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This paper presents an experimental study of imperfection insensitive composite wavy cylindrical shells 

subject to axial compression. A fabrication technique for making cylindrical shells with intricate shape 

of cross-sections has been developed. A photogrammetry technique to measure the geometric imperfec- 

tions has also been developed. The behavior of the wavy shells under axial compression was predicted 

through simulations and measured through compression tests. Both the analyses and experiments have 

confirmed that the wavy shells are imperfection insensitive. Comparisons between the wavy shells and 

circular shells have also confirmed that introducing optimal symmetry-breaking wavy cross-sections can 

significantly reduce the imperfection sensitivity and improve the load-bearing capability of cylindrical 

shells. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The buckling load of circular cylindrical shells subject to ax-

al compression is extremely sensitive to even very small geo-

etric imperfections ( Brush and Almroth, 1975 ). An imperfection

ith amplitude of one shell thickness could reduce the buckling

oad to only 20% of the buckling load of the corresponding pre-

ect shell ( Koiter, 1963 ). This severe sensitivity to imperfections has

een traditionally addressed by using overly conservative safety

actors, resulting in heavy structures, or by stiffening the shells

ith longitudinal and circumferential stiffeners. However, stiffened

hells are difficult to construct and are still somewhat sensitive

o imperfections ( Singer et al., 2002; Hilburger et al., 2006; Jones,

006; Nemeth and Starnes, 1998; Scott et al., 1987 ). Jullien and

raar (1991) proposed an intuitively designed, nearly imperfection-

nsensitive cylindrical shell, called the Aster shell. This shell has

 fluted cross-section consisting of identical convex arcs that pre-

ents the amplification of imperfections under axial compression,

esulting in high knockdown factor and buckling loads ( Jullien and

raar, 1991; Combescure and Jullien, 2015 ). The Aster shell was a

recursor of the present work. 

Instead of following these traditional approaches, a novel ap-

roach to the design of thin cylindrical shells for axial compres-

ion was proposed by Ning and Pellegrino (2015) , who designed
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ptimal symmetry-breaking wavy cross-sections ( wavy shells ) that

liminate the imperfection sensitivity and maximize the buckling

oad for axial compression. 

Ning and Pellegrino (2015) presented this approach and carried

ut a series of numerical studies. Three major assumptions were

ade in this paper. First, the critical buckling mode and one shell

hickness were used as the imperfection shape and amplitude, be-

ause the actual imperfection was unknown before the shell was

abricated. Second, axial compression was applied by uniform ax-

al load rather than uniform axial end-shortening to provide more

onservative buckling loads. Third, the strength of the material

as not considered. A preliminary experimental study on imper-

ection insensitive wavy shells was presented in Ning and Pelle-

rino (2013) . It was found that the wavy shells that had been con-

tructed had larger than expected mid-surface imperfections and

hickness variations. 

The present paper is mainly focused on the experimental val-

dation of this new approach. A fabrication method to construct

recise wavy shells has been developed. The actual mid-surface

mperfections and thickness distributions were measured and were

hen used to predict the experimental behavior of the wavy shells.

he effects of two different ways of applying axial compression on

 shell and the material strength of the shell have also been con-

idered in the present study. 

The present paper is organized as follows. Section 2 outlines

ur method for designing imperfection insensitive wavy shells

nd presents a particular composite wavy shell design obtained

rom this method. A method for fabricating composite wavy shells

s also presented. Section 3 describes a method for measuring
rfection insensitive axially loaded cylindrical shells, International 
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Fig. 1. Cross-section of wavy shell, defined by a finite number of control points. 
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Fig. 2. Cross-section with mirror-symmetry. 
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geometric imperfections in wavy shells. The measured mid-surface

imperfections and thickness distributions are presented, as well

as the Fourier components of the mid-surface imperfections.

Section 4 presents numerical predictions for these composite wavy

shells subject to axial compression. The experimental setup for

testing both wavy shells and circular shells and the results of

these tests are presented in Section 5 . Section 6 compares the

results and concludes the paper. 

2. Imperfection insensitive wavy cylindrical shells 

This section begins by presenting an outline of the method for

designing imperfection insensitive wavy cylindrical shells. The de-

sign of composite wavy shell to be tested is then presented. Lastly,

a method for fabricating the composite wavy shell is presented. 

2.1. Design method 

Fig. 1 shows the cross-section of a wavy cylindrical shell. Imper-

fection insensitive wavy cylindrical shells are designed by search-

ing with an evolutionary algorithm for optimal positions of the

control points, to maximize the minimum among the buckling

loads of geometrically perfect and imperfect wavy shells. The

cross-section was defined by a set of control points, with a NURBS

(Non-Uniform Rational B-Spline) interpolation creating a smooth,

wavy curve through the control points, as shown in Fig. 1 . R, r max ,

and r min are the radius of a reference circle, maximum and mini-

mum radial positions of the control points, respectively. r i denotes

the radial position of the i th control point. The control points are

defined to be radially within a distance �r from a reference cir-

cle of radius R , where �r = r max − R = R − r min . The cross-section

is uniform in the axial direction. 

The wavy cross-section is assumed to be mirror-symmetric with

respect to the x - and y -axes, as shown in Fig. 2 . Therefore, only the

positions of the control points in the first quadrant are required to

define the shape of the cross-section. r q,i and θq,i denote the ra-

dial and circumferential position of the i th control point in the q th 

quadrant, respectively. The control points are defined to be circum-

ferentially equally spaced, i.e., the circumferential position of the

i th control point in the first quadrant is: 

θ1 ,i = 

π(i − 1) 

2(N − 1) 
, (1)

where N is the total number of control points in the first quadrant.

For any chosen candidate cross-section, the objective function

for optimizing the design of the shell is defined as the minimum

among the buckling loads of (i) the geometrically perfect shell ( P 0 ),

(ii) the geometrically imperfect shell obtained by superposing an

imperfection of positive sign onto the perfect shell ( P + ), and (iii)

the shell with an imperfection of negative sign ( P −). Therefore,
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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in( P 0 , P + , P −) was maximized by searching for the optimal values

f the radial positions of the control points, subject to the geomet-

ic constraints described above. 

The buckling loads P 0 , P + , and P − were defined as the first

imit loads on the axial load vs. displacement curves obtained from

hree numerical simulations carried out with the commercial fi-

ite element software Abaqus/Standard (version 6.11) Riks solver

 Simulia Corp, 2011 ). The Evolution Strategy with Covariance Ma-

rix Adaption (CMA-ES) ( Hansen et al., 2003; Hansen, 2011; 2012 )

as employed to carry out the optimization. More details of the

esigning method can be found in Ning and Pellegrino (2015) . 

Three assumptions in the design optimization should be noted.

irst, the shape and amplitude of the imperfection were assumed

o be the critical buckling mode and one shell thickness, respec-

ively. The design method was focused on eliminating the sensi-

ivity of axially loaded cylindrical shells to traditional imperfec-

ions, i.e., geometric mid-surface imperfections, which have been

ommonly studied in the literature on thin shell buckling. Because

he actual imperfections of wavy shells were unknown until these

hells were fabricated, the imperfection shape was chosen to be

he first (critical) buckling mode which is one of the worst imper-

ections ( Jones, 2006; Hilburger et al., 2006 ). The imperfection am-

litude was set equal to the nominal shell thickness. According to

oiter (1963) this amplitude could cause a fivefold decrease in the

uckling load and hence provides a significant challenge for when

earching for imperfection insensitive designs. Both positive and

egative signs for the imperfection amplitude were used, to con-

ider the three types of buckling (stable, unstable, and asymmetric

uckling) which may be exhibited by different shell designs. 

Second, axial compression was applied as a uniformly dis-

ributed axial load. Here it should be noted that axial compres-

ion could be applied either as a uniform axial load or as a uni-

orm end-shortening. These two approaches are not equivalent in

hells with symmetry-breaking cross-sections, hence they will re-

ult in different buckling loads. In general, applying a uniform end-

hortening will lead to higher buckling loads than applying a uni-

orm axial load, because a uniform end-shortening results in larger

oads over longitudinal sections of the shell that, due to a smaller

adius of curvature, have a higher buckling stress. In our previ-

us studies, the loading condition that leads to lower overall buck-

ing loads, i.e., uniform axial load, was used in the optimization. A

ore detailed study of these two loading conditions is presented

n Section 4 . 

Third, any thickness variations of shell wall and any limits on

he material strength were ignored in the optimization in Ning and

ellegrino (2015) ; however, these two factors are incorporated in

he present study. 
rfection insensitive axially loaded cylindrical shells, International 
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Table 1 

Dimensions of wavy shell designs. 

Radius, R 35 mm 

Length L 70 mm 

Maximum deviation from circle, �r 1.5 mm 
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Fig. 3. Cross-section of chosen shell design. 
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In summary, the optimization problem was formulated as fol-

ows: 

aximize : min (P 0 , P + , P −) 

among all wavy shells with mirror-symmetric 

cross-sections, defined by the control variables: 

r 1 ,i , i = 1 , 2 , 3 , . . . 

hat are subject to : 

 r 1 ,i − R | ≤ �r, i = 1 , 2 , 3 , . . . . (2) 

here: 

• P 0 , P + , and P − are respectively the buckling loads of wavy shells

with perfect geometry, imperfect geometry with positive imper-

fection, and imperfect geometry with negative imperfection; 

• the positive imperfection is + t� and the negative imperfection

is −t�. � is the normalized critical buckling mode. 

.2. Composite wavy shell 

In order to minimize the cost and complexity of the test pro-

ram, only small scale test samples were built and tested in the

resent study. The length of the test section of the shell was cho-

en to be 70 mm, and a square aspect ratio was chosen, i.e., the

iameter was equal to the length (70 mm), which is a common

hoice for studies of shell buckling, see for example Arbocz and

abcock (1968) ; Davis (1982) , and Hilburger et al. (2006) . The shell

imensions are summarized in Table 1 . 

Thin-ply carbon fiber composites provided by the North Thin

ly Technology Company were used. A symmetric six-ply laminate,

+60 ◦, −60 ◦, 0 ◦] s , was found to be sufficiently flexible before cur-

ng that it could be used to successfully make shells with the re-

uired corrugated shapes. The particular prepregs that were cho-

en were 30 μm thick unidirectional laminae of T800 carbon fibers

nd ThinPreg 120EPHTg-401 epoxy with a fiber volume fraction

f 50%. The total thickness of the laminate is 30 μm. The fol-

owing nominal lamina properties were measured: E 1 ,nom 

= 127 . 9

Pa, E 2 ,nom 

= 6 . 49 GPa, G 12 ,nom 

= 7 . 62 GPa, and ν12 ,nom 

= 0 . 354 . It

hould be noted that these properties were obtained based on the

ominal lamina thickness, 30 μm. 

The stiffness of a composite laminate can be described by the

ABD” matrix ( Daniel and Ishai, 2006 ): 

 

 

 

 

 

 

A xx A xy A xs B xx B xy B xs 

A yx A yy A ys B yx B yy B ys 

A sx A sy A ss B sx B sy B ss 

B xx B xy B xs D xx D xy D xs 

B yx B yy B ys D yx D yy D ys 

B sx B sy B ss D sx D sy D ss 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

εo 
x 

εo 
y 

γ o 
s 

κx 

κy 

κs 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

N x 

N y 

N s 

M x 

M y 

M s 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

, (3) 

r, in brief, 

A B 

B D 

][
εo 

κ

]
= 

[
N 

M 

]
, (4) 

here εo and κ are the mid-plane strains and curvatures, respec-

ively. N and M denote the mid-plane forces per unit length and

he moments per unit length. The A matrix is the extensional stiff-

ess matrix, relating in-plane loads to in-plane strains; the D ma-

rix is the bending stiffness matrix, relating moments to curva-
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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ures; and the B matrix is the coupling stiffness matrix. The ABD

atrix of the laminate was calculated: 

BD = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

9 . 919 × 10 6 2 . 670 × 10 6 0 0 0 0 
2 . 670 × 10 6 9 . 919 × 10 6 0 0 0 0 

0 0 3 . 625 × 10 6 0 0 0 
0 0 0 0 . 0108 0 . 0099 0 . 0034 
0 0 0 0 . 0099 0 . 0373 0 . 0081 
0 0 0 0 . 0034 0 . 0081 0 . 0125 

⎞ 

⎟ ⎟ ⎟ ⎠ 

, 

(5) 

here the units of the A and D matrices are N/m and Nm, respec-

ively. 

The method of Section 2.1 was used to design a six-ply com-

osite imperfection insensitive wavy shell for our tests. The design

sed 16 control points in the first quadrant and two planes of mir-

or symmetry for the cross-section shape. The cross-section of the

hell is shown in Fig. 3 , and the radial positions of the 16 con-

rol points are presented in Table 2 . This design has buckling loads

f P 0 = 14 . 981 kN, P + = 14 . 908 kN, and P − = 14 . 897 kN. Therefore,

his design has a sensitivity of 0.994 to mid-surface geometric im-

erfections. It should be noted that these buckling loads were ob-

ained based on the critical-mode imperfection, uniform axial load,

nd nominal shell thickness. 

It should be noted that the present study has focused on ex-

eriments on short shells, with a length-to-diameter ratio ( L / D ) of

. Preliminary numerical studies on the effects of varying L were

arried out by Ning (2015) . It was found that in shells with the

ame cross-section as Fig. 3 but L/D = 2 the knockdown factor de-

reased from 0.994 to 0.708. However, when a new optimization of

he cross-section was carried out specifically for the case L/D = 2 ,

sing the method described in Section 2.1 , it was found that the

nockdown factor increased to 0.993. The interested reader is re-

erred to Ning (2015) for more details. 

.3. Shell manufacture 

Three wavy shells were manufactured by laying the compos-

te laminate on a wavy steel mandrel (shown in Fig. 4 ), which

ad been made by a wire electrical discharge machining machine,

ollowed by autoclave curing. To facilitate the separation of the

hell from the mandrel, a layer of 12.5-micron thick Kapton film

as used between the laminate and the mandrel. This film re-

ained bonded to the shell after curing and, being much thinner

nd softer than the composite material, had a negligible effect on

he buckling load. Calculations showed that the change of buckling

oads due to the Kapton film was less than 0.1%, hence the influ-

nce of the Kapton film was ignored. 

The laminate was held under vacuum through the entire cure

rocess. Before separating the shell from the mandrel after curing,

 metal blade and sand paper were used to trim and grind the two
rfection insensitive axially loaded cylindrical shells, International 

tr.2017.02.028 
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Table 2 

Radial positions of 16 control points of chosen shell design. 

Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

r i − R [mm] −1.5 1 .5 −1.5 −1.5 1 .5 0 1 .5 −1.5 −1.5 1 .4 −1.5 −1.2 1 .5 −1.5 1 .1 1 .4 

Fig. 4. Steel mandrel. 

Fig. 5. (a) Wavy shell and (b) circular shell with potted ends. 
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Fig. 6. Thickness distributions of wavy shells (a) 1, (b) 2, and (c) 3. 

Table 3 

Measured thickness distributions of wavy shells. 

Wavy Shell Thickness [ μm ] 

1 166 ± 16 

2 166 ± 22 

3 165 ± 19 

a  

w  

r  

t  

w  

t  

n  

w  

t  

b  

t  

o  

t

3

 

t  
ends of the shell to match the ends of the mandrel. This ensured

that the ends of each shell were flat and parallel to each other. 

In addition to the three composite wavy shells, two circular

cylindrical shells that had the same length ( L = 70 mm), radius

( R = 35 mm), and material as the wavy shells were also made. 

Clamped boundary conditions were obtained by potting the

ends of the shells into room temperature cure epoxy EpoxA-

cast 650, a mineral filled general purpose casting epoxy made by

Smooth-On, Inc. It has a low shrinkage and a low mixed viscosity

for minimal air entrapment. The epoxy was poured into a plastic

cup with open ends held on a piece of flat glass, which guaran-

teed that the cured epoxy had a flat bottom surface. To avoid large

distortions during the potting process, the shells were slid down

on the mandrel which was held on a fixture and then slowly low-

ered into the epoxy, when potting the first end. The potted wavy

and circular shells are shown in Fig. 5 . 

3. Geometric imperfections 

This section first presents the thickness distributions of the

three wavy shells. A photogrametry technique for measuring the

mid-surface imperfections and the results of these measurements

are then presented. 

3.1. Thickness distributions 

The thickness distributions were measured using a micrometer

before potting the shells into epoxy. The thickness was measured
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe

Journal of Solids and Structures (2017), http://dx.doi.org/10.1016/j.ijsols
t the heights of 0 cm, 2 cm, 5 cm and 7 cm on each hill, valley, as

ell as the middle points between the hill and valley of each cor-

ugation, were measured. The thickness at the height of 3.5 cm on

he middle points between the hill and valley of each corrugation

as also measured. Fig. 6 shows the thickness distributions of the

hree wavy shells. The mean and standard deviations for the thick-

ess are listed in Table 3 . Note that the average thicknesses of the

avy shells were around 166 μm, 7.8% thinner than the nominal

hickness of 180 μm. Each shell contained a narrow, longitudinal

and with thickness of around 300 μm, formed by the overlap of

he two ends of the composite laminate, as well as regions where

f much smaller thickness than the average value. The influence of

hickness non-uniformity is discussed in Section 4.4 . 

.2. Measurement of mid-surface imperfections 

The three-dimensional survey technique, which uses a probe

o scan a shell surface, is the main method for measuring shell
rfection insensitive axially loaded cylindrical shells, International 

tr.2017.02.028 

http://dx.doi.org/10.1016/j.ijsolstr.2017.02.028


X. Ning, S. Pellegrino / International Journal of Solids and Structures 0 0 0 (2017) 1–14 5 

ARTICLE IN PRESS 

JID: SAS [m5G; March 24, 2017;2:17 ] 

Fig. 7. Coded and non-coded targets. 
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Fig. 8. Schematic of finding the best-fit position of measured shells. e p is the nor- 

mal distance between the p th measured point and the corresponding point on the 

perfect shell. 
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n  
mperfections ( Singer et al., 2002; Arbocz and Williams, 1977; Ver-

uyn and Elishakoff, 1982 ). However, this is not a feasible method

o measure the wavy shells described in Section 2.2 because they

re rather thin and even a small pressure applied by the probe

ould introduce deformations of the thin shell wall, resulting in

naccurate measurements. Therefore, a non-contact photogramme-

ry technique was chosen to measure the shell geometry. 

The commercial photogrammetry software Photomodeler 6

 EOS Systems, 2004 ) was used with two types of targets. Coded

argets are black circular spots surrounded by black segments of

ings. Each coded target is unique and hence can be detected by

he software. The coded targets were attached to the top and lat-

ral surfaces of the cured epoxy base, see Fig. 7 . Non-coded targets

re circular dots projected onto the shell surface by means of an

CD projector. A thin layer of white paint was sprayed on the shell

urface to increase the contrast and facilitate the detection of the

on-coded targets. 

There are three steps involved in a measurement. In the first

tep the coded targets were photographed by a single Olympus

F350 camera (8 megapixels) and correlated by Photomodeler 6 to

efine a global coordinate system. The shells were rotated between

8 and 23 times such that all coded targets can be photographed

y the camera. The photos were processed with Photomodeler 6.

ll photos included the coded targets on the top surface of the

poxy base, to act as fiducials in the final correlation of all data.

hree non-collinear coded targets on the top surface were picked

o define the O − X − Y plane, and the distance between two of

hese points provided a scale for the measurements. 

The second step obtained the positions of the non-coded tar-

ets, using three cameras pointed in different directions. Photo-

odeler 6 was used to correlate the coded and non-coded targets

n these three photos with all the photos taken in the first step

o calculate their coordinates in the global coordinate system. The

on-coded targets were projected onto a rectangular area of the

hell that include three or four corrugations, as seen in Fig. 7 , and

he shell was rotated multiple times to obtain the complete geom-

try. 

The third step consists in computing the shell mid-surface im-

erfections. It should be noted that the non-coded targets lie on

he shell outer surface. Therefore, the procedure described above

btained the shell outer-surface imperfections, from which the

id-surface imperfections were obtained by subtracting the thick-

ess variations. In this step, only the non-coded targets were used

o compute the mid-surface imperfection. The accuracy of the im-

erfections measured in this way was better than 20 μm. 

The outer-surface imperfections were calculated by compar-

ng the measured positions of the non-coded targets to the
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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uter-surface of an imaginary perfect wavy shell. The position of

he perfect wavy shell was determined by finding the best-fit shell

o the measured data ( Singer et al., 2002 ). This process is schemat-

cally shown in Fig. 8 . 

The method of least squares was adopted to minimize the sum

f the squares of the normal distances from the measured points

o the reference perfect cylinder by varying the rigid-body transla-

ions and rotations of the perfect shell ( Arbocz and Babcock, 1968;

artalas et al., 1990; Hilburger et al., 2006 ). A three-parameter

ransformation was defined in terms of translations in the x and y

irections and a rotation with respect to the z -axis, and the square

f the distance between the measured and the reference shapes

as computed. The coordinate transformation was determined by

olving the following minimization problem: 

Minimize : 

N p ∑ 

p=1 

e 2 p (T x , T y , R z ) 

ubject to : (1) | T x | ≤ 10 mm 

(2) | T y | ≤ 10 mm 

(3) | R z | ≤ π

2 

(6) 

here e p , T x , T y and R z are the normal distance, translations in

he x and y directions, and rotation with respect to the z -axis, re-

pectively. N p denotes the total number of measured points. Be-

ore running the minimization problem, the perfect wavy shell was

anually moved to a position close to the measured cluster of

oints, in order to achieve faster convergence. Therefore, only small

anges for T x , T y and R z , as shown in the constraints in Eq. (6) ,

ere needed. Considering that the explicit mathematical form for
 N p 
p=1 

e 2 p (T x , T y , R z ) was unknown, the minimization problem was

olved by the evolutionary algorithm CMA-ES ( Hansen et al., 2003;

ansen, 2011; 2012 ) for convenience. 

.3. Mid-surface imperfection 

The mid-surface imperfections are plotted in Fig. 9 ; the imper-

ection amplitudes are listed in Table 4 . 

Mid-surface imperfections can be represented by Fourier se-

ies in order to analyze and compare different imperfections. A

ommonly used form of Fourier series for decomposing initial im-

erfections is the half-wave cosine Fourier expansion ( Arbocz and

abcock, 1968; Singer et al., 2002 ): 

(x, θ ) = t nom 

M ∑ 

k =0 

M ∑ 

l=0 

cos ( 
kπx 

L 
)[ A kl cos (lθ ) + B kl sin (lθ )] (7) 

here L and t nom 

are the shell length and nominal thick-

ess, respectively. x and θ denote the axial and circumferential
rfection insensitive axially loaded cylindrical shells, International 
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Fig. 9. Mid-surface imperfection ratio (imperfection divided by nominal thickness) 

distributions of wavy shells (a) 1, (b) 2, and (c) 3. 

Table 4 

Measured amplitudes of mid-surface imperfections of 

wavy shells. μ is the ratio between the imperfection am- 

plitude and nominal shell thickness 180 μm. 

Wavy Shell Imperfection Amplitude [ μm ] μ

1 536 2 .98 

2 374 2 .08 

3 455 2 .53 
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oordinates. k and l are the wave numbers of axial half-cosine

aves and circumferential full-waves, respectively. The Fourier co-

fficients are given by Cartalas et al. (1990) : 

 00 = 

1 

2 πLt nom 

∫ L 

0 

∫ 2 π

0 

ω(x, θ ) dx dθ

A k 0 = 

1 

πLt nom 

∫ L 

0 

∫ 2 π

0 

ω(x, θ ) cos 

(
kπx 

L 

)
d x d θ, k > 0 

A 0 l = 

1 

πLt nom 

∫ L 

0 

∫ 2 π

0 

ω(x, θ ) cos (lθ ) dx dθ, l > 0 

A kl = 

2 

πLt nom 

∫ L 

0 

∫ 2 π

0 

ω(x, θ ) cos 

(
kπx 

L 

)
cos (lθ ) dx dθ, 

k > 0 , l > 0 

B k 0 = 0 , k ≥ 0 

B 0 l = 

1 

πLt nom 

∫ L 

0 

∫ 2 π

0 

ω(x, θ ) sin (lθ ) dx dθ, l > 0 

B kl = 

2 

πLt nom 

∫ L 

0 

∫ 2 π

0 

ω(x, θ ) cos 

(
kπx 

L 

)
sin (lθ ) dx dθ, 

k > 0 , l > 0 (8)

he amplitude of each imperfection component can be computed

rom: 

k,l = 

√ 

A 

2 
kl 

+ B 

2 
kl 

(9)

The mid-surface imperfections in Fig. 9 were decomposed ac-

ording to Eqs. 8 and 9 . The imperfection amplitudes for compo-

ents k = 0 , k = 1 , and l = 0 to l = 50 are plotted in Fig. 10 . The

mplitudes of k ≥ 2 components for all l ’s ranging from 0 to 50

ere much smaller than k ≤ 1, and thus they are not shown in the

gure. 

For example, the peak, second, and third imperfection com-

onents of wavy shell 1 are respectively A 0,0 , A 0 , 24 cos (24 θ ) +
 0 , 24 sin (24 θ ) , and A 0 , 22 cos (22 θ ) + B 0 , 22 sin (22 θ ) , indicating that

he major imperfection components of wavy shell 1 are uniform

long the axial direction. The k = 0 , l = 22 and k = 0 , l = 24 com-

onents are among the largest three imperfection components of

avy shell 2. However, both wavy shell 2 and 3 have large axial

alf-cosine ( k = 1 ) imperfections. 

. Refined predictions for wavy shells 

The simulations carried out during the initial experiment design

hase, presented in Section 2.1 , were refined by accounting for the

easured thickness distribution and the mid-surface imperfections

f each tested wavy shell. 
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Fig. 11. Abaqus models for (a) uniform axial load and (b) uniform end-shortening. 
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Table 5 

Computed buckling loads for wavy shells of uniform thickness and mid-surface im- 

perfection based on critical buckling mode. μ is the imperfection amplitude divided 

by the nominal shell thickness, t nom = 180 μm. 

P 0 [kN] μ min( P + , P −) [kN] 

Uniform axial load 10 .46 2 10 .34 

2 .5 10 .37 

3 10 .39 

Uniform end-shortening 10 .44 2 13 .06 

2 .5 12 .98 

3 12 .91 
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.1. Adjusted material properties 

The material properties in Eq. (5) were computed based on

he nominal shell thickness 180 μm; however, the measured aver-

ge shell thickness of the three wavy shells was 166 μm. Hence, it

s necessary to modify the ABD matrix to account for the reduc-

ion in shell thickness. This study followed Hilburger and Starnes

2001) who assumed that any variations in shell thickness result

rom a variation in only the volume of epoxy rather than the fiber

olume, and used the rule of mixtures to adjust the lamina proper-

ies for the measured shell thickness. Hence, the modified lamina

roperties were obtained from: 

V f = 

V f,nom 

α

E 1 = 

1 

α
E 1 ,nom 

E 2 = 

α(1 − V f,nom 

) 

α − V f,nom 

E 2 ,nom 

 12 = 

α(1 − V f,nom 

) 

α − V f,nom 

G 12 ,nom 

ν12 = ν12 ,nom 

(10) 

here α is the ratio between the measured and nominal laminate

hickness, and α is 0.922 for the wavy shells tested in the present

tudy. Using the classical lamination theory, the modified ABD ma-

rix for α = 0 . 922 was calculated as: 

BD (α = 0 . 922) = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

9 . 928 × 10 

6 2 . 668 × 10 

6 0 

2 . 668 × 10 

6 9 . 928 × 10 

6 0 

0 0 3 . 630 × 10 

6 

0 0 0 

0 0 0 

0 0 0 

here the units of the A and D matrices are N/m and Nm,

espectively. 

.2. Finite element models 

Recall from Section 2.1 that in the Abaqus model of the shell,

he bottom edge is fully clamped and the top edge nodes have

nly one degree of freedom, i.e., the displacement in the axial di-

ection. Also recall that there are two ways to apply axial compres-

ion: uniform axial load and uniform end-shortening, as shown in

ig. 11 . Both loading conditions were considered and uniform end-

hortening was chosen as it provides a more accurate representa-

ion of the experiments. 
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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0 0 0 

0 0 0 

0 0 0 

093 0 . 0084 0 . 0029 

084 0 . 0317 0 . 0069 

029 0 . 0069 0 . 0106 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(11)

In order to set up this condition, a rigid plate was defined and

 concentrated axial load was applied to the rigid plate through

 reference point as illustrated in Fig. 11 (b). The rigid plate can

nly move axially without any transverse displacements or rota-

ions, i.e., U y = U z = R x = R y = R z = 0 . The top edge of the shell was

onstrained to the rigid plate by the “tie constraint” in Abaqus

AE/Standard ( Simulia Corp, 2011 ), which can guarantee that the

op edge has the same translational displacements and rotations as

he rigid plate. Therefore, the top edge of the shell can only move

long the axial direction. The bottom edge of the shell was fully

lamped, i.e., U x = U y = U z = R x = R y = R z = 0 . 

The buckling loads were computed by carrying out a load-

isplacement arc-length incremental, geometrically nonlinear anal-

sis, using the Riks solver in Abaqus CAE/Standard. The first limit

oad in the load-displacement curve was defined as the buckling

oad. The increments of the axial load in the analysis were lim-

ted between 50 N and 100 N. All analysis models consisted of

round 30,0 0 0 reduced integration quadratic thin-shell elements

S8R), where the element size was determined by a mesh sensi-

ivity study. 

.3. Buckling loads based on uniform thickness and critical-mode 

mperfections 

The buckling loads of the three wavy shells were computed

sing uniform thickness models with the measured average shell

hickness of 166 μm. The imperfection shape was chosen to be the

ritical buckling mode, obtained from a linear eigenvalue buck-

ing analysis in Abaqus/Standard, and several different imperfection

mplitudes were considered. The imperfection was introduced in

he model by superposing the critical buckling mode on the mesh

f the perfect shell and modifying the positions of its nodes in the

odel. Imperfections with both positive and negative amplitudes

ere considered. 

Simulations for both cases of uniform axial load ( Fig. 11 (a)) and

niform axial end-shortening ( Fig. 11 (b)) were carried out using

he modified ABD matrix in Eq. (11) . The buckling loads of geo-

etrically perfect shells, P 0 , and imperfect shells of various imper-

ection amplitudes, P 1 and P + , are summarized in Table 5 . 

The buckling loads of the perfect shells for the cases of uni-

orm axial load and uniform end-shortening were very close. The

nockdown factors for the cases of uniform axial load are 0.991

r even higher for larger imperfections. In the case of imperfect

avy shells subject to uniform end shortening the buckling loads

re over 20% higher than the perfect shell. 
rfection insensitive axially loaded cylindrical shells, International 
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Table 6 

Computed buckling loads that account for measured thick- 

ness only. The shells were under uniform end-shortening. 

Wavy Shells Buckling Loads 

Wavy shell 1 10.36 kN 

Wavy shell 2 10.24 kN 

Wavy shell 3 9.61 kN 

Table 7 

Computed buckling loads that account for both measured 

thickness and mid-surface imperfection distributions. The 

shells were under uniform end-shortening. 

Wavy Shells Buckling Loads 

Wavy shell 1 13.13 kN 

Wavy shell 2 12.85 kN 

Wavy shell 3 12.58 kN 
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Table 8 

Computed buckling loads for wavy shells with the upper plate free to rotate. The 

unit is kN. 

Perfect Wavy 

Shell 

Non-Uniform 

Thickness Only 

Non-Uniform Thickness and 

Mid-Plane Imperfection 

10 .44 Wavy Shell 1 9 .98 12 .59 

Wavy Shell 1 10 .16 12 .86 

Wavy Shell 3 9 .68 11 .95 
It is challenging to apply a uniform axial loading in an ex-

periment on a wavy shell. Axial compression is usually applied

by means of a stiff platen connected to the cross bar of a ma-

terials testing machine, which moves in the axial direction; see

for example Wu et al. (2013) ; White et al. (2015) , and Hilburger

et al. (2012) . Therefore, the present study adopted this estab-

lished experimental setup, and the uniform end-shortening condi-

tion shown in Fig. 11 (b) was used for comparison to the experi-

ments. It should be noted that, although ideally the platen should

not rotate at all, in real situations it may rotate by a small amount

due to misalignments between shell and platen, non-uniform con-

tact surface, etc. ( Wu et al., 2013; White et al., 2015; Hilburger and

Starnes, 2001 ) It was found that the influence of the rotation of

the upper platen was rather small for the designed wavy shells,

and more details are provided in Section 4.5 . 

4.4. Buckling loads based on actually measured thickness and 

imperfections 

The measured thickness and imperfection distributions shown

in Figs. 6 and 9 were incorporated in the finite element models

to further improve their accuracy. The non-uniform thickness was

defined by assigning a modified local ABD matrix to the shell sec-

tions. The shell model was partitioned into around 600 patches,

and the thickness in each patch was assumed uniform and equal

to measured local average thickness within the patch. The ratio

between the local average thickness and the nominal thickness, α,

was first computed, and the lamina properties were adjusted using

Eq. (10) . The local ABD matrix was calculated by using the classical

lamination theory and then assigned to the corresponding patch in

the model. 

To study the influence of non-uniform thickness, the measured

thickness distributions ( Fig. 6 ) were incorporated in the finite el-

ement models using the method described above. The mid-plane

imperfections were not considered. The results are presented in

Table 6 ; recall that the buckling load of the perfect wavy shell,

which has a uniform thickness of 166 μm, is 10.44 kN. Therefore,

even though each shell contains a thicker longitudinal band, the

buckling loads in Table 6 are all lower than the uniform thickness

value. The largest decrease was 8% for wavy shell 3, indicating that

the influence of non-uniform thickness is rather small. 

The buckling loads of the imperfect shells with both non-

uniform thickness and mid-surface imperfections were computed,

and the results are presented in Table 7 . For reference, recall that

the buckling load of the perfect wavy shell is 10.44 kN. Note that

the buckling loads after introducing the imperfections are signifi-

cantly larger, showing that the wavy shells were not sensitive to

mid-plane imperfections. 
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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Typical load versus end shortening curves are plotted in Fig. 12 .

ote that the perfect shell in the plot is the shell with uni-

orm thickness of 166 μm and no mid-surface imperfection. The

oad vs. end shortening curve for the imperfect shell was com-

uted based on the measured non-uniform thickness and mid-

urface imperfection of wavy shell 3. The perfect shell buckles at

0.44 kN as the axial load drops to 10.29 kN when it reaches

he first limit load, as shown in the detail image. This is a nearly

table postbuckling behavior. The non-linearity due to imperfec-

ions leads to a smooth load-end shortening curve and prevents

he decrease in axial load at around 10.44 kN, resulting in a higher

uckling load than the perfect wavy shell. 

It should be noted that the Riks solver stopped shortly after

nding the first limit load. This was not a problem for the analysis,

ince only the buckling loads, defined as the first limits loads on

he equilibrium paths, were of interest for the present study. For

he perfect wavy shell, the Riks solver was able to go beyond the

rst instability, into the postbuckling regime, as shown in Fig. 12 .

or the imperfect structures, the actually measured failure loads

ere lower than the computed buckling loads, due to failure of

he material, as discussed in Section 4.6.2 . 

.5. Buckling loads of wavy shells with upper plate free to rotate 

The experiments carried out in this study used uniform end-

hortening boundary conditions in which the upper plate was not

llowed to rotate, as shown in Fig. 11 (b). Simulations with the up-

er plate free to rotate were also conducted in order to study the

nfluence of the rotation of the upper plate. To achieve this bound-

ry condition, the reference point located at the center of the up-

er plate was fixed only in the Y and Z directions, i.e. U y = U z = 0 .

herefore, the upper plate can move axially and rotate in all direc-

ions. The other parameters and setup in these simulations were

he same as for the model shown in Fig. 11 (b). 

Three sets of simulations were performed for this boundary

ondition, and the results are summarized in Table. 8 . First, the

erfect wavy shell with uniform thickness (166 μm) and with-

ut mid-plane imperfections was simulated. It was found that the
rfection insensitive axially loaded cylindrical shells, International 
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Fig. 13. Flow chart of failure analysis for critical region. 
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a  

1

uckling load was 10.44 kN, the same as the value obtained for

on-rotating upper plate. 

Second, the measured non-uniform thickness distributions were

onsidered, but without including the mid-plane imperfections.

he differences between the buckling loads of rotating and non-

otating upper plates ( Table. 6 ) were small, and the maximum dif-

erence was only 3.67%. Compared to the perfect wavy shell, the

uckling loads slightly decreased due to the non-uniform thick-

ess. The largest decrease was only 8% for wavy shell 3, indicating

hat the influence of non-uniform thickness is also rather small for

his boundary condition. 

Third, both the measured thickness distributions and mid-plane

mperfections were included in the models. Compared to the non-

otating upper plate in Table. 7 , the rotating upper plate slightly

educed the buckling loads. However, its influence was also rather

mall, and the maximum decrease was only 5%. Recall that the

uckling loads of perfect wavy shell is 10.44 kN. Therefore, the

hells are not sensitive to mid-plane imperfections for the rotat-

ng upper plate boundary condition. 

.6. Failure analysis 

.6.1. Method 

The maximum stress theory and the first ply failure theory

ere used to estimate the failure load of the three wavy shells. To

educe computational time, it was assumed that in each test shell

he critical region is the particular element in the finite element

esh where the maximum longitudinal compressive strain occurs.

or this specific element a failure analysis was carried out by com-

aring the longitudinal stress | σ 1 |, transverse stress | σ 2 |, and shear

tress | τ | in each layer to the longitudinal compressive strength

 1 c , transverse compressive strength F 2 c , and shear strength F 6 . The

ailure analysis procedure is illustrated in Fig. 13 . The analysis was

epeated until any one of the stress components reached the cor-

esponding strength. 

The lamina stresses can be computed from ( Daniel and Ishai,

006 ): 

 σ ] k 1 , 2 = [ T ] k ([ Q ] k x,y [ ε 
o ] x,y + z[ Q ] k x,y [ κ] x,y ) (12)
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here [ T ] k and [ Q] k x,y are the transformation matrix and trans-

ormed stiffness matrix of the k th layer: 

 T ] k = 

⎛ 

⎝ 

cos 2 θk sin 

2 θk 2 cos θk sin θk 

sin 

2 θk cos 2 θk −2 cos θk sin θk 

− cos θk sin θk cos θk sin θk cos 2 θk − sin 

2 θk 

⎞ 

⎠ 

(13) 

 Q] k x,y = [ T −1 ] k 

⎛ 

⎝ 

E 1 
1 −ν12 ν21 

ν12 E 1 
1 −ν12 ν21 

0 

ν12 E 1 
1 −ν12 ν21 

E 2 
1 −ν12 ν21 

0 

0 0 G 12 

⎞ 

⎠ [ T ] k (14)

ere θ k denotes the fiber angle of layer k . [ εo ] x,y and [ κ] x,y are

he transformed mid-surface strain and curvature. z is the distance

etween the mid-surface of the k th layer and the laminate mid-

urface. The strains and curvatures in the critical region for any

iven load P were obtained from the analysis of Section 4.4 , i.e.,

he shell model that accounts for the measured thickness and mid-

urface imperfections. The stresses in each layer were calculated

rom Eq. (12) , using the local ABD ( α). 

The composite material used in this study consists of nomi-

ally 30 μm thick unidirectional laminae of T800 carbon fibers and

hinPreg 120EPHTg-401 epoxy with a nominal fiber volume frac-

ion of 50%. The strength of the lamina was estimated based on

he shear strength, F ms = 94 . 9 MPa, of the ThinPreg 120EPHTg-401

poxy provided by the North Thin Ply Company ( The North Thin

ly Company, 2013 ). 

The in-plane shear strength of a unidirectional composite is de-

ermined by the matrix shear failure and can be predicted from

 Daniel and Ishai, 2006 ): 

 6 = 

F ms 

k τ
(15) 

here F ms is the matrix shear strength and k τ is the shear stress

oncentration factor. Assuming the shear modulus of the matrix to

e much smaller than the shear modulus of fiber, k τ is given by

 Daniel and Ishai, 2006 ): 

 τ = 

1 − V f 

1 − (4 V f /π ) 1 / 2 
(16) 

ere the volume fraction V f accounts for the difference between

he measured and nominal thickness, and it can be calculated by

q. 10 . 

The longitudinal compressive strength is related to the initial

ber misalignment ( Daniel and Ishai, 2006 ): 

 1 c = 

F 6 
φ

(17) 

here φ is the initial fiber misalignment that was measured as

.9 ° for the composite used in the present study. 

The transverse compressive strength F 2 c cannot be estimated.

ince F 2 c is usually in the range of 200 to 228 MPa for car-

on/epoxy unidirectional composite ( Daniel and Ishai, 2006 ), the

alue F 2 c = 200 MPa was assumed. 

.6.2. Results 

The ratios between the stress components and the correspond-

ng strengths in the critical region of wavy shell 1 are plotted in

ig. 14 . All laminae are subject to compression in both longitudi-

al and transverse directions. According to Fig. 14 , layer 5 ( −60 ◦)

s predicted to be the first to fail by shearing at about 11.90 kN. 

The same analyses were carried out also for wavy shells 2 and

. It was found that shell 2 would fail by shearing in layer 5 ( −60 ◦)

t 11.65 kN and shell 3 would fail by shearing in layer 6 (60 °) at

1.78 kN. 
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Fig. 14. Ratio between stress and corresponding strength for each layer of laminate of wavy shell 1. Layer 1 is on the outer surface of the shell. 

Table 9 

Computed critical loads for elastic buckling and material failure. 

Wavy Shell Elastic Buckling [kN] Material Failure [kN] 

1 13 .13 11 .90 

2 12 .85 11 .65 

3 12 .58 11 .78 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Experimental setup for compression tests. 
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a  
The difference between the buckling load and the failure load

of a shell should be clarified. The material strength, as well as any

kind of nonlinear material behavior, were not considered in any of

the buckling analyses, e.g. when computing the load-displacement

curves shown in Fig. 12 . Table 9 presents the predicted failure

loads for the three test wavy shells. The lower of the two values,

i.e., the material failure load, will be the actual failure load for each

shell. It should be noted that the material failure loads are larger

than the buckling load of the perfect wavy shell. Therefore, it is

expected that the actual wavy shells will carry at least 100% of the

buckling load of the perfect wavy shells, despite the existence of

geometric imperfections. 

5. Experiments 

The three wavy shells, as well as two circular shells were tested.

The experimental setup is described and the test results are pre-

sented in the following sections. 

5.1. Test setup 

Fig. 15 shows the setup for the compression tests that were car-

ried out. An Instron 5500 Series materials testing machine with

a 50 kN load cell was used to conduct the compression tests.

The displacement rate was 1 mm per minute and each test took

about 30 seconds. The Vic3D digital image correlation (DIC) sys-

tem ( Correlated Solutions, 2010 ) was used to record shell deforma-

tions before structural collapse. A Phantom v310 high speed cam-
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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ra was used to capture the failure process. The high speed camera

as pointed toward the critical region predicted by the analysis of

ach shell, as discussed in Section 4 . The camera speed was 30 0 0

rames per second; the total recording time was about 10 seconds

nd the recording was manually triggered when the compressive

oads reached 9.5 kN. 

.2. Wavy shells 

The buckling loads of the perfect wavy shell and the predicted

nd measured failure loads of the wavy shells are presented in
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Table 10 

Predicted and measured failure loads for wavy shells. The buckling load of the per- 

fect wavy shell was computed based on the uniform thickness of 166 μm, which is 

the measured average thickness. 

Buckling Load [kN] Failure Load [KN] 

(Perfect Shell) Prediction Test 

Wavy Shell 1 10 .44 11 .90 11 .48 ± 0.03 

Wavy Shell 2 11 .65 11 .68 ± 0.03 

Wavy Shell 3 11 .78 11 .30 ± 0.03 
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Fig. 16. Load-time curve for wavy shells. 
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able 10 . All wavy shells collapsed at loads higher than the buck-

ing load of the perfect wavy shell, confirming that the design is

mperfection insensitive. Failure of all three shells was triggered

y local material failure, as expected from Section 4.6.2 , and it oc-

urred at a load above the predicted buckling load of the geometri-

ally perfect wavy shell. The failure loads of the three shells were

ery consistent as the maximum load was only 3.4% higher than

he minimum one. 

The load-time curves of the three wavy shells are plotted in

ig. 16 . The compressive load on wavy shells 1 and 3 increased

onotonically until they collapsed. The load on wavy shell 2

onotonically increased up to 11.58 kN, and dropped to 11.51 kN

efore starting to increase again, up to the failure load of 11.68

N. The accuracy of the measured failure loads in Table 10 was

stimated from the accuracy of the load cell, which is ± 0.25%

 Instron, 2005 ). 

The acoustic emissions of the three wavy shells during loading

ere recorded and plotted in Fig. 17 . The acoustic emission tech-

ique is a convenient tool to study damage initiation and progres-

ion ( Agarwal et al., 2006 ). The acoustic emission of wavy shells 1

nd 3 shows only one high-amplitude event, corresponding to the

tructural collapse. The acoustic emission of wavy shell 2 shows

hree high-amplitude events. The third event corresponds to the

tructural collapse. The first and second events correspond to the

wo decreases in load in the load-time curve of this shell, as shown

n Fig. 16 . It is generally accepted that the fracture of fibers can

esult in high-amplitude events ( Agarwal et al., 2006 ). Therefore,

p to two local fiber-failure events occurred before the final col-

apse of wavy shell 2. These two local failures did not propagate

mmediately, and the shell was able to carry higher compressive

oad until the structural collapse occurred. For wavy shell 2, the

oad corresponding to the third high-amplitude event (structural

ollapse) was defined as the failure load. 
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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The deformation of each shell was recorded by the 3D DIC sys-

em and a typical out-plane deformation field is plotted in Fig. 18 .

t small loads the shell expanded outwards ( Fig. 18 (a)); at larger

oads short wavelength waves in the axial direction appeared in

ne corrugation ( Fig. 18 (b)). Note that these small buckles are

learly visible even when the axial loads were smaller than the

uckling load of the perfect wavy shell. And also note that these

uckles did not significantly change when the loads were increased

eyond the perfect buckling load ( Fig. 18 (c)) until the shell failed.

hese observations suggest that for this imperfection insensitive

avy shell imperfections lead to a stable post-buckling behavior.

imilar observations were made on the other two shells, confirm-

ng this general trend. 

A typical failure process recorded by the high-speed camera

n wavy shell 2 is shown in Fig. 19 . Fig. 19 (b) shows that the

hell failed locally, and this local failure triggered the collapse of

he whole structures ( Fig. 19 (c)). Significant delamination was ob-

erved when the shell was unloaded. These observations conform

ith the failure predictions in Section 4 . 

The predicted critical regions, where the axial compressive

train is maximum, along with the observed kind band, are shown

y circles in Fig. 20 . The initial failure region of wavy shell 1 was

ot captured by the high-speed camera, but its kink band went

hrough the critical regions predicted by the failure analysis. The

nitial failure region of wavy shell 2 was located on the same cor-

ugation and at about the same height as predicted by the failure

nalysis. Three local initial failure regions were observed on wavy

hell 3, and two of these regions were on the predicted corruga-

ion. The predicted critical region is about 1 cm higher than the

bserved initial failure regions. 

.3. Circular cylindrical shells 

Two composite circular cylindrical shells of the same radius and

ength as the wavy shells were made and tested. The thickness
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Fig. 18. Out-plane deformation of wavy shell 2 under the axial load of (a) 3.985 kN, (b) 9.536 kN, and (c) 11.626 kN. 

Fig. 19. Three consecutive images of wavy shell 2 recorded by the high speed camera (a) before collapse, (b) during collapse, and (c) after collapse. The initial failure region 

is marked by a rectangle in (b). 
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and imperfection distributions had been measured before the com-

pression tests. The results are summarized in Tables 11 and 12 . Al-

though the thickness of the circular shells was more uniform and

the imperfection amplitudes were smaller than the wavy shells,

the measured buckling loads were much lower than the buckling

load of the perfect circular cylindrical shell. The average buckling

load was 2.21 kN, i.e. only 19.3% of the average failure load of the

wavy shells. The highest knockdown factor is only 0.589, indicating

a large imperfection sensitivity. 

Fig. 21 shows the typical buckling shape of the circular shells.

It can be seen that the circular shells buckled into the classical

diamond shape. No material failure was observed after unloading,

indicating that the circular shells do not fully utilize the strength

capacity of the composite material. 

6. Conclusion 

A precise fabrication technique for cylindrical shells with wavy

cross-sections has been developed, and clamped boundary con-

ditions was achieved without introducing large imperfections. In-

stead of using traditional three-dimensional survey systems, a pho-

togrammetry technique was developed to measure the geometric

imperfections of our shells. Three wavy cylindrical shells and two

circular cylindrical shells were fabricated and tested. 

The behavior of the wavy shells under axial compression was

predicted, based on the measured thickness and mid-surface im-

perfection distributions. The buckling load of the perfect wavy

shell, i.e., a wavy shell with uniform thickness of 166 μm and

without mid-surface imperfections, was calculated as 10.44 kN.

The mid-surface imperfections and non-uniformity of thickness
Please cite this article as: X. Ning, S. Pellegrino, Experiments on impe
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ere then incorporated in the finite element models to compute

he buckling loads of the three wavy shells that had been built.

he predicted buckling loads of the three actual shells, i.e., intro-

ucing the measured imperfections in the analysis, were between

2.58 and 13.13 kN. It should be noted that these loads are actu-

lly larger than the buckling load of the perfect wavy shell; this

esult confirmed that the wavy shells are not sensitive to imper-

ections. The material strength of the manufactured shell was es-

imated and failure analyses based on the maximum stress failure

riterion were carried out. It was predicted that the three wavy

hells can reach the material strength and collapse at 11.90, 11.65,

nd 11.78 kN, respectively, due to shearing in the ± 60 o layers. The

nitial failure regions were also predicted. 

Compression tests on three wavy shells and two circular cylin-

rical shells were carried out. A DIC system, high-speed camera,

nd microphone were employed to record the shell responses dur-

ng the tests. The three wavy shells collapsed at compressive loads

f 11.48 kN, 11.68 kN, and 11.30 kN, respectively. The difference

mong the three failure loads was only 3.4%, and the overall dis-

repancy between the measured and predicted failure loads was

ess than 4.1%. The shell deformations obtained by the DIC sys-

em showed that axial waves appeared at a low load and did not

hange wavelength until the shells collapsed. The high-speed cam-

ra was able to capture the initial failure regions of wavy shells

 and 3. Wavy shell 1 failed by a kink-band going through the

redicted critical region. The positions of the initial failure regions

atched well with the predicted critical regions. Significant delam-

nation was observed after unloading all the wavy shells. 

The measured average buckling load of the circular cylindri-

al shells was only 19.3% of the average failure load of the wavy
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Fig. 20. Comparison of critical regions between experiments (top) and simulations (bottom) for wavy shells (a) 1, (b) 2, and (c) 3. The simulations show the axial strain 

fields. 

Table 11 

Measured thickness and imperfections of circular shells. 

Shells Thickness [ μm ] Imperfection Amplitude [ μm ] μ

Circular shell 1 176 ± 9 257 1 .43 

Circular shell 2 176 ± 13 394 2 .19 

Table 12 

Measured buckling loads and knockdown factors of circular shells. 

Shells Buckling Load 

(perfect) [kN] 

Measured Buckling 

Load [kN] 

Knockdown factor 

Circular shell 1 4 .06 2 .39 0 .589 

Circular shell 2 2 .03 0 .499 
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Fig. 21. Typical buckling shape for circular shells. 

 

t  

w  

w  

c  

p  

l  
hells. The highest knockdown factor for the circular shells was

nly 0.589. 

The experiments have shown that the actual wavy shells were

ble to carry a load larger than the buckling load of the ideal, per-

ect wavy shell. Therefore, it is concluded that introducing optimal

ymmetry-breaking wavy cross-section, as proposed in our original

tudy ( Ning and Pellegrino, 2015 ), can eliminate the sensitivity of

uckling loads to geometric imperfections. The wavy shells failed

t an average load of 11.49 kN, 420% higher than the measured av-

rage buckling load of the circular shells, showing that the optimal

ymmetry-breaking wavy cross-section has significantly improved

he load-bearing capability of cylindrical shells. 
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It should be noted that in the experiments the upper plates of

he shells were not free to rotate and their axial displacements

ere uniform. The loading method with upper plate free to rotate

as not investigated experimentally. However, simulations were

arried out to account for the boundary condition of rotating up-

er plate. It was found that the differences between the buckling

oads of rotating plate and non-rotating plate were rather small.
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Therefore, it can be confirmed that the improvement in the buck-

ling loads of wavy shells was not due to the method of applying

axial compression. 

It should also be noted that the experimental studies were lim-

ited to short cylindrical shells with length-to-diameter ratio ( L / D )

of 1 and that numerical studies were performed on shells with

L / D up to 2. It would be interesting to carry out experiments on

shells with larger L / D in the future. It would also be an interest-

ing future direction to study the performance of wavy shells under

other loading conditions, such as external pressure, shearing, and

combined loading. 
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