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The viscoelastic behavior of polymer composites decreases the deployment force and the postdeployment shape

accuracy of composite deployable space structures. This paper presents a viscoelastic model for single-ply cylindrical

shells (tape springs) that are deployed after being held folded for a given period of time. The model is derived from a

representative unit cell of the compositematerial, based on themicrostructure geometry.Key ingredients are the fiber

volume density in the composite tows and the constitutive behavior of the fibers (assumed to be linear elastic and

transversely isotropic) and of thematrix (assumed to be linear viscoelastic). Finite-element-based homogenizations at

two scales are conducted to obtain the Prony series that characterize the orthotropic behavior of the composite tow,

using the measured relaxation modulus of the matrix as an input. A further homogenization leads to the lamina

relaxationABDmatrix. The accuracy of the proposed model is verified against the experimentally measured time-

dependent compliance of single lamina in either pure tension or pure bending. Finite element simulations of single-ply

tape springs based on the proposed model are compared to experimental measurements that were also obtained

during this study.

Nomenclature

ABD = lamina relaxation ABD matrix
aT = temperature shift factor
C = tow relaxation modulus tensor
c1, c2 = Williams–Landel–Ferry constants
D = uniaxial creep compliance of matrix
df = fiber diameter
E = uniaxial relaxation modulus of matrix
EL, ET = Young’s moduli of fibers
GLT = shear modulus of fibers
g = tow-to-tow spacing
h = maximum tow thickness
L = weave length of lamina
l = edge length of tow unit cell
M = moment resultant
N = force resultant
T = temperature
T0 = reference temperature
t = time
t 0 = reduced time
u = displacement
vf = fiber volume fraction
x1, x2, x3 = coordinate system
ϵ = strain
θ = rotation
κ = curvature
νLT , νTT = Poisson’s ratios of fibers

ρ = relaxation time
σ = stress

I. Introduction

T HE release of strain energy stored in thin-shell deployable
structures provides a very effective andwidely used deployment

actuation mechanism, which traditionally has been implemented in
the form of open-section, cylindrical thin shells with uniform radius
of curvature (tape springs), made of metals such as spring steel or
beryllium copper alloys [1–4]. Recently, the highermodulus-to-mass
ratio of advanced composite materials and the wider range of shapes
that can be made at low cost have motivated research in ultrathin
composite deployable structures [5–8], and structures of this kind are
increasingly being considered for flight missions. Notable examples
of composite deployable structures include the 6.8-m-diam
Springback reflector antennas on the Mobile Satellite System [9]
and the Mars Advanced Radar for Subsurface and Ionospheric
Sounding (MARSIS) antennas on the Mars Express Spacecraft
[10,11]. These antennas included two 20 m dipoles and a 7 m
monopole, each consisting of a thin-walled closed-section tube with
hinges made by cutting slots in the wall of the tube.
Because of the inherent viscoelastic behavior of polymers [12],

current knowledge of the strain energy available for deployment after
a period of stowage is limited, and the shape precision that can be
achieved after deployment has not been quantified. The effects of
different temperature environments during stowage and deployment
also need to be evaluated. Addressing these problems is important
because the MARSIS antenna suffered a significant reduction in
deployment moment after a long period of stowage [11].
Recent studies have addressed the viscoelastic behavior of thin-

walled deployable structures. For thin shells made of an isotropic and
viscoelastic material, the present authors investigated the complete
sequence of folding, stowage, and deployment, obtaining continuous
measurements of displacement and force [13,14]. Finite element
simulations incorporating a linear viscoelastic material model were
employed to capture the time-dependent behavior of these structures.
For composite structures, Domber et al. [15] measured the shape
recovery of a slotted tube under different stowage times. The
experimental data were fitted to an exponential series to estimate the
viscoelastic time constants. Soykasap [16] studied the deployment
dynamics of a folded composite tube and found that increasing the
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stowage period results in smaller amplitude of postdeployment
vibration but increased duration of this vibration. A recent study of
bistable tape springs has shown that viscoelastic relaxation effects
can lead to the lower-energy stable configuration becoming
unachievable after the shell is held for a sufficiently long period in the
higher-energy stable configuration [17].
The effective viscoelastic properties of a fiber-reinforced polymer

depend on the constitutive properties of its constituent matrix and
fibers as well as the geometry of the fiber tows and the weave
geometry. In composite mechanics, homogenization is a well-
established tool for determining the effective properties of a
composite from the properties and microstructure of the constituent
materials. For unidirectional composites, the earliest analytical
approaches made use of the elastic–viscoelastic correspondence
principle to extendmicromechanicalmodels for elastic composites to
viscoelastic composites [18–21]. More general results have been
obtained from numerical approaches based on either the finite
element method [22] or the method of cells [23–25]. For woven
composites, semi-analytical models based on simplified weave
geometries have been developed [26,27], but comparisons to two-
dimensional models have shown only limited accuracy [27]. These
predictions have been improved by means of two-dimensional [27]
and three-dimensional [28] finite element models of the weave
geometry, although only including the in-plane properties of a
composite lamina in these models. A computationally efficient
multicontinuum approach has been proposed [29].
The purpose of the present paper is to develop a general modeling

approach to understand and predict the deployment process of
composite thin shells that have been held stowed for an arbitrarily
long period of time. The paper is focused on single-layer, plain-
weave carbon-fiber-reinforced plastic tape springs and is laid out as
follows. Section II provides an outline of linear viscoelasticity
theory. In Sec. III, the microstructure of the chosen composite
material and the viscoelastic behavior of the matrix are
experimentally characterized. Based on these measured properties,
in Sec. IV, a two-level multiscale homogenization is developed,
which leads to the relaxation ABD matrix for the composite shell.
Section V presents the implementation details of the homogeni-
zation procedure. The resulting viscoelastic model is validated
against experimental measurements in Sec. VI. In Sec. VII, the
stowage and deployment behavior of composite tape springs,
shown in Fig. 1, are then studied in detail. Carefully controlled
experiments that characterized the deployment of the tape spring
after stowage at different temperatures are presented. A comparison
of these experimental results to finite element simulations based on
the viscoelastic model developed in the previous sections is also
presented. Section VIII concludes the paper.

II. Review of Linear Viscoelasticity

The constitutive behavior of polymers is dependent on time and
temperature and can be modeled with the phenomenological theory
of linear viscoelasticity [30–33]. The uniaxial stress–strain relation
for isotropic and viscoelastic solids is expressed in terms of the
Boltzmann superposition integral,

σ�t� �
Z

t

0

E�t − τ� dϵ�τ�
dτ

dτ (1)

where σ is stress, ϵ is strain, t is time, and E is the uniaxial relaxation

modulus expressed as a function of time. An alternative form for this

constitutive relation writes the strain as the superposition integral of

the creep compliance D and the stress,

ϵ�t� �
Z

t

0

D�t − τ� dσ�τ�
dτ

dτ (2)

For implementation in displacement-based finite element solvers,

the first formulation is preferred because the stress can be computed

directly.
A Prony series can be used to represent the relaxation modulus

over a wide range of time scales:

E�t� � E∞ �
Xn
i�1

Eie
−�t∕ρi� (3)

where E∞ is the long-term modulus, Ei are the Prony coefficients,

and ρi are the relaxation times. Each exponential term is used to

represent the variation of the relaxation modulus over a chosen time

period, and the number of terms included in the Prony series depends

upon the time range of interest for the problem that is considered.
The temperature dependence of the relaxation modulus is

correlated to time through the time–temperature superposition

principle, which provides the theoretical foundation to study the

long-term behavior of viscoelastic materials using short-term

characterization tests. Here, the key assumption is the existence of a

shift factor aT, which is the ratio of the relaxation times at two

different temperatures:

aT � ρ�T�
ρ�T0�

(4)

whereT is a general temperature, andT0 is the reference temperature.

If the same shift factor applies to all relaxation times, the polymer is

described as thermorheologically simple; this is the behavior

assumed in the present paper.
A widely used empirical relation for aT is the Williams–Landel–

Ferry equation [34],

log aT � −
c1�T − T0�

c2 � �T − T0�
(5)

inwhich c1 and c2 arematerial constants that depend on the particular

polymer, and the logarithm is of base 10.
The relation between temperature effects and time dependence is

captured by introducing the concept of reduced time t 0, defined as

t 0 �
Z

t

0

dτ

aT�T�
(6)

For example, consider the simple case where the temperature is

held constant. The reduced time has the expression

t 0 � t

aT
(7)

and hence, substituting Eqs. (5) and (7) into Eq. (3) gives

E�t; T� � E�t 0; T0� (8)

Equation (8) states that the relaxation modulus at temperature T
and time t is the same as that at the reference temperature T0 and

reduced time t 0. Hence, it follows that a master curve can be

constructed at any arbitrarily chosen reference temperature by

shifting to the reference temperature the relaxation moduli at any

other temperatures. On a log–log plot of relaxation modulus versus

time, this is equivalent to a horizontal shift by log aT�T�. The

resulting master curve is a plot of relaxation modulus that describes

Fig. 1 Composite tape spring: a) deployed, and b) folded.
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both the time and temperature dependences of the viscoelastic
behavior.
In terms of reduced time, the constitutive relation [Eq. (1)] has the

expression

σ�t� �
Z

t

0

E�t 0 − τ 0� dϵ�τ�
dτ

dτ (9)

The relaxation modulus can be characterized either directly by
relaxation (constant-strain) tests or by creep (constant-stress) tests
followed by a conversion, which can be carried out numerically [35]
using the relation

Z
t

0

E�t − τ� dD�τ�
dτ

dτ � 1 (10)

The preceding uniaxial constitutive law is extended to three
dimensions by writing

σi�t� �
Z

t

0

Cij�t − τ� dϵj�τ�
dτ

dτ (11)

where C is the relaxation modulus tensor, and the stress and strain
components are ordered according to the Voigt notation.
A simplified expression for the relaxation modulus tensor is often

assumed for isotropic and homogeneous materials, in terms of a
single uniaxial relaxation modulus, having assumed a constant
Poisson’s ratio ν:

C�t� � E�t�
�1� ν��1 − 2ν�

×

2
66666666664

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0 1 − 2ν 0 0

0 0 0 0 1 − 2ν 0

0 0 0 0 0 1 − 2ν

3
77777777775

(12)

However, it should be noted that there is no physical basis for
this simplified relaxation modulus tensor. The correct relationship
has the transverse relaxation coefficients expressed as independent
functions [36].

III. Characterization of Plain-Weave T300/PMT-F4

The composite material chosen for the present study was a single-
ply plain-weave fabric of T300-1k carbon fibers (manufactured by
Toray Industries) impregnated with PMT-F4 (manufactured by Patz
Materials and Technologies) epoxy resin. The properties of these
materials are provided in Table 1 ([37]).‡Composite specimens were
fabricated by curing the resin-impregnated fabric under vacuum for
2 h at a temperature of 120°C and a consolidation pressure of 400 kPa.
The viscoelastic response of this material depends on the tow and

weave geometries as well as the constitutive behavior of the matrix
and the fibers. The experimental determination of these properties,
which are a necessary input for the homogenization procedure, is
presented next.

A. Geometry of Tows and Fabric Weave

The geometries of the carbon-fiber tows and the fabric weavewere
characterized using optical microscopy. The cured composite was
sectioned, embedded in an epoxy resin mold, and then ground and
polished. Images of these sections were then taken using a Nikon
Eclipse LV100 microscope with a Nikon DS-Fi1 digital camera.

The following geometric properties were measured from micro-
graphs of three 10-mm-long sections. For example, Fig. 2 shows
a representative part of a tow cross section. The fibers were
distinguished from the matrix by setting an intensity threshold based
on visual inspection of the intensity histogram. The fiber volume
fraction of a towwas determined by determining the area occupied by
fiberswithin a sampling area of 50 × 50 μm. The analysiswas carried
out on five tow cross sections, and the averaged fiber volume fraction
was found to be vf � 0.64. Image analysis of the partitioned image
also verified the fiber diameter to be df � 7.0 μm.
Figure 3 shows a longitudinal section of a fill tow and cross

sections of twowarp tows. The towwidthwwas determined by visual
inspection of the edges of each tow cross section. The midpoint of
each tow was found from the defined tow width, and the distance
between midpoints of neighboring tows was defined to be half the
weave length, L∕2. The tow spacing g is the distance between edges
of neighboring tows. Five measurements were taken for each
parameter. The overall fiber volume fraction was determined from

vf � wfρm
wfρm � �wc −wf�ρf

(13)

where wc is the areal weight of the composite, found to be wc �
0.161 kg∕m2 by averaging weight measurements of five 100 ×
100 mm specimens. The overall fiber volume fractionwas calculated
to be vf � 0.52. The other properties were: weave length
L � 3.5 mm, maximum tow thickness h � 0.063 mm, tow width
w � 1.05 mm, and tow spacing g � 0.7 mm.

B. Viscoelastic Model of Matrix

The epoxymatrixwas treated as an isotropic, viscoelasticmaterial.
Its behavior was characterized according to the linear viscoelasticity
theory reviewed in Sec. II.
The uniaxial master curve was obtained from uniaxial creep tests

on samples that were laser cut from 2.9-mm-thick sheets made by
curing neat PMT-F4 resin at 120°C for 2 h, with a temperature control
precision of �2°C. The samples were 96.5 mm long by 12.1 mm
wide rectangles.
Tensile creep tests were performed using an Instron 5500 materials

testing machine fitted with a 1 kN load cell. An Instron Heatwave
Model 3119-506 environmental chamber with a built-in thermocouple
to control the temperaturewith a precision of�1°Cwas used for these
tests. A type-T thermocouple made of copper/constantan was attached
to the surface of a dummy sample close to the test sample. The stability
of the temperature conditioning inside the environmental chamberwas
measured by prescribing a temperature impulse and recording the
subsequent temperature variation over time, both with the built-in

Table 1 Properties of fibers and fabric [37] and PMT-F4
matrix (see footnote §)

Parameter Value

Diameter of T300 fiber (df) 7 μm
Density of T300 fiber (ρf) 1760 kg∕m3

Areal density of T300-1k fabric (wf) 0.098 kg∕m2

Density of PMT-F4 matrix (ρm) 1220 kg∕m3

63.4µm

130.5 µm

Fig. 2 Representative cross section of a tow.‡Private communication from Patz Materials and Technologies.
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thermocouple and the dummy thermocouple. It was found that the

temperature readings from the two thermocouples became identical

30 min after the impulse, indicating that thermal equilibrium is

established within such time frame. Hence, this thermal conditioning

delay was allowed before each test.
Creep tests were conducted at temperatures ranging from 20 to 90°

C, at 10°C intervals. Before each test, the sample was clamped by

grips, and the temperature of the chamber was brought to the

specified value while manually adjusting the extension of the sample

to keep the reading from the load cell close to zero. Once the test

temperature had been reached, a fine adjustment of the position of the

loading beam was carried out, to bring the load cell reading to a zero

mean, and finally the sample was left to relax for 30min. In each test,

a load of 106.7 N (corresponding to a stress of 3.0 MPa) was applied

in 225 s, and this load was held constant for 3 h. The time-varying

longitudinal strain was measured using a laser extensometer

(Electronic Instrument Research Ltd LE-05) recording at a rate

of 5 Hz.
The measured longitudinal strain and the applied stress were

first used to obtain the creep compliance using Eq. (2). Assuming

the stress to be applied instantaneously, it can be represented

mathematicallywith aHeaviside step function. Equation (2) becomes

ϵ�t� � D�t�σ0 (14)

where σ0 is the applied stress magnitude. Because the actual loading

profile was a ramp, the measured strain response would deviate from

that in the ideal case of instantaneous loading. The difference,

however, becomes negligible after a period of 10 times the ramp time

has elapsed [38]. For this reason, the strain data measured during the

first 2500 s were discarded.
Once a plot of the creep compliance at each temperature had been

obtained, it was shifted to the reference temperature T0 � 40°C to

obtain the master curve. The shift factors were determined such that

the shifted creep compliances form a single smooth curve. A Prony

series was fitted to the creep compliance master curve and then

numerically converted to a series representation of the relaxation

modulus using Eq. (10).
Figure 4 shows the Prony series representation of the relaxation

modulus master curve of PMT-F4 at the reference temperature of

T0 � 40°C. Table A1 lists the corresponding Prony series
parameters. The material constants c1 and c2 were found by fitting
the temperature shift data to Eq. (5). The values obtained are

c1 � 28.3816 and c2 � 93.291

As already discussed in Sec. II, a constant Poisson’s ratio was
assumed. A typical value of 0.33 was chosen.

C. Elastic Model of Fibers

The carbon fibers (T300,manufactured byToray)were assumed to
be linear elastic and transversely isotropic [39]. The elastic constants
provided by the manufacturer are listed in Table 2.

IV. Micromechanics Model of Plain-Weave Composite

A viscoelastic model for a single-ply, plain-weave composite
lamina was derived on the basis of Kirchhoff plate theory (midplane
normals remaining normal to the deformed midplane). The model
parameters are the Prony coefficients of the relaxation ABD matrix,
relating midplane strains and curvatures to midplane force and
moment resultants for a representative unit volume of the composite,
defined according to the microstructural geometry and material
properties presented in Sec. III. The model was obtained from a
two-step homogenization procedure, as described next.

A. Viscoelastic Model of Tows

Unit cell homogenization of unidirectional fiber composites was
first used in [22] to determine their effective viscoelastic properties.
This reference obtained the plain-strain relaxation modulus from a
two-dimensional unit cell.
The tow unit cell was defined as a three-dimensional, transversely

isotropic solid consisting of a single fiber surrounded by matrix, thus
implicitly assuming a square array fiber arrangement. Hexagonal
array and random array fiber arrangements were also implemented,
but the difference between these configurations was found to be
insignificant at the volume fraction of interest. The model consisted
of a cube with edge length of l � 7.7 μm, as shown in Fig. 5. The
fiber diameter and volume fraction of the unit cell were given the
vales provided in Sec. III.A. The matrix was defined as linear–
viscoelastic and isotropic, as in Sec. III.B. The fiber was defined as
linear–elastic and transversely isotropic, as in Sec. III.C.
Under a uniform applied stress or strain, the resulting strain and

stress fields within the unit cell are nonuniform because the
properties of the constituents are different. The stress and strain in
the homogenized tow were defined as the volume averages of the
heterogeneous stress and strain fields within the unit cell, and the
effective (homogenized) properties of the tow were defined by
the constitutive relations between such volume-averaged stress and
strain.

100 102 104 106 108 1010
0

1000

2000

3000

4000

5000

6000

t [s]

E
 [M

P
a] 1 month

1 year

10 years

Fig. 4 Uniaxial relaxation modulus master curve of PMT-F4 epoxy at
T0 � 40°C.

Table 2 Elastic properties of T300 carbon fibers

Parameter Value

Longitudinal modulus EL 233,000 MPa
Transverse modulus ET 23,100 MPa
Shear modulus GLT 8963 MPa
Longitudinal Poisson’s ratio νLT 0.2
Transverse Poisson’s ratio νTT 0.4

Fill towWarp tow

w

L/2

100 μm

g

Fig. 3 Longitudinal section of a fill tow, also showing cross sections of two warp tows.
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The volume averages of the strain and stress fields are given by

�ϵi �
1

V

Z
V
ϵi dV (15)

�σi �
1

V

Z
V
σi dV (16)

where V is the volume of the unit cell, and the overbar denotes the
volume average taken over V.
The effective constitutive equation for the viscoelastic tow is

given by

�σi�t� �
Z

t

0

Cij�t − τ� dϵj�τ�
dτ

dτ (17)

whereC is the effective relaxation modulus tensor of the tow, and the
strain components are defined with respect to the coordinate
directions shown in Fig. 5 and are ordered as follows:

ϵ1 � ϵ11;

ϵ2 � ϵ22;

ϵ3 � ϵ33;

ϵ4 � ϵ23;

ϵ5 � ϵ13;

ϵ6 � ϵ12 (18)

The unit cell is symmetric about the plane of isotropy x2 − x3, and
hence, the effective relaxationmodulus tensor of the tow has the form

C �

2
6666664

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C22 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55

3
7777775

(19)

where the coefficient C44 is related to C22 and C23 by [39]

C44 �
C22 − C23

2
(20)

The objective of the homogenization is therefore to determine the
five independent coefficients C11, C22, C12, C23, and C55. Each

coefficient is described by a Prony series having the same relaxation
times as the epoxy matrix (see Table A1) but different Prony
coefficients:

Cij � Cij;∞ �
Xn
k�1

Cij;ke
−�t∕ρk� (21)

In other words, the parameters to be computed are the Prony
coefficients for each of five coefficients in the effective relaxation
modulus tensor.
For example, to obtain C55�t�, a step function was assigned to

ϵ5�t�, with all other strain components set to zero. The computed
response σ5�t�was averaged over the unit cell volume, usingEq. (17),
and the corresponding volume average �σ5�t� was obtained. By
choosing ϵ5�t� as a step function, �σ5�t� represents the stress
relaxation, which can be fitted to Eq. (21) to obtain the Prony
coefficients for C55�t�. The Prony coefficients of the other
components were determined in a similar manner. More details are
provided in Sec. V.A.

B. Viscoelastic Model of Plain-Weave Laminas

The lamina was modeled as a viscoelastic Kirchhoff plate, whose
relaxation ABD matrix was derived from the homogenization
described in this section.
The lamina unit cell includes four tows, whose properties are

defined according to Sec. IV.A, and regions of neat resin in between,
as shown in Fig. 6. The geometry of the unit cell, defined to closely
represent theweave geometry described in Sec. III.A, consists of four
identical solids with four-fold symmetry about the central, vertical
axis. Each solid consists of a tow region and a resin region, with the
boundary surfaces defined by sinusoidal functions. This definition,
which uses only the geometric parameters in Sec. III.A, leads to no
gaps or no overlaps. For example, the boundaries of the solid in
Fig. 6b are given by

x3 � � h

2
sin

�
2πx1
L

�
� h

2
sin

�
2πx2
L

�
(22)

Thematrix was defined to have the viscoelastic, isotropic behavior
defined in Sec. III.B. The tow was defined as viscoelastic and
transversely isotropic, with the properties obtained from the
homogenization described in Sec. IV.A.
The constitutive equations for a viscoelastic Kirchhoff plate can be

obtained by using Eq. (1) in the derivation of the ABD matrix in
classical lamination theory [39]. The outcome is

Ni�t� �
Z

t

0

�
Aij�t − τ� dϵj�τ�

dτ
� Bij�t − τ� dκj�τ�

dτ

�
dτ (23)

Mi�t� �
Z

t

0

�
Bij�t − τ� dϵj�τ�

dτ
�Dij�t − τ� dκj�τ�

dτ

�
dτ (24)

whereNi andMi are the force andmoment resultant components, and
ϵj and κj are the midplane strains and out-of-plane curvatures of the
midplane, defined by

ϵ1 �
∂u1
∂x1

(25)

ϵ2 �
∂u2
∂x2

(26)

ϵ3 �
∂u1
∂x2

� ∂x2
∂x1

(27)

x1 x2

x3

Matrix

Fiber

Fig. 5 Finite element mesh of tow unit cell.
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κ1 � −
∂2u3
∂x21

(28)

κ2 � −
∂2u3
∂x22

(29)

κ3 � −2
∂2u3
∂x1∂x2

(30)

The time-dependent submatrices, A, B, and D represent the
in-plane, stretching–bending coupling, and bending relaxation
moduli. The directional properties of a plain-weave lamina resemble
those of symmetric cross-ply laminas. In particular, A11 � A22 and
D11 � D22, because the fill and warp tows have identical properties;
A13 � A23 � 0, indicating that stretching and shearing are
decoupled; and D13 � D23 � 0 because bending and twisting are
also decoupled. The entire submatrix B is zero because there is no
coupling between in-plane and out-of-plane behavior. Hence, the
ABD matrix has the following structure:

ABD �

2
6666664

A11 A12 A13 B11 B12 B13

A12 A22 A23 B12 B22 B23

A13 A23 A33 B13 B23 B33

B11 B12 B13 D11 D12 D13

B12 B22 B23 D12 D22 D23

B13 B23 B33 D13 D23 D33

3
7777775

�

2
6666664

A11 A12 0 0 0 0

A12 A11 0 0 0 0

0 0 A33 0 0 0

0 0 0 D11 D12 0

0 0 0 D12 D11 0

0 0 0 0 0 D33

3
7777775

(31)

The coefficients of this matrix were determined numerically,
following a process analogous to that followed in Sec. IV.A.Unit step
variations of themidplane strains and curvatureswere imposed on the
lamina unit cell, and the corresponding, time-dependent force and
moment resultants were calculated from a series of finite element
analyses. The coefficients of the ABD matrix were then obtained by
fitting these computed responses to Prony series having the same
relaxation times as the matrix, but different coefficients:

Aij � Aij;∞ �
Xn
k�1

Aij;ke
−�t∕ρk� (32)

Dij � Dij;∞ �
Xn
k�1

Dij;ke
−�t∕ρk� (33)

V. Numerical Implementation

This section describes the implementation of the two-scale
homogenization presented in Sec. IV using the commercial finite
element software ABAQUS/Standard [40].

A. Tow Relaxation Modulus Tensor

The finite element mesh for the tow unit cell (Fig. 5) consisted of
16,800 eight-node brick elements and 800 six-node triangular prism
elements (respectively elements C3D8 and C3D6 in ABAQUS). The
elements representing the matrix were defined as viscoelastic, with
the Prony series presented in Table A1 and a time-independent
Poisson’s ratio of 0.33. The elements representing the fibers were
defined as linear–elastic, with the properties given in Table 2.
Periodic displacement boundary conditions were enforced

between each pair of nodes on opposite boundary faces of the unit
cell, through the following constraint equations:

u1

�
l
2
; x2; x3

�
− u1

�
−
l
2
; x2; x3

�
� ϵ1l (34)

u2

�
l
2
; x2; x3

�
− u2

�
−
l
2
; x2; x3

�
� ϵ6l (35)

u3

�
l
2
; x2; x3

�
− u3

�
−
l
2
; x2; x3

�
� ϵ5l (36)

u1

�
x1;

l
2
; x3

�
− u1

�
x1;−

l
2
; x3

�
� ϵ6l (37)

u2

�
x1;

l
2
; x3

�
− u2

�
x1;−

l
2
; x3

�
� ϵ2l (38)

u3

�
x1;

l
2
; x3

�
− u3

�
x1;−

l
2
; x3

�
� ϵ4l (39)

u1

�
x1; x2;

l
2

�
− u1

�
x1; x2;−

l
2

�
� ϵ5l (40)

x2

LL

Tow
Matrix

x1

c)

a)

x2x1

x3

x3

b)

w g/2

h

Fig. 6 Finite element model for lamina unit cell: a) section of tow and edge matrix, b) single tow, and c) complete unit cell.
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u2

�
x1; x2;

l
2

�
− u2

�
x1; x2;−

l
2

�
� ϵ4l (41)

u3

�
x1; x2;

l
2

�
− u3

�
x1; x2;−

l
2

�
� ϵ3l (42)

where u1, u2, and u3 denote displacement components in the x1, x2,
and x3 directions, respectively. In the finite element representation of
these equations, each of the six volume-averaged strain components
was associated with an arbitrary displacement degree of freedom of a
dummy node. The desired value of the applied strain was prescribed
by specifying the displacement of the respective dummy node.
Three separate analyses were required to determine the five

independent components in the relaxation modulus tensorC because
each analysis provides a full column of coefficients. Each analysis
consisted of two steps, defined with the option quasi-static *VISCO
in ABAQUS. In the first step, which simulates the application of an
instantaneous strain, a unit amplitude of one of the three strain
variables (ϵ1, ϵ2, and ϵ5) was applied to the unit cell over a very short
time period (×10−10 s). This short time durationwas chosen such that
the towwould behave elastically. All other strain variables were set to
zero. During the second step, which lasted 1010 s, the applied strains
were held constant.
After each analysis, the time-dependent, corresponding volume-

averaged stress components were obtained by dividing the reaction
forces at the dummy nodes, computed by ABAQUS, by the area of
the unit cell boundary face. To obtain the values of the Prony
coefficients, the computed time history was fitted to Eq. (21) using
the Levenberg–Marquardt optimization algorithm in Matlab.
The independent coefficients ofC, obtained in thisway, are plotted

in Fig. 7. Note thatC11 has a much weaker time dependence than the
other moduli because the behavior in the fiber direction is dominated
by the time-independent behavior of the fibers. The Prony
coefficients are listed in Table A2.

B. Lamina Relaxation Matrix

Each of the four tows forming the lamina unit cell (Fig. 6) was
meshed with 960 eight-node brick elements, and the matrix regions
along the edges of the tows were meshed with 1920 eight-node brick
and 640 six-node triangular prism elements. The tow elements were
defined as viscoelastic, with the relaxation modulus tensor C
obtained in Sec.V.A, through a user-definedmaterial subroutine. The
elements representing the matrix were given the viscoelastic
properties of PMT-F4, in Table A1.
To impose the constraint that the normals to the midplane of the

lamina remain orthogonal to the deformed midplane (Kirchhoff
plate model), the nodes lying on the boundary faces of the unit
cell were tied to the midplane nodes through rigid connectors. The
displacements and rotations of each midplane node on one face were

paired to those of a corresponding node on the opposite face by

constraint equations that impose periodic boundary conditions in

terms of midplane strains and out-of-plane curvatures. The constraint

equations for this problem were given by Kueh and Pellegrino [41]:

u1

�
L

2
; x2

�
− u1

�
−
L

2
; x2

�
� ϵ1L (43)

u2

�
L

2
; x2

�
− u2

�
−
L

2
; x2

�
� 1

2
ϵ3L (44)

u3

�
L

2
; x2

�
− u3

�
−
L

2
; x2

�
� −

1

2
κ3x2L (45)

θ1

�
L

2
; x2

�
− θ1

�
−
L

2
; x2

�
� −

1

2
κ3L (46)

θ2

�
L

2
; x2

�
− θ2

�
−
L

2
; x2

�
� κ1L (47)

θ3

�
L

2
; x2

�
− θ3

�
−
L

2
; x2

�
� 0 (48)

u1

�
x1;

L

2

�
− u1

�
x1;−

L

2

�
� 1

2
ϵ3L (49)

u2

�
x1;

L

2

�
− u2

�
x1;−

L

2

�
� ϵ2L (50)

u3

�
x1;

L

2

�
− u3

�
x1;−

L

2

�
� −

1

2
κ3x1L (51)

θ1

�
x1;

L

2

�
− θ1

�
x1;−

L

2

�
� −κ2L (52)

θ2

�
x1;

L

2

�
− θ2

�
x1;−

L

2

�
� 1

2
κ3L (53)

θ3

�
x1;

L

2

�
− θ3

�
x1;−

L

2

�
� 0 (54)

where θ1, θ2, and θ3 are rotations about the x1, x2, and x3 axes,

respectively. In the finite element model, each of the six deformation

components (ϵ1, ϵ2, ϵ3, κ1, κ2, κ3) is associated with an arbitrary

displacement degree of freedom of a dummy node. The desired

applied deformation was prescribed by specifying a particular

displacement of the respective dummy node.
The time-dependent coefficients of the relaxation ABDmatrix for

the lamina unit cell were determined by carrying out six separate

analyses. In each analysis, a unit step amplitude of one of the six

deformation variables was applied to the unit cell, over a short time

period (1 × 10−10 s), and was then held constant. Meanwhile, all

other deformation variables were held equal to zero. The time

variations of the force and moment resultants were obtained from the

reactions at the dummy nodes and fitted to Eqs. (32) and (33), again

using the Levenberg–Marquardt algorithm in Matlab, to obtain the

Prony coefficients for the ABD matrix of the lamina, defined

in Eq. (31).
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]
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C55
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Fig. 7 Tow relaxation moduli.
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The six nonzero coefficients (A11, A12, A33, D11, D12, and D33)
completely characterize the effective viscoelastic behavior of the
lamina; they are plotted in Figs. 8 and 9. The numerical values of the
Prony coefficients are listed in Tables A3 and A4.

VI. Model Verification

The viscoelastic model for the laminawas verified against uniaxial
tension and four-point bending creep experiments conducted on
single-ply�45 laminas. The length of all test samples was 100 mm,
and the width was 20 mm for the tension samples and 50 mm for the
bending samples. In the tension tests, a force of 30Nwas applied over
30 s and held constant for 104 s. The creep strain of the samples was
measured continuously over time. For the bending tests, the span
between the inner loading pins was 10 mm, and a force of 0.8 N was
applied over a period of 10 s. The vertical deflection of the midpoint
of the sample was measured. Each type of test was repeated twice, at
three temperatures (50, 60, and 70°C).
The longitudinal stretching compliance was obtained from the

tension test results, by dividing the measured strain by the applied
stress. The bending compliance d was calculated from the applied
moment and midpoint deflection, using the viscoelastic Euler–
Bernoulli beam relationship,

δ�t� � Ps3

4I
d�t� (55)

where δ is the midpoint deflection, P is the applied load in the four-
point bending test, s is the half-distance between the inner loading

pins (with 4s being the total distance between the outer loading pins),
and I is the second moment of area of the sample.
The results from the two tests at each temperature were averaged,

and the compliances at different temperatures were shifted to the
reference temperature, using the time shifts derived in Sec. III.B.
Model predictions for themeasured compliances were obtained by

carrying out tension and bending creep analyses on the lamina unit
cell. The applied force and moment used in the tests were first
converted to force andmoment resultants and then transformed to the
coordinate frame of the lamina unit cell. The resulting midplane
strains and curvatures computed from the unit cell model were
transformed back to the longitudinal direction of the sample. The
results are plotted in Figs. 10 and 11.
Generally, good agreement was obtained between model

predictions and experimental measurements, but the experimental
bending compliances were noisier than the extensional ones, due to
vibration caused by air circulation inside the environmental chamber.
Note that no filtering or smoothing has been applied to the
experimental results.

VII. Deployment of Tape Springs

A. Experiments

The deployment behavior of tape springs that had been held folded
for a period of timewas studied experimentally. The testswere carried
out on 596-mm-long tape springs with transverse radius of 19 mm,
thickness of 0.125 mm, and areal density of 160.7 g∕m2, made from
�45 plain-weave fabric with 1k tows of T300 carbon fibers
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Fig. 8 In-plane relaxation coefficients of single-ply lamina.
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Fig. 9 Bending relaxation coefficients of single-ply lamina.
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Fig. 10 Longitudinal stretching compliance of �45° plain-weave
lamina at 40°C.
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Fig. 11 Longitudinal bending compliance of �45° plain-weave lamina
at 40°C.
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impregnated with PMT-F4 epoxy resin. The tape springs had been
fabricated by laying the resin-impregnated fabric on a cylindrical
steel mandrel, wrapping the assembly in release films, and curing
under vacuum for 2 h at 120°C and 400 kPa. A fiber orientation at
45 deg to the axis of the tape spring was chosen to display relatively
largeviscoelastic effects in both the deployment behavior (dominated
by the longitudinal in-plane stiffness of the tape spring) and the
end-of-deployment snap into the fully deployed configuration
(dominated by the transverse bending stiffness of the tape spring).
The test design took into account the temperature dependence of

the relaxation time. The epoxy matrix has a glass transition
temperature Tg well above room temperature; therefore, at room
temperature, it is only weakly viscoelastic and hence would need to
be held folded for a long time to observe noticeable viscoelastic
effects. Because relaxation/creep behavior accelerates at temper-
atures closer to Tg, the tape spring was held folded at a temperature
higher than room temperature.
In each test, the tape spring was first held folded for a given length

of time at a specified temperature and then deployed at different
temperatures; the shape change during deployment was measured.
Experiments were performed inside a thermal chamber that stabilizes
the temperaturewithin 0.1°Cover the test period. The tape springwas
clamped at the bottom end and positioned vertically on a granite
table. Thermocouples were placed at three different locations in the
vicinity of the tape spring to monitor the temperature uniformity,
which could be controlled within �0.5°C.
In a previous study [14], it was discovered that the behavior of

viscoelastic tape springs is characterized by a relatively fast
deployment followed by a short-term oscillatory phase, and followed
by a long-term recovery phase. During the short-term deployment
and oscillatory phases, there are visible rotations at the fold location,
but during the final recovery phase, the overall shape changes are
relatively small. To capture both of these behaviors, two displace-
ment measurement schemes were employed to probe the behavior
under such different length and time scales, as described next.Ahigh-
resolution Sony Handycam HDR-XR500V digital camcorder with a
rate of 30 frames per second was used to obtain side images of the
tape spring, from which the deployment angle could be measured.
The three-dimensional digital image-correlation system Vic-3D was
used to obtain full-field displacement/strainmeasurements of the fold
region in the tape spring, during the recovery phase. The Vic-3D
system, developed by Correlated Solutions, consists of two Point
Grey Research charge-coupled device cameras with a resolution of
2448 × 2048 and a pixel size of 3.45 × 3.45 μm. The cameras were
positioned such as to capture images of the inner (concave) surface of
the tape spring throughout the test. The experimental configuration is
shown in Fig. 12.
The test procedure was as follows. The chamber was first heated

and stabilized at the stowage temperature. The chamber was then
opened, and the tape spring was manually folded to an angle of
87 deg, as shown in the figure. To minimize the disturbance of the
thermal environment, the chamber was kept open for only a short
time. The tape spring was held in this folded configuration for a

period of 8 h, by attaching a string between the granite table and the
free end of the tape spring. After the stowage period, the temperature
inside the chamber was changed to the deployment temperature, and
deployment of the tape spring was initiated by passing an electrical
current through a Nichromewire attached to the string. Images of the
tape springwere recorded from the start of deployment, for a duration
of 8 h. The stowage and deployment temperatures in each test are
summarized in Table 3. Note that each test was repeated under
nominally identical conditions; the results presented here are
averages of two nominally identical experiments.

B. Simulations

The deployment behavior of the tape springwas simulatedwith the
finite element software ABAQUS/Standard. The finite element
model of the tape spring consisted of 2268 quadrilateral shell
elements with a maximum dimension of 3.85 mm, as shown in
Fig. 13. The viscoelastic behavior of the shell elements was defined
by assigning the ABDmatrix obtained in Sec. V.B via a user-defined
shell section subroutine.
The boundary conditions were applied as follows. The bottom end

section CC 0 was held fixed throughout the analysis. To reach the
folded configuration, the cross section at the fold region was first
flattened by applying equal and opposite rotations on the two edge
nodesB andB 0. At the same time, a rotation of 87 deg was applied to
the middle node A of the top end cross section of the tape spring. The
prescribed rotations on the edge nodes were then released, and the
tape spring was held in this folded configuration for 8 h. To initiate

Tape spring

Thermocouples

Thermal 
chamber

DIC system 

Fig. 12 Experimental configuration.

Table 3 Thermal conditions of tests on tape springs

Test Stowage temperature, °C Deployment temperature, °C

1 23 23
2 60 60
3 60 23

xy

z

A

B

B
Fig. 13 Finite element model of tape spring.
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Fig. 14 Measurements of deployment angle vs time for tape spring.

KWOK AND PELLEGRINO 317

D
ow

nl
oa

de
d 

by
 C

A
L

IF
O

R
N

IA
 I

N
ST

 O
F 

T
E

C
H

N
O

L
O

G
Y

 o
n 

A
pr

il 
16

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.J

05
50

41
 



deployment, the boundary condition on node A was released

instantaneously. The type of analysis was quasi-static for the folding

and stowage steps and was switched to dynamic after the removal of

the constraint on node A. Gravity loading in the z direction was

imposed throughout the simulation. The deployment process was

simulated for 8 h. A complete analysis took 40 h to complete on a

computer with two Intel Xeon processors running at 2.33 GHz, with

four cores per processor.

C. Results

Figure 14 shows plots of the time variation of the deployment

angle for the three tests, and Fig. 15 shows a series of intermediate

shapes of the tape spring during deployment for test 2. In all tests,

the tape spring passed through the vertical (i.e., fully deployed)

configuration and overshot by a small amount; afterward, the tape

spring gradually straightened, and the deployment angle tended

toward zero.

Fig. 15 Snapshots at 0, 0.13, 0.26, 0.39, 0.52, 0.65, 0.78, 0.91, and 1.04 s of deployment sequence in test 2.
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The effect of stowing the tape spring at different temperatures is

apparent in Fig. 14. In test 1, the maximum overshoot occurred at
0.4 s and had amagnitude of−1.4°. In test 2, themaximumovershoot

was delayed to 0.65 s, and the overshoot angle was −2.5°. The
deployment responses for tests 2 and 3 were nearly identical, with
only a minor difference in the overshoot time.
These results indicate that the short-term response of the tape

spring is affected mainly by the stowage conditions, whereas the

deployment temperature has only a minor effect.
Measurements of the out-of-plane displacement field in the fold

region of the tape spring during test 2 are shown in Fig. 16. These

measurements were obtained by analyzing images of the deformed
tape spring with the Vic-3D digital image correlation software. The

reference image was taken at the instant of maximum overshoot to

capture the details of the cross-section shape change during the final
recovery phase. As shown in Fig. 16, the maximum transverse

displacement of the tape spring in this region was 3.0 mm (which
should be compared to the depth of the tape spring of 16.0 mm),

occurring 5743 s (1.6 h) after the configuration of maximum
overshoot had been reached. These results indicate that, after

deployment, it took a long time for the cross-sectional shape of the

tape spring to recover its curvature, although the deployment had
nominally been completed in less than 1 s. Hence, it is clear that

viscoelastic effects associated with the stowage duration and
temperature extend the time needed for full deployment and shape

recovery in composite tape springs.
Figure 17 shows a comparison between experimental

measurements and finite element simulations of deployment angle

vs time, for test 2. Overall, the finite element simulation is in good
agreement with the experimentally measured response. In particular,

note the closematch of the large-rotation behavior, indicating that the

model accurately predicts the moment at the fold. Also note in the

simulation results that, after ∼0.5 s from the start of deployment, a

small vibration develops, due to a torsional oscillation of the upper

part of the tape spring. Finally, note that, because of this predicted

oscillatory behavior, which was not seen in the experiments, the

overshoot angle is overpredicted by about 1.5 deg.
The effects of a much longer stowage period were investigated

numerically, using the viscoelastic model. A finite element analysis

inwhich the stowage periodwas assumed to last one year at 23°Cwas

carried out. The plot of deployment angle vs time obtained from this

simulation, shown in Fig. 18, shows a drastically different behavior

Fig. 16 Measured out-of-plane displacements of fold region relative to the configuration ofmaximumovershoot: a) at overshoot (reference), b) after 50 s,
and c) after 5743 s.
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Fig. 17 Comparison of deployment angle vs time for test 2.
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from that seen previously. According to this prediction, when the tape
spring is released, it deploys only a few degrees, and after a slow
oscillation, after about 10 days, it reaches a deployment angle of
82.6 deg. This result shows that the fold region of the tape spring has
relaxed to such an extent that it is unable to deploy against its own
self-weight.

VIII. Conclusions

Fiber-reinforced polymer composites are promising materials for
use in lightweight deployable structures. However, the viscoelasticity
of this material can significantly affect the deployment of composite
space structures after stowage. In this paper, a viscoelastic model for
single-ply plain-weave carbon-fabric-reinforced epoxy composites
has been developed. Themodel has been implemented in a structural-
scale finite element analysis, and the deployment of tape springs that
have been held stowed for different lengths of time and under
different temperatures has been studied.
The viscoelastic model is derived from a representative unit cell of

the composite material, based on the microstructure geometry,
obtained from optical microscopy. The fiber volume density in the
tows forming the plain-weave laminas and the constitutive behaviors
of the fibers (linear elastic and transversely isotropic) and the matrix
(linear viscoelastic) are the key ingredients to set up the model.
Finite-element-based homogenizations at two scales, the fiber/matrix
and tow scales, have been conducted to obtain the coefficients of the
Prony series that characterize their orthotropic behavior, using the
measured relaxation modulus of the matrix, which decreases by a
factor 3.3 over time span of 1 to 1010 s at a temperature of 40°C, as an
input. Throughout the model, the relaxation times of the Prony series
are set equal to the experimentally derived relaxation times of the
matrix Prony series. The outcome of these successive homogeni-
zations is the starting point for the final homogenization step, leading
to the lamina relaxation ABDmatrix, which can be used in studies of
the time-dependent behavior of shell structures.
The proposed model has been verified against the experimentally

measured time-dependent compliance of a single lamina in pure
tension and pure bending, obtaining errors smaller than 5% for
tension and 10% for bending.
The stowage and deployment behavior of single-ply tape springs

have been studied, both experimentally and through numerical
simulations made with the ABAQUS/Standard finite element
simulations, where the tape spring was modeled with viscoelastic
thin-shell elements. The time-dependent stiffness of the shell
elements was modeled through the relaxation ABD matrix obtained
from the preceding homogenization.
To study the deployment behavior of tape springs after a period of

stowage, a ≈90° fold was introduced in a ≈60 cm long tape spring
with carbon fibers at�45° to the axis of the tape spring, and the tape
spring was held in this configuration for 8 h and then deployed. This

test was carried out at different temperatures. Images of the
deployment behavior showed that the tape spring deploys quickly,
overshoots the deployed configuration by a small amount, and then
slowly moves toward its final reference configuration. However, the
recovery of the cross-section of the tape spring occurs very slowly,
over several hours. Extending the duration of the stowage period has
the effect of extending the time required for the full deployment. The
viscoelastic simulation model captures the experimentally observed
deployment behavior with very good accuracy.
A numerical-only study of a single-ply tape spring that is released

after being held folded for one year at room temperature has also been
presented. It has been shown that, under these conditions, the tape
spring is not able to deploy against gravity.

Appendix: Prony Series

Table A1 Relaxation times and Prony coefficients
for PMT-F4 epoxy

i Ei, MPa ρi, s

∞ 1000 — —

1 224.1 1.0e� 3
2 450.8 1.0e� 5
3 406.1 1.0e� 6
4 392.7 1.0e� 7
5 810.4 1.0e� 8
6 203.7 1.0e� 9
7 1486.0 1.0e� 10

Table A2 Relaxation times (in seconds) and Prony coefficients
(in megapascals) for tows

k ρk C11;k C12;k C22;k C23;k C55;k

∞ — — 150500 2000 6000 2000 2000
1 1.0e� 3 117.1 89.6 242.9 112.0 106.2
2 1.0e� 5 268.7 191.7 512.7 241.4 225.3
3 1.0e� 6 233.6 183.8 518.1 232.3 219.3
4 1.0e� 7 253.8 214.4 538.4 276.1 244.5
5 1.0e� 8 488.2 395.9 1207.9 499.2 480.3
6 1.0e� 9 255.6 359.8 685.9 480.2 366.1
7 1.0e� 10 850.2 644.1 2523.0 761.6 844.4

Table A3 Relaxation times (seconds) and Prony coefficients
(newtons per meter) of matrix A

k ρk A11;k A12;k A33;k

∞ — — 740e� 3 110e� 3 155e� 3
1 1.0e� 3 23.3e� 3 4.76e� 3 13.4e� 3
2 1.0e� 5 49.4e� 3 10.3e� 3 27.6e� 3
3 1.0e� 6 49.6e� 3 9.75e� 3 26.4e� 3
4 1.0e� 7 54.0e� 3 12.1e� 3 27.0e� 3
5 1.0e� 8 115.0e� 3 20.5e� 3 56.7e� 3
6 1.0e� 9 80.9e� 3 23.0e� 3 26.5e� 3
7 1.0e� 10 234.0e� 3 29.5e� 3 107.2e� 3
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Fig. 18 Predicted incomplete deployment of tape spring that has been
held folded for one year.

Table A4 Relaxation times (seconds) and Prony coefficients (newton
meter) of matrix D

k ρk D11;k D12;k D33;k

∞ — — 919e − 6 30e − 6 160e − 6
1 1.0e� 3 11.7e − 6 10.4e − 6 13.2e − 6
2 1.0e� 5 55.9e − 6 36.5e − 6 40.0e − 6
3 1.0e� 6 8.62e − 6 23.2e − 6 2.03e − 6
4 1.0e� 7 72.0e − 6 29.5e − 6 −8.66e − 6
5 1.0e� 8 45.6e − 6 50.3e − 6 80.8e − 6
6 1.0e� 9 87.5e − 6 52.2e − 6 28.5e − 6
7 1.0e� 10 121.5e − 6 67.4e − 6 84.2e − 6
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