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1. Introduction

Commercial finite element codes currently allow the analysis of
corrugated and stiffened cylindrical shells; however, detailed sim-
ulations are computationally intensive [1]. Typically, the overall
dimensions of a cylindrical shell are much larger than the space
between stiffeners or the wavelength and amplitude of corruga-
tions. For example, a corrugated shell designed by NASA [2] had
a diameter of 3 m, with a corrugation wavelength and amplitude
of only 11.4 and 1.1 cm, respectively. Therefore, very small shell
elements are needed to accurately mesh the shell geometry, lead-
ing to lengthy computations. This high computational effort has
been the major constraint on the use of finite element analysis in
the optimization of corrugated and stiffened shells [1].

A variety of methods have been introduced to reduce the com-
putational effort required for the buckling analysis of corrugated
and stiffened shells. A common approach is to replace their actual
shell cross-section with an equivalent, uniform shell. The smeared-
out method is a simple method to compute the equivalent proper-
ties, and it has been used in the buckling analysis of both corru-
gated and stiffened shells since the 1960s [2–5]. In this method
discrete stiffeners or corrugations are smeared over a smooth sur-
face to replace the original shell geometry with an equivalent,
homogeneous orthotropic shell [6].

Motivated by recent studies on corrugated morphing wings,
various homogenization methods have been developed to obtain
more rigorous equivalent stiffness properties than those provided
by the smeared-out method, see Refs. [7–12]. In these methods,
strains and curvatures are applied independently on a single corru-
gation (representative unit cell) and, exploiting the overall period-
icity of the structure, the corresponding reaction forces and
moments at the boundaries of the unit cell are computed either
analytically or numerically. The equivalent stiffness properties of
the homogenized shell are then calculated from the load-
displacement relations of the representative unit cell.

Both the smeared-out and homogenization methods are effec-
tive in reducing significantly the computational effort required
by a finite element analysis because a much coarser mesh can be
utilized for the analysis, due to the simple geometry of the equiv-
alent shells. However, these two methods are valid only if the shell
buckles in a global mode, i.e., only if the buckling wavelength is
much longer than the wavelength of the corrugations or the dis-
tance between the stiffeners [1,6]. It is well know that these meth-
ods cannot be used to capture local skin or stiffener buckling or to
calculate stresses in the shell [13].

Axisymmetry of shells of revolution has been exploited in vari-
ous approaches to reduce computational costs of buckling analyses
on such shells. For example, Combescure and co-workers devel-
oped special axisymmetric finite elements and used Fourier series
analysis to compute critical buckling loads [14–16]. These specific
elements can analyze shells with Fourier-mode geometric and
thickness imperfections [14,17]. This feature allows buckling anal-
ysis on corrugated cylindrical shells, in which corrugations are rep-
resented by superposition of several Fourier-mode imperfections.
It has been reported that the computational cost of this method
is several orders of magnitude lower than general-purpose three-
dimensional finite element codes [16]. However, to the best of
our knowledge, this method is not available in widely used com-
mercial software and it requires special-purpose elements. It
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Fig. 1. Rotationally periodic 2D truss structure with 6 repeating portions, w ¼ 2p=6
is the angle subtended by the repeating portion [27].
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should also be noted that corrugations with non-Fourier shapes
can only be approximated by superposition of several Fourier
modes, which could lead to inaccurate results. Another highly effi-
cient method, called ‘‘very large finite element” method, was
developed by Steele and co-workers to analyze shells of revolution,
in which shells are divided into large sections and then analyzed
independently using an asymptotic-numeric approach [18–20].
This method was able to reduce the computational time by a factor
of 10 [18]. However, this method also requires special elements
and, to the best of our knowledge, has not been applied to shells
with intricate corrugations or stiffeners.

An alternative approach to the buckling analysis of corrugated
and stiffened shells was developed in the 1980s by Williams and
co-workers. These authors developed a stiffness matrix method
that treated a shell as an assemblage of flat plates connected along
their common longitudinal edges [21–24]. In this method, the stiff-
ness matrix for each plate is computed from flat plate theory, and
the buckling loads and buckling modes are obtained by solving an
eigenvalue problem. The computer program VIPASA based on this
method was found to be much more efficient than general-purpose
finite element programs [24,25]. VIPASA can analyze both flat and
cylindrical corrugated and stiffened shells.

A unique feature of the stiffness matrix method is that, based on
the periodicity of corrugated or stiffened shells, the buckling mode
of a repeating portion can be expressed as a product of a complex-
valued exponential term times the buckling mode of any repeating
portion [26,27]. This relation makes it possible to condense the full
stiffness matrix of the whole shell into a smaller matrix related to
only a single repeating portion. However, this method can only
analyze corrugated and stiffened shells consisting of flat plates.
Shells with curved walls, e.g., sinusoidally corrugated shells, must
be approximated by a series of flat panels. In addition, it should be
noted that in this method the buckling modes are assumed to vary
sinusoidally along the corrugations or stiffeners. Therefore, this
method could provide inaccurate results if the shells are short
and/or clamped in the longitudinal direction.

Another way of exploiting structural periodicity is the Bloch
wave method for predicting the onset of buckling of infinitely peri-
odic two- or three-dimensional structures, which was developed in
the 1990s by Triantafyllidis and co-workers [28–30]. This method
has been one of the major tools for the buckling analysis of cellular
structures such as honeycombs [31], porous solids [32], and foams
[33]. The Bloch wave method is based on the fact that the buckling
modes of an infinitely periodic structure take the form of the Bloch
wave propagation, which is the product of a complex-valued plane
wave exponential term multiplied by a function with the periodic-
ity of one repeating unit cell [34]. Hence, the buckling loads and
corresponding eigenmodes can be computed by performing eigen-
value analyses on a single unit cell whose boundaries are coupled
by the Bloch relations rather on the whole structure, resulting in a
significant reduction of computational effort. In addition, the Bloch
wave method can analyze structures with intricate geometry and
materials, such as holes, cut-out, and composites, without using
homogenization methods.

In this paper we propose an efficient computational method for
predicting the onset of buckling of corrugated/stiffened cylindrical
shells subject to axial compression. Our method is a modification
of the Bloch wave method based on the stiffness matrix method
by Williams and co-workers, to make it applicable for the buckling
analysis of rotationally periodic structures. We have implemented
the method in the commercial finite element code Abaqus and we
have also developed an efficient algorithm to perform the
computations.

The paper is organized as follows. Section 2 reviews the stiff-
ness matrix method for rotationally periodic structures and the
theory of the Bloch wave method. Section 3 presents the Bloch
wave method for corrugated/stiffened cylindrical shells. A method
for implementing the proposed method in Abaqus with also an
algorithm for computing the critical buckling loads are presented
in Section 4. Several example analyses have been carried out with
our Bloch wave method, to analyze the buckling behavior of corru-
gated and stiffened cylindrical shells. The results are presented and
compared to nonlinear full finite element analyses in Section 5.
Section 6 concludes the paper.

2. Background

This section presents brief reviews of the stiffness matrix
method for the buckling analysis of rotationally periodic struc-
tures, and the theory of the Bloch wave method for infinitely peri-
odic structures. The similarities and differences between these two
methods are also discussed. The reader is referred to Refs. [21–
24,26–30] for details of the stiffness matrix method and the Bloch
wave method, respectively.

2.1. Stiffness matrix method for rotationally periodic structures

The buckling problem of a rotationally periodic structure can be
expressed as an eigenvalue problem:

KcðkcÞeUc ¼ 0; ð1Þ
where Kc is the tangent stiffness matrix of the complete structure,eUc is an eigenvector, which is also a buckling mode of the structure,

and kc is the buckling load corresponding to the buckling mode eUc .
For rotationally periodic structures, see the example shown in

Fig. 1, with N repeating portions, eUc can be partitioned into N
subsets:

eUc ¼ ½eU1; eU2; eU3; . . . ; eUN�
T
; ð2Þ

where eUq is the eigenvector of the qth portion of the structure. The
stiffness matrix of a rotational periodic structure has the form [26]:

Kc ¼

K1 K2 K3 . . . KN

KN K1 K2 . . . KN�1

KN�1 KN K1 . . . KN�2

..

. ..
. ..

. ..
. ..

.

K2 K3 K4 . . . K1

266666664

377777775; ð3Þ
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Fig. 2. (a) Schematic of a 2D infinitely periodic porous structure subject to
compression in y-direction. (b) A buckling mode and its corresponding buckling
load kc .
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where Kq is the stiffness matrix corresponding to the qth portion of
the structure. Let the number of degrees of freedom of each repeat-
ing portion be J, then Kq is a J � J matrix.

Hence, Eq. (1) can be written as a set of m equations:XN
q¼1

KqðkcÞeUmþq�1 ¼ 0; m ¼ 1;2;3; . . . ;N; ð4Þ

whereeUqþN ¼ eUq: ð5Þ
The most general solution to Eqs. (4) and (5) is [26]:eUq ¼ eU1 exp½iðq� 1Þnw�; n ¼ 0;1;2;3; . . . ;N; ð6Þ
with i ¼

ffiffiffiffiffiffiffi
�1

p
;n ¼ 0;1;2; . . . ;N, and w ¼ 2p=N. Substituting Eq. (6)

into Eq. (4) and dividing it by exp½imnw�, we can formally reduce
the set of m equations to the single equation:XN

q¼1

KqðkcÞ exp½iðq� 1Þnw�
 !eU1 ¼ 0; n ¼ 0;1;2;3; . . . ;N; ð7Þ

which still needs to be solved for each value of n in order to find the
smallest value of kc .

It should also be noted that, because it is equivalent to define
the buckling modes in either an anti-clockwise or clockwise sense
around the structure,

exp½iðq� 1ÞðN � nÞw� ¼ exp½�iðq� 1Þnw�; ð8Þ

n and N � n are not independent and the range of n can be
reduced to n ¼ 1;2;3; . . . ; fN=2g, where fN=2g is the largest integer
no larger than N=2.

Thus it has been shown that the eigenvalue problem in Eq. (1),
posed in terms of the tangent stiffness matrix of the complete
structure, Kc , is equivalent to fN=2g þ 1 J-dimensional eigenvalue

problems posed in terms of the
PN

q¼1KqðkcÞ exp½iðq� 1Þnw�, where
J is the size of the stiffness matrix for the repeating portion of
the structure.

Here it should be noted that the displacement vector eUi is
complex-valued and hence in general the real and imaginary parts

of eUi are two coincident buckling modes. When n ¼ 0 or n ¼ N=2
for even N, the exponential term in Eq. (6) is a real value and hence
there is only one buckling mode corresponding to these two cases.
The critical buckling load is the lowest among the buckling loads
for all n’s,

kcrit ¼ min
n¼0;1;...;fN=2g

ðkcðnÞÞ: ð9Þ
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Fig. 3. Schematic of buckled unit cell in a 2D infinitely periodic porous structure, as
shown in Fig. 2(b). A, B, C, and D are four points at the corners of the unit cell. Region
‘‘a” includes edges AD, AB, and point A; region ‘‘b” includes edges CD, BC, and points
2.2. Bloch wave method for infinitely periodic structures

The Bloch wave method is an efficient way of predicting the
onset of buckling for 2-dimensional and 3-dimensional, infinitely
periodic structures [28–33]. In this section we use the two-
dimensional example shown in Fig. 2 to briefly review this method.

If the structure has not buckled, the periodicity of the structure
is still one unit cell in both x- and y-directions, as shown in Fig. 2
(a). When the structure buckles, in general the original periodicity
will be broken and a new repeating pattern is found, which could
involve several unit cells. Fig. 2(b) shows a buckling mode with a
periodicity of 2 unit cells in both x- and y-directions. It has been
proved that the buckling modes of a 2-dimensional infinitely peri-
odic structure have the following form [28–30]:

eUcðx; yÞ ¼ Puðx; yÞ exp 2pi n1

L1
xþ n2

L2
y

� �� �
; ð10Þ
where Lj and nj; j ¼ 1;2 are respectively the lengths of the unit cell

and the wave numbers of the buckling modes. eUc denotes the dis-
placement of the complete infinite structure. Puðx; yÞ is a periodic
function with a periodicity of one unit cell:

Puðx; yÞ ¼ Puðxþm1L1; yþm2L2Þ; ð11Þ
where m1 and m2 are integers. Note that both Pu and eUc are
complex-valued functions.

The exponential term in Eq. (10) is essentially a wave propaga-
tion term that controls the propagation of Pu. For example, if
n1 ¼ 0:5 and n2 ¼ 0:5, the imaginary part of the exponential term
follows the sinusoidal waves, as shown in Fig. 2(b), whose wave-
length is 2 unit cells in both x- and y-directions. Since the period-
icity of Pu is one unit cell, the buckling mode corresponding to
n1 ¼ n2 ¼ 0:5 has a periodicity of two unit cells in both x- and y-
directions. Therefore, each value of the wave number n1 or n2 rep-
resents a buckling mode for the structure in Fig. 2. Eq. (10) is also
called the Bloch wave propagation function.

The buckling problem of the infinite structure can be written as
an eigenvalue problem, i.e.,

KcðkcÞeUc ¼ 0; ð12Þ
where Kc is the tangent stiffness matrix of the complete structure
and kc is the buckling load. The above eigenvalue problem cannot
be solved due to the infinity of the structure. However, the condi-
tion of buckling corresponding to a single unit cell in Fig. 3 can be
separated from Eq. (12) and written as:

KðkcÞeU ¼ eF ; ð13Þ
B, C, and D.
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where eU and eF are respectively a buckling mode and corresponding
force vector of a unit cell. KðkcÞ denotes the tangent stiffness matrix
of the unit cell corresponding to the buckling load kc . It should be

noted that here eF is not zero because we are considering only a
piece of the structure, and hence in general non-zero nodal forces
need to be applied at the periodic boundaries. Eq. (13) is not an
eigenvalue problem and it cannot be directly solved.

The displacements in regions ‘‘a” and ‘‘b” are not independent.
For example, based on Eq. (10), the displacements on edges AD
and BC are coupled by the relation:eUBC ¼ exp½2pin1�eUAD: ð14Þ
Edges AB and CD also follows the similar coupling relation. Eq. (14)
is called displacement Bloch relation. The force vector in Eq. (13)
also follows the Bloch wave propagation function [28–30]:

eFcðx; yÞ ¼ Pf ðx; yÞ exp 2pi n1

L1
xþ n2

L2
y

� �� �
; ð15Þ

where Pf ðx; yÞ is a periodic function with the periodicity of one unit
cell. Therefore, the force vectors on edges AD and BC are also
coupled:eFBC ¼ � exp½2pin1�eFAD: ð16Þ
The negative sign is because the reaction forces on edges AD and BC
are in opposite directions. Eq. (16) is the force Bloch relation. The
details of the Bloch relations are presented in Appendix A.

The dependent displacements can be eliminated by defining a
coupling matrix Q:

eU ¼ Q ½eUi; eUa�
T
; ð17Þ

where i and a denote the internal nodes and the edge nodes in
region ‘‘a”, respectively, as shown in Fig. 3. Q contains the exponen-
tial terms in the Bloch relations, and hence it is a function of the
wave numbers n1 and n2. The derivation of Q is presented in Appen-
dix A.

Substituting Eq. (17) into Eq. (13) and pre-multiplying by QT ,
we obtain:

QTKðkcÞQ ½eUi; eUa�
T ¼ QTeF : ð18Þ

It can be shown that the right-hand-side of Eq. (18) is zero because
of the conditions enforced by the force Bloch relations. Hence, we
can define the reduced stiffness matrix:bK ðn1;n2; kcÞ ¼ QTKðkcÞQ ð19Þ
and write Eq. (18) as

bK ðn1;n2; kcÞ½eUi; eUa�
T ¼ 0: ð20Þ

Therefore, the buckling load kc and the corresponding buckling
mode can be obtained by solving the eigenvalue problem of matrixbK . It should be noted that bK also depends on n1 and n2; hence, the
buckling load factor kc is a function of n1 and n2.

The critical buckling load is obtained by finding the lowest kc for
all possible n1 and n2:

kcrit ¼ min
n1 ;n2

ðkcðn1;n2ÞÞ: ð21Þ

For an infinite structure there are infinite values of n1 and n2.
Therefore, the Bloch wave method is used to find the buckling
loads corresponding to the modes with short wavelength. For infi-
nite periodic structures, the buckling modes with very large wave-
length are usually analyzed by a homogenization method [32,36].

The practical implementation of this method requires a numer-
ical scheme that can handle complex-valued fields, since the Bloch
wave relations and the displacement vectors are complex-valued
functions. However, most finite element packages, including Aba-
qus, cannot handle complex-valued fields. Many authors have for-

mulated the stiffness matrices K and bK in Eq. (20) analytically, and
then carried out lengthy derivations or developed special purpose
software to solve the eigenvalue problems. Gong et al. [33] gener-
ated K with the finite element package Abaqus and then obtainedbK from algebraic manipulations. Åberg and Gudmundson [35] pro-
posed an alternative technique for studying the wave dispersion
relations of infinite periodic structures that used two identical
meshes in Abaqus to split the complex-valued fields into real and
imaginary parts. The boundaries of the two meshes were coupled
in order to satisfy the Bloch relations. Following Åberg and Gud-
mundson [35], Bertoldi et al. introduced this technique in the
buckling analysis of porous periodic elastomeric structures [32,36].

Recently, the Bloch wave method was introduced in the buck-
ling analysis of stiffened cylindrical shells by Wang and Abdalla
[37]. These authors used the Bloch wave method to find the local
buckling loads and buckling modes of stiffened shells (the global
buckling modes were analyzed through a homogenized stiffness
model). The Bloch wave method for 2-dimensional infinitely peri-
odic structures was used without considering the boundary condi-
tions for the shell, hence assuming the shell to be infinitely long.
The constraints of rotational periodicity on the buckling mode
were also neglected.

2.3. Comparison between stiffness matrix method and Bloch wave
method

The stiffness matrix method for rotationally periodic structures
reviewed in Section 2.1 and the Bloch wave method for infinitely
periodic structures reviewed in Section 2.2 have similar features.
First, both methods achieve significant reductions in computa-
tional effort by partitioning the eigenproblem for the whole struc-
ture into a series of smaller eigenproblems that involve stiffness
matrices with the same dimension as the matrix of a single unit
cell. Second, the assumed buckling mode relations among repeat-
ing portions of the structure in the stiffness matrix method (Eq.
(6)) are essentially the same as the Bloch wave relations in Eq. (14).

However, these two methods formulate the eigenproblems in
different ways. The stiffness matrix method involves the stiffness
matrices of all the repeating portions of a rotationally periodic
structure, as shown in Eq. (7). On the other hand, the stiffness
matrix in the Bloch wave method involves only a single unit cell,
and the boundaries of the unit cell are coupled by the Bloch wave
relations to transform the buckling condition (Eq. (13)) for a unit
cell into an eigenproblem, as seen in Eq. (20).

3. New method for axially loaded cylindrical shells

The Bloch wave method has been combined with the stiffness
matrix method to develop a new method for rotationally periodic
structures. In this section the method is presented using as an
example a corrugated cylindrical shell. It should be noted that this
method is also applicable to the buckling analysis of stiffened
cylindrical shell under axial compression.

3.1. Formulation

Consider, for definiteness, a corrugated cylindrical shell under
axial compression. It is periodic only in the circumferential direc-
tion and is compressed by the application of a uniform end-
shortening on one of its ends, as shown in Fig. 4.

The Bloch wave method for 2-dimensional infinitely periodic
structure cannot be directly used for the buckling analysis of axi-
ally loaded, rotationally periodic structures, for several reasons.
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Fig. 4. (a) Corrugated cylindrical shell. (b) Schematic of a complete corrugation. /
and z are the circumferential and axial directions, respectively. The four edges of the
corrugation are denoted as edges 1–4. E and F are the nodes on the top-left and top-
right corners of the corrugation, respectively.
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First, the shell is not infinitely long in the longitudinal direction.
Second, the Bloch wave method for 2-dimensional infinitely peri-
odic structures cannot capture the effects of clamped boundary
conditions on the top and bottom edges in Fig. 4(a). Third, corru-
gated or stiffened shells have finite number of corrugations or stiff-
eners in the circumferential direction, leading to finite values of
wave numbers in the circumferential direction, as discussed in
Section 2.1.

In order to consider the finite length of the shell and the bound-
ary conditions, a complete corrugation, as shown in Fig. 4(b), is
considered. Edge 1 is fully clamped and edge 3 is clamped to a rigid
plate that is translated in the axial direction, thus applying a uni-
form end-shortening on the shell. Due to the rotational periodicity,
the following Bloch wave propagation functions are used:eUðz;/Þ ¼ Puðz;/Þ expðin/ÞeFðz;/Þ ¼ Pf ðz;/Þ expðin/Þ;

ð22Þ

where z and / denote the shell axial coordinate and angular posi-
tion in the circumferential direction; n is the wave number. Pu

and Pf are rotationally periodic functions with periodicity of one
unit cell (one corrugation). Note that there is only one wave number
n in the exponential terms corresponding to the wave propagation
in the circumferential direction. According to Eq. (22), edges 2 and 4
are coupled by the following displacement and force Bloch
relations:

eU4 ¼ eU2 exp i
2p
N

n
� �

eF4 ¼ �eF2 exp i
2p
N

n
� �

;

ð23Þ

where N is the total number of unit cells along the circumferential
direction.

We define the coupling matrix QðnÞ to eliminate the dependent
displacements:eU ¼ QUind; ð24Þ
where Uind contains the independent displacements andeUind ¼ ½eUi; eU1; eU2; eU3�

T
. Q consists of the exponential terms in Eq.

(23) and hence is a function of wave number n.
Similar to the discussion in Section 2.2, the buckling conditions

for a single unit cell can be transformed into the following eigen-
value problem by using the coupling matrix Q:

QTKðkcÞQUind ¼ bK ðn; kcÞUind ¼ QTeF ¼ 0; ð25Þ
where kc is the buckling load corresponding to the wave number n.
More details are presented in Appendix B.

Two features of the stiffness matrix method can be incorporated
into the Bloch wave method. First, as discussed in Section 2.1 the
feasible values of wave number n are the same as those in the stiff-
ness matrix method:

n ¼ 0;1;2; . . . ; fN=2g; ð26Þ
where fN=2g is N=2 for even N and ðN � 1Þ=2 for odd N. The dis-
placement relation in Eq. (23) has the same form as Eq. (6). There-
fore, n and N � n identify the same mode, but propagating in
opposite directions; hence only one of these two terms needs to
be included in the analysis. The critical buckling load is the lowest
among the buckling loads for all values of n:

kcrit ¼ min
n¼0;1;2;...;fN=2g

ðkcðnÞÞ ð27Þ

Second, the eigenmode has zero displacement on the edge 3 in
Fig. 4(b) for n > 0. Edge 3 is clamped to a rigid plate and subject to
uniform end-shortening. All nodes on edge 3, including nodes E
and F, have the same displacements. On the other hand, nodes E
and F are also on edges 4 and 2, respectively, and hence their dis-
placements should satisfy the relation in Eq. (23). Therefore, the
only condition that satisfies both uniform end-shortening and Eq.
(23) is U3 ¼ 0 for n > 0. Edge 1 is always fully clamped and U1 is
zero in all analyses.

3.2. Buckling and natural frequency analysis

The eigenvalue problem defined in Eq. (25) is solved by consid-
ering the corresponding vibration problem, since buckling happens
when the lowest natural frequency of vibration of the structure
decreases to zero, as the load magnitude is increased [38].

The equation of motion for a single corrugation is

M€~uþ K~u ¼ eF ; ð28Þ
whereM and K are the mass and stiffness matrices, respectively. ~u is

the complex-valued displacement field and €~u denotes its second
derivative with respect to time t. The displacement can be written
as

~u ¼ eUeixt ; ð29Þ
where x is the angular frequency of vibration. Substitute Eq. (29)
into (28), multiply by QT , use the relation in Eq. (24), and eliminate
the exponential term to obtain the relation:

QTðK �x2MÞQ eUa ¼ 0: ð30Þ

Eq. (30) is an eigenvalue problem, and the eigenvaluex2 and eigen-

vector eU are respectively the square of the natural frequency and
the corresponding vibration mode.

If the lowest natural frequency is zero, i.e. x2 ¼ 0, Eq. (30)
reduces to the eigenproblem in Eq. (25). Therefore, the buckling
problem can be solved by solving the natural frequency problem
by finding the load at which the lowest natural frequency is zero.
The vibration mode of the frequency problem in this case is also
the buckling mode.

When the eigenvalue x2 is positive, the angular frequency x
has a real value. Then, ~u can be written as

~u ¼ eUeixt ¼ eUðcosðxtÞ þ i sinðxtÞÞ: ð31Þ

However, when x2 < 0;x has a complex value and eixt exponen-
tially grows with time, leading to an unstable structure. Therefore,
x2 ¼ 0 corresponds to the onset of buckling and this relation is
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exploited to facilitate the implementation of the Bloch wave
method in the finite element software Abaqus.

4. Numerical implementation

Most existing commercial finite element packages, including
Abaqus, cannot deal with complex-valued fields. To implement
the Bloch wave method in Abaqus (version 6.12) [39], we have
modified the technique developed by Åberg and Gudmundson
[35] and Bertoldi et al. [32,36] Our technique is presented in this
section, followed by an efficient algorithm for finding critical buck-
ling loads and buckling modes.

4.1. Finite element implementation

Complex-valued fields can be separated into real and imaginary
parts, and hence the equation of motion for the free vibration of a
single corrugation (Eq. (28)) can be written as

K 0
0 K

� �
�x2 M 0

0 M

� �� � eUReeUIm

" #
¼

eFReeF Im

" #
; ð32Þ

where eURe; eUIm; eFRe, and eF Im are the real and imaginary parts of the
displacement and force fields for a unit cell. The complex-valued
displacement Bloch relation in Eq. (23) can be separated into two
equations, each of which represents either a real or an imaginary
relation:

eURe
4 ¼ eURe

2 cos
2p
N

n
� �

� eUIm
2 sin

2p
N

n
� �

eUIm
4 ¼ eURe

2 sin
2p
N

n
� �

þ eUIm
2 cos

2p
N

n
� �

:

ð33Þ

Eq. (33) can be represented by two identical meshes in a single
analysis in Abaqus whose boundaries are coupled by the ⁄MPC
(Multi-Point Constraint) function in Abaqus, as shown in Fig. 5.
The displacements of the nodes on edges 2 of the real and imaginary

parts are input into Eq. (33) to calculate eURe
4 , and then ⁄MPC assigns

the obtained value to eURe
4 . The imaginary part of the Bloch relations

can also be realized in the same way.
In analogy to our previous discussions in Section 3.1, the cou-

pling relations give the following eigenvalue problem:

QT K 0
0 K

� �
�x2 M 0

0 M

� �� �
Q eUind ¼ 0; ð34Þ
Real Part

1

2

3

4

Imaginary Part
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2
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4
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−=

z

Fig. 5. Schematic of two identical meshes coupled by the ⁄MPC function in Abaqus.
½s� and ½c� are the sine and cosine terms in Eq. (33), respectively. Only the real part of
the Bloch relation is shown in this figure.
where eUind contains the independent displacements and Q is the
coupling matrix. More details can be found in Appendix B.

The calculation of x2 consists of two steps: a nonlinear static
analysis (pre-buckling analysis) and a frequency analysis (eigen-
value analysis). In the static analysis the pre-buckling deformation
of the cylindrical shell has the periodicity of one unit cell, which is

enforced by setting eURe
2 ¼ eURe

4 and eUIm
2 ¼ eUIm

4 . Edge 1 is fully
clamped and the shell is compressed by applying a uniform axial

end-shortening on edge 3, i.e., eURe
1 ¼ eUIm

1 ¼ 0 and eURe
z;3 ¼ eUIm

z;3 ¼ Uz.
Therefore, the load parameter k is k ¼ jUzj.

In the frequency analysis the stress state obtained from the pre-
vious nonlinear static analysis is kept unchanged, and edges 2 and
4 are coupled by the Bloch relations in Eq. (33). Edge 1 is fully
clamped. Edge 3, as discussed in Section 3.1, is subject to the

boundary conditions eURe
3 ¼ 0 and eUIm

3 ¼ 0 when n > 0, in order to
satisfy the Bloch relations. For the case n ¼ 0, the real and imagi-
nary parts are not coupled and the only free degree of freedom
of edge 3 is the uniform translational displacement in the z (axial)
direction. The particular value of jUzj corresponding to x2 ¼ 0 is kc
for the wave number n.

4.2. Algorithm for finding critical buckling load

In principle, according to Eq. (27), we need to analyze fN=2g þ 1
buckling modes in order to find the critical buckling mode which
has the lowest buckling load:

kcrit ¼ min
n¼0;1;2;...;fN=2g

ðkcðnÞÞ

The number of simulations required to find the lowest buckling load
is reduced by the algorithm shown in Fig. 6. In this algorithm, the
buckling modes are not sequentially analyzed; instead, after analyz-

ing the first buckling mode n ¼ 0, a possible critical buckling mode
is iteratively identified and analyzed. The iteration is stopped when
the possible critical buckling mode is found to be the critical buck-
ling mode.

4.2.1. Calculating the buckling load for mode n ¼ 0
Calculating the buckling load for mode n ¼ 0 consists of a geo-

metrically nonlinear static analysis step followed by a frequency
analysis step, as discussed in Section 4.1. The buckling load is
found when the eigenvalue x2 obtained from the frequency anal-
ysis is zero.

In the nonlinear static step, the shell is compressed by incre-
mentally applying a uniform end-shortening. In order to reduce
the computational time, coarse increments are first used, and then
Step 2

Step 1

Calculate buckling load
for mode n=0

Find possible critical 
buckling mode n=pi and

calculating its buckling load

Check if mode n=pi is
critical mode

Start

YesNo

Finish

Fig. 6. Flow chart of algorithm for finding the critical buckling mode and load.
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the increment containing the buckling point (x2 ¼ 0) is refined
until the required accuracy is achieved. The frequency analyses
are independent, so they are carried out in parallel to further
reduce the computational time.

The iterative loop consists of two steps which are described
next.

4.2.2. Step 1
The frequency analyses based on a certain stress state produce

positive x2 for some modes and negative x2 for others. The buck-
ling modes with positive x2 are guaranteed not to be the critical
mode, because they require larger loads to make x2 decrease to
zero. Therefore, modes with positive x2 are discarded in future
analyses. The critical buckling mode is among the modes with neg-
ative x2, and we choose the one with smallest x2 as the possible
critical mode, denoted as pi for the ith iteration.

For the first iteration, the stress state corresponding to the
buckling load for the mode n ¼ 0 is used to find the possible critical
mode. For the ith (i > 1) iteration, the stress state corresponding to
the buckling load of the previous possible critical mode n ¼ pi�1 is
used. We use the same technique as the n ¼ 0 mode to find the
buckling load for the mode n ¼ pi�1, which is denoted as kcðpiÞ.

4.2.3. Step 2
If n ¼ pi is the critical mode which corresponds to the lowest

buckling load, then the eigenvalues x2 for the other modes corre-
sponding to the stress state at kcðpiÞ are all positive. The iteration is
stopped when this criterion is satisfied.

This algorithm can reduce computational effort due to three
reasons. First, it always finds the buckling load of the possible crit-
ical mode rather than sequentially searches n ¼ 0;1;2; . . . ; fN=2g.
Hence, it can find the critical mode as soon as possible. Second,
coarse increments are first used and the increment containing
the bifurcation point is then refined in the static analysis. This
can reduce the number of nonlinear analyses which are time-
consuming. Third, independent frequency analyses are carried
out in parallel, further reducing the computational time.
Table 1
Dimensions of sinusoidally corrugated shells.

Thickness, t 180 lm
Radius, R 35 mm
Length L 70 mm

Maximum deviation from circle, Dr 1.5 mm
5. Numerical examples

The analysis method presented in this paper has been applied to
several corrugated cylindrical shells and a stiffened cylindrical
shell in order to validate both the method formulation and the
implementation techniques. For each problem, an additional solu-
tion was obtained by carrying out nonlinear buckling analyses
using full finite element models, i.e., using complete structural
models with the same mesh refinement used in the Bloch wave
method. Note that a nonlinear buckling analysis is an eigenvalue
analysis of a loaded structure whose stress state is obtained by a
geometrically nonlinear static analysis. The results and computa-
tional times required for the full nonlinear analyses are compared
to the proposed method.

5.1. Corrugated composite cylindrical shells

5.1.1. Shell geometry and material
The corrugations are sinusoidal and the cross-sections were

obtained by superposing the sinusoidal wave on a reference circle:

rð/Þ ¼ Rþ Dr sinðN/Þ; ð35Þ
where N is the total number of corrugations and Dr their amplitude.
The values of N were chosen to be 12, 13, 16, 17, 19, 22, 23, 34, 25,
26, 29, 30, 31, 37, and 40, in order to consider shells with odd, even
and prime numbers of corrugations.
The shells were chosen to have a square aspect ratio; their
dimensions are presented in Table 1.

A symmetric six-ply laminate, ½þ60�;�60�;0��s was adopted,
where the 0� direction is the axial direction of the shell. The lami-
nate consisted of 30 lm thick unidirectional laminae of T800 car-
bon fibers and ThinPreg 120EPHTg-402 epoxy, with a fiber
volume fraction of 50%. The following lamina properties were
E1 ¼ 127:9 GPa, E2 ¼ 6:49 GPa, G12 ¼ 7:62 GPa, and m12 ¼ 0:354,
where E1 is the modulus along the fiber direction. The ABD matrix
of the laminate was calculated from these properties, using classi-
cal lamination theory [40]:

ABD ¼

9:919� 106 2:670� 106 0 0 0 0
2:670� 106 9:919� 106 0 0 0 0

0 0 3:625� 106 0 0 0
0 0 0 0:0108 0:0099 0:0034
0 0 0 0:0099 0:0373 0:0081
0 0 0 0:0034 0:0081 0:0125

0BBBBBBBBB@

1CCCCCCCCCA
ð36Þ

where the units of the A and D matrices are N/m and Nm,
respectively.
5.1.2. Buckling loads and modes
All simulations of the sinusoidally corrugated shells were run

on a Xeon X5680 server with 12 CPUs on a single motherboard.
Around 1500 S4 fully integrated shell elements were used for a sin-
gle corrugation. The full finite element models have the same ele-
ment size as the models in the Bloch wave method.

The full nonlinear analyses consisted of two steps, similar to the
Bloch wave method, i.e., a nonlinear static analysis and a frequency
analysis. The shells were first compressed by applying a uniform
end-shortening at one end, and then a frequency step was carried
out to find the eigenvaluex2 corresponding to this stress state. The
critical buckling load was found when the eigenvaluex2 decreased
to zero. Coarse increments in the nonlinear static step were first
used and the increment containing the bifurcation point was then
refined. Each frequency analysis is independent and hence the fre-
quency analyses were performed in parallel.

The results obtained from the Bloch wave method are compared
to the results obtained from the nonlinear full finite element analy-
ses. Figs. 7 and8 show that the results obtained fromthe threemeth-
ods are practically coincident. It was found that the differenceswere
less than 0.5% for all the corrugated shells studied in this paper.

The buckling modes obtained from the Bloch wave method and
nonlinear full model analysis for N ¼ 13;31 are plotted in Figs. 9
and 10. The buckling modes in Fig. 9 are typical for shells with
N 6 30 corrugations. Each corrugation buckled into several half
waves in the axial direction and two half waves in the circumfer-
ential direction. The size of the representative unit cell of the struc-
ture, i.e., a corrugation, is larger than the buckling wavelength in
both axial and circumferential directions. Therefore, the buckling
modes are local for N 6 30. Fig. 9 shows that the Bloch wave
method can accurately capture the local buckling modes. The dif-
ferences between Fig. 9(a) and (b) are very small.

Fig. 10(a) and (b) shows typical buckling modes for shells with
N P 31 corrugations. In this case, there is only one half wave in the
axial direction. The most significant component of the buckling
mode is a uniform expansion in the radial direction. Therefore,
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the buckling modes for N P 31 are global. Fig. 10 shows that, com-
pared to the nonlinear full FEA, the Bloch wave method can obtain
accurate global buckling modes.

Considering all of the above results, it has been shown that the
Bloch wave method captures both local (short wavelength) and
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Fig. 9. Normalized buckling modes of the shell with N ¼ 13 corrugations ob
global (long wavelength) buckling and the buckling modes match
almost exactly the results obtained from the nonlinear full model
analyses.
5.1.3. Computational time
The computational time for the two sets of simulations is plot-

ted in Fig. 11. It can be seen that the computational time of the
nonlinear full FEA models increased linearly with respect to
the number of corrugations. However, the computational time of
the Bloch wave method did not significantly change as the number
of corrugations was increased.
5.2. Orthogonally stiffened aluminum cylindrical shell

5.2.1. Shell geometry and material
We applied the Bloch wave method to the computation of the

critical buckling load and the buckling mode of a large orthogo-
nally stiffened aluminum cylindrical shell which was recently con-
structed by NASA for the Shell Buckling Knockdown Factor project
[41]. The stiffeners are on the internal side of the shell and consist
of longitudinal stringers and circumferential rings, as shown in
Fig. 12. The dimensions are listed in Table 2. The shell has 75 lon-
gitudinal stringers and 18 circumferential rings. Since the material
properties were not included in Ref. [41], the modulus and Pois-
son’s ratio used in the present study were chosen to be 68.9 GPa
and 0.3, respectively.
5.2.2. Buckling loads, modes, and computational time
The unit cell shown in Fig. 13 was used for the Bloch wave

method analysis. All simulations of these examples were run on
a Xeon E5410 desktop with 8 CPUs. Around 1100 S4 fully inte-
grated shell elements were used for a unit cell in the Bloch wave
analysis. The full FEA models had the same element type and size
as the Bloch wave method.

The buckling loads obtained from the two simulations and their
computational time are presented in Table 3. Compared to the full
nonlinear FEA model, the errors in the critical end-shortening
obtained from the Bloch wave method are within 0.3%. The differ-
ence between the buckling loads of the full nonlinear FEA model
and the Bloch wave method is within 0.6%. Although the full non-
linear FEA model was slightly more accurate, it took 16 h to
complete.
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Fig. 12. Schematic of stiffeners (from Ref. [41]).

Table 2
Dimensions of stiffeners (from Ref. [41]). Units are inches.

Skin thickness, t 0.100
Stiffener height, H 0.400
Stiffener height, h 0.300

Space between stringers, bs 4.00
Stringer thickness, ts 0.100

Space between rings, br 4.00
Ring thickness, tr 0.100
Shell radius, R 48.0
Shell length, L 72.0

Axial 
direction

1 2

3

4

Fig. 13. Schematic of unit cell used in the Bloch wave method analysis.

Table 3
Critical end-shortening (Ucr), critical axial load (Fcr), and computational time (T) of
stiffened cylindrical shell.

Ucr [mm] Fcr [kN] T [h]

Bloch wave method 3.3546 2719 0.5
Full nonlinear FEA 3.3554 2702 16
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The buckling modes obtained from the Bloch wave method and
nonlinear full model analysis for the stiffened shell are plotted in
Fig. 14(a) and (b). It can be seen that the Bloch wave method
produces accurate buckling mode. The buckling mode has 5 half
waves in the axial direction. There are 15 waves in the circumfer-
ential direction and each circumferential full wave spans over 5
stringers. Compared to the size of the grid in Fig. 12, the wave-
length in both axial and circumferential directions is larger.

6. Conclusion

We have developed an efficient computational method for the
buckling analysis of corrugated and stiffened cylindrical shells
which builds on the Bloch wave method and the stiffness matrix
method for rotationally periodic structures. The traditional Bloch
wave method is applicable for the buckling analysis of infinitely
2- or 3-dimensional periodic structures. We modified the Bloch
wave method in order to analyze the buckling of rotationally peri-
odic shell structures subject to axial compression. We imple-
mented our Bloch wave method in the commercial finite element
code Abaqus, following Refs. [32,35,36], and also developed a
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highly efficient algorithm of performing the evaluation of critical
buckling load and buckling mode.

We used the Bloch wave method to analyze the onset of buck-
ling for several small corrugated composite cylindrical shells and a
large-scale orthogonally stiffened aluminum cylindrical shell. Non-
linear analyses based on full, detailed finite element models were
also performed in order to validate our method. It was shown that
our method provides highly accurate buckling loads. Compared to
the nonlinear full FEA models, the errors of the buckling loads
obtained by the Bloch wave method are smaller than 0.6% for all
the shells studied in this paper. These examples also show that
the Bloch wave method produces almost exactly the same buckling
modes as those obtained from the nonlinear full FEA models and
that it can accurately capture local (short wavelength) and global
(long wavelength) buckling modes.

In the examples of corrugated cylindrical shells, the computa-
tional time required by the Bloch wave method did not signifi-
cantly change when the number of corrugations was increased.
However, the nonlinear full FEA models required much longer
computational time than the Bloch wave method for heavily corru-
gated shells. For a shell with 40 corrugations, the computational
time of the Bloch wave method is only 7% of the computational
time of the nonlinear full FEA models. For the stiffened cylindrical
shell, the computational time of the Bloch wave method is only 3%
of the computational time of the nonlinear full FEA models.

It should be noted that our method does not require special-
purpose elements and is compatible with Abaqus, a widely used
commercial finite element software. Moreover, the reduction in
computational time can be achieved without any homogenization
or approximation on the shell geometry. In addition, our method
only requires coupling between boundaries of a repeating unit
and does not limit the geometry in the internal part of a unit.
Therefore, it can analyze periodic cylindrical shells with intricate
geometries, such as cutout, non-continuous or curved stiffeners,
and complex corrugations, as long as the geometric features are
periodic. Due to these advantages, our method has potential in
buckling analyses on complex periodic cylindrical shells that
require high accuracy and efficiency.

The savings achieved in the present study are very promising.
However, it should be noted the Bloch wave method has been
applied only to identically repeating unit cells. However, practical
imperfections are usually not periodic and their wavelength may
be much larger than a repeating unit cell. In the future it would
be worth investigating the Bloch wave method for imperfect or
nearly perfect structures.
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Appendix A. Bloch relations and coupling matrix for a 2-
dimensional infinite periodic structure

eU and eF in Eq. (13) can be separated into the values on bound-
ary and internal nodes:

eU ¼ ½eUi; eUa; eUb�
T

eF ¼ ½eF i; eFa; eFb�
T

ðA:1Þ

where i; a and b denote the internal nodes, nodes in regions ‘‘a” and
‘‘b”, respectively, as shown in Fig. 3. Therefore, the displacements
and forces of regions ‘‘a” and ‘‘b” are:

eUa ¼ ½eU ðADÞ; eUA; eU ðABÞ�
T

eFa ¼ ½eF ðADÞ; eFA; eF ðABÞ�
T

eUb ¼ ½eUB; eU ðBCÞ; eUC ; eU ðCDÞ�
T

eFb ¼ ½eFB; eF ðBCÞ; eFC ; eF ðCDÞ�
T

ðA:2Þ

The notation ð�Þ means edges without their end nodes.
Using Eqs. (10) and (15), we can obtain the following Bloch rela-

tions for the displacements on the boundary nodes:

UB ¼ l1UA; UðBCÞ ¼ l1UðADÞ; UC ¼ l1UD;

UC ¼ l2UB; UðCDÞ ¼ l2UðABÞ; UD ¼ �l2UA ðA:3Þ

where l1 ¼ expð2pin1Þ and l2 ¼ expð2pin2Þ. Similarly, the forces
on the boundaries have the following Bloch relations:

FB ¼ �l1FA; FðBCÞ ¼ �l1FðADÞ; FC ¼ �l1FD;

FC ¼ �l2FB; FðCDÞ ¼ �l2FðABÞ; FD ¼ �l2FA ðA:4Þ
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Using Eq. (A.3), the displacements can be written as:

½eUi; eU ðADÞ; eUA; eU ðABÞ; eUB; eU ðBCÞ; eUC ; eU ðCDÞ�
T

¼ Q ½eUi; eU ðADÞ; eUA; eU ðABÞ�
T ðA:5Þ

where the transformation matrix Q is defined as:

Q ¼

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 ½l1� 0
0 ½l1� 0 0
0 0 ½l1l2� 0
0 0 0 ½l2�

266666666666664

377777777777775
ðA:6Þ

The notation ½�� represents a diagonal submatrix with entries equal
to ⁄.

Appendix B. Bloch relations and coupling matrix of a
rotationally periodic structure

eU and eF in Eqs. (24) and (25) can be separated into the values
on boundary and internal nodes:

eU ¼ ½eUi; eU ð1Þ; eU ½2�; eU ð3Þ; eU ½4��
T

eF ¼ ½eF i; eF ð1Þ; eF ½2�; eF ð3Þ; eF ½4��
T

ðB:1Þ

The notations ð�Þ and ½�� represent edges respectively without and
with their end nodes. The equilibrium equation of a corrugation
on the point of buckling is

KðkcÞ½eUi; eU ð1Þ; eU ½2�; eU ð3Þ; eU ½4��
T ¼ ½eF i; eF ð1Þ; eF ½2�; eF ð3Þ; eF ½4��

T ðB:2Þ

The stiffness matrix KðkcÞ and force vector ½eF i; eF ð1Þ; eF ½2�; eF ð3Þ; eF ½4��
T
in

Eq. (B.2) can be assembled into the global stiffness and force vector
of the whole corrugated shell, and the following eigenproblem is
then obtained:

KcðkÞeUc ¼ eFc ¼ 0 ðB:3Þ

where Kc and eUc are the global stiffness matrix and the eigenvector
of the whole structure.eFc is zero when the structure buckles. Note that the force vec-
tors Fi; Fð1Þ, and Fð3Þ remain unchanged when they are assembled
into the force vector in Eq. (B.3) because the edges (1), (3), and
internal nodes do not interact with the nodes in other corrugations.
Therefore, Eq. (B.2) can be written as:

KðkÞ½eUi; eU ð1Þ; eU ½2�; eU ð3Þ; eU ½4��
T ¼ ½0; 0; eF ½2�; 0; eF ½4��

T ðB:4Þ
The incremental displacements on edge 4 can be eliminated by

means of the relation:

½eUi; eU ð1Þ; eU ½2�; eU ð3Þ; eU ½4��
T ¼ Q ½eUi; eU ð1Þ; eU ½2�; eU ð3Þ�

T ðB:5Þ
where Q is

Q ¼

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 0 exp i 2pN n

� �	 

0

26666664

37777775 ðB:6Þ

Letting ½Ui;Uð1Þ;U½2�;Uð3Þ�T ¼ eUind, and proceeding in analogy to
Eqs. (18)–(20), we obtain the following eigenproblem:
QTKðkÞQ eUind ¼ bK ðn; kÞeUind ¼ QTeF ¼ 0;
n ¼ 0;1;2; . . . ; fN=2g ðB:7Þ

where k is the loading factor.
The transformation matrix Q can also be separated into real and

imaginary parts, based on Eq. (33):

URe
i

URe
ð1Þ

URe
½2�

URe
ð3Þ

URe
½4�

UIm
i

UIm
ð1Þ

UIm
½2�

UIm
ð3Þ

UIm
½4�

2666666666666666666666664

3777777777777777777777775

¼ Q

URe
i

URe
ð1Þ

URe
½2�

URe
ð3Þ

UIm
i

UIm
ð1Þ

UIm
½2�

UIm
ð3Þ

2666666666666666664

3777777777777777775

ðB:8Þ

where the Q matrix is

I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 cos 2p

N n
� �	 


0 0 0 � sin 2p
N n
� �	 


0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 I
0 0 sin 2p

N n
� �	 


0 0 0 cos 2p
N n
� �	 


0

26666666666666666664

37777777777777777775

ðB:9Þ

The Bloch relations for the forces are:

eFRe
½4� ¼ � eFRe

½2� cos
2p
N

n
� �

� eF Im
½2� sin

2p
N

n
� �� �

eF Im
½4� ¼ � eFRe

½2� sin
2p
N

n
� �

þ eF Im
½2� cos

2p
N

n
� �� � ðB:10Þ

We can also obtain the following relation by multiplying Eq. (32) by
QT and using the above force Bloch relations and Fi ¼ 0; Fð1Þ ¼ 0, and
Fð3Þ ¼ 0:

QT K 0
0 K

� �
�x2 M 0

0 M

� �� �
Q

URe
i

URe
ð1Þ

URe
½2�

URe
ð3Þ

UIm
i

UIm
ð1Þ

UIm
½2�

UIm
ð3Þ

2666666666666666664

3777777777777777775

¼ QT

0
0
FRe
½2�
0
FRe
½4�
0
0
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½2�
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266666666666666666664

377777777777777777775

¼ 0 ðB:11Þ
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