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This paper investigates the deployment behavior of lightweight flexible space structures
consisting of thin shell components. An extensive and detailed study of a symmetrically
folded structure that dynamically deploys by releasing its stored elastic energy is presented.
The challenges involved with ground testing of this structure are discussed, and a suspension
system that allows propagation of the elastic folds is proposed. The dynamics of two 1 m-scale
structural prototypes was measured using high-speed Digital Image Correlation. It is shown
that, for the tests considered, the elastic folds remain stationary and behave as elastic hinges,
resulting in a symmetric and repeatable deployment. Deployment experiments in air and
vacuum showed that air mass significantly affects the dynamics of the structure, slowing its
deployment by 70 %. However, this effect becomes negligible if the deployable structure is
not covered by a film. A finite element model of the deployment is presented. The effects of
air are approximated by an added mass to the structure, calculated through simple geometric
arguments. This model shows good agreement with experimental results without increasing
the associated computational time.

I. Introduction

S
olar arrays account for a significant portion of deployable structures for space applications. They are often based on

a strip architecture, consisting of several rigid panels connected by hinges, forming large rectangular planar surfaces

when deployed. Packaging generally involves folding the panels about their hinges, and deployment can be driven either

by external mechanisms [1][2] or by releasing the strain energy stored in elastic hinges [3][4][5]. Figure 1 shows two

alternative folding concepts. Z-folding consists of alternating mountain and valley folds in an accordion-like fashion, and

has been used in most foldable spacecraft structures flown so far, like the 34 m × 12 m solar arrays of the International

Space Station [6]. Tri-folding consists of folding the panels in the same direction; typically, there is a central panel

on top of which two side panels are folded, hence the name. This folding method has been used in CubeSats, e.g.

MarCO [7] and OMERA [5], where the solar panels are initially folded parallel to the faces of the spacecraft, or in

combination with z-folding, such as in the Folded Integrated Thin Film Stiffener (FITS) array, demonstrated by AFRL

on the TacSat-2 mission [8].

Recent advances in flexible solar cells, like perovskite cells [12], and in flexible electronics [13] offer the opportunity

to develop new structural paradigms that reduce mechanical complexity, mass, packaged volume and, ultimately, cost.

One promising path is the use of thin shell structures, which are already widely used for deployable booms [14][15].

The geometry of thin-walled shell cross sections provides high bending stiffness when deployed, while also allowing

elastic folding and packaging in small volumes. Using thin shell components to support flexible functional elements, a

novel class of deployable strip architectures can be developed.

The recent Roll-Out Solar Array (ROSA) flight demonstration [16], flown in 2018 by AFRL, consisted of a flexible

blanket containing solar cells and supported by two thin-shell composite slit tubes. The 5.4 m × 1.7 m array was initially

coiled in a cylindrical configuration, and then self-deployed by the controlled release of elastic strain energy in the

deployable booms. This successful experiment demonstrated the potential for a new generation of deployable structures

with superior packaging capabilities and area-to-mass ratios.

So far, much focus has been placed on packaging through coiling, which is a mainstream solution for deployable

boom applications [17][18]. In general, coiled shell structures require a deployment mechanism to support them and to

constrain them in order to prevent accidental self-deployment. The smallest size of the mechanism depends on the

maximum strain the shell structure can tolerate, and scales well with the size of the structure. Hence, because the

packaging efficiency of coilable architectures increases with the size of the structure, this approach is less attractive for
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(a) Z-folding (accordion-type folding) of a

solar array [9] [10]

(b) "Tri-fold" packaging con-

cept [11]

Fig. 1 Packaging concepts for foldable strip architectures with rigid panels.

small scale applications, e.g. CubeSats [19], which are often constrained by volume and cost. In these cases, packaging

schemes based on discrete folds, as shown in Fig. 1 might offer a better alternative, as they require simpler and smaller

deployment mechanisms, such as burn wires [20] or pin pullers [21]. Moreover, concepts of deployable structures

consisting of combinations of many flexible strip units have been proposed [22], for use in space solar power applications.

In this case, the geometry of the structure requires a combination of folding and coiling to achieve the fully stowed

configuration. Therefore, the present work focuses on the mechanical behavior of folded flexible strip structures.

(a) Localized folds in a tape spring (image adapted from [23])
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(b) Schematic moment-rotation relationship for a

tape spring

Fig. 2 Non-linear mechanical response of a tape spring under bending. After the initial linear behavior, a
snap-through instability leads to the formation of localized folds.

The problem of folding and deploying a thin shell structure has been extensively studied in the past for tape springs,

i.e. cylindrical shells with a circular arc cross section. Under applied bending moments, these structures exhibit a

non-linear mechanical response and undergo snap-through instabilities, resulting in localized deformations. Figure 2(a)

shows two geometric configurations of a tape spring. For small applied rotations, the tape spring deforms uniformly. At

the buckling limit, the cross-section of the tape spring flattens in a small region, creating an elastic fold. Figure 2(b)

shows a notional moment-rotation relationship for a tape spring: after the initially linear response, the bending moment

drops and becomes mostly independent of the applied rotation. The first documented study of the geometry of elastic

folds dates back to the 1920s [24], although models to predict the moment-rotation relationship were published only in

the 1950s by Wuest [25], and later expanded by Rimrott [26] and Mansfield [27] in the 1970s. In 1999, Seffen et al. [23]

investigated the dynamics of initially folded tape springs during strain energy-driven deployment. Their study showed

that elastic folds propagate along the axis of the shell, resulting in a complex but predictable deployment behavior.

More recently, the dynamic deployment of foldable tubular shells with longitudinal cutouts to create elastic hinges

at set locations has been explored [28]. This structural concept has been successfully implemented in the 20 m-long

antennas on board the MARSIS spacecraft [29].
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The existing literature has focused on independent thin shell components, either with a single elastic fold or with

multiple folds whose propagation is prevented by the geometry of the shell (as in the case of foldable tubes). Further

developments of foldable strip architectures will involve the deployment of shell structures with multiple propagating

folds, or the interaction between two or more shells.

Deployed configuration Folded configuration

Fig. 3 Concept of foldable strip with tape spring longerons.

The latter is the focus of the present work. In particular, this paper considers a flexible strip consisting of two

thin shell longerons, connected at discrete points by transverse rods. This ladder-like structure, previously studied by

Royer and Pellegrino [30], is folded at two locations as shown in Fig. 3, similarly to the tri-fold scheme in Fig. 1. The

objective of this paper is to develop an experimental and computational framework to characterize and predict the

deployment dynamics of flexible strip structures. Methods and techniques previously developed for thin shells and rigid

deployable structures will be combined to address some unique challenges associated to the behavior of flexible strips.

To enable experimental investigations of dynamic deployment that can be used to validate numerical simulations, a

simple suspension system characterized by low inertia and friction, and robust against variations of the strip geometry

due to propagation of the elastic folds was developed. 3D Digital Image Correlation (DIC) was used to characterize the

deployment experiments, and an algorithm to identify the elastic folds and track their propagation was developed. Also,

the influence of air on the dynamic deployment of the strips was investigated by performing deployment experiments

both in air and in vacuum. The effects of having a flexible film on the tested strip, representing functional elements in an

actual structure, was also studied. Regarding the computational approach, a high-fidelity finite element model of the

strip deployment was developed, which includes the effects of air in the dynamics of the structure.

The paper is organized as follows. Section II describes the geometry of the strip and the suspension system designed

for the deployment experiment. In Section III, the implementation and characterization of the experimental setup are

discussed. In Section IV, the experimental results are presented; the effect of a thin film on the strip, as well as the

influence of air during ground deployment, are addressed. Section V describes the finite element model of the strip,

discussing the simulation technique and the simulation parameters. Section VI presents the results from the simulations

and compares them with experiments. Finally, Section VII discusses the results and concludes the paper.

II. Problem Description

A. Strip Design
The flexible strip architecture developed for this study is shown in Fig. 4. Two thin shell longitudinal elements,

herein called "longerons", provide bending stiffness to the deployed strip, and can be folded by forming elastic folds for

packaging. They have an open cross section consisting of two circular arc flanges, connected by a flat web region. This

cross section design, first introduced in TRAC (Triangular Rollable And Collapsible) booms [31] is symmetric about

the bending axis (y-axis in Fig. 4), so that the moment-rotation relationship is independent of the folding direction.

The longerons are connected by transverse rods, called "battens", which have a rectangular cross section. The battens

are responsible for the bending stiffness of the strip in the y-direction, as well as for providing coupling between the

longerons. The resulting ladder-like structure constitutes the backbone of the strip and supports a thin film that in an

actual application would support functional elements, such as solar cells or RF antennas. The strip is supported at its

ends by cords, connected to two rigid connectors mounted in the middle of the outermost battens. The next sub-section

provides more details about the suspension system.
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Fig. 4 Strip geometry: top view (left); side view and detail of the TRAC longeron geometry (right).

B. Suspension System Concept
Using ground testing to predict the performance of lightweight deployable structures in space is a challenging task.

Due to the relatively low stiffness of such structures, gravity can have a significant impact, and minimizing its effects has

been the focus of extensive research. Although drop towers [32] [33] and parabolic flights [34] [35] are sometimes used

to achieve micro-gravity, in most cases deployable structures are supported during ground testing by suspension systems.

Generally, these systems consist of vertical cords attached to discrete points of the structure, applying a total force equal

to its weight. In the simplest case, the cords can be attached to a fixed point [9][36] and soft springs can be used to

allow extension of the cords with minimal variation of their tension, Fig. 5(a). To avoid the resulting in-plane forces,

nested fly beams have been proposed, creating a "marionette"-like suspension [37]. However, this approach is better

suited for small displacement experiments, such as vibration testing. For large-displacement deployment experiments,

the cords are generally attached to sliders following the structure, in order to remain vertical at all times, Fig. 5(b).

The main drawback of this solution is that the additional inertia and the friction in the sliders can significantly affect

the deployment [38]. These effects can be avoided using active gravity compensation systems [39], which allow for

zero-stiffness rigid body motion, zero-friction and minimal added mass. However, such systems involve significant

mechanical complexity and are generally adopted for heavier structures with simpler kinematics.

(a) Single point suspension system for z-folded rigid solar

array [9]

(b) Gravity offloading with sliding flybeams during deployment of

a z-folded rigid solar array [38]

Fig. 5 Examples of passive gravity compensation schemes for ground deployment of folded rigid solar arrays.

For the flexible strip studied in this paper, a passive suspension system was chosen due to its simplicity and the

potential for accurately modeling its interaction with the structure during deployment. However, the presence of elastic
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folds made it challenging to implement any of the concepts shown in Fig. 5, which are deployed in a plane normal to the

direction of gravity. Equilibrium of the moments requires each cord to be attached above the center of gravity of the

portion of the structure being supported, at any time. For example, in the event of propagation of the elastic folds, the

center of mass of the structure would shift, resulting in an unbalanced configuration that would cause the rotation of

the plane of deployment. Hence, rather than trying to minimize the effects of gravity on the structure, which would

have required a highly complex gravity offloading system in the case of structures with propagating elastic folds, it

was decided to devise a simpler suspension system, whose main purpose is to allow a deployment under gravity to be

successfully completed.

In this scheme, by orienting the structure with the gravity vector normal to the plane of the deployed strip (z-direction

in Fig. 4), unbalanced gravity-induced moments would not cause rotation of the deployment plane. Also, supporting the

strip only from the ends minimizes any interactions between external loads and elastic folds.

Z
X

(a) Sliding ends

Z
X

(b) Single point cord suspension system with soft springs

Z
X

(c) Cord suspension system with counterweights for upward deployment

Z
X

(d) Cord suspension system with counterweights for downward deploy-

ment

Fig. 6 Side views of suspension system concepts for ground deployment of foldable flexible strips.

Several implementations of the support system were considered, see Fig. 6. Using sliders, as shown in Fig. 6(a)

and similarly to the concept in Fig. 5(b), would simplify the trajectory of the ends of the strip; however, their added

mass could be significant, and their friction challenging to characterize. Figure 6(b) shows two end cords attached to a

single point, similarly to the concept in Fig. 5(a). Although this solution would add very small mass to the strip, the

resulting in-plane forces would counteract the elastic moments in the elastic folds, likely preventing deployment of the

structure. An alternative solution is to connect each cord to a pulley, and to use masses to apply tension to the cords and

compensate for the weight of the strip. This concept can be used to deploy the strip in 2 different orientations, i.e. against

gravity, Fig. 6(c), or assisted by gravity, Fig. 6(d). However, the latter case requires 2 sets of pulleys, thus increasing

added inertia and friction. Therefore, the concept in Fig. 6(c) was chosen. Its implementation will be discussed in the

next section.

C. Design of Suspension System
The schematics of the suspension system and the key parameters required to fully define a deployment experiment

are shown in Fig. 7. As it will be discussed in greater detail in the next sub-section, the present study has focused on 1

m-scale strips, with a suspended mass on each side ranging between 20 g and 50 g. The distance between the pulleys
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was chosen to be L f = 1300 mm, to provide enough clearance for the structure during deployment.

Fig. 7 Geometry and design parameters of the suspension system developed for the deployment experiments.

When the strip is in the folded configuration, additional forces are required, indicated by R in Fig. 7. These

additional constraints are provided by a release mechanism, and are instantaneously released to initiate deployment. The

folded configuration of the strip can be described in terms of the position and angle of its elastic folds. To reduce the size

of the parameter space for the problem and simplify the numerical analyses, the present study has considered initially

symmetric configurations of the structure. In this case, the initial geometry is defined by the the distance between the

folds 2λ0L, with λ0 ∈ [0,1] (where λ0 = 0 corresponds to having a single fold at the center of the strip), and the angle

of the folds θ0. For this experiment, λ0 is set by the position of the release system, whereas θ0 is not controlled directly,

but it depends on the distance H0 between the center of the strip and the pulleys, as shown in Fig. 7, and the mass M of

the counterweights attached to the cords.

The choice of admissible ranges for these parameters was based on theoretical predictions. For the strips considered

herein, initial heights H0 ∈ [250 mm, 750 mm] and masses M ∈ [20 g, 100 g] allow to span a range of fold angles

between 10◦ and 60◦. After a preliminary experimental campaign to explore the parameter space defined by λ0, H0 and

M in the range of values defined above, it was observed that the qualitative behavior of the strip during deployment

does not vary significantly for most combinations of those parameters. Hence, this paper focuses on one specific set of

parameters (H0 = 400 mm, M = 50 g, λ0 = 0.45), corresponding to an intermediate point of the parameter space, but

representative of the behavior of a wider range of initial conditions.

III. Experimental Setup

A. Strip Prototypes
Two strip prototypes were manufactured for this study, based on the architecture presented in Fig. 4. Both prototypes,

see Fig. 8, have the same nominal length 2L = 1125 mm and consist of 2 TRAC longerons, placed 200 mm apart and

connected by 5 equally spaced battens. The longerons have nominal flange radius 12.4 mm, flange opening angle 90◦

and web width 8 mm.

The flanges were manufactured from ultra-thin composite prepregs. The stacking sequence was [±45GFPW/OCF/

±45CFPW ], where GFPW represents a 402T glass fiber plain weave (25 gsm) provided by JPS Composite Materials,

and CF denotes a unidirectional MR70 carbon fiber (30 gsm). Both laminates had been pre-impregnated with CE380

cyanide ester resin by Patz Materials and Technologies. An additional [±45GFPW ] bonding layer is interposed between

the flanges in the web region. This laminate design has been previously shown to induce low stress concentration during

coiling of TRAC longerons [40] and has been mechanically characterized [41].

The battens consist of pultruded carbon fiber rods, with a 3 mm × 0.6 mm rectangular cross section. They are

connected to the web of the longerons by Ω-shaped sleeves, made of 2-ply glass fiber composites. The strips are

supported at the ends by PTFE-coated glass fiber cords, attached to 3D-printed plastic connectors, bonded to the center

of the terminal battens. The two strip prototypes nominally differ only for the presence of a 50 μm-thick Kapton film

bonded to the web of the longerons on one of the prototypes. This film plays the role of a functional element surrogate,

and it was intended to simulate the effect of the functional element layer on the deployment dynamics of the shells.

The geometry of the strip was measured with a FaroArm laser scanner, from which the actual radius and opening

angle of the TRAC longerons were extracted. The measured geometry, as well as the measured mass properties of the

strips, are reported in Table 1.
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(a) Strip 1: structure without membrane

(b) Strip 2: structure with membrane

Fig. 8 Strip prototypes.

Flange radius [mm] Flange angle [◦] Total mass [g]

Strip without membrane 12.4 ± 0.7 91.2 ± 4.6 23

Strip with membrane 13.1 ± 1.1 80.3 ± 3.2 46

Table 1 Geometry and mass of strip prototypes.

B. Strip Characterization
The mechanical response of the strip prototypes was characterized using large-rotation bending tests [42]. The

objective was to measure the bending moments at the end of the test sample as a function of the applied rotation during

quasi-static unfolding of a strip with an elastic fold. This quantity is of great importance for this study, as it drives the

self-deployment of the structure.

The experiments were performed on a bending machine, consisting of two sliders moving along two orthogonal

directions, as shown in Fig. 9. Two regions of the strip, spaced about 400 mm apart, were connected to the sliders using

acrylic clamps (grey in the figure). Note that the clamps were not symmetric with respect to the ends of the strip, to

avoid having a localized fold on the central batten, which has been shown to increase the strain energy in the structure as

well as the end moments. One of the sliders can freely slide and rotate about the y-axis, but does not allow rotations

about the z-axis (which is the bending axis). The other slider can translate and rotate about the x-axis; rotation about

the z-axis is controlled by a motor. Each slider is equipped with air bearings to reduce friction, and a force sensor to

measure all force and moment components applied by the structure.

The strips were initially folded to an angle of 35◦, and the elastic fold was manually placed at its center. Then, a

rotation in the opposite direction was applied in small increments, until the strip had fully deployed. The results of the

unfolding experiments are reported in Fig. 10. Each experiment was repeated 3 times, showing a consistent behavior.

It was observed that the fold undergoes shape and position changes during the unfolding process. Specifically, for

angles greater than 15◦, the fold is symmetric and the bending moment is mostly constant, slightly decreasing with

the angle. At approximately θ =15◦, a sudden increase in the bending moment corresponds to a change in the shape

of the fold, which switches from a symmetric to an asymmetric configuration. The moment keeps increasing until it

reaches a peak for θ ≈ 3◦, after which the fold disappears and is replaced by local buckling of the longeron flange on

the compression side. Both strips exhibit similar qualitative behavior, although some quantitative differences can be

identified. For θ > 15◦, the bending moment in the strip without membrane is about 15% higher than the one with

membrane, which can be explained by its larger flange angle, see Table 1. However, the strip with membrane has 30%

higher peak moment. This is related to the fact that the folds on the two longerons disappear at the same time on the strip

with membrane, unlike the strip without the membrane, possibly due to the additional coupling between the longerons
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Fig. 9 Schematics of experimental setup for strip bending tests.

(a) Bending test of strip without membrane (b) Bending test of strip with membrane

Fig. 10 Moment-rotation relation for the two strip prototypes.

introduced by the membrane.

C. Experimental Apparatus
The experimental apparatus consists of the suspension system, the release mechanism and the metrology system. It

is shown in Fig. 11.

The suspension system includes two miniature pulleys with diameter of 12.4 mm made of nylon to reduce the

inertia and mounted on ball bearings to minimize friction. The pulleys are installed on a support structure consisting of

aluminum T-slotted frames. By varying the height of the pulleys from the ground, the initial fold angle of the strip can

be adjusted, as previously discussed in Sec. II.C. It was shown by analysis that the inertia of the pulleys contributes

to less than 1% of the total inertia of the system, and hence its effect is negligible. However, the analytical model

suggested that friction in the ball bearings can significantly affect the dynamics of the suspension system. Hence, a

detailed characterization of the friction of the system was performed, and will be discussed in the next sub-section.

The release mechanism is responsible for holding the strip in its folded configuration and releasing it on command to

initiate deployment. The actuation is provided by two R12X12 DC pull-type linear actuators (24 V, 2.5 W) manufactured

by Magnet-Schultz of America. They consist of solenoids that pull a central magnetic shaft when powered. The

actuators are connected in parallel to a power supply, in order to achieve synchronized release. Preliminary tests have

shown that synchronization can be achieved within 2 ms. The strip is connected to the release actuators by cords with

negligible mass. Specifically, two cords run across the strip and are attached to the web of the longerons; their location

along the strip defines the initial position of the elastic folds. A cord loop runs between the center of each cord and
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(a) Experimental setup with metrology system.

(b) Detail of pulley.

(c) Detail of release mechanism.

Fig. 11 Experimental apparatus for strip deployment tests.

the shaft of the corresponding release actuator, and is held taut by the counterweights of the suspension system. By

retracting the shaft of the actuators, the cord loops are released, initiating the deployment.

Lastly, the metrology system consists of a high speed stereo camera system, composed of two Photron UX100

cameras set at a frame rate of 500 fps, to acquire monochrome images. The stereo system was designed to provide 1.2 m

field of view with 500 mm depth of field. A 72,000 lumens REL Sure Bright module with 120 white LEDs completes

the setup. A speckle pattern was applied to the top face of the TRAC longerons, with approximate speckle size of 5 mm,

to perform Digital Image Correlation (DIC) on the image pairs obtained from the experiment. Also, photogrammetry

was used to extract the coordinates of several targets placed on the strip and the aluminum frame, and they were used

to define a coordinate system for the experiment. Both DIC and photogrammetry were performed using the VIC3D

software.

The experimental setup described so far was used to perform deployment experiments of the strip prototypes both in

air and in vacuum. The experiments in vacuum were performed in an altitude chamber with internal volume of 2.4 m

× 2.4 m × 2.4 m. During these experiments, the pressure was maintained at 55 torr (corresponding to about 7% of

standard atmospheric pressure). The temperature, which was not actively controlled, varied between 20◦C and 30◦C.

D. Suspension System Characterization
As mentioned in the previous sub-section, friction in the suspension system was expected to affect the deployment

experiments. Therefore, a simple experiment was devised to quantify the friction torque in the pulley bearings. The

experimental setup consisted of two weights with different mass M1 and M2 attached to the opposite ends of a cord,

running on the same type of pulley that was used in Section III.C, as shown in Fig. 12(a). The weights, initially held

stationary, started moving vertically as soon as they were released, with the heavier weight accelerating downwards.

A target placed on this weight was tracked using the high speed camera system, which acquired images at 500 fps.

Photogrammetry was performed in VIC3D to extract the coordinates of the target at each frame. By projecting the

coordinates along the vertical direction, the variation of the target height as a function of time was obtained, see Fig.

12(b). A 2nd order polynomial fit of the form h(t) = c2t2 + c1t + c0 was then used to estimate the acceleration of the

weight, related to the coefficient of the quadratic term, hence

�h = 2c2 (1)

The friction torque in the system was obtained from the following equation of motion:

(M1 − M2)gR − Tf =
[
Ip + (M1 + M2)R2

]
�α (2)
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where R and Ip are the radius and the second moment of inertia of the pulley, respectively, and Tf is the friction torque

on the pulley. Solving for Tf :

Tf = (M1 − M2)gR −
[
Ip + (M1 + M2)R2

]
�α (3)

The angular acceleration of the pulley is given by �α = �h/R and hence, using �h from Eq. 1, it is possible to compute

the friction torque Tf .

Using this method, Tf was computed for 9 different combinations of M1 and M2. Each experiment was repeated

3 times, and the measured accelerations were repeatable within 1.5% of their mean value. Given the relatively low

angular velocity of the pulley during the experiment, it is reasonable to neglect viscous effects in the pulley, and to

assume that its friction is entirely due to the elastic rolling resistance [43], which increases linearly with the normal load

on the bearing. For the case shown in Fig. 12(a), the normal force Fn is given by:

Fn = (M1 + M2)g − (M2 − M1) �αR (4)

In this equation, the first term on the right hand side describes the static contribution from the weight of the two

masses, whereas the second term captures the inertial effects. The equation suggests that the friction torque depends on

both the sum, Mtot , and the difference, ΔM, of the two masses. Figure 12(c) shows a quadratic polynomial fit of the

measured values of Tf as a function of Mtot and ΔM . The plot shows that friction increases with Mtot , but it becomes

very small if the masses are very different (as Fn → 0 when M2 >> M1) or if they are very similar (in which case the

velocity of the pulley is very low).
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(a) Schematic of the

friction characteriza-

tion experiment.

(b) Example of measurements from photogrammetry for M1 =

20 g and M2 = 50 g. Each color corresponds to a different run

of the same experiment.

(c) Measured values of friction torque Tf and fitting surface

as a function of sum and difference of the two masses.

Fig. 12 Characterization of pulley friction torque.

IV. Experimental Results
Four deployment experiments were performed to test the two strip prototypes (with membrane and without membrane)

both in air and vacuum. The experiments were repeated three times each, and the results were consistent. Overall, the

experiments exhibited very similar qualitative behavior; Fig. 13 shows snapshots from the deployment in vacuum of

the strip with membrane, starting from its initial equilibrium configuration. The strip preserved its initial symmetry

throughout deployment, with the elastic folds remaining stationary and opening out monotonically. At t = 300 ms,

symmetry was lost as one of the elastic folds (on the right hand side) latched into the deployed state before the other one.

After both folds had fully deployed, the strip underwent a small amplitude elastic vibration, without buckling again.

The images captured by the high speed cameras were processed with DIC, which extracted a point cloud for each

longeron, at each frame. An algorithm was developed in MATLAB to identify and track the elastic folds, also measuring

their angle. The algorithm consists of an initialization phase, which is run on the first image taken during the experiment,

and a loop, performed on all subsequent frames. The initialization consists of the following parts:

1) Define a global coordinate frame: the coordinates of 3 targets located on the aluminum frame (P0, P1 and P2 in

Fig. 13(a)) are extracted with photogrammetry. P0 defines the origin, the segment P0P1 identifies the x-axis

and the segment P0P2 identifies the y-axis. The axes are normalized and orthogonalized. Then, the z-axis is

computed to form a right-handed coordinate system, and is positive upwards.
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(a) t = 0 ms (b) t = 100 ms (c) t = 200 ms

(d) t = 300 ms (e) t = 400 ms (f) t = 500 ms

Fig. 13 Snapshots from deployment of a strip with membrane, in vacuum.

2) Reduce dimensionality: the point clouds are expressed in the new coordinate system, projected on the x-z plane,

and sorted along the x-axis.

3) Define a curvilinear abscissa: each longeron is reduced to its mid-line by computing the median of the coordinates

of a 50 points-moving window. A curvilinear abscissa is defined on the mid-line, using si = si−1 + Δsi , for

i = 2, ...Np. Here, Δsi is the distance between 2 consecutive points on the line and Np is the total number of

points on the line. The origin of the abscissa s is defined at the center of the strip. A value of curvilinear abscissa

is then assigned to each point in the cloud, by projecting it on the mid-line of the longeron and interpolating

the previously computed values of s on the mid-line. Note that the curvilinear abscissa represents a body fixed

frame, which identifies each point in the cloud throughout deployment.

4) Compute local tangent: the local tangent to each longeron is computed by performing Principal Component

Analysis (PCA) on a 50 points-moving window from the point cloud. By performing an eigenvalue analysis on

the covariance matrix of the coordinates of the points in the moving window, this algorithm returns the directions

along which the points are distributed. The direction associated to the largest variance identifies, in this case, the

local tangent to the longeron. The use of PCA allows to filter the noise due to some of the points being on the

web and others on the flange of the longerons, resulting in a robust algorithm. Each local tangent is associated to

a value of curvilinear abscissa corresponding to the median of the abscissas of the points in the moving window.

By computing the dot product of the local tangents with the global x-axis, the local angle θ(s) of the longeron as

a function of the curvilinear abscissa s is obtained.

5) Identify localized folds: the longitudinal curvature κ(s) of each longeron is computed by numerical differentiation

of the angle θ(s) with respect to the curvilinear abscissa, using a symmetric difference. The resulting curvature

is first smoothed using a 50 point-moving average. The two highest peaks in the κ(s) curve define the initial

location of the elastic folds.

Once completed the initialization, the algorithm iterates over each frame, repeating only steps 4) and 5) of the list above.

In this case, to track the localized folds, the search of the peaks in longitudinal curvature is not performed globally, but

rather in a ± 20 mm region centered at the location of the folds from the previous frame. This allows to track the folds

even when their longitudinal curvature becomes small (towards the end of deployment) and hard to distinguish from the

noise. The outcome of the algorithm described so far is a map showing the distribution of orientation and curvature

along each longeron, as a function of time. An example of these maps is reported in Fig. 14 for the deployment of the

strip with membrane in vacuum. The results are very similar for the two longerons, therefore only one of them is shown.

In these maps, the curvilinear abscissa on the y-axis is non-dimensionalized with respect to the length of the strip using

ξ = 2s
L , so that ξ ∈ [−1,1], with ξ = 0 being at the center of the strip.
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(a) Map of local orientations (b) Map of longitudinal curvature

Fig. 14 Distribution of local orientation θ(ξ) and longitudinal curvature κ(ξ) over time for a strip without
membrane deploying in air. ξ represents a non-dimensional curvilinear abscissa, which is 0 at the center of the
strip and ±1 at the ends. Results shown for one longeron.

Fig. 14(a) shows that there are three distinct regions with uniform orientation in the longeron. Specifically, the

central region is approximately horizontal, whereas the others have equal and opposite orientation, decreasing over time

until the strip fully deploys. The map of curvatures shows two well-defined peaks, corresponding to the location of the

elastic folds, which remain stationary during deployment. Although these maps provide a full-field characterization of

the deployment process, a more compact description would allow easier comparison of the results. Therefore, in the rest

of this paper, the results will be presented in terms of the angle of the folds and the height of the center of the strip,

which provide insights into the dynamics of the elastic folds, as well as the rigid body translations of the structure. The

angle of each fold is computed by taking the median of θ(s) between the location of the fold and the end of strip, at each

time increment. The height of the center of the strip is provided by the z coordinate of two targets placed next to the

center of each longeron (C1 and C2 in Fig. 13(a)), tracked with photogrammetry. The results for each experiment are

shown in the rest of this section.

(a) Fold angle. (b) Height of strip center.

Fig. 15 Experimental results for strip without membrane, in air (SA) and vacuum (SV). Initial conditions:
M = 50 g, λ0 = ±0.45, H0 = 400 mm. Solid, dashed and dotted lines correspond to different runs of the same
experiment.

Figure 15(a) shows plots of the angle of the elastic folds θ as a function of time, for the strip without membrane.

Each longeron has two folds, hence the plot contains two lines starting from equal and opposite angles. Solid, dashed

and dotted lines correspond to different runs of the same experiment. Also, the blue lines correspond to the tests in air,
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the orange ones to the tests in vacuum. It can be observed that, overall, the tests are symmetric, with both longerons

undergoing the same variation of fold angle on both folds. The fold angle starts from approximately ±42◦, and then

decreases until becoming zero at about t = 300 ms. During deployment, an oscillation of the fold angle, with a period of

about 220 ms, can be observed. After reaching θ ≈ 0◦, the localized folds disappear, and the strip vibrates undergoing

uniform, small-amplitude deformations. Comparing the tests in vacuum and in air, it can be observed that there is almost

no difference between them, indicating that the effects of added air mass and air drag on the unfolding process of a strip

without membrane are negligible. The plot in Fig. 15(b) shows the height of the center of the strip during deployment

(with the zero corresponding to the height of the pulleys). The plot shows that the height increases monotonically

until the strip fully unfolds at t = 300 ms. After that, the structure continues to move upwards as a rigid body and it

overshoots, reaching its maximum height at t = 400 ms. The longerons maintain the same height during deployment,

indicating that there is no twisting of the strip. In this case, comparing the experiments with air and in vacuum, it can be

noticed that the latter is faster than the former in the last portion of deployment (after t = 250 ms), and it reaches a

higher peak sooner.

(a) Fold angle. (b) Height of strip center.

Fig. 16 Deployment results for experiments on strip with membrane, in air (MA) and vacuum (MV). Initial
conditions: M = 50 g, λ0 = 0.45, H0 = 400 mm. Solid, dashed and dotted lines correspond to different runs of
the same experiment.

Figure 16 presents the results for the strip with membrane, both in air and in vacuum. Again, the behavior of the strip

is symmetric and the three runs of the experiment were quite consistent. However, in this case, air plays a significant

role, with the deployment in air being about 1.7 times slower than in vacuum (750 ms vs. 450 ms). Similarly to the strip

without membrane, the fold angle oscillates during deployment. The average period of the oscillations was T = 280 ms

in air, T = 220 ms in vacuum. Also, the amplitude of the oscillation was smaller in air than in vacuum. Figure 16(b)

shows the height of the center of the longerons over time. In the experiment in air, the strip reaches its final height after

950 ms, never overshooting above the vertical location of the pulleys. In vacuum, the vertical motion was much faster

and the maximum height was reached after 550 ms.

In summary, the experiments show that, for the suspension system concept studied in this paper (and for the chosen

values of H0 and M), the elastic folds do not propagate and essentially behave as fixed, self-latching elastic hinges,

deploying in a consistent and repeatable fashion. If the structure is folded in a symmetric way, symmetry is also

preserved throughout the deployment, which is very advantageous as it simplifies the development of mathematical

models to predict the dynamics of the structure.

V. Numerical Model
A finite element model of the strip deployment was developed in Simulia Abaqus 2020 and is shown in Fig. 17.

The TRAC longerons were modeled with S4R reduced-integration shell elements, and their material properties were

defined using direct specification of the ABD matrix for the flanges and the web, based on previous measurements on

coupons of a similar laminate [41]. The battens were modeled with B31 linear beam elements, with isotropic material

model. The Ω-shaped connectors between longerons and battens were assumed to be rigid, and modeled as kinematic
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coupling constraints between the end node of the battens and a region of the longeron web of the same size as the

physical connector. The suspension system was modeled using a combination of 2D connector elements. More details

about this model are provided later in this section. The membrane was bonded to the web of the longerons and to the

battens using tie constraints. A uniform mesh of approximately 2 mm × 2 mm in size was used for all the parts of the

model. Based on the essentially symmetric deployment observed in experiment, symmetry about the mid-plane of the

strip was assumed for the finite element model, reducing the total number of elements by a factor 2. The resulting model

contained 81,355 nodes and 79,556 elements, i.e. 24,156 shell elements and 54,900 membrane elements.

(a) Finite element model of a symmetric strip. Longerons and battens are connected by

rigid coupling constraints; tie constraints connect the longerons to the membrane.
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(b) Schematic of suspension system model, using

2D connector elements. Slip ring (SR) elements

model the cord passing over the pulley; retractor

(RET) elements convert the motion of the cords in

rotation of the pulley. Cylindrical (CYL) elements

introduce friction in the pulley.

Fig. 17 Description of the finite element model of a strip with membrane.

A. Membrane Formulation
Because of their small thickness, membranes have very small bending stiffness and cannot sustain any in-plane

compressive loads. It is well known that wrinkling instabilities arise whenever the principal stress components in

a membrane have opposite sign. A detailed numerical characterization of the wrinkles, in terms of wavelength and

amplitude, requires a shell element formulation, capable of capturing the small, but still finite, bending stiffness of the

membrane [44]. However, this approach is computationally expensive, as very fine meshes are required to accurately

capture the short wavelength of the wrinkles. On the other hand, it has been shown [44] that the onset and orientation of

the wrinkles can still be predicted accurately with less expensive membrane elements, by implementing a wrinkling

theory into an ad hoc material model, known as the Iterative Material Model (IMP) [45][46]. This model is based on a

mixed stress/strain criterion to identify three regimes for the membrane: slack, wrinkled and taut.

Each of these regions is associated with a different tangent stiffness matrix D under plane stress. When the membrane

is taut, the constitutive relation is based on the standard relation for an isotropic membrane. A slack state corresponds to

no stress in the membrane, hence the stiffness matrix Ds is null. Finally, when the membrane is wrinkled, an effective

stiffness matrix Dw is defined, based on the assumption that the wrinkles are aligned with the principal stress in the
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material, and that the stress is zero in the direction normal to the wrinkles. The resulting model is expressed as:

Ds = 0 (5a)

Dw =
E
2

⎡⎢⎢⎢⎢⎢⎣
2(1 + P) 0 Q

0 2(1 − P) Q
Q Q 1

⎤⎥⎥⎥⎥⎥⎦
(5b)

Dt =
E

1 − ν2

⎡⎢⎢⎢⎢⎢⎣
1 ν 0

ν 1 0

0 0 (1 + ν)/2

⎤⎥⎥⎥⎥⎥⎦
(5c)

where E is the elastic modulus and the parameters P and Q are functions of the engineering strains εx , εy and γxy ,

defined as:

P =
εx − εy

ε1 − ε2
(6a)

Q =
γxy

ε1 − ε2
(6b)

where ε1 and ε2 are the principal strains.

Various implementations of the IMP algorithm have been successfully used in finite element codes, both with

implicit [47] and explicit [48] integration schemes. Hence, an implementation of the IMP model as a VUMAT was used

in the Abaqus Explicit simulations presented in the rest of this paper.

B. Suspension System Model
The suspension system was modeled using connector elements. In the literature, the problem of modeling cables

and pulleys has been discussed in the context of cranes, electrical transmission lines and seat belts. Aufaure [49]

developed a model to capture sagging of electrical transmission lines under self-weight. The cables were modeled

as truss elements, on which a zero-dimensional frictionless pulley was allowed to slide. Ju et al. [50] proposed a

formulation that accounted for friction between cord and pulley, which results in having different tension in the cord

segments on the two sides of the pulley. A super-element formulation was also proposed to include multiple pulleys in

crane systems. However, inertial effects in the pulley were not considered.

In dynamic simulations of automotive crash events [51] [52], the seat belt systems are often modeled using

combinations of slip ring and retractor elements. Slip rings are 2-node elements that enable a "material flow" degree of

freedom at their nodes. This allows mass to enter or exit the element, which therefore increases or reduces its length

without elastic deformations. Connecting two slip rings in series, the mass exiting from one element enters the other

element though their shared node, effectively modeling the passage of two portions of a belt over a D-ring or buckle in a

seat belt system. Retractor elements, instead, convert the material flow at one node into rotation of the other node, and

they are used to model the belt spooling from the retractor mechanism. These elements are built-in in commercial finite

element software, like LS Dyna and Abaqus, hence they were chosen for the strip deployment simulations developed in

this paper.

A schematic of the FE model is shown in Fig. 17(b): the circles 1-5 represent nodes of the connector elements.

Node 1 corresponds to the strip-cord connector and it is connected to the central nodes of the strip outermost batten

using MPC beam constraints. Node 3 is the pulley, which has only one rotational degree of freedom about the y-axis.

Node 5 represents the counterweight attached to the end of the cord, whereas nodes 2 and 4 are auxiliary intermediate

nodes. Slip ring elements model the cords, connecting nodes 1-2 and 4-5. To prevent the cords from experiencing

axial compression during dynamic loading, a bi-linear elastic model is assigned to the slip rings, with tensile stiffness

Kt = 1000 N/mm and compressive stiffness Kc = 1 N/mm. A sensitivity study for these parameters showed that, under

the expected loads in simulation, the cords effectively behave as rigid in tension and slack in compression.

To take into account the inertial effects in the pulley, retractor elements between 2-3 and 4-3 convert the material

flow at nodes 2 and 4 into rotation of node 3, according to the equation:

α =
ΔΨ2

R
=
ΔΨ4

R
(7)
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with R being the radius of the pulley and ΔΨ2 and ΔΨ4 the material flow at nodes 2 and 4 (note that, since the retractor

elements are connected in series, the material flow is the same on both nodes).

Lastly, friction in the pulley bearing was captured by adding a second connector element between nodes 2 and 3, in

parallel with the retractor element. This element models a cylindrical joint, constraining all relative displacements

between its nodes, except for the relative rotation about the y-axis. It provides the friction torque associated with the

rotational degree of freedom, through the relationship:

T3 = −sign(α)Tf (8)

where Tf is constant and is obtained from the experimental characterization of the suspension system described in

Sec. III.D. The experiment described in Sec. III.D was used as a benchmark to verify the numerical model of the

suspension system, whose results showed very good agreement both with the analytical solution and the experiment.

C. Air Model
The effect of air on the dynamics of lightweight large-area structures has been investigated in literature in the

contexts of vibration of membranes. It has been shown that membranes vibrating in air have lower natural frequencies

and higher damping than in vacuum [53].

Fig. 18 Volume of air mass added to the strip model with membrane.

Analytical solutions for simple geometries [54] have proven that the effect of air pressure in the equations of motion

can be described in terms of a frequency-dependent added mass. A variety of numerical approaches have been proposed

to estimate the added air mass, using different levels of fidelity. Sewell [55] used a geometric argument to define

an effective air volume for triangular membranes. The resulting air mass, assumed constant, was distributed in a

non-uniform fashion, in order to be maximum at the center of the membrane and zero at the edges. Higher fidelity

models have been developed to explicitly include the air around the membrane, either using the boundary element

method [56] or defining an air box with finite elements [54]. To the authors’ knowledge, there has not been any previous

attempt at predicting the effect of air on large-displacement deployment problems.

Therefore, to avoid the significant computational cost associated with high fidelity models of such interaction, in this

paper a simple model inspired by [55] was adopted. Specifically, it was assumed that the main contribution to the added

mass comes from the air volume further away from the edges of the structure, which is forced to move with the structure.

Due to the high aspect ratio of the strip, a half-cylindrical volume around the strip was therefore considered, as shown in

Fig. 18.

The height of air in the volume above the structure only varies with its transverse coordinate, and is described by:

za(y) =

√(
W
2

)2

− y2 (9)

16



where W is the width of the strip. The corresponding mass of air is:

ma = ρaL
∫ W

2

−W
2

z(y)dy =
πρaW2L

8
(10)

with ρa = 1.225 kg/m3 being the standard air density.

The added air mass was uniformly distributed over the area of the Kapton membrane by scaling its mass with the

factor:

K =
mk + ma

mk
(11)

where mk is the mass of the membrane. From an implementation standpoint, the added air mass could be introduced

by increasing the density of the membrane. However, this would increase not only the inertia of the structure during

deployment, but also its gravity loading, thus altering the starting folded configuration, as well as the height of the

structure in its fully deployed state. Therefore, the added air mass was introduced using mass scaling, which is a

technique often used in quasi-static problems with explicit solvers. Mass scaling has the advantage of increasing

the density of the material and, therefore, the stable time increment of the solver, drastically reducing the number of

increments needed to perform long simulations. The mass scaling formulation in Abaqus only affects the inertial term

in the equations of motion of the model, but it is not included in the calculation of gravity loads. Therefore, it is ideal to

model the effect of air on the dynamics of the structure, without affecting its equilibrium configuration.

Based on this model, the added air mass for a strip with membrane deploying in air is ma = 31.7 g. The added

mass due to the residual air in the experiments in vacuum is 3.0 g, and it was neglected in simulation. For the strip

without membrane, the air volume to consider would consist of two half-cylinders, with diameter equal to the width of

the longerons. The resulting added mass for the deployment in air and vacuum would be 0.45 g and 0.04 g, respectively.

They were both neglected for the purpose of this analysis.

Therefore, air was only included in the simulation of the strip with membrane deploying in air; the resulting mass

scaling was K = 3.0.

D. Simulation Strategy
The simulations were performed in Abaqus explicit and were organized as follows:

1) In the first step, gravity was applied to tension the cord. Localized folds were induced on the longerons by

pressure loads distributed on both flanges, over a 20 mm long region; the size of this region was chosen so as to

include enough elements to avoid locking of the mesh induced by excessive shearing.

2) A rigid cylinder with radius equal to the flange radius was used to push the strip into its folded configuration,

using displacement control.

3) In the equilibrium step, the residual kinetic energy was dissipated until it was decreased to less than 1% of the

maximum strain energy.

4) Finally, in the deployment step, the cylinders were instantaneously removed and the structure was allowed to

self-deploy.

(a) Initial configuration (b) Create localized folds (c) Folding (d) Deployment

Fig. 19 Simulation sequence: first, gravity is applied and the longerons are pinched to create localized folds
(b). Then, rigid cylinders are used to fold the structure (c). An equilibrium step helps to dissipate any residual
kinetic energy to reach the initial condition.

In the initial part of the simulation, numerical damping was used to reduce dynamic effects on the structure. Previous

studies have shown that a velocity-dependent viscous pressure, defined as p = −cvv · n, is very effective at dissipating

high order vibrations in deployment problems of thin shell structures [28][57].
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However, sensitivity studies on the strip deployment suggested that small amounts of linear damping, proportional to

the volumetric strain of the element, are also beneficial to prevent numerical instabilities. Hence, a combination of both

damping models was used. Table 2 summarizes the main parameters for each of the simulation steps described above.

Step Duration [s] Linear damping λ Viscous pressure cv
1. Gravity 0.1 10−4 10−8

2. Folding 0.5 10−4 10−8

3. Equilibrium 0.3 10−4 10−7

4. Deployment 1.0 10−8 0

Table 2 Simulation parameters

In the first three steps, the step time was chosen so as to achieve the correct folded configuration before deployment,

in the shortest computational time possible. With these settings, a simulation using 8 CPUs on a server with 3.5 GHz

Intel Xeon Gold 6144 processor took about 83 hours 45 minutes (30 hours 20 minutes for folding, 53 hours 25 minutes

for deployment) for a strip with membrane, 25 hours 25 minutes for a strip without membrane (17 hours 20 minutes for

folding, 8 hours 5 minutes for deployment).

Fig. 20 Energy balance for strip with membrane deploying in air. Initial conditions: H0 = 400 mm, λ0 = 0.45,
M = 50 g.

Figure 20 shows the energy balance for the simulation of a strip with membrane, deploying in air. The total

energy (in black) remains constant and equal to zero throughout the simulation, confirming that there is no energy loss

from the model. The artificial energy, associated with hourglassing modes in the finite element mesh, is very small

throughout the simulation. The viscous dissipation increases during the folding process and is associated with the

viscous pressure introduced during that step. In the deployment phase, the viscous dissipation remains approximately

constant, confirming that the dynamics of the structure are not altered by numerical viscous effects. Regarding the strain

energy of the strip, the largest contribution comes from the formation of elastic folds by pinching the longerons, in the

first step of the simulation. During folding, additional strain energy is stored due to the increase in the angle of the

folds. After deployment, most of the strain energy is released, but it does not fully return to zero, due to residual elastic

deformations associated with vibrations of the deployment strip.

The energy balance also indicates that the folding process is not quasi-static, since the kinetic energy is very high

compared to the strain energy in the strip. However, the kinetic energy is almost entirely dissipated before the initiation

of deployment, where it becomes less than 1% of the strain energy.
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VI. Comparison between Numerical Results and Experiments
This section presents the results from the finite element model. First, the quasi-static unfolding of a strip is used as

benchmark problem to validate the finite element model of the strip, comparing its results with the experimental data

presented in Sec. III.B. Then, the deployment results are presented and compared with the experiments.

A. Model Validation
A quasi-static unfolding simulation of the strips was performed using an implicit solver in Abaqus. The boundary

conditions matched the geometry and kinematics of the experimental setup described in Sec. III.B. The simulation was

structured in 4 steps: first, a small pressure load was applied to the flanges at the center of the longerons, in order to

facilitate the formation of elastic folds; then the strip was folded to an angle θ = 35◦; subsequently, the pressure load

was removed without varying the applied rotation; finally, the strip was unfolded. The unfolding simulation showed

that the strip undergoes several instabilities during the process, corresponding to propagation of the elastic folds. Such

instabilities make convergence difficult to achieve; hence, a small amount of viscous stabilization was introduced to

help the solver achieve equilibrium. A sensitivity analysis of this parameter showed that a maximum allowable ratio of

stabilization energy to total strain energy on the order of 10−7 provides sufficient stabilization with negligible effect

on the predicted moment in the strip. However, larger stabilization was required in the final part of unfolding, where

snapping of the elastic folds releases significant amounts of energy.

The results are shown in Fig. 21 for the strip with and without membrane. Overall, the simulations are in good

agreement with the experiments for large angles (θ > 10◦) correctly capturing the steady-state moment of the strip. For

smaller angles, where the localized fold disappear, simulations significantly overpredict the peak moment, which is 3

times higher than the measurement for the strip without membrane, 1.4 times higher for the strip with membrane.

(a) Strip without membrane (b) Strip with membrane

Fig. 21 Comparison between simulations and experiments for quasi-static unfolding of a strip.

Two reasons can be identified for this discrepancy. First, as explained in Sec. III.B, experiments show that localized

folds transition from a symmetric to an asymmetric configuration when θ ≈ 15◦, then they turn into a local flange

buckling at the peak moment, before gradually disappearing as the applied rotation is reduced. Simulations miss the

transition to the asymmetric fold, hence following a higher energy equilibrium path, which results in higher peak

moment.

This difference in behavior is not surprising, as it is well known that thin shell structures exhibit multiple energetically-

similar equilibrium paths, the choice of which is very sensitive to small geometric imperfections in the structure.

Therefore, since no imperfections were introduced in the simulation, the model follows the most symmetric equilibrium

solution, which is not necessarily the lowest energy path. For the same reason, the localized folds on the two longerons

disappear at the same time in simulation. In experiment, this only happens for the strip with membrane, which explains

why the error is smaller in this case. This suggests that the coupling between the longerons introduced by the membrane

might help making the structure less sensitive to imperfections, leading to a more deterministic and predictable behavior.
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B. Comparison of Deployment Results
This section compares the results of the deployment simulations to the experiments done on both strips (with and

without membrane), both in air and in vacuum. The plots shown present the evolution of the fold angle and height of the

center of the strip as a function of time. Blue and orange lines represent experiments and simulations, respectively.

Different runs of the same experiment are indicated by solid, dashed and dotted lines.

Figure 22 shows the results for a strip without membrane. The simulation closely matches the experiments both

qualitatively and quantitatively. The fold angle decreases symmetrically on both longerons (hence only one of them

is plotted) and oscillates during the process. The amplitude and period of the oscillations are well captured by the

simulation, and the deployment time is 4 % slower than the mean deployment time from experiments. When the fold

angles become zero for the first time, latching of the elastic folds occurs and the strip undergoes elastic vibrations. The

plot on the right hand side shows the evolution of the height of the center of the strip. Simulation and experiments start

from the same height (400 mm below the position of the pulleys), and they match very closely for the initial 250 ms of

deployment. After that, the simulation becomes slightly faster than the experiment and reaches a 30 mm higher peak

height.

(a) Fold angles (b) Center height

Fig. 22 Comparison between experiments in vacuum and simulations for a strip without membrane. Initial
conditions: H0 = 400 mm, λ0 = 0.45, M = 50 g.

Figures 23(a) and 23(b) show the results for a strip with membrane, deploying in vacuum. Again, there is very good

agreement between simulation and experiments, with the predicted fold angle being within the envelope of experimentally

measured angles, and the predicted deployment time being less than 5 % slower than the mean experimental value.

Regarding the height of the center of the strip, the simulation starts from the same value as the experiment, but becomes

slightly slower after 150 ms, maintaining a 30 mm constant offset after this point. However, at the end of deployment, it

reaches the same maximum height at approximately the same time.

Figures 23(c) and 23(d) present the results for a strip with membrane deploying in air. The deployment time is

correctly captured by the simulation, although the fold angle oscillates more than observed in the experiment. Good

agreement is also found in the height of the structure, although the finite element model is slower than the experiment in

the first 400 ms of deployment, and it becomes faster afterwards.

VII. Discussion and Conclusion
This paper has presented a detailed study of the dynamic deployment of a flexible rectangular strip, composed of

interconnected thin shell components. The strip was initially folded with two elastic folds, and deployed by its stored

elastic energy. An experimental setup was designed to symmetrically fold 1 m-scale structural prototypes, which were

supported by a cord suspension system and deployed against gravity. Digital Image Correlation was used to measure the

deformation of the structure during deployment, and to track the location and angle of the elastic folds.

Experiments showed that the structure remains essentially symmetric during the process, and that elastic folds do not

propagate, but rather behave as non-linear elastic hinges. It is interesting to notice that this behavior is quite different

from that of a folded tape spring, whose elastic fold has been shown to propagate significantly during dynamic unfolding

20



(a) Vacuum - Fold angles (b) Vacuum - Center height

(c) Air - Fold angles (d) Air - Center height

Fig. 23 Comparison between experiments and simulations for a strip with membrane. Initial conditions:
H0 = 400 mm, λ0 = 0.45, M = 50 g.

[23]. It is not clear yet whether this difference is intrinsic in the strip architecture and results from the interaction

between its thin shell components, or if it is an artifact of external factors, such as gravity and boundary conditions. In

future, deployment experiments in different orientations or simulations of deployment in micro-gravity might provide

additional insight into this question.

The effect of air on the deployment dynamics of these structures has been experimentally characterized for the

first time. It has been shown that the interaction with air significantly slows down the deployment of a strip prototype

supporting a thin membrane. However, this effect becomes negligible in the absence of the membrane.

A finite element model of deployment has been developed. The simulations can accurately capture the initial

equilibrium configuration in the folded state, and predict the deployment time measured in the experiments with less

than 5 % error.

A simple model to predict the added mass of air based on the geometry of the structure has been proposed.

Simulations made with this model closely match the deployment time measured in the experiments. Although the global

deployment behavior is correctly captured, the finite element model tends to overpredict the amplitude and period of the

oscillations of the fold angle occurring during deployment. This suggests that including air added mass in the simulation

may not be sufficient to fully describe its interaction with the structure, and an air drag model might also be needed.

On the experimental side, it may be interesting to consider alternative suspension system designs, to examine the

effects of reducing the influence of gravity, for example by arranging for the structure to deploy horizontally. Also, while

the present study has considered initial folding angles of about 45◦, it would be interesting to investigate the deployment

of fully folded strips.

While more work is required both on experimental and computational aspects of this problem, the results in this
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paper suggest that, at least under the examined conditions, shell-based space frames can self-deploy in a reliable and

repeatable fashion. This represents a promising path forward to the application of thin shell technologies to novel

lightweight solar array concepts and other applications.
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