kled, and hence doubly-curved, membrane.
A key difficulty in extending this previous work to

square membranes is that it is now much more diffi-
cult to guess a reasonably accurate stress field. Hence
we propose four different, no-compression “equilib-
rium” stress fields, some of which are only valid if
the ratio of the corner forces is in a particular range.
Each stress distribution is associated with a particular
upper-bound estimate of the corner displacements due
to the corner forces. Hence, if for a given load ratio
and membrane dimensions there is more than one po-
tential stress distribution, the best approximation to
the actual stress field in the membrane is obtained by
choosing the particular distribution that produces the
lowest upper bound for the corner deflections.
Once a good approximation to the stress field has

been identified, the corresponding wrinkle details are
predicted by an extension of the approach proposed in
our previous paper [3]. Results from this approach
are compared both to experimental measurements
and very detailed non-linear finite element simulations
based on the technique first developed in Ref. [4].

Analytical Model: Stress Field
Figure 2 shows four possible stress fields, all of which

satisfy equilibrium everywhere and involve no com-
pressive stress at any point. Note that in each case
the membrane is divided into regions which are either
unloaded or subject to a simple state of stress. Also
note that the stress field in Figure 2(b) is valid only for
T1 = T2 while the others are more general, although
still subject to some restrictions as explained later.
Although equilibrium is satisfied, there is no guar-

antee that the elastic strains associated with these
fields are compatible; indeed obvious compatibility vi-
olations can be easily detected for the simpler fields.
Finally, note that the corner forces are distributed over
a finite width, d, otherwise infinite stresses would oc-
cur. In a real solar sail, this width would be related to
the size of the boom attachment to the membrane.
For each stress field it is possible to produce an es-

timate of the corresponding corner displacements, δ1
and δ2, defined in Figure 1. These displacements are
computed using an upper-bound approach based on
the complementary strain energy in the membrane.
The theorem of minimum complementary energy

states that the total complementary energy in a
linear-elastic structure is minimum for the actual
stress distribution. Hence, for an assumed stress
field —which satisfies equilibrium but not necessar-
ily compatibility— the complementary energy will be
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Fig. 2 Equilibrium stress fields.

higher than for the actual stress distribution [5]; thus

U � U∗ (1)

where U and U∗ are the actual and the estimated
complementary energies of the structure. Hence, the
“best” stress field is that which produces the smallest
estimate of U∗.

U∗ can be calculated from

U∗ =
1
2

∫
V

(ε1σ1 + ε2σ2)dV (2)

By conservation of energy, U is given —for two given
sets of corner forces, Ti and corresponding corner dis-
placements δi— by

U =
1
2

2∑
i=1

2Tiδi = T1δ1 + T2δ2 (3)

Hence, from Equation 1, the average of the corner
displacements, each weighted by the corresponding ap-
plied forces, determined by means of this method, is
always an upper bound to the correct value.

Diagonal Strip Field

Figure 2 (a) shows a very simple stress field, con-
sisting of two diagonal tension strips of width d, each
under uniform uniaxial stress, plus a small isotropic bi-
axial stress in the centre region. The remaining parts
of the membrane are unstressed. Figure 3 shows the
stress distribution in a quarter of the structure.
For the case of symmetric loading, T1 = T2 = T and

δ1 = δ2 = δ, the uniaxial stress in the tension strips is

σt =
T

dt
(4)
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Fig. 3 Diagonal tension strip stress field.

the complementary strain energy in each diagonal re-
gion is

U∗
1 =

T 2L

2
√
2dEt

(5)

whereas the complementary strain energy in the cen-
tral region is

U∗
2 =

T 2(1− ν)
4Et

(6)

Hence, the corner displacement, δ, determined from
Equations 1, 3, 5 and 6 is

δ � T

2Et

[√
2L
d

+ (1− ν)

]
(7)

Corner Wedge Field

The second stress field, shown in Figure 2(b), con-
sists of four identical corner regions subject to purely
radial stress plus a central region under uniform bi-
axial stress. For simplicity, a symmetric load case,
T1 = T2 = T and δ1 = δ2 = δ, will be considered first.
A detailed view is shown in Figure 4.
The corner region stress distribution is chosen to be

σr =
T√
2rt

(8)

at distance r < L
2 from the apex. Hence, the radial

stress is uniform on any circular arc; all other stress
components are zero. It can be readily shown that this
distribution satisfies equilibrium.
To avoid stress singularities it is assumed that the

force T is distributed over a small, biaxially stressed
corner region of radius, r1 = d√

2
. Here the stress is

given by Equation 4.
The central region, defined by circular arcs of radius

R = d√
2
+ L

2 , is subject to uniform biaxial stress of
magnitude

σR =
√
2T

(
√
2d+ L)t

(9)

The total complementary energy for all these regions
is

U∗ =
T 2

8Et

(
π ln

∣∣∣∣Rr1
∣∣∣∣ + 2(1− ν)

)
(10)
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Fig. 4 Corner wedge stress field.

From which, expressing R and r1 in terms of L and
d, the following upper bound for δ is obtained

δ � T

4Et

[
π ln

∣∣∣∣1 + L√
2d

∣∣∣∣ + 2(1− ν)
]

(11)

This type of stress field can be extended to asym-
metric loading. For example, consider what happens if
—starting from the symmetric case described above—
T1 is gradually increased. For equilibrium, we need
to ensure that the radial stress is uniform on the four
arcs bounding the central region. Since σr in each
wedge region is proportional to Ti/r, we can com-
pensate for the increase in T1 by increasing the outer
radius of this wedge and decreasing the radius of the
wedge corresponding to T2. For the radial stress along
the edges of the centre region to be uniform, clearly
R1/R2 ∝ T1/T2. This approach is valid until the two
larger arcs reach the centre of the membrane, which
happens for

R1
R2

=
T1
T2

=
1√
2− 1

(12)

By dividing the stress field shown in Figure 2(c) into
separate regions, each contributing to the complemen-
tary strain energy associated with the displacement
in only one direction, two separate estimates can be
obtained. Thus,

δ1 � T1
4Et

[
π ln

∣∣∣∣R1r1
∣∣∣∣ + 1− ν

R21

(
4R1R2 − 2R22

)]
(13)

and an analogous expression for δ2.

Modified Corner Wedge Field

As we have stated earlier, the corner wedge stress
field is only valid up to a specific value of T1/T2. We
have observed that around this value there is a fairly
sudden change in the wrinkling pattern of the mem-
brane, involving the formation of a diagonal wrinkle.
For such a wrinkle to form, there has to exist a region
—continuous between the two most heavily loaded cor-
ners of the membrane— with no tensile transverse

3 of 10

American Institute of Aeronautics and Astronautics Paper 2003-1982



stress. This can be achieved by varying the angle sub-
tended by each corner wedge, as shown in Figure 2(d)
and 5. Note that the half-angles defining the corner
wedges are θ1, θ2 and the unstressed triangular region
is defined by the angles α1, α2.

T1

L

θ1

δ1

CL

R1

δ2T2

θ2

α1

α2

Fig. 5 Modified corner wedge stress field.

The radial stress is now given by

σr =
Ti

2rt sin θi
(14)

and hence along the circular arcs that bound the cen-
tral, biaxially stressed region,

σr =
T1

2R1t sin θ1
=

T2
2R2t sin θ2

(15)

Given T1 and T2, one can find by geometry, plus Equa-
tion 15, a unique set of θ1, θ2 and R1, R2, thus fully
defining the stress field.
Note that αi is related to θi by

θi = 45◦ − αi (16)

It should be noted that θ1 and θ2 are constant for
any particular load ratio, and so the only variable in
Equation 14 is r. Hence, this field is different from
any of the others, as the slack regions, denoted by 0 in
Figure 5, will grow as the load ratio is increased.
By an extension of the approach described previ-

ously, we can obtain the following expression for an
upper bound on the corner displacements

δi � Ti

2Et sin2 θi

[
θi ln

∣∣∣∣Ri

r1

∣∣∣∣ + (1− ν)
(

A

R2i

+θi − 1
2
tan θi

)]
(17)

where A is the area of the central, biaxially tensioned
region. However, note that δ2 obtained from this equa-
tion does not allow for the geometric effects associated
with the wrinkling the membrane, which are quite
large since T1 >> T2.

Analytical Model: Wrinkle Details
The simple analytical model recently developed by

Wong and Pellegrino [3] to predict the wrinkle wave-
length and amplitude in a sheared rectangular mem-
brane will be extended to the present situation. A key
assumption of this model is that a critical transverse
compressive stress must be reached when wrinkling oc-
curs in the membrane. This critical stress, σcr, is equal
to the buckling stress of a plate of wavelength λ in the
direction perpendicular to the wrinkles and is given by

σcr = −π2

λ2
Et2

12(1− ν2)
(18)

σθ

1/κr

λ
λ

2Aw
η

R

xCL

CL
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1/κθ

θ=π/2n
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σr

Rwrin

Rwrin-r1

CL

Fig. 6 Wrinkle detail at a corner.

This stress has to satisfy out-of-plane equilibrium in
a wrinkled membrane that carries along the wrinkles
the stress provided by one of the stress fields proposed
in the previous section.
Figure 6 shows the corner wrinkle details in a quar-

ter of a symmetrically loaded square membrane. Note
that the wrinkles radiate outwards, instead of being
uniform as in the rectangular membrane under shear.
Let us denote by Rwrin the outer radius of the wrin-
kled zone, see Figure 6. It is assumed that the wrinkles
start growing right at the edge of the highly stressed
corner region. The wrinkle profile is assumed to have
attained its maximum amplitude in the middle but, of
course, the wrinkle becomes wider as r increases. Us-
ing the polar coordinate system defined in Figure 6,
the out-of-plane displacement of the membrane is as-
sumed to be

w ≈ A sin
πr

Rwrin − r1
sin 2nθ (19)

where A is the wrinkle amplitude, n the total number
of wrinkles at the corner —each subtending an angle
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of π/2n— and θ is an angular coordinate measured
form the centre line.
Two sets of predictions will be developed for two dif-

ferent loading regimes of the membrane. The diagonal
strip stress field gives poor estimates of the corner dis-
placements, hence no further analysis of this field will
be carried out.

Symmetric Loading

Consider the corner wedge stress field. Since the
stress is uniaxial

εr =
σr

E
(20)

where σr is given by Equation 8. The radial displace-
ment, u(r), can be obtained by integrating the radial
strain along the radius

u =
∫

εrdr + c (21)

where c is a constant of integration such that u ≈ 0
at r = R, i.e. where the stress distribution becomes
biaxial. Therefore,

u =
1√
2Et

ln
r

R
(22)

The hoop strain required for geometric compatibility
is

εθg
= −εr = −u

r
(23)

On the other hand, the hoop material strain is

εθm = −ν
σr

E
(24)

Wrinkles will form when the geometric hoop strain
is larger than the material strain, hence from Equa-
tions 8, 22, 23 and 24, we obtain

ln
∣∣∣∣Rr

∣∣∣∣ ≥ ν (25)

In order for wrinkles to form Equation 25 must be
satisfied, hence the largest r for which the equation
is satisfied is Rwrin. For r < Rwrin, any mismatch in
the strain will require a “wrinkling” strain achieved by
out-of-plane displacement of the membrane

εθg
= εθm

+ εθwrin
(26)

Hence at a general r < Rwrin

−u

r
= − νT√

2rEt
+

a2π2

4λ2
(27)

where a = A sinπr/(Rwrin − r1).
Now, consider out-of-plane equilibrium of the wrin-

kled membrane

σrκr + σθκθ = 0 (28)

where κr and κθ are the radial and hoop curvatures,
respectively, obtained by differentiating w in Equa-
tion 19. Hence,

κr =
Aπ2

(Rwrin − r1)2
and κθ =

4An2

r2
(29)

It is found that the number of half-wave wrinkles at a
distance r from the membrane corner is given by

n = 4

√
3π2(1− ν2)Tr3

4
√
2Et3(Rwrin − r1)2

(30)

and hence we can determine the wavelength at any r
by substituting n from Equation 30 into

λ =
rπ

2n
(31)

Once the wavelength has been determined, it is then
possible to predict the average wrinkle amplitude a(r)
using Equations 23 to 26. Thus

a =
2λ
π

√
u

(r − r1)
+

νT√
2rEt

(32)

Note that Equation 32 is only valid for r � (Rwrin −
r1)/2 and the amplitude beyond this value of r is ob-
tained by considering the mirror image.
It is straightforward to extend the predictions dis-

cussed above to the more general case 1 < T1/T2 <
1/(

√
2− 1).

Asymmetric Loading

For higher load ratios, two wrinkle regions develop.
One is similar to the previous case, i.e. a fan of wrin-
kles originating from a corner. The other and much
more dominant is a single wrinkle running along the
diagonal axis of the membrane, and going through the
narrow region where the two larger wedge stress fields
come into contact, see Figure 2(d). We will only pre-
dict the wavelength and amplitude of this diagonal
wrinkle as its amplitude is much larger than the rest
of the wrinkles in the corner.
The diagonal wrinkle can be described by the simple

mode shape

w = A sin
πξ√

2L − 2r1
sin

πη

λ
(33)

where λ is the half-wavelength, and A the maximum
amplitude. The ξ, η coordinate system is shown in
Figure 6.
The stress along the wrinkle is given by Equation 14,

and the corresponding corner deflections, δ1 and δ2,
from Equation 17.
To compute the amplitude of this single diagonal

wrinkle we cannot proceed as before, because the di-
agonal parallel to T2 is mostly straight with only a
single large wrinkle in the middle. Hence, instead of
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working in terms of average strains, here we work in
terms of the total extension of this diagonal. We begin
by noting that the modified corner wedge stress field
involves slack regions along the edges of the membrane.
If these regions do not deform out of plane, the edges
of the membrane sides would behave as four rigid links,
and hence the corners where T2 is applied would move
inwards by δ1. Hence, denoting by e the extension of
this diagonal

e = −2δ1 (34)

This extension includes a component due to elastic
stretching of the material, eM , which can be obtained
by integrating the elastic strains along this diagonal,
over the uniaxially and biaxially stressed regions, from
one corner to the other. Plus, a geometric shortening
due to a single wrinkle, ewrin. Hence

e = eM − ewrin (35)

Substituting appropriate expressions

−2δ1 = 2δ2 − νT

Et sin θi
ln

∣∣∣∣R1R2
∣∣∣∣ − A2π2

2λ
(36)

The wrinkle half-wavelength is obtained by substi-
tuting the longitudinal and transverse curvatures —
obtained by differentiating Equation 33— into an equi-
librium equation analogous to Equation 28. Hence,

λ = 4

√
2π2(Ri − r1)2Et3r sin θi

3(1− ν2)T
(37)

Substituting into Equation 36 and rearranging gives

A =
1
π

√
2λ

(
2(δ1 + δ2)− νT

Et sin θi
ln

∣∣∣∣R1R2
∣∣∣∣
)

(38)

where δ1 and δ2 come either from Equation 17 or from
a FE estimate, as we will see later.

Comparison with FE Simulations
Several simulations have been conducted of a

500 mm square Kapton membrane with the following
properties: E=3530 N/mm2, v = 0.3, t = 0.025 mm,
and d = 25 mm.
Different combinations of corner loads were consid-

ered. One quarter of the finite element model is shown
in Figure 7. A very dense mesh was chosen after sev-
eral preliminary analyses, in order to capture the fine
wrinkle details in the corners. Other details of the
FE model include a 25 mm × 20 mm Kapton rein-
forcement in each corner with a thickness of 0.1 mm,
connected to a beam that distributes the applied cor-
ner load.

250 mm

Beam element
Kapton tab

25
0 

m
m

25
 m

m

Fig. 7 1/4 of FE model.

Finite Element Model

The present authors have already shown that wrin-
kling of a thin membrane can be accurately mod-
elled using thin shell elements, by introducing an ini-
tial geometrical imperfections obtained from an ini-
tial eigenvalue analysis. A geometrically non-linear
post-wrinkling analysis is then carried out using the
automated pseudo-dynamic *STABILIZE function in
ABAQUS [6].
This method, although expensive in computational

terms, is thus far the only method that can reveal full
wrinkle details and can be relied upon as an almost
exact replication of physical experimentation.
However, a simpler way of simulating membrane

wrinkling is by means of a two-dimensional membrane
made of no-compression material. This option is also
available in ABAQUS. However, it is well known that
wrinkled membranes are best described by combined
stress-strain criteria, and Adler [7] has recently de-
veloped an ABAQUS user subroutine which models
wrinkling by means of an Iterative Modified Proper-
ties (IMP) method.
Both of these FE modelling techniques have been

used to find reference values for the corner displace-
ments which could be compared against those from
the simple analytical expressions proposed in the pre-
vious section.

Simulation Details

The membrane and corner tabs were modelled us-
ing S4R5 thin shell elements with different thicknesses,
whereas the beam was modelled using a “Circ” gen-
eral beam section. The boundary conditions are that
the membrane is only constrained in the x and y di-
rections at the centre, with all side edges remaining
free; the out-of-plane and all bending degree of free-
doms of the corner beams were restrained. The corner
tensions were applied as distributed loads along the
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truncated corners. For the IMP model, the membrane
was modelled using M3D4 membrane elements, with
material definition through a UMAT subroutine. The
corner tab was modelled using S4 shell elements and
the same beam elements used for the shell model.
Two load steps were applied, first a symmetric load-

ing of 5 N at all corners. Then, the T2 was maintained
constant at 5 N while T1 was increased up to 20 N, to
obtain a final load ratio of T1/T2 = 4.
The analysis procedure was essentially identical

for all the simulations. First, a uniform stress of
0.5 N/mm2 was applied to provide an initial out-of-
plane stiffness to the membrane. This was achieved by
using *INITIAL CONDITION, TYPE=STRESS com-
mand in ABAQUS. A non-linear geometry analysis
with *NLGEOM then followed to check the equilib-
rium of the system after this initial prestress had been
applied.
Then a linear eigenvalue analysis step was carried

out (for the thin shell model only) in order to extract
possible wrinkling mode-shapes of the membrane un-
der a symmetrical loading. These mode-shapes were
selected based on their resemblance to the expected
final wrinkled shape, and were introduced as initial
geometrical imperfections.
Finally, an automatically stabilised post-wrinkling

analysis was performed with the aid of *STATIC, STA-
BILIZE. Since this analysis is very sensitive and the
magnitude of wrinkles is very small, an increment of
0.001 of the total load had to be selected. The stabilize
factor was reduced to 10−12 to minimise its effect on
the final solution, but enough to stabilise the solution.

Symmetric Loading

Figure 8 shows a non-dimensional plot of the cor-
ner displacements predicted using different solutions
methods for a symmetrically loaded membrane.
The plot shows a linear relationship between the

0.5 1.0 1.5 2.0 2.50

0.2

0.6

1.0

1.4

1.8

T/Et2

δd
/L

t

ABAQUS Shell model
ABAQUS IMP model  

Equation 11
Equation 7

Fig. 8 Comparison of corner displacement for T1 =
T2 = T .

x

yz

Fig. 9 Wrinkled shape for T1/T2 = 1 .

1 2 3 4
0
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0.4

0.6

0.8

1.0

T
1
/T

2

δ 1 (
m

m
)

Analytical (Eqs 11, 13, 17)     
Shell model (without corner tab)
Shell model (with corner tab)   
IMP model (with corner tab)     

Fig. 10 Comparison of corner displacement for
asymmetric loading.

corner displacement and the applied load. Also, all
displacements predicted analytically are greater than
the ABAQUS estimates, as expected. Note that Equa-
tion 11 gives closer predictions than Equation 7 which
indicates that the corresponding stress field is more
accurate.
Figure 9 shows the wrinkled shape of the membrane

loaded by T1 = T2 = 5 N. The wrinkle amplitudes are
very small and symmetrically arranged. The out-of-
plane deformation of this plot has been scaled up 100
times for clarity.

Asymmetric Loading

Asymmetric load cases were simulated by first load-
ing the membrane symmetrically with 5 N, then T1
was increased up to a ratio of T1/T2 = 4.
Comparisons of corner displacements obtained by

the two FE techniques and those predicted from Equa-
tions 13 and 17 are presented in Figure 10. Equation 7
has not been plotted because it generally over predicts
the deflections by a factor of 2.
The main observation is that the membrane behaves

linearly up to a load ratio of approximately 2.6, at
which point its stiffness along the main diagonal sud-
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denly decreases by about a third, as shown by the
gradient of both the shell and IMP model solutions.
This may be due to the formation of a large diagonal
wrinkle. The standard membrane solution does not
show this stiffness drop, and hence carries on linearly.
Note that the deflection estimates using Equa-

tions 13 and 17 provide a fairly close approximation
to the corner displacements. Also note that the an-
alytical estimates become more accurate if compared
to a FE simulation without the corner tabs, which are
not included in the analytical solution.

1 2 3 4

-0.3

-0.2

-0.1

0

0.1

T
1
/T

2

δ 2 (
m

m
)

Analytical (Eqs 11, 13)         
Shell model (without corner tab)
Shell model (with corner tab)   
IMP model (with corner tab)     

Fig. 11 Comparison of corner displacement for
asymmetric loading.

Similar behaviour is observed for the lightly loaded
corners. It can be seen that δ2 decreases when the
load ratio is increased, and the rate of decrease is much
greater beyond a load ratio of 2.6. Equation 13 follows
the response path very accurately up to its limit of va-
lidity. It is interesting to note that the IMP model
tends to deflect more than the shell model, because
it neglects the bending stiffness of the wrinkled mem-
brane.
At this stage we will not extend the analytical es-

timates beyond T1/T2 = 1/(
√
2 − 1), as we have al-

ready succeeded in showing that the proposed stress
fields provide reasonably good approximations to the
stresses in an actual wrinkled membrane.
Figure 12 shows the wrinkled shape of a membrane

subjected to an asymmetric loading with T1/T2 = 4.
In addition to the larger diagonal wrinkles between the
more heavily loaded corners, a number of wrinkles of
small amplitude can also be seen near the other corner.

Comparison with Experimental
Observations

Careful experimental measurements were made, us-
ing a CCD laser, on a Kapton membrane with the
properties defined in the previous section.
First, we increased the loading symmetrically. We

started by applying 5 N, then 10 N and finally 20 N. An

A

A

B

B

C

C

η

ξw

Fig. 12 Wrinkle details for T1/T2 = 4 .

interesting observation was that the wrinkle pattern
and the wrinkled region remained essentially the same
under these different load levels. Mode jumping, first
observed by the current authors [3, 4] in membranes
under simple shear, occurred also in this experiment.
Photographs of the wrinkle patterns under symmet-

ric and asymmetric loading are presented in Figure 13.
For symmetric loading, Figure 13(a), the wrinkle pat-
tern is fairly symmetric with wrinkles radiating out-
ward from all the corners; a central region which is
visibly stressed biaxially is free of wrinkles. For load
ratios up to T1/T2 = 2 the wrinkles form only radi-
ally outwards at the corners, as expected. Then, for
T1/T2 = 3 a large diagonal wrinkle is clearly visible,
as predicted by the stress field approach.

(a) (b)

(c) (d)

Fig. 13 Shapes of membrane for T1/T2 equal to (a)
1, (b) 2, (c) 3, (d) 4.

Detailed measurements of the wrinkle profile for
symmetric loading show that the wrinkle amplitude in-
creases as one moves away from the corner and reaches
a maximum at a distance of 105 mm from the cor-
ner. The wrinkles have almost vanished at a distance
of about 180 mm. There is little change when the
loads are increased, however the number of wrinkles
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Fig. 14 Wrinkle profile at 70 mm from highly
loaded corner, for T1 = T2 = T = 5 N and 20 N.

increases from 4, for T = 5 N, to 5 for T = 20 N,
see Figure 14. Note that the wrinkle wavelength de-
creases when the number of wrinkles increases, and the
wrinkle amplitude is also observed to have decreased.
These observations are consistent with the analytical
model for the wrinkled region, Equation 25, and the
wrinkle details, see Equations 31 and 32. The wrinkle
amplitudes for symmetrical loading were found to be
always very small, even at the higher load levels.
Afterwards, T2 was maintained at 5 N but T1 was

increased up to a maximum load ratio of 4. Figure 15
shows the wrinkle profiles at three different cross sec-
tions, for different values of T1/T2, plotted against
those obtained from the ABAQUS simulations.
Note that experiments and simulations match

closely in the central region; particularly the wrinkle
wavelengths are predicted accurately. But ABAQUS
predicts larger displacements of the edges of the mem-
brane, and this is due to the fact that the initial shape
of the physical model has not been captured with suffi-
cient accuracy. The edges of the membrane were initial
curled due to residual stresses from the manufacturing
process.

Validation of Analytical Model
In order to validate the analytical model for sym-

metric load cases compare, Table 1, the predictions for
wrinkle wavelength and amplitude from Equations 30–
32 with the experimental measurements in Figure 14.
For asymmetric load cases, Tables 2 and 3, compare

the analytical predictions at the centre of the mem-
brane for T1/T2 = 4 and two different membrane thick-
nesses, namely 0.025 mm and 0.05 mm, with predic-
tions from ABAQUS and experimental measurements.
Recall that in this case there is a single diagonal wrin-
kle, see Figure 15(c).
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Fig. 15 Comparison of experimental measure-
ments with ABAQUS for T1/T2 = 4 and cross
sections at distance of (a) 105 mm, (b) 177 mm,
(c) 346 mm from corner.

The predictions for the half-wavelength are very
close to the experiments and FE analysis. For the
wrinkle amplitudes, we have compared both the pre-
dictions using only analytical solutions, Equation 38
with δ1 and δ2 from Equation 17, or those based on
Equation 38 but with corner deflections from a 2-D

§2-D IMP/ no-compression Analysis.
¶Shell model.
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Table 1 Comparison of number of wrinkles, half-
wavelength and amplitude for symmetric loading
at 70 mm from corner

n/2 λ (mm) A (mm)
T (N) Eq. 30 Exp. Eq. 31 Exp. Eq. 32 Exp.

5 4.3 4 12.9 11.0 0.135 0.124

20 6.1 5 9.1 9.7 0.191 0.141

Table 2 Wrinkle half-wavelengths for T1/T2 = 4 at
346 mm from corner

t (mm) Eq. 37 (mm) Exp. (mm) FE (mm)

0.025 24.7 25.4 22.3
0.050 41.5 33.9 35.6

Table 3 Average wrinkle amplitudes for T1/T2 = 4
at 346 mm from corner

t Eqs 38, 17 Eq. 38+FE§ Exp. FE¶

0.025 3.51 2.5 1.89 2.02
0.050 3.33 2.1 1.81 1.63

no-compression analysis. We can see that the fully
analytical estimates are up to 85% higher than those
measured experimentally. However, if we use the cor-
ner displacements δ1 and δ2 predicted by ABAQUS
and substitute them into Equation 38, we obtain im-
proved estimates only 32% and 16% higher than the
measurements.

Discussion and Conclusions
Two wrinkling regimes have been identified for

square membranes subject to four in-plane corner
forces. The first regime occurs for symmetric and
asymmetric loading up to T1/T2 ≈ 2.5. It is char-
acterised by relatively small, radial corner wrinkles.
The second regime occurs for asymmetric loading with
T1/T2 > 2.5, and is characterised by a single, large di-
agonal wrinkle, plus small radial wrinkles at all four
corners.
We have proposed an analytical method for pre-

dicting wrinkle wavelengths and out-of-plane wrinkle
displacements, plus the in-plane corner displacements
of the membrane are also estimated by this method.
For symmetric loading of the membrane, the analyt-

ically predicted wrinkle wavelengths have been shown
to be within 10% of experimental measurements and
the amplitudes within 30%.
For asymmetric loading, the analytically predicted

wrinkle wavelengths are within 22% of the measure-
ments, but the amplitudes are up to 85% too high,
unless the corner displacements predictions are refined
by carrying out a two-dimensional FE analysis. If this
is done, the modified analytical predictions are within
32% of measured values.

Finite element analysis using thin shell elements has
been shown to be able to replicate real physical experi-
mentation with an accuracy typically better than 20%.
However, a very fine mesh had to be used to resolve
the small corner wrinkles; hence a complete simulation
takes up to several days on a 2GHz Pentium 4 PC.
While we have captured remarkably accurately the

behaviour of these membranes using relatively simple
models, curling of the edges of the membrane, due
to residual stresses resulting from manufacturing, still
needs to be quantified and modelled.
Finally, an important area that will need to be ad-

dressed next is the behaviour of very large membranes.
While predictions can be made using the approach pre-
sented in this paper, the validity of our results has been
tested only for 0.5 m length membranes; their validity
for membranes that are one or two order of magnitudes
larger remains to be verified.
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