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a b s t r a c t

Recent studies analyze the behavior of advanced shell structures, like foldable, multistable or morphing
shell structures. Simulating a thin foldable curved structure is not a trivial task: the structure may go
through many snapping transitions from a stable configuration to another. Then, one could claim arc-
length methods or use a dynamic approach to perform such simulations. This work presents a geome-
trically exact shell model for nonlinear dynamic analysis of shells. An updated Lagrangian framework is
used for describing kinematics. Several numerical examples of folding a thin dome are presented,
including creased shells. The triangular shell finite element used offers great flexibility for the generation
of the unstructured curved meshes, as well as great results.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Curved shells can be found in many natural and man-made
structures. Shells have high structural efficiency due to their cur-
vature, as bending and stretching are coupled to handle defor-
mations, making them energetically costly to deform. Due to their
high strength/weight ratio, ability to shelter inner components
and a good esthetic value, shells are important structures for
engineering applications. Many examples can be listed: pipes, beer
cans, eggshells, skulls, bells, bowls, tents, corneas, lens, wine
glasses, tanks, silos, domes, roofs, structures of airplanes, sub-
marines, ships, rockets, missiles, etc.

The study of shells dates back to the nineteenth century, when
Love [1] presented important contributions to the thin shell the-
ory. He applied the Kirchhoff's assumptions [2], originally derived
to thin plate bending theory, to the shell theory, together with the
assumptions of small deflection and small thickness of the shell.
Similar first order approximation shell theories were presented by
Donnell [3], Sanders [4] and Flügge [5].

A second order approximation shell theory was derived by
Reissner [6,7], where the assumptions on the preservation of the
normals and that the transverse normal strain may be neglected
were abandoned, thus considering the deformations caused by the
transverse shear forces.

The geometrically nonlinear shell theory had considerable
contributions by authors like Mushtari [8], Sanders [9], Naghdi and
A. Gay Neto),
(P.M. Pimenta).
Nordgren [10], Vlasov [11], Simmonds and Danielson [12], Pimenta
[13], Ibrahimbegovic [14,15] and Libai and Simmonds [16]. For-
mulations on nonlinear dynamic shell structures were presented
by Simo et al. [17], Kuhl and Ramm [18], Brank et al. [19], Campello
et al. [20], among others. Dynamic instability was analyzed by
authors like Brank et al. [21] and Delaplace et al. [22]. The
numerical time integration recommended therein is probably the
simplest way to introduce some energy dissipation in nonlinear
dynamic problems, keeping the second order accuracy of the ori-
ginal Newmark algorithm. We would like to compare the exam-
ples presented therein with our formulation in future works. In
[20], general hyperelastic materials can be used for nonlinear
dynamic analysis of shells with rotational degrees-of-freedom.

Recent studies analyze the behavior of advanced shell struc-
tures, like foldable structures [23,24] and deployable structures
[25,26], structures that can be transported in a compact form and
deployed to their full extent when needed, metamaterials [27,28],
whose unusual properties derive from their structure, rather from
their composition, morphing shell structures [29–31], shells cap-
able of undergoing large changes in shape, whilst remaining
within the material's elastic range, and multistable structures
[32–34], which have more than one stable state and can move
elastically from one state to another.

Following the creased hemisphere presented in [34], this paper
presents a dynamic formulation for simulating that hemisphere
and other similar shell structures. The presented formulation is
geometrically exact for nonlinear applications involving large
displacements and large rotations. We emphasize that the main
novelty of present work is, contrary to our previous paper [20], the
establishment of the weak form for dynamic shell models by using
the symmetric Principle of Virtual Work (PVW), together with the
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update description of rotation using Rodrigues parameters. This
was motivated by the objective of studying the stability of shell
structures, particularly the creased-domes. For that, it is desirable
to establish a weak form that can be obtained from a potential.
Then, the stability assessment is more direct. We intend to make a
deeper study on future works by tracking the evolution of the
system natural frequencies. In this context, the Lyapunov stability
criterion can be claimed, such as previously done for cable-like
structures in [35]. Furthermore, when addressing the PVW to
establish the weak form, the static problem becomes a particular
case of dynamics, recovering the results from [20,36]. We need
that to compare dynamics to statics, as performed in the present
work of numerical examples.

The scope of this work is to present a numerical procedure to
analyze challenging shell problems (from a numerical point of
view). The triangular finite element used, the T6-3i [37], offers
great flexibility for unstructured curved meshes generation and
presented excellent results. The hemisphere simulations were
repeated in LS-Dyna, a commercial finite element package to
provide a comparison with the simulations using T6-3i elements.
2. Shell modeling

2.1. Kinematics

The shell model presented here is an extension of the geome-
trically exact formulation derived in [38]. The finite shell element
devised in [38], the T6-3i element, is triangular, allowing robust and
versatile numerical discretization. The formulation is pure-
displacement based, where no mixed or hybrid types of variables
were used, it is free of locking effects due to the incompatibility of
the element to the rotations field, and the degrees of freedom used
are simple and physically meaningful: the displacements and rota-
tions of the shell director. The kinematics is of the Reissner–Mindlin
type, which takes into account the effects of shear deformations.

In this work, the rotation tensor Q is expressed in terms of the
Rodrigues rotation parameters, as in [20]. The parameterization
with the Rodrigues rotation vector leads to simpler and more
efficient expressions compared to the Euler parameterization, as it
is totally free of trigonometric functions.

The Rodrigues rotation vector is defined by [39]:

α¼ tan ðθ=2Þ
θ=2

θ ð1Þ

where θ is the classical Euler rotation vector representing an
arbitrary finite rotation on 3D space and θ¼ JθJ is its magnitude
—the Euler rotation angle. The rotation tensor Q expressed in
terms of the Rodrigues rotation parameter α can therefore be
written as [38]:

Q ¼ Iþ 4
4þα2 Aþ1

2
A2

� �
ð2Þ

with α¼ JαJ , and A¼ skewðαÞ.1
The angular velocity operator Ω¼ _QQ T is the skew-symmetric

spin tensor associated to the rotation Q . Its axial vector ω¼ axial
ðΩÞ is the spin vector or angular velocity vector. Using Rodrigues
parameters one can obtain:

ω¼Ξ _α ð3Þ
where the tensor Ξ relates ω to the time derivative of α and is
1 The skewðvÞ function transforms a vector vAV3 in a skew-symmetric tensor
V , whose axial vector is v. The axialðVÞ function transforms V in its axial vector v.
Let two vectors v, w AV3, the cross product of these vectors gives v �w¼ Vw.
given by:

Ξ¼ 4
4þα2 Iþ1

2
A

� �
ð4Þ

The back-rotated counterpart of ω can be obtained by
ωr ¼Q Tω¼ΞT _α , where the notation with a superscript “r”
defines back-rotated quantities. Upon time differentiating ω, one
can obtain the angular acceleration vector:

_ω ¼ _Ξ _αþΞ €α ð5Þ
with

_Ξ ¼ 1
2

4
4þα2

_A� α � _αð ÞΞ
h i

ð6Þ

In the parameterization with Rodrigues rotation vector, due to
the definition in Eq. (1), the rotation angle must be restricted to
�πoθoπ. However, with an updated formulation, this is not a
limitation as rotations may not exceed π within a single time
increment. Using an updated-Lagrangian framework, displace-
ments and rotations must be updated after each time-step.

Fig. 1 (adapted from [36]) shows the shell updated model. A
plane shell mid-surface is assumed at the initial reference con-
figuration. At this configuration, it is defined a local orthonormal
system er1; e

r
2; e

r
3

� �
, with corresponding coordinates ξ1; ξ2; ζ

� �
. The

vectors erα (α¼ 1;2) are placed on the shell mid-plane and er3 is
normal to this plane.

In this reference configuration, the position ξ of any material
point can be described by the vector field:

ξ¼ ζþar ð7Þ
where the vector ζ ¼ ξαerα describes the position of points on the
reference mid-surface and ar ¼ ζer3 is the shell director, with ζA

H¼ �hb;ht
h i

as the thickness coordinate and h¼ hbþht as the
shell thickness in the reference configuration.

At instant “i”, it is defined a local orthonormal system
ei1; e

i
2; e

i
3

� �
, with eii ¼Qeri (see Fig. 1), with ei3 aligned with the

director at this instant and eiα normal to it. Note that the director is
not necessarily normal to the deformed mid-surface, thus
accounting for first order shear deformations. A general material
point in this configuration can be described by:

xi ¼ ziþai ð8Þ
where zi ¼ ẑ ξα

� �
is the position of a material point on the middle

surface and ai is the director at this point, obtained by ai ¼Qar .
Similarly, the position of any material point in the configuration

at instant “iþ1”, the end of the present time-step, is described by:

xiþ1 ¼ ziþ1þaiþ1 ð9Þ
Here aiþ1 ¼QΔai, where QΔ is the tensor representing the

rotation between instants “i” and “iþ1”. The index “Δ” refers to
quantities relating the instants “iþ1” and “i”. As ai ¼ ζei3, then,
xiþ1 ¼ ziþ1þζQΔei3, and time-differentiating this expression, one
can obtain the velocity vector of any material point as:

_xiþ1 ¼ _z iþ1þζ _Q
Δ
ei3 ¼ _z iþ1þζω� eiþ1

3 ð10Þ
The displacement associated with any point of the middle

plane is given by vector u, and can be updated by:

uiþ1 ¼ uiþuΔ ð11Þ
The rotations can be updated by [20]:

αiþ1 ¼ 4
4�αΔ � αi

αΔþαiþ1
2
αΔ � αi

� �
ð12Þ

where αΔ is the rotation vector occurred from configuration “i” to
“iþ1”.



Fig. 1. Shell updated model (adapted from [36]).
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2.2. Strains

The strain vectors are evaluated in the reference configuration,
thus they are not affected by rigid body motion, avoiding objec-
tivity problems. Using the notation ð�Þ;α ¼ ∂ð�Þ=∂ξα and
ð�Þ0 ¼ ∂ð�Þ=∂ζ, one can define the shell strain vectors. The transla-
tional strain vector ηα at instant “iþ1” is given by:

ηiþ1
α ¼ ziþ1

;α �eiþ1
α ð13Þ

Its back-rotated counterpart is obtained by multiplying both
sides of Eq. (13) by Q iþ1T :

ηiþ1r

α ¼Q iþ1T ziþ1
;α �erα ð14Þ

In a similar way, the back-rotated specific rotation vector at
instant “iþ1” is given by:

κiþ1r
α ¼Q iTΞΔT

αΔ
;αþκir

α ð15Þ

with

ΞΔ ¼ 4

4þ αΔ
� �2 Iþ1

2
AΔ

� �
ð16Þ

where AΔ is the skew-symmetric tensor of αΔ. The generalized
back-rotated strain vector for the shell model can therefore be
written as:

εiþ1r ¼
εiþ1r
1

εiþ1r
2

2
4

3
5; with εiþ1r

α ¼
ηiþ1r
α

κiþ1r

α

" #
ð17Þ

Upon time differentiating Eq. (17), one can obtain:

_εiþ1r ¼
_εiþ1r

1

_εiþ1r

2

2
4

3
5; with _ε iþ1r

α ¼
_η iþ1r

α

_κ iþ1r

α

2
4

3
5 ð18Þ

that can be rewritten as:

_εiþ1r

α ¼Λiþ1TΦiþ1YΔΔ _d
Δ ð19Þ
where

Λiþ1 ¼

Q iþ1 O O O

O Q iþ1 O O

O O Q iþ1 O

O O O Q iþ1

2
666664

3
777775 ð20Þ

Φiþ1 ¼
Φ1 O6�9

O6�9 Φ2

" #
; with Φα ¼ I O Ziþ1

;α

O I O

" #
ð21Þ

where Ziþ1 ¼ skewðziþ1Þ

YΔ ¼
YΔ

1 O9�9

O9�9 YΔ
2

2
4

3
5; with YΔ

α ¼
I O O
O ΞΔ ΞΔ

;α

O O ΞΔ

2
64

3
75 ð22Þ

Δ¼
Δ1

Δ2

" #
; with Δα ¼

I ∂
∂ξα

O

O I ∂
∂ξα

O I

2
664

3
775 ð23Þ

_d
Δ ¼ _uΔ _αΔ

h i
ð24Þ

2.3. Internal and external loads power

The shell internal power at instant “iþ1” on a domain ΩAR2

can be obtained by:

Pint ¼
Z
Ω
σ iþ1r � _ε iþ1r dΩ¼

Z
Ω
σ iþ1r �Λiþ1T

Φiþ1YΔΔ _d
Δ
dΩ ð25Þ

where the generalized cross-sectional stress vector is given by:

σ iþ1r ¼
σ iþ1r

1

σ iþ1r

2

2
4

3
5; with σ iþ1r

α ¼
niþ1r

α

miþ1r
α

" #
ð26Þ

in which niþ1r

α are the back-rotated cross sectional forces and
miþ1r

α are the back-rotated cross sectional moments, both per unit
length at instant “iþ1”. They are obtained after integration along



Fig. 2. Clamped dome.

Fig. 3. Zoom: end of static analysis—clamped dome.
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the shell thickness of the back-rotated stress vectors, which act on
cross-sectional planes whose normals on the reference config-
uration are eri .

Defining a vector t as the surface traction per unit reference
area, and b as the body force per unit reference volume, the shell
external power at instant “iþ1” is given by:

Pext ¼
Z
Ω

q � _dΔ
� �

dΩ ð27Þ

in which q is the generalized external forces vector given by:

q ¼ n
ΞTm

� 	
ð28Þ

where n ¼ ttþtbþR
Hb dζ is the applied external forces per unit

area of the middle surface in the reference configuration and m ¼
at � ttþab � tbþR

Ha� b dζ is the vector of applied external
moments per unit area.

2.4. Inertial effects

The inertial effects are derived from the shell kinetic energy T.
Let V be the shell volume, the kinetic energy is given by:

T ¼ 1
2

Z
V
ρ _x iþ1 � _x iþ1dV ð29Þ

where ρ is the specific mass of the shell. Substituting Eq. (10) in
(29), and knowing that

R
Vρ _z

iþ1 � ζω� eiþ1
3

� �
dV ¼ 0 for the parti-

cular choice of mid-surface position, assuming that ht ¼ hb ¼ h=2,
leads to:

T ¼ 1
2
hρ

Z
Ω
_z iþ1� _z iþ1dΩþ1

2
ρ
h3

12

Z
Ω

ω� eiþ1
3


 �
� ω� eiþ1

3


 �
dΩ ð30Þ

The kinetic energy equation can be decomposed into two
components T ¼ T1þT2, in which:

T1 ¼
1
2
hρ

Z
Ω
_z iþ1 � _z iþ1dΩ ð31Þ

T2 ¼
1
2
ρ
h3

12

Z
Ω

ω� eiþ1
3


 �
� ω� eiþ1

3


 �
dΩ ð32Þ

Time-differentiating Eqs. (31) and (32), defining Eiþ1
3 ¼ skewðeiþ1

3 Þ
and applying the equality ω� eiþ1

3

� �¼ �Eiþ1
3 ω and

Eq. (3), after some algebra one can obtain:

_T 1 ¼ hρ
Z
Ω
€z iþ1 � _z iþ1dΩ¼ ρh

Z
Ω
€uΔ � _uΔdΩ ð33Þ

_T2 ¼
ρh3

12

Z
Ω
ΞTEiþ1

3
T
Eiþ1
3 _ω

� _αΔdΩþρh3

12

Z
Ω
ΞTEiþ1

3
T
ω� Eiþ1

3 ω

 �
 �

� _αΔdΩ ð34Þ

Eq. (33) is the term contribution for translational inertia effects,
and in (34), the term contribution Eiþ1T

3 Eiþ1
3 _ω describes the

angular acceleration effects, and the term ω� Eiþ1
3 ω


 �
 �
describes the gyroscopic effects on kinetic energy.

2.5. Weak form and discretization

The weak form is here established by the Principle of Virtual
Work. The shell internal and external loads virtual works, δWint

and δWext respectively, can be expressed by:

δWint ¼
Z
Ω
σ iþ1r �δεiþ1r dΩ¼

Z
Ω

σ iþ1r �Λiþ1T

Φiþ1YΔΔδdΔ

 �

dΩ

ð35Þ
δWext ¼
Z
Ω

q � δdΔ

 �

dΩ ð36Þ

Let δT be the virtual variation of the kinetic energy, the prin-
ciple of virtual work gives:

δWint�δWextþδT ¼ 0 ð37Þ

where δT ¼ δT1þδT2, and

δT1 ¼ ρh
Z
Ω
€uΔ � δuΔdΩ ð38Þ

δT2 ¼
ρh3

12

Z
Ω
ΞT Eiþ1T

3 Eiþ1
3 _ωþEiþ1T

3 ω� Eiþ1
3 ω


 �
 �h i
� δαΔdΩ

ð39Þ

The consistent linearization of Eq. (37) leads to the tangent
operator:

Δ δW
� �¼Δ δWint

� ��Δ δWext
� �þΔ δT

� � ð40Þ

The components of the tangent operator Δ δWint
� �

and Δ
δWext
� �

are fully developed in [38,36]. The kinetic energy com-
ponent Δ δT

� �
is an innovative contribution of this paper and is

presented hereafter. The material formulation employed in this
work is the same presented in [38,40].

In order to obtain the tangent operator, one needs to compute:

ΔðδTÞ ¼ΔðδT1ÞþΔðδT2Þ

¼ ρh
Z
Ω

f u;uΔu
Δþ f u;αΔα

Δ

 �

� δuΔdΩ

þρh3

12

Z
Ω

f α;uΔu
Δþ f α;αΔα

Δ

 �

� δαΔdΩ ð41Þ

with f u ¼ €u and

f α ¼ΞT Eiþ1T
3 Eiþ1

3 _ωþEiþ1T

3 ω� Eiþ1
3 ω


 �
 �h i
ð42Þ
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In matrix form:

ΔðδTÞ ¼
ρh

R
ΩN

T f u;uNdΩ ρh
R
ΩN

T f u;αNdΩ
ρh3

12

R
ΩN

T f α;uNdΩ ρh3

12

R
ΩN

T f α;αNdΩ

2
4

3
5 ΔuΔ

ΔαΔ

" #
� δuΔ

δαΔ

" #

ð43Þ

where N is the shape function matrix constructed using standard
Lagrange polynomials. The variables €u, _ω andω are determined as
functions of u and α by the Newmark expressions. The Newmark
method was used for time integration and the finite element
method to discretize displacements and rotations in space. Let β
and γ be the classical parameters from Newmark integration (in
this work, it was adopted as β¼ 0:3 and γ ¼ 0:5), Δt the time step
and the α1, …, α6 coefficients given by [41]. As the damping was
not the focus of this work, we kept the optimal value γ ¼ 0:5. On
the other hand, we remark here that the parameter β¼ 0:3 we
have used in our examples has led to some energy dissipation,
similar to the recommended algorithm in [21,22]. The algorithm
with this value has behaved much better than with the classical
value β¼ 0:25. Another approach would be the use of a Rayleigh
type of dissipation as in [42]. We employed the integration of
finite rotations presented in [43] and followed the ideas of
Fig. 4. Prescribed displacement variation with time.

Fig. 5. Clamped do
Rodrigues parameter integration from [44]. Then:

α1 ¼
1

β Δt
� �2; α2 ¼

1
βΔt

; α3 ¼
1�2β
2β

α4 ¼
γ

βΔt
; α5 ¼ 1� γ

β
; α6 ¼ 1� γ

2β

� �
Δt ð44Þ

Acceleration and velocities related to configuration “iþ1” can
be written as:

€u iþ1 ¼ α1uΔ�α2 _u
i�α3 €u

i

_u iþ1 ¼ α4uΔþα5 _u
iþα6 €u

i

8<
: ð45Þ

ωiþ1 ¼QΔ α4αΔþα5ωiþα6 _ω i

 �

_ω iþ1 ¼QΔ α1αΔ�α2ωi�α3 _ωi

 �

8><
>: ð46Þ

In this way, the weak form is a function only of unknown
generalized displacements uΔ and rotations αΔ, and the initial
conditions for each time-step _ui, €ui, ωi and _ω i.

The symbolic evaluation of the functions f u;u , f u;α , f α;u and f α;α
was performed using Mathematica

s

and AceGen
s

(see [45,46]).
The spatial discretization was done using the t6-3i finite ele-

ment [37], a six-node element, with linear shape functions for
interpolation of the rotation field related to the mid-side nodes of
the triangle only and quadratic shape functions for interpolation of
the displacement field. Let pΔ be a six-dimensional vector asso-
ciated with each node, containing both displacements and rota-
tions, the finite element approximation is given by:

dΔ ¼NpΔ ð47Þ
where

dΔ ¼ uΔ

αΔ

" #
ð48Þ

2.6. Comparison FEA solver

The commercial finite element package, LS-Dyna, was used as a
comparison explicit solver. Meshes were generated from a mixture
me (top view).



Fig. 6. LS-Dyna simulation of clamped dome (top view).

Fig. 7. Clamped dome with curved crease at ϕ¼ 0:6.

Fig. 8. Zoom: end of static analysis—clamped dome with curved crease at ϕ¼ 0:6.
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of quadrilateral Belytschko–Tsay and triangular C0 shell elements.
The shell element nodes have six degrees of freedom (displace-
ments and rotations) and two through thickness integration
points. The Belytschko–Tsay shell element is based on a combined
co-rotational and velocity-strain formulation [47]. To avoid dis-
tortion of the quadrilateral elements, Flanagan–Belytschko hour-
glass integration was enabled.
In the case considered in Section 3.2 a crease needs to be
incorporated into the shell surface. There are several ways creases
can be formulated in LS-Dyna. One is to start with an initially
kinked surface [48]. This approach has also been used to model the
interaction between creases with wrinkles [49]. The crease stiff-
ness, or the bending moment as a function of crease angle
depends on the initial kink angle.

In the scenarios considered here, the creases have substantially
lower bending stiffness compared to the surrounding material. To
formulate the creases required in Section 3.2 the displacement
degrees of freedom of the nodes on one side of the crease are tied
to the elements on the other side of the crease. The rotational
degrees of freedom are left unconstrained, forming a zero-stiffness
crease.
3. Numerical examples

The formulation presented in this work was implemented in
the finite element code Giraffe (Generic Interface Readily Acces-
sible for Finite Elements) [50], developed at Polytechnic School at
University of São Paulo, Brazil. Giraffe is a finite element interface
in which it has already implemented a beam model [51] and beam
to beam contact models [52].

3.1. Clamped dome

The dome, a hollow upper half of a sphere, is fully clamped in
its base. The radius of the dome is 50 mm and its thickness is
1 mm. The elasticity constants for the polyvinyl siloxane material
are adopted as E¼100 kN/m2 (Young's modulus) and ν¼ 0:499
(Poisson's ratio). It used an unstructured mesh of 4632 triangular
six-nodes elements, 9329 nodes, with six degrees of freedom
(displacements and rotations) per mid-node and three degrees of
freedom (displacements) per corner-node.

A comparison LS-Dyna simulation with the same geometry and
boundary conditions was performed using a mesh containing
5487 triangular C0 and quadrilateral Belytschko–Tsay shell ele-
ments. The corresponding 5541 nodes have the six degrees of
freedom (displacements and rotations).

The top of the hemisphere is pushed down in a displacement-
controlled manner and the reactive force follows. The simulation



Fig. 9. Clamped dome with curved crease at ϕ¼ 0:6.

Fig. 10. LS-Dyna simulation of clamped dome with curved crease at ϕ¼ 0:6.
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presents various snap-throughs and snap-backs, and the static
simulation cannot converge much farther since we did not employ
arc-length methods, the last converged point is at displacement
equal to d¼41.1 mm, a snap-back, as can be seen in Figs. 2 and 3.
To pass through this point, a dynamic formulation was employed.
Our simulation has shown a slightly stiffer behavior. We have
observed along our simulations that finer meshes reduce this
stiffening, which is mainly due to the strong curvatures within an
element.

Fig. 4 shows the prescribed displacement used in the dynamic
analysis. The displacement varies linearly from zero to 100 mm in
5 s. This time scale was chosen such that there were no relevant
dynamic effects in the static analysis of the problem, leading to a
quasi-static behavior. When the snap-throughs and snap-backs
occur, the dynamic effects play a role.

Fig. 5 shows the dome behavior from a top view. The shape of
the indented structure presents several transitions. First the
indentation is circular, then it has three lobes. At the instant the
top is at the height of the dome base, it presents four lobes.
Towards the end of the simulation it transitions to five lobes, then
six and ends with seven lobes.

Fig. 6 shows the predicted dome behavior in LS-Dyna. The lobe
formation is almost identical to that of the previous simulation.
The force predicted by the LS-Dyna simulation is also close up
until d¼66 mm, after which it predicts a lower force as seen in
Fig. 4. This difference is due to the more refined mesh used in the



Fig. 11. Dome turning inside out.

Fig. 12. LS-Dyna simulation of dome turning inside out.
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LS-Dyna simulation. The more the mesh is refined, the more
flexible the model.

3.2. Clamped dome with curved crease at ϕ¼0.6

A dome with the same dimensions and material of the hemi-
sphere of Section 3.1 has a curved crease parallel to the hemi-
sphere base, as in [34]. The crease was modeled such that its nodes
present only coupled displacements, but independent rotations
(free). The crease distance from the dome base is obtained through
the ϕ number, which relates the dome radius to the crease radius
through the equation:

ϕ¼ Rt

Rs
ð49Þ

where Rt is the curved crease radius and Rs is the dome radius. In
this example, ϕ¼0.6, therefore, the crease radius is Rt ¼ 30 mm
and its distance from the base is 40 mm. It used an unstructured
mesh of 9082 triangular six-nodes elements, 18,517 nodes, with six
degrees of freedom (displacements and rotations) per mid-node
and three degrees of freedom (displacements) per corner-node. In
Fig. 7 the force profile is shown. The static formulation diverges at
displacement d¼14.2 mm, a snap-back (Fig. 8). After this point,
the force becomes negative until displacement d¼19.0 mm, when
the indentation is still circular. The force increases reaching its
maximum of F¼0.071 N at displacement d¼28.2 mm. The
indented shape “falls” to the side, there appearing two lobes and
the force drops to F¼0.016 N. These two lobes spread out in an
almost-circular shape before it transitions to four lobes. Towards
the end of the simulation, it transitions to five, six and seven lobes.
Fig. 9 presents the dome deformation sequence.

The LS-Dyna simulations show very similar behavior in both
the force profile and the deformed geometry during the simulation
(Fig. 10). A mesh containing 9694 nodes and 8933 triangular C0

and quadrilateral Belytschko–Tsay shell elements was used. In this
simulation snap-through occurs slightly earlier at d¼14.0 mm. The



Fig. 15. Structu

Fig. 16. Mesh discretization—c

Fig. 17. Mesh discretization—c

Fig. 13. Dome turning inside out.

Fig. 14. Zoom: end of static analysis—dome turning inside out.
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force results are less noisy after the snap-through, which gives a
lower maximum force of F¼0.049 N at displacement d¼28.6 mm.
After this, the indented shape transitions to two and then to three
lobes. The shape then transitions directly to five lobes at
d¼48.5 mm. As captured in the previous simulation, towards the
end of the simulation six and finally seven lobes form. The lobe
transitions do occur slightly later than in the previous simulation.

3.3. Dome turning inside out

In order to analyze the case of a dome turning inside out, all
rotations at the dome base were set free and the displacements
were locked, like the joint used to model the crease in Section 3.2,
as if the number ϕ¼ 1. It used an unstructured mesh of 4632
red mesh.

reased dome—initial step.

reased dome—final step.

Fig. 18. Mesh discretization—creased dome.
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triangular six-nodes elements, 9329 nodes, with six degrees of
freedom (displacements and rotations) per mid-node and three
degrees of freedom (displacements) per corner-node. The defor-
mation sequence is shown in Fig. 11, it is similar to the case in
Section 3.1 until it starts to turn inside out towards the end of the
simulation, the number of lobes stops increasing and the existing
lobes spread out, reaching the upside down hemisphere shape. In
Fig. 13, the force profile is plotted. The static formulation diverges
at displacement d¼43.4 mm (Fig. 14). By the time the hemisphere
starts to turn inside out, at the displacement of d¼94.6 mm, the
force, that reached its maximum of F¼0.114 N, starts to drop
drastically, becoming negative when the dome is completely
inside out.

The mesh in this LS-Dyna simulation contained 5541 nodes,
5487 triangular C0 and quadrilateral Belytschko–Tsay shell ele-
ments. The LS-Dyna simulation shows very similar behavior in
deformed geometry as seen in Fig. 12, but predicts a lower force
after d¼0.076 mm. The peak force predicted is F¼0.0866 N at
d¼94.4 mm before dropping off sharply.

3.4. Remarks

In this section, a couple remarks about the simulations are
presented: the need for an unstructured mesh and the influence of
mesh refinement.

Fig. 15 presents the dome of Section 3.1 with a structured mesh.
As can be seen, the mesh influences the dome indented shape.
From beginning to the end of the simulation it presents always
four lobes, following the symmetry of the mesh.

An unstructured mesh however does not create a point exactly
at the top of the dome. This was achieved by creating a tiny region
at the top of the dome with a structured mesh, in such a way that a
node would be created exactly at the top of the dome, and the rest
of the dome was freely meshed.

Fig. 16 shows the mesh of the dome of Section 3.2, “dome 2”,
with 9082 elements and 18,517 nodes. A coarser mesh of the same
dome with 2208 elements and 4593 nodes, and a finer mesh with
36,570 elements and 73,845 nodes were solved in order to analyze
the effect of mesh refinement. The mesh influences the shape and
position of the lobes. The number of lobes, however, does not
depend on mesh refinement as can be seen in Fig. 17. In Fig. 18, the
force profile is shown. For a coarser mesh, a higher force is needed,
as well as a finer mesh needs lower force to the same
displacement.
4. Conclusions

A geometrically exact shell model for nonlinear shell dynamic
analysis was derived in this paper. The shell formulation considers
an updated Lagrangian framework, allowing large rotations. The
rotation field was described using the Rodrigues rotation vector,
which leads to an extremely simple way to update the rotational
variables. The shell kinematical model is simple and consistent.
The weak form was obtained by means of the principle of virtual
work. The purely displacement based triangular finite element
used allows robust and versatile discretization, leading to a simple
generation of the unstructured meshes in the simulations here
analyzed, and working in the fully nonlinear regime in static and
dynamic applications, without using any possibly expensive
techniques such as ANS, EAS or hourglass control. Validity and
robustness of the formulation were shown in the numerical
simulations, which presented very good performance in the ana-
lyzed cases. In particular, the shell model was able to capture the
snapping behavior of a hemisphere with a circular crease. The
corresponding forces and deformed configurations also closely
matched that of the LS-Dyna simulations used as a comparison.
This model discussed herein presents great results and flexibility
for analyzing the high nonlinear shell problems that take place in
recent shell studies.
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