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This paper presents an approach to achieve the staged deployment of planar structures
composed of multiple thin-shell elements. Releasable constraints are used to prescribe inter-
mediate, known configurations along a strain energy-driven deployment path. An analytical
model is derived to design the nominal deployment sequence of the structure by identifying
kinematically compatible paths. Then, a finite element model is developed to capture the dy-
namic behavior of the shells during a staged deployment. Practical considerations, such as
the deployment envelope and incorporation of the structure in a deployment mechanism are
discussed. Finally, the proposed deployment sequence is demonstrated experimentally.

I. Introduction
Recently proposed spacecraft architectures envisage large two-dimensional apertures based on ultra-thin shell

components. Commonly used for deployable booms, ultra-thin shell structures combine high deployed stiffness with
compact packaging, which is achieved either by coiling [1][2] or folding [3]. The one-dimensional packaging schemes
used for booms are not compatible with planar structures, for which a combination of folding and coiling techniques is
required. From the deployment perspective, folded shells are generally deployed by releasing the constraints applied
during packaging and letting the structure self-deploy using its stored elastic energy.

Fig. 1 Two-dimensional packaging scheme for a square space structure: folding (A to C) and coiling (C to E)
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However, losing control over the deployment process, which in general is characterized by the formation and
propagation of localized folds [4], is problematic. Although unconstrained deployment has been successfully
demonstrated for deployable booms [5], it is too risky when deploying complex structures consisting of multiple folded
shells. In such cases, the uncertainty of the deployment path of each shell would likely lead to chaotic and unpredictable
behavior, potentially damaging the structure or resulting in incomplete deployment. Additional constraints exerted by a
deployment mechanism can be introduced to guide the shells along a nominal deployment path.

This paper addresses the problem of controlling and predicting the constrained deployment of ultra-thin shell
structures, focusing on a new type of space structure architecture, consisting of an arrangement of deployable shells that
provide a planar aperture. Initially proposed in 2016 [6], this concept enables future space solar power technology by
using a constellation of 60 m × 60 m independent spacecraft. The first 2 m-scale structural prototype based on this
concept was developed in 2018 [7], and a deployable version of the space structure was recently demonstrated [8].

Section II provides a description of the space structure architecture and its packaging scheme. In section III, a
kinematic model of the unfolding process is derived to design the nominal deployment path for the structure. Section IV
introduces a computational framework that predicts the dynamic deployment behavior of the same structure, assessing
the effect of the shell elasticity on the nominal kinematic path. Section V discusses the implementation of a constrained
deployment scheme on a 1.7 m × 1.7 m space structure prototype, verifying the design of the deployment path and
validating the kinematic and finite element models.

II. Packaging and Deployment Scheme
The space structure architecture is shown in Fig. 2. It is composed of 4 triangular quadrants, each containing several

trapezoidal strips [9], connected by diagonal cords. Each strip includes 2 deployable longerons based on the triangular,
rollable and collapsible (TRAC) architecture [10], connected by transverse and diagonal rods (battens), supporting
functional elements for a satellite [11][12]. Two rigid joints placed on the diagonal battens connect the strips to the
diagonal cords, allowing rotations about the cord axis and preventing axial displacements [13].

Quadrant

Strip

Longeron

Battens

Diagonal cords

Functional elements

Strip-cord connectors

Fig. 2 Architecture of a space structure that can be packaged two-dimensionally. Each quarter of the structure
contains 3 trapezoidal strips (in this example); 4 adjacent identical strips constitute a square. Each strip includes
2 longerons, connected at the ends by diagonal battens. A variable number of transverse battens connect the
longerons inside the strip. The strips are supported by diagonal cords via strip-cord connectors, placed on
the diagonal battens. A flexible sheet covers the interior of each strip and simulates functional elements of the
spacecraft.
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The structure is packaged by first z-folding each quadrant (Fig. 1, A to C) and then coiling each arm of the resulting
star-shape into a cylindrical shape (Fig.1, C to E). A key aspect of this scheme is that, because of the 4-fold symmetry of
the structure, z-folding the strips also requires bending the longerons. As it will be discussed later on, this aspect has
important consequences on the deployment behavior of the structure.

The packaging concept described here is inspired by kirigami and was initially proposed in 2016 [6], but it was only
supported by kinematic considerations and demonstrated on membrane structures. Recently, a deployment mechanism
capable of actively controlling the coiling and uncoiling stage of deployment (C to E in Fig. 1) of the space structure
described in this section has been successfully demonstrated [8]. However, a detailed analysis of the behavior of the real,
bending-stiff structure during the unfolding stage, or possible implementations of a deployment mechanism enabling
this process have not been previously considered. These are the main topics of this paper. Hence, here we will focus on
the unfolding stage of the deployment (C to A in Fig. 1), aiming at achieving a predictable and repeatable behavior of
the structure by guiding its deployment through external constraints.

The unfolding stage begins in the star-shape configuration, where each quadrant is z-folded and bent by 90°.
Z-folding involves a low energy deformation of the structure, since adjacent strips are not physically connected along
their shared edge and, therefore, are free to rotate with respect to each other. However, the strips have to bend to
preserve compatibility between adjacent quadrants. The unfolding scheme considered here is based on a strain energy
deployment, where the role of the external constraints is to make this process happen along a desired path.

A simple and intuitive way of guiding the deployment consists in applying clamping constraints on the strips
at discrete locations and releasing the constraints sequentially, letting the structure deploy dynamically between
intermediate, known configurations. In the following sections, this concept will be explored in more detail, both from a
theoretical and experimental standpoint.

III. Kinematic Model
The behavior of thin shell structures subject to large rotations has been extensively studied in the past. It is well

known that such structures exhibit localization phenomena, in which the cross-section of the shell locally flattens,
creating regions of very low bending stiffness. Most of the bending deformation in the post-buckling regime is
concentrated in these regions, known as folds.

Hence, folded shells can be modeled as essentially straight beams connected by folds, which can be approximated
by elastic hinges. In the past, such models have been successfully employed to predict the quasi-static and dynamic
behavior of tape springs [4][14]. In this paper, a similar approach will be used to develop a kinematic model of the
strips, aimed at defining a nominal deployment path for the structure by identifying the optimal number and position of
constraints. The deployment path will be described in terms of the number and position of a finite number of localized
folds in each strip, throughout the unfolding process. Hence, the role of the external constraints is to impose localized
folds at desired locations. When a constraint is removed, the corresponding fold is free to rotate until it latches in the
deployed configuration. By sequentially removing the constraints, a sequence of intermediate equilibrium configurations
can be imposed along the deployment path. However, the transition between such configurations is a dynamic process
and follows a minimum energy path. Previous studies have shown that such path is not unique, since localized folds can
travel along the length of the shell with constant energy [4]. Hence, the following assumptions will be used to develop a
single degree-of-freedom kinematic model of a structure forming a square loop.

• The symmetry of the structure is preserved during unfolding;
• After releasing the constraints, the folds do not travel along the length of the strips;
• Longerons and battens are inextensible;
• The folds are orthogonal to the axis of the longerons;
• The battens do not deform.
The last two assumptions are justified by the relatively high bending stiffness of the diagonal and transverse battens,

which makes the deformation modes in which the battens do not bend more energetically favorable. These assumptions
allow us to identify a range of admissible fold locations, located within the green area of the strip in Fig. 3.

Releasable constraints connect adjacent strips in the square, so that the corresponding fold lies in a diagonal plane.
When a constraint is released, the portions of the strip on the two sides of the fold rotate until they become flat. Two
possible cases can be identified:

1) partial deployment, in which a constraint is removed from the strip, but other constraints are still active (Sec.
III.A);

2) full deployment, in which the last constraint is removed from the strip (Sec. III.B).
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In the following analysis, the evolution of the localized folds is derived as a function of an independent variable,
namely the normalized deployed size, which is defined in Fig. 4.
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Fig. 3 Geometry of a single-square-loop structure and admissible fold locations (in green). The location of
the fold EB is defined by its distance d1 ∈
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from the midplane of the strip FA. To achieve symmetric

deployment, the folds EB and GL are symmetric about the midplane. When d1 = 0, the two folds merge into a
single fold at the center of the strip.

d (t
)

d

x

y

x

y
f

Fig. 4 Definition of normalized deployed size: d(t) is the maximum diagonal size of the square loop structure,
varying during the deployment; df is the final diagonal size. The normalized deployed size used in the kinematic
analysis is defined as the ratio d(t)

d f
.

A. Partial deployment
Due to the 4-fold and mirror symmetry of the space structure architecture, it can be assumed that all strips follow the

same path and remain symmetric with respect to their mid-plane. Therefore, the geometry shown in Fig. 5, containing
only half of a strip, is sufficient to fully characterize the configuration of the structure.

In this model, two folds are considered, B′E ′ and BE , respectively at a distance d1 and d2 from the center of the
strip in the deployed state. B′E ′ has been released, whereas the fold BE is still constrained, so it is forced to lie in the
diagonal plane P3. Note that the same model applies to the case in which additional constraints are applied between the
fold BE and the end of the strip.

To compute the evolution of the fold angles α and β during deployment, the coordinates of the 8 points A − F need
to be calculated. By construction, points A and F lie on the symmetry plane of the strip P2, defined by the equation
y = 0 (Eq. 1a). Since the portion of the strip between AF and B′E ′ is fully deployed, the segments AB′ and FE ′ are
normal to P2 (Eqs. 1b-1e).

Also, points B, C, D and E lie in the diagonal plane (P3), described by the equation y − x = 0 (Eqs. 1f-1h). To
suppress rigid body motions, points A is located on plane P1, defined by the equation z = 0 (Eq. 1c). Therefore, the
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Fig. 5 One degree of freedom kinematic model for unfolding of a strip. The angles α and β describe the two
folds (B′E ′ and BE). The fold BE is constrained to stay on the diagonal plane P3, while B′E ′ deploys, varying
its angle from 135°to 180°.

following conditions hold:

yA = yF = 0 (1a)
xA = xB′ (1b)
zA = zB′ = 0 (1c)
xF = xE′ (1d)
zF = zE′ (1e)
xC = yC (1f)
xD = yD (1g)
xE = yE (1h)

In the star-shape configuration, the strip is orthogonal to the plane P1 and hence it follows that:

zA = z′B = zB = zC = 0 (2a)
zE = zE′ = zF = b (2b)
xA = xF (2c)
xB′ = xE′ (2d)
xB = xE (2e)

Lastly, recalling that the fold B′E ′ is located at a distance d1 from the mid-plane of the strip, we write:

yB′ = yE′ = d1 (3)

Hence, the coordinates of the points A-F can be written as:
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A = (xA,0,0) F = (xA,0, b)
B′ = (xA, d1,0) E ′ = (xA, d1, b)
B = (xB, xB,0) E = (xB, xB, b)
C = (xC, xC,0) D = (xD, xD, b)

The only unknowns are xA, xB, xC and xD , subject to the following distance constraints, based on geometry and
known position of the folds:

‖BB′‖ = d2 − d1 (4a)

‖BC‖ =
L1
2
− d2 (4b)

‖E ′D‖ =
L2
2
− d2 (4c)

The 3 equations above, written in terms of 4 unknown variables, describe a single degree-of-freedom kinematic
model, and a convenient free variable is the deployed size of the square (d(t) in Fig. 3), which can be written as:

d(t) = 2
√

2 xC (5)

Once the kinematics have been solved, the fold angles α and β, defined in Fig. 5 can be computed as follows:

α =
π

2
+ arctan

xB − xA
xB − d1

(6a)

β = π − arctan
xB − xA
xB − d1

(6b)

Note that the evolution of α and β is independent of the location of the folds, described by d1 and d2.
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Fig. 6 Evolution of fold angles during unfolding of the inner fold (B′E ′ in Fig. 5). The x axis corresponds to
the normalized deployed size defined in Fig. 4.

B. Full deployment
Next, we consider the unfolding of a square after removing the last constraint, which activates the deployment of

the fold along the dashed line BE in Fig. 7. The main difference from the previous section is that, because of the
trapezoidal shape of the strip, unfolding BE also requires rotation of the strip with respect to the y axis. This results in a
fully three-dimensional motion, leading to the final planar configuration.
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Fig. 7 One degree of freedom kinematic model of the unfolding process for a strip.

The symmetry conditions defined in Eqs. (1a),(1f) and (1g) still hold, in addition to the following:

xB = xA (7a)
zB = zA (7b)
xE = xF (7c)
zE = zF (7d)

resulting from the region ABEF being already deployed. Under these assumptions, the structure has a single degree of
freedom, so that it can be conveniently described in terms of the angle ϕ ∈

[
0, π2

]
, defined in Fig. 7. Note that ϕ = 0

corresponds to the fully deployed configuration and ϕ = π
2 to the fully folded configuration.

Geometric conditions are imposed on the length of each segment, leading to the relations:

xF = xA − b cos ϕ (8a)
yB = yE = d2 (8b)
zE = b sin ϕ (8c)

Hence, the coordinates of the points A-F are:

A = (xA,0,0) F = (xA − b cos ϕ,0, b sin ϕ)
B = (xA, d2,0) E = (xA − b cos ϕ, d2, b sin ϕ)
C = (xC, xC, zC) D = (xD, xD, zD)

with the unknowns xC , zC , xD and zD , and the free parameter ϕ. To solve the kinematics, the following geometric
conditions are required:

BE · BC = 0 (9a)
BE · ED = 0 (9b)

‖CD‖ =
√

2b (9c)

‖BC‖ =
L1
2
− d2 (9d)

where the first two equations impose orthogonality of the longerons with respect to the fold axis, whereas the remaining
equations impose inextensibility of the longerons and the diagonal batten.
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Using Eq. (9a):
(xD − xA)(xc − xD) + zD zC = 0 (10)

substituting Eqs. 8 and solving for xC , it follows that:

zC =
(xC − xA)

tan ϕ
(11)

Similarly, Eq. 9b can be written as:

(xF − xA)(xF − xD) + zF (zF − zD) = 0 (12)

and solved for zD , yielding:
zD = zF +

xD − xF
tan φ

(13)

Substituting Eqs. 10 and 13 in Eqs. 9c and 9d, a system of 2 nonlinear algebraic equations in xC and xD is obtained,
which can be easily solved numerically.

Using simple geometric relations, the fold angle α is given by:

α = arccos
AB · BC
‖AB‖ ‖BC‖

(14)

and is plotted in Fig. 8. As in the previous section, this plot is independent of the location of the fold EB.

84 86 88 90 92 94 96 98 100
0

45

90

135

180 Strip rotation ( )

Fold angle ( )

Fig. 8 Evolution of the fold angle and strip rotation angle during the final step of the strip deployment. The x
axis corresponds to the normalized deployed size defined in Fig. 4.

C. Unfolding kinematics of a full module
The kinematic analysis presented so far can be extended to model the deployment path of an entire module, consisting

of multiple square loops, by adding suitable compatibility conditions. Such conditions are required to prevent penetration
between different strips in the same quadrant and to account for the presence of cords of fixed length connecting them.
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(a) Section plane on a 3 square space structure
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(b) Section view of a 3-step
deployment scheme, in which
one square at a time is re-
leased.
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(c) Section view of a 2-step
deployment scheme, in which
the innermost square is re-
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middle and outer squares re-
leased simultaneously.

Fig. 9 Comparison between 2-step and 3-step release schemes. The outer edge (point B) is assumed to be at
a fixed height (z coordinate). When releasing one square at a time, point A is forced to move in the vertical
direction during unfolding of the other strips; when releasing 2 squares simultaneously, point A remains fixed
after unfolding of the inner strip.
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(a) 3-square loop structure with diagonal cords (blue lines). The
cords are connected to pointO, fixed on the central axis. h is the
distance of this point from the horizontal plane z = 0.
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normalized deployed size (Fig. 4). Different lines correspond to
different locations of point O on the z axis. The dashed red line
corresponds to the length of the cord required at the end of the
deployment.

Fig. 10 Distance between the innermost strip and the central axis during a 3-step unfolding scheme.
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In this section, an optimal deployment path for a planar structure consisting of multiple square loops is developed,
by choosing the number and position of localized constraints. When choosing the number of constraints, an intuitive
solution would be to introduce as many constraints as the number of squares in the structure, in order to deploy one
square at a time. Additional constraints would only add intermediate partial deployment steps, at the cost of increased
complexity of the system. On the other hand, reducing the number of constraints would simplify the release mechanism,
but it would require simultaneous unfolding of multiple squares at the same time.

(a) Geometry of a 3 square loop structure during unfolding. Blue circles represent the strip-cord connectors. js
is the joint spacing, whereas jd is the distance between joints on adjacent strips. h is the maximum strip height,
which can be greater than the strip width b due to the out-of-plane motion of the strips during unfolding.

0 0.2 0.4 0.6 0.8 1

Fold location

0

0.5

1

1.5

2

2.5

3

M
a

x
im

u
m

 h
e

ig
h

t 
o

f 
th

e
 s

tr
u

c
tu

re

(b) Maximum height h of a 3 square loop structure during unfolding, as a
function of the fold location. Height h is normalized by the strip width
b (dashed line); fold location is normalized so that 0 corresponds to the
center of the strip and 1 to the tip of the shortest longeron of the strip.
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(c) Maximum distance jd between strip-cord connectors of adjacent
strips in a 3 square loop structure. The grey surface corresponds to their
distance in the deployed state (equal to length of the cords). The color map
corresponds to the difference between maximum joint distance jd and
cord length, normalized by the strip width b. Fold location is normalized
so that 0 corresponds to the center of the strip and 1 to the tip of the
shortest longeron; joint spacing js is normalized by its maximum value.

Fig. 11 Effect of fold location on kinematics and boundary conditions. b) shows that, by moving the fold
towards the center of the strip, the maximum height of the structure during unfolding increases. c) shows that
moving the fold towards the center of the strip increases the maximum distance between strip-cord connectors
of adjacent strips, resulting in incompatible kinematics. Increasing the joint spacing on the strips has a similar
effect, although much less pronounced.

Particularly interesting is the case of deploying 2 squares at a time, shown in Fig. 9 for a 3 square loop structure. In
the intuitive approach of releasing one square at a time (Fig. 9b), the innermost point of the structure (A) is forced
to move along the vertical axis during unfolding of the other strips. In the concept of releasing 2 squares at a time
(Fig. 9c), point A remains fixed after unfolding the innermost strip. This has important implications from a practical
perspective, since some implementations of the space structure discussed in this work require the diagonal cords to be
attached to a fixed point on the central axis of the structure. As it will be discussed in more detail in Sec.V, this allows
to tension the cords at the end of the deployment, which is necessary to exploit the full potential of the structure from
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the structural dynamics standpoint. Specifically, previous studies [9] have shown the existence of a threshold on the
cord pre-stress, corresponding to the transition from cord-dominated to strip-dominated vibration modes.

Fig. 10 tracks the distance of the innermost point (D) of a 3 square loop structure from a fixed point O on the central
axis during a 3-step unfolding process. Each line corresponds to a different height of point O. The plot shows that,
regardless of the location of the attachment point, releasing one square at a time would lead to incompatible boundary
conditions, since the maximum distance OD always exceeds the length of the cord. As a consequence, buckling of the
structure and incomplete deployment would likely occur if such unfolding scheme was implemented.

By releasing two squares simultaneously, the height of point D would not change after unfolding the first strip. In
this case, Fig. 10b shows that, for h/b = 1 (i.e. the cord is attached at the top of the folded structure), the distance OD
increases monotonically during unfolding of the first square and reaches its maximum value at the nominal length of the
cord. After this point, the distance OD remains constant during deployment of the remaining squares. Therefore, a
fixed center point unfolding requires at least 2 squares being released at the same time. For a 3 square loop structure,
this results in a 2-step unfolding process, in which the inner strip is released first, followed by the remaining two strips
deploying simultaneously. These conclusions can be extended to larger structures, for which admissible unfolding
schemes require simultaneous deployment of an even number (2m) of squares, with the exception of the innermost n
squares. Here, n and m are positive integer numbers, and their choice results from a trade-off between controlling the
deployment process and minimizing the number of releasable constraints.

Next, we consider the effect of the fold location, defined in Fig. 3: as shown in Fig. 7, deployment requires
opening of the fold angle α and rotation of the strip from the horizontal plane (described by the angle ϕ). As a result
of this motion, the tip of the strip (C) moves in the out-of-plane direction. It can be shown that the magnitude of this
displacement depends on the fold location, increasing as the fold moves towards the center of the strip. This has two
practical implications: first, it affects the maximum height of the structure during unfolding; second, it affects the
maximum distance between the tips of adjacent strips in a quadrant.

Fig. 11a examines the effect of the fold location on the maximum height of the structure during unfolding. The
analytical model shows that, by moving the fold towards the center of the strip, the maximum height of the structure
becomes more than double its value in the folded state. This implies that significant clearance would need to be provided
in order to avoid interferences with the deployment mechanism containing the space structure.

(a) (b) (c)

(d) (e) (f)

Fig. 12 Deployment sequence from kinematic model for a 2-step deployment scheme with fixed folds. The
red lines represent the localized constraints, which are simultaneously removed on the 4 arms of the star-shape.
Dashed lines correspond to fixed localized folds. (a) to (c) shows the release of the first set of constraints, resulting
in the deployment of the inner square. (d) to (f) shows the deployment of the middle and outer squares, following
the release of the second set of constraints.
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Fig, 11b investigates the effect of the kinematic path on the boundary conditions between strips, specifically focusing
on the diagonal cords connecting adjacent strips in a quadrant. The figure shows that the maximum distance between
joints of adjacent strips depends on the fold location and the spacing between joints in the same strip. If their maximum
distance is greater than the length of the cord (shown in grey), interference will occur during unfolding. The color map
in the surface plot corresponds to the difference between maximum distance and cord length, which should be zero in the
ideal case. It can be observed that their difference increases as the fold location moves toward the center of the strip and
the joint spacing increases. Based on these considerations, the analytical model suggests that the localized constraints
should be placed as far as possible from the center of the strips, while avoiding bending of the diagonal battens.

Fig. 12 shows the nominal deployment sequence for a 3 loop square structure. The red lines correspond to the
locations of the active constraints, which are sequentially released in a 2-step process, starting from the innermost ones.

IV. Numerical Model of Deployment
The analytical model presented so far has provided a sequentially controlled deployment scheme for the space

structure described in Sec. II. However, this model was only based on kinematics and did not take into account the
mechanical response of the structure and how this impacts the formation and evolution of the localized folds during
deployment. In this section, a finite element model of the deployment process of the space structure will be developed,
using the commercial software Simulia Abaqus 2018.

First, a single square loop structure is considered. Then, the model is extended to a three square loop structure and
results for a 1.7 m × 1.7 m structure are presented.

A. Single square loop
The smallest unit structure for which the deployment can be tested is a single square loop. In the ideal case, the

following conditions hold:
1) The 4-fold symmetry of the structure is preserved during deployment;
2) The mirror symmetry of each strip is preserved during deployment.

The first assumption allows to model a single strip as representative of the entire square, by exploiting the symmetry of
the structure. However, the deployment path of each strip may not be symmetric. The second assumption enforces the
highest degree of symmetry, allowing to model only half of a strip as representative of the entire square. Although a real
structure might also exhibit symmetry-breaking deployment paths, the assumptions listed above focus on the nominal
deployment path of the structure.
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Fig. 13 Symmetric model of a single-square structure. SCC-1 and SSC-2 are the strip-cord connectors; CP-1
and CP-2 are the control points at each end of the transverse batten.

The resulting model is shown in Fig. 13: the longerons are modeled with S4R reduced-integration shell elements,
whereas the battens are represented by B13 linear 3D beam elements, with rectangular cross-section. The geometry
of longerons and battens represents the structural prototypes described in previous work [7][8]. Each flange of the
longerons is orthotropic and consists of a [±45GF/0CF/±45GF] laminate, as described in [15].

The two halves of the longerons are bonded along their web by tie constraints, and the battens are connected to the
longerons by using kinematic coupling constraints between the end node of the batten and a 2 mm × 2 mm region of
influence on the longerons. The strip-cord connectors are modeled as reference points (SSC-1 an SSC-2 in Fig. 13)
connected to the diagonal batten by kinematic couplings.
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Based on the assumptions discussed previously, symmetry is enforced by the following boundary conditions:
• X-symmetry is defined at the left end of both longerons;
• A discrete rigid plane, oriented along the diagonal direction, keeps the strip within its symmetry domain through
contacts;

• The linear constraint equation ux = uy is imposed to the strip-cord connectors (SSC-1 and SSC-2), to keep them
on the diagonal plane and enforce continuity between strips.

The analysis consists of 3 phases: folding, equilibrium and deployment. In the first step, the structure is quasi-
statically z-folded from its deployed state into a star-shape. In the second step, localized constraints are applied and any
residual kinetic energy in the model is dissipated, providing the final folded configuration. Finally, the constraints are
suddenly removed and the structure is let dynamically deploy by releasing its strain energy.

To guide the folding process, two control points are defined (CP-1 and CP-2 in Fig. 13), coinciding with the end
nodes of the transverse batten. Displacement boundary conditions are applied to these points to mimic the folding
procedure developed for the physical prototype of the space structure. Specifically, the conditions are:

• uz = 0, uy = 0 at CP-1;
• uz = b at CP-2, where b is the width of the strip.

Fig. 14 Folding simulation of a single-square loop structure.

Fig. 15 Deployment simulation of a single-square loop structure.

This suppresses rigid body motions in the out-of-plane direction, while forcing the outer longeron to rotate about the
inner one, folding during this process. Auxiliary localized folds are created at specific locations of the longerons to
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get to the star-shape, by applying pressure on both flanges. The constraints connecting adjacent strips are modeled by
pressure loads on a narrow strip of elements on the longerons, pushing them against the diagonal plane. Contacts are
modeled using a frictionless hard contact definition, enforced by a penalty method.

Two solution approaches were considered: implicit dynamics and explicit dynamics. The advantage of the former
is to be unconditionally stable, allowing it to use relatively large time increments during the quasi-static folding step.
Also, the implicit solution tends to be less noisy and more accurate than the explicit one. On the other hand, an explicit
scheme is more suited for large problems with severe nonlinearities (i.e. instabilities and complex contact conditions)
and is commonly used for deployment problems [16].

For the problem at hand, preliminary deployment simulations had shown that the stability of the implicit solver
rapidly degrades when multiple shells interact in complex contact conditions, thus making it necessary to use an explicit
dynamics solution.

Fig. 14 shows the results of the folding process for a one-square structure. The full square is shown for visualization
purposes, although only 1/8 of it was actually modeled (as described previously in this section). The results from free
deployment are shown in Fig. 15.

It can be observed that, upon release of the four constraints, the folds propagate towards the center of the strips and
merge before deploying. Also, the shorter longeron deploys before the other one, due to the smaller inertia.

B. 3 square loops
In this section, a finite element model of a 3 square space structure is developed. Symmetry is applied to model only

1/8 of the structure, as shown in Fig. 16. Each strip is modeled as described in the previous section. Adjacent strips are
connected by cords, modeled as connector elements between the strip-cord connectors. The cords impose an upper
bound to the distance between the strip-cord connectors, but they do not constrain the minimum distance, since the
cords cannot bear any load in compression.
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STRIP-3

STRIP-2

STRIP-1
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BOTTOM
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Hairpins

Set-1

Hairpins
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Diagonal cords

BOTTOM

TOP

Fig. 16 Finite element model of a 1.7 m × 1.7 m 3-square loop structure. The model assumes 4-fold symmetry
and mirror symmetry, thus allowing to consider only 1/8 of the whole structure. The location of the localized
constraints is indicated by the red lines. During deployment, Hairpin Set-1 is released first, followed by Hairpin
Set-2. The strip-cord connectors are modeled as reference points moving on the symmetry plane. Adjacent
strips are connected by cords, modeled as axial connectors with one-sided hard stop behavior.

The red lines in Fig. 16 correspond to the locations of the localized constraints. Also, the labels top and bottom
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indicate mountain and valleys folds during star folding.
The analysis consisted of the following steps:
1) Z-fold: vertical displacements uz = b are assigned to the control points on the mountain folds, while the valley

folds are fixed. Localized folds are created at designated locations by applying pressure on narrow regions of the
longerons.

2) Tighten: radial displacements are applied to the outermost strip to tighten the structure into a star shape (Fig.
17(b)-17(c)).

3) Apply constraints: "hairpins" are applied to the structure by using pressure at the locations shown in Fig. 16,
pushing the longerons against the diagonal plane (Fig. 17(d)).

4) Stop: viscous pressure is introduced to dissipate the residual kinetic energy and reach a stationary fully folded
configuration.

5) Release inner constraints: pressure is removed from the first set of constraints to allow deployment of the inner
square (Fig. 17(e)).

6) Release outer constraints: pressure is removed from the second set of constraints to allow full deployment of the
structure (Fig. 17(f)).

(a) (b) (c)

(d) (e) (f)

Fig. 17 Deployment simulation of a 3-square loop structure. a) to c) describe the folding process; d) is the
fully folded configuration; e) is the intermediate configuration after releasing the first constraint; f) is the final
configuration after releasing the second constraint.

The simulation shows that, after releasing the first set of constraints, the inner square (yellow in Fig. 17) does not
reach the fully deployed state as predicted by the kinematic model. The reason is that there is insufficient space for
the inner square to deploy, caused by the width of the flanges of the undeployed squares. However, after releasing the
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second set of constraints, the inner square completes its deployment, followed by the middle square (green in Fig. 16)
and finally by the outer square (blue in Fig. 16).

V. Deployment Experiments
The unfolding scheme developed in the previous sections was demonstrated on a deployable 1.7 m × 1.7 m space

structure prototype [8].

Fig. 18 Experimental setup for the deployment tests. The red circles show the locations of the localized
constraints.

(a) Initial (b) Deployment of inner square (c) Deployment of middle and outer squares

Fig. 19 Test 20: intermediate configurations of 2-step sequential dynamic deployment.

To obtain the packaged configuration required for the unfolding, the structure was manually folded and constrained
at discrete locations by using hairpins. The folded structure was mounted in a deployment mechanism by attaching the
inner end of the diagonal cords to a central shaft. The deployment mechanism, which controls coiling and uncoiling of
the structure, was only meant to provide support to the structure during the unfolding tests and will not be discussed
further in this paper (more details are provided in [8]). The outer end of the diagonal cords of the space structure were
connected to a cord management system, consisting of a spring retractor that applied a small amount of tension (less
than 4 N) during and after the unfolding process.

A two-step unfolding process was attempted, with the localized constraints initially placed at the optimal location
identified by the kinematic model. As a proof of concept of the deployment scheme, the constraints were applied by
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hairpins that were removed manually. Future implementations of the concept will include a remotely controlled release
system.

Initial experiments identified interferences between adjacent longerons of strips in the same quadrant, at the end of
the first release stage, similarly to what had been predicted by the finite element model (Fig. 17(e)). As anticipated in Sec.
IV, the cause of the interference was related to the finite width of the shells, which had not been taken into account in the
analytical model, and resulted in a reduction of the available space for the inner square to deploy. Consequently, contact
between adjacent longerons resulted in incomplete deployment of the inner square in the intermediate configuration.
To address this issue, the location of the hairpins was modified to increase the inner spacing at the end of the first
deployment step. However, this solution was not kinematically compatible with the model described in the previous
section (it required a fold in the non-admissible region of Fig. 3) because it involved bending of the diagonal battens. In
practice, the 600 µm-thick battens were flexible enough to allow such kinematics, but the resulting bending moments
applied on the longerons could cause buckling of the strips. Therefore, an iterative approach was used to optimize the
location of the second set of constraints such that the inner square could fully deploy after releasing the first set of
constraints.

Fig. 19 shows the intermediate configurations of the modified deployment path, which resulted in a predictable and
symmetric process.

VI. Discussion
It has been shown that, by adding releasable constraints, predictable and controlled deployment of a complex planar

shell structure can be achieved. By identifying kinematic paths compatible with the boundary conditions and geometry
of the structure, a kinematic analytical model provides a simple tool to design a sequential deployment scheme. The
model suggests that releasing two squares at a time prevents interferences when the structure is supported by taut cords.
Also, placing the constraints as close as possible to the ends of the strips minimizes the deployment envelope (and size
of the deployment mechanism) and mitigates interference with the cords connecting adjacent strips.

The finite element model confirmed that the kinematic design actually leads to full deployment of the structure. It
also captured the actual behavior of the elastic folds, which tend to propagate and merge during deployment, if their
initial distance is sufficiently small (e.g. on the inner set of localized folds). Furthermore, the finite element model
was successful at predicting incomplete deployment of the inner strips after releasing the first set of constraints, due to
contacts between strips. Although additional work is required to improve the numerical model, the results so far suggest
that it can provide a high fidelity representation of the actual deployment, and identify potential incompatibilities not
captured by a simple kinematic analysis.

The experimental results show that, after improving the location of the constraints, the desired intermediate
configurations could be achieved during unfolding of a space structure prototype. Future work will focus on collecting
quantitative measurements of the deployment process, in order to capture the evolution of the structure during dynamic
deployment and compare the dynamic response with the prediction from the finite element model.

VII. Conclusion
We have presented a novel approach to the design and control of the deployment of folded thin-shell structures,

taking as an example a planar structural architecture developed for space solar power applications. We showed that
releasable external constraints can efficiently control the deployment path of a strain-energy-deployed structure, by
imposing known intermediate configurations.

We showed that, by treating the localized folds as hinges between rigid portions of the shells, the actual continuous
structure can be modeled as a finite degree-of-freedom mechanism. The analytical model derived in this work provided
a powerful tool to quickly explore the design space of a sequentially controlled deployment scheme, identifying
kinematically-compatible deployment paths and an initial design point for the localized constraints. A numerical
framework was developed to provide an high fidelity model of the structure, capturing its elastic response and its
interaction with the constraints.

By extending the methods discussed so far to more general structural architectures, this work can contribute to the
design of a new generation of large deployable structures for space applications, allowing folding and coiling techniques
to be combined to achieve robust and repeatable deployment.
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