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Interaction Between Gravity Compensation Suspension
System and Deployable Structure

A. Fischer* and S. Pellegrino’
University of Cambridge, Cambridge, England CB2 1PZ, United Kingdom

Gravity compensation suspension systems are essential to support space structures during tests on Earth, but
also impose constraints on the structures that have the effect of changing their behavior. A computational and
experimental study of the interaction of a rigid panel solar array model with a manually adjustable suspension
system during quasi-static deployment tests in the 1-g environment of the laboratory is presented. A methodology
is established for modeling this interaction, for predicting the effects of suspension system adjustments, and for
optimization of the suspension system through these adjustments. Some improvements can be achieved by manual
adjustments, but further optimization requires an active system.
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Introduction

T HE 0-g environment of space makes it possible to design large
space structures of low mass. The dimensions of such structural
systems pose a problem during transport into orbit, however, because
the payload volume of launchers is limited. Therefore, a variety of
deployable structures are used that can be packaged into a small
volume and, once in space, can be deployed into their operating
configuration.

Prior to flight, ground validation tests of such structures are carried
out to ensure reliable and accurate performance in space. However,
the 1-g environment and the associated self-weight loading on the
structure have to be counteracted with an artificial support system.
The problem is that this system imposes constraints on the structure,
and, thus, perturbs its static, dynamic, and deployment behavior.
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Gravity compensation systems play a key role in replicating as
closely as possible the 0-g conditions of space. Concepts used for the
testing of space structures include physical methods such as drop
towers and parabolic flight maneuvres,' buoyancy techniques, air
bearings/tables, and simple mechanical suspension systems featur-
ing cables and pulleys, often in combination with counterweights,
zero-spring rate mechanisms, and pneumatic/electric devices.>3 Im-
provement of the mechanical methods lead to the development of
actively controlled single-point suspension systems.4~10

To support the large-scale deployment motion of modern space
structures, passive and, more recently, actively controlled multipoint
suspension systems are used.'!"'2 However, the inherent flexibility of
deployable structures is the source of complex interactions between
structure and suspension system that requires careful examination.
To obtain reliable predictions from ground tests for the deployment
behavior in space, these interactions have to be understood.

The particular deployable structure that is investigated in this
paper is a cable-deployed rigid panel solar array of the type used in
the European Retrievable Carrier (EURECA) spacecraft. This type
of solar array exhibits features typical of large deployable space
structures such as high, variable flexibility, and, hence, multiple
supports are required to prevent excessive loading and deformation.
Deployment tests on a small-scale laboratory model!3 have revealed
a complex interaction with the support system; the variations in
the suspension forces observed even during quasi-static deployment
were surprisingly large. The aim of this paper is to develop analytical
models to capture this interaction, and then to adjust the suspension
system to isolate as much as possible the structural behavior of the
test article from that of its suspension.

Following a brief description of the model structure that will
be investigated, the section Computational Models sets up the
configuration-dependent stiffness matrix of the array and the con-
stant stiffness matrix of its suspension system. Thus, a relationship
between the adjustments of the suspension system and the associated
changes in the suspension forces, for any configuration of the array,
is obtained. In the section Variation of Suspension Forces During
Deployment, it is found that there are considerable differences be-
tween the predicted, the experimentally observed, and the required
suspension forces. Thus, in the following section a simple method
for adjusting the suspension system and achieving predictable be-
havior is established. It is concluded that the suspension system
currently used, which does not allow on-line adjustment, cannot

produce accurate gravity compensation, but even a simple, actively
controlled system would be able to.

Physical Model of Solar Array
The solar array that is examined in this paper is a simplified
version of the retractable advanced rigid array of the EURECA
mission. Figure 1 is a schematic view of the test rig, including

the solar array model and the suspension system. Geometrical and
material properties are listed in Table 1.



94 FISCHER AND PELLEGRINO

Table 1 Properties of solar array model

Parameter Value

Dimensions
Array Fully deployed length 2,200 mm
Panels 400(200) x 100 x 1.63 mm

Panel material

Al-alloy E =70,000 N/mm?
v=033
p=0.0027 g/mm?

Mass distribution

Total mass 4343 ¢g

Tip mass 355¢g

Mass of panels 0.405 g/mm

Mass of hinges m; =310g
ma,....6 =507g
m7 =607g

Fig. 2 Beam element model of array.

The model array structure consists of rectangular Al-alloy panels
that are hinged to each other along the short vertical edges. There
are five full-length panels, plus a half-length panel serving the pur-
pose of a yoke, that separates the array structure from the spacecraft.
The structure can move in a horizontal plane, concertinalike. Its de-
ployment and retraction are driven by cables running over a pulley
system and wound on a single motorized drum. The motion is syn-
chronized by closed-contact-loop cables that link adjacent panels
in such a way that they rotate by equal and opposite amounts. The
deployment drum is driven by a stepper motor controlled via a per-
sonal computer. Further details on the design of this experiment are
available elsewhere. 3

Gravity compensation is achieved by means of three identical,
movable double-point suspension elements. Each element consists
of a horizontal tube connected by steel cables, terminated by steel
rings, to the suspension points of the array. These tubes are sus-
pended via steel shafts from Al-alloy rods supported on linear bear-
ings that run on horizontal steel rails above the structure. The root
of the array is held by a single suspension element and fixed to a
thick base plate, such that only translation in the vertical direction
is permitted. Altogether, there are seven suspension points, located
above the hinge shafts. They counteract the gravity loading on the
array, almost at the points where it arises, because most of the array
mass is concentrated at the hinges.

Each suspension cable has a turnbuckle for length adjustment,
mounted in series with a strain gauge to measure the cable ten-
sion. Data from these strain gauges are recorded with a data logger
throughout deployment. Length adjustments are made manually and
checked with a Vernier caliper before deployment. However, no ad-
justment can be made during deployment.

To avoid undesirable deformation of the array structure due to an
unbalanced weight distribution amongst the suspension points, a tip
mass is attached to the last hinge adding the weight of approximately
half of a hinge and half of a panel.

Computational Models

To investigate the interaction between the array structure and its
suspension system, finite element models are set up for each, relat-
ing the displacements of the suspension points to the applied forces.
Then the individual models are combined, with and without con-
sideration of the length changes in the suspension cables, to derive
a computational model of the complete system. Thus, a relation-
ship between the length adjustments and the redistribution of the
suspension forces is obtained.

Model of Solar Array

The solar array is modeled as an assembly of six beam elements
(Fig. 2) connected by revolute joints with vertical axes of rota-
tion. Nodes 1-7 coincide with the hinges and with the suspension
points. We are only interested in the vertical displacements at the
suspension points and, hence, only in the out-of-plane stiffness of
the array. According to an in-plane model of the array,'? the in-plane
and out-of-plane behavior of the array are decoupled, provided that
the out-of-plane deflections are small. The state of deployment or
retraction is uniquely defined by the deployment angle o, witha =0
and 90 deg denoting the fully deployed and fully retracted configura-
tions, respectively. For our study, it makes no difference whether the
array is being deployed or retracted, and, hence, only deployment
will be mentioned from now on.

The stiffness matrix K4 of the array structure, relating the dis-
placementsd 4 to the forces p4 at the suspension points, is composed
of the standard stiffness matrices for the individual beams. Here, d 4
includes the vertical displacement components of all of the nodes
plus the rotations 6, and 6, of nodes 2-7. Therefore, the stiffness
matrix K, of the array has dimensions (19 x 19), and the force-
displacement relationship is given by

Wy Sa
KAdA =KA OXA = | my, =’7A (¢))
0y, my,

or, in block form,

Ko Kan | [wa] _[fa )
I.{ Aow I.{AM OA na
Because we are not interested in the rotation components, we use
standard matrix condensation techniques to obtain

Kiw, =pa 3)

with
K, = I?A.,,,,, = I?A,,,gk;,:,,l?/ag,,, 4)
pa=fa—Ka, K3\ ma )

The condensed stiffness matrix K, is of size (7 x 7). This model
shows that the stiffness of the array changes considerably with the
angle «, as observed in the experiments. The reason for this is that the
structure is far more flexible, during the middle part of deployment,
due to twisting of the panels, than it is when it is fully deployed
or retracted. In these extreme configurations only bending occurs, a
deformation mode where the panels exhibit a much stiffer behavior.

Model of Suspension System

The suspension system consists of the four independent suspen-
sionelements I, I1, I11, and IV. These are complex structures to model
accurately, and, hence, it was decided to measure their stiffness ex-
perimentally.
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Fig. 3 Suspension element test rig.

To establish the relationship between the vertical displacements
ws and the associated forces ps at the suspension points, the sus-
pension elements were taken out of the assembly and set up in a
separate test rig (Fig. 3).

For each suspension element a series of displacement-force mea-
surements were taken. The displacements were applied as length
changes of the turnbuckles in the cables and measured with a Vernier
caliper. The resulting strains in the suspension cables were measured
by the strain gauges.

The three double-point suspension elements II, III, and IV are de-
signed identically and, thus, should have the same structural proper-
ties. Their stiffness matrices K, = Kj,,, =Kj,, , relating wg to ps,
were calculated by fitting the experimental data with a set of global
parameters determined by a least-squares solution. Determination
of the stiffness K, of the single-point suspension element I was
done independently, using the same technique.

The (7 x 7) stiffness matrix K representing the complete sus-
pension system is composed of the independent matrices K, ~Ks,,
of the four suspension elements

Ks,

K = —
sWs Ko Ws = ps (6)

KSIV

In contrast to the array structure, the stiffness of the suspension sys-
tem does not depend on the deployment angle «, and, thus, remains
constant throughout deployment.

Complete Model

The stiffness matrix K¢ of the complete structure formed by the
solar array and suspension system relates the vertical displacements
wc to the applied loads pc at the suspension points. It is derived
by combining the stiffness expressions of the individual systems,
Eqs. (3) and (6), by means of the compatibility condition

Wap=Ws=Wc @)
and the equilibrium condition
Pa =Pc —Ps ®

From these equations the stiffness relationship for the combined
structure is

Kch = (KA +KS)WC =Pc (9)

K¢ has dimensions (7 x 7) and depends on the deployment angle a.
No numbers for the stiffness matrices shall be given here, but note
that in the fully deployed or retracted conditions the stiffness of the
array structure is about three to four orders of magnitude higher
than that of the suspension system, whereas during deployment the
stiffnesses of the array and the suspension are comparable.

Relatiohship Between Suspension Forces and Adjustments

The suspension forces can be redistributed by adjusting the turn-
buckles in the suspension system. A relationship between the length
changes 6 of the suspension cables and the change in suspension
forces As needs to be established. To do this, the computational
models for the array and the suspension system need to be com-
bined, taking into account the length changes §. The equilibrium
condition (8) still applies, but no external loads need to be consid-
ered because there is no change in the external loads. Therefore,
the forces acting on the two systems are due to the forces s in the
suspension cables only. Hence, the force changes are

Aps = —Aps = As (10

The displacement condition has to be modified to include the length
changes 6 at the suspension cables and, therefore,

Awy = Aws + 6 (11)

where positive & correspond to shortening of the suspension cables.
Equations (3), (6), (10), and (11) give

Awy = (K4 + K5) 'K (12)

that, together with Eqs. (3) and (10), yields the desired (8, As)
relationship

Ré6 = As (13)
Here
R =K, (K4 + Ks)"'Ks = K4K:'Ks (14)

which provides the essential tool for the manipulation and redistri-
bution of the suspension forces.

The (7 x 7) matrix R is not a stiffness matrix in the usual sense
because it relates internal forces and displacements, not externally
applied loads and displacements.

Variation of Suspension Forces During Deployment
Predicted and Measured Suspension Forces

The combined system formed by the solar array and the suspen-
sion system is loaded by the self-weight of the array. The self-weight
of the suspension system need not be considered because it is equi-
librated directly within the system itself. The mass distribution of
the array has been estimated from measurements and calculations.
In the physical model ~80% of the total mass is due to the hinges
and the tip mass, and the remaining ~20% is due to the panels (see
Table 1).

Forces resulting from the masses concentrated at the hinges are
applied as single loads Fy. The uniformly distributed mass of the
panels gives rise to appropriate equivalent nodal loads Fp, M, , and
M p, that depend on the actual deployment configuration. Hence, the
load vector pc is

Fy+Fp
. fe
Pe= = Mp, (15)
M, '

In analogy with the matrix condensation of the array stiffness matrix
K 4, the load vector.f - can be reduced from 19 to 7 elements to match
the stiffness matrix K¢ of the combined system [Eq. (5)], and the
condensed load vector p¢ is then given by

pc=fc —Ku,,Ka,,) "  mc (16)

This loading is applied on the computational model of the combined
system [Eq. (9)] to determine the resulting displacements at the
suspension points.

Then, by using the stiffness relationship for the suspension system
[Eq. (6)], the internal forces in the suspension cables can be recov-

ered. Figure 4 shows the forces in the suspension cables throughout
deployment.
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Fig. 4 Predicted variation of suspension forces assuming perfect
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Fig. 5 Measured variation of suspension forces.

The computational model represents an idealized structure with
no misalignment or imperfections where the hinges are exactly ver-
tical, the suspension elements are identical, and the rails supporting
the bearings of the suspension system are straight and horizontally
level. In practice, though, all of these imperfections occur to an
unknown extent and, thus, it might be expected that the measured
suspension forces will not even resemble the suspension forces re-
sulting from a perfect computational model. Also, the initial length
adjustments of the suspension cables influence significantly the vari-
ation of the suspension forces during deployment. Figure 5 shows
only two examples of the many suspension force variations that were
measured.
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Fig. 6 Required variation of suspension forces.

However, we can use the relationship for the redistribution of the
suspension forces [Eq. (13)] to change the current force distribution
by computing the adjustments that will best simulate a weightless
environment.

Required Suspension Forces

During deployment the forces carried by the hinges should be as
small as possible if the suspension system is to accurately replicate
the behavior of the structure in space. This requires that the defor-
mation of the array be minimized and, hence, that the displacement
of all suspension points be a pure translation.

The forces acting on the suspension points of the array are the
loads pc due to self-weight, given by Eq. (16), and the suspension
cable forces s:

Kawy =pc+S 17

The stiffness matrix K, of the array without the suspension system
is singular, because the structure has a degree of kinematic freedom
in the vertical direction. Therefore, its displacements need to be
considered relative to the displacement w; of suspension point one

Ky (wa—wa) =pc+s (18)

where K, is a (7 x 6) reduced version of K 4.

Pure translation of the array occurs for the relative displacements
(wa —wa,) =0. To achieve this, no resulting forces are to act at
the suspension points, which in turn implies that at any stage during
deployment the suspension forces have to exactly equilibrate the
self-weight loads at every suspension point. Hence, the required
suspension forces sg for proper gravity compensation are

Sg = —Pc (19)

whose dependence on the deployment angle « is plotted in Fig. 6.

As could be expected, the required distribution of suspension
forces is almost constant because the main part of the loading is
applied as concentrated loads that are supported right at the suspen-
sion points for any configuration of the array. However, there would
be a more significant variation if the mass of the system were more
uniformly distributed. Indeed, this would be the case for an array
structure of larger scale, where the mass of the hinges would be
much smaller than the mass of the panels.

The suspension force at node 1 is smaller than that at the other
nodes because one of the panels connected to this hinge is only half
as big as the other panels, and, hence, its mass is much lower.

Adjustment of Suspension System

Experiments were carried out to verify the computational models
and also to check the accuracy of the method for redistribution of the
suspension forces by adjusting the length of the suspension cables.

In the experiments, deployment and retraction were set to last
90 s. Every second, the strain gauge readings were recorded by a
data logger, so that the forces in the suspension cables are available
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at intervals of 1 deg of the deployment angle «. The preparation
for these experiments included resetting the strain gauges to zero
by unloading the suspension cables one after the other, so that the
sum of the strain gauge readings always corresponded to the overall
supported weight of the array. Measurements were taken for both
deployment and retraction and then averaged at corresponding de-
ployment angles. Noise was removed by smoothing out the data
using polynomial fitting.

Comparing the measured suspension force distributions su
(Fig. 5) to the required suspension forces s (Fig. 6) the necessary
changes in suspension forces are determined by

As =5y —Sg (20)

Then, the necessary length adjustments of all seven suspension ca-
bles were calculated with Eq. (13) and are plotted in Fig. 7.

When comparing Figs. 5 and 6, note that their discrepancy is
relatively big at either end of deployment, whereas the agreement
is much better in the range o =40-70 deg. This is due to the re-
duction in stiffness of the array structure during the middle part of
deployment, as described before. Therefore, vertical deviations of
the suspension points from their required positions result in much
larger reaction forces than in the end configurations. In intermediate
configurations, the array can yield much more easily to the restraints
imposed by the suspension system. For the same reason, the length
adjustments there need to be impractically large to achieve only mi-
nor force corrections, in contrast to the end configurations where
the deviation of the actual from the required forces is much bigger
but can be corrected by much smaller adjustments.

Our experimental setup allows adjustment in only one particular
configuration because the length changes at the suspension wires
have to be imposed manually. Therefore, either the fully retracted
or the fully deployed configuration is chosen, where large force
discrepancies can be corrected by small length adjustments.
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Fig. 7 Required suspension cable adjustments.

Because of the array structure itself having one degree of free-
dom in the vertical direction, identical length changes at all suspen-
sion cables would not affect the force distribution. The necessary
length changes are, therefore, calculated with respect to suspension
point 1. This implies reducing matrix R in Eq. (13) from size Tx7)
to (7 x 6) and then solving for the length changes in a least-squares
sense. The length changes computed thus are then translated verti-
cally to minimize the amount of manual adjustment at each point
and to stay within the range of the turnbuckles.

The suspension forces sp that are predicted by the computational
model when the suspension cables are adjusted a) in the fully de-
ployed and b) in the fully retracted configuration, that is,

Sp =Sy + AS|wu=00z =5SM +Ré6
(b = 90 deg

(a)a = Odeg (21)

(b)a = 90 deg

are shown in Fig. 8. As a comparison, Fig. 9 shows the forces that
were measured on our model after actually making the required
adjustments.

The theoretical predictions and measurements are in good agree-
ment throughout deployment, thus showing that the model correctly
describes the behavior of this shape-varying structure and its inter-
action with the gravity compensation system. In the fully deployed
and retracted configurations, for which the adjustments were made,
the agreement of both experiment and theoretical predictions with
the required suspension force distribution is particularly satisfactory.
The adjustment has also improved the suspension force distribution
during the middle part of the deployment, but not at the respective
other end. »

Discussion

For every particular deployment configuration, the system con-
sisting of array and suspension exhibits different behavior and prop-
erties, demanding varying adjustment throughout deployment. Also,
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Fig. 8 Predicted variation of suspension forces after adjustment.
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Fig. 9 Measured variation of suspension forces after adjustment.
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Fig. 10 Predicted variation of suspension forces after interpolated adjustment.

initial imperfections and misalignment of the hinges and panels, end
support, supporting rails, and the support framework affect the nec-
essary adjustments at any deployment angle «. This becomes most
apparent in the two end configurations, where the structure is rel-
atively stiff. Here, improving the force distribution at one end has
the effect of making it worse at the other end.

Figure 10 shows the theoretical predictions for the suspension
force distribution that could be achieved with a simple open-loop,
active suspension system that applies the required length adjust-
ments both in the fully deployed and fully retracted configurations
and, in between these configurations, applies linearly interpolated
adjustments. Even such a simple adjustment achieves suspension
forces that are remarkably close to the required distribution. In prac-
tice, though, this type of variable adjustment cannot yet be tested on
the existing experimental setup. Similar good agreement between
computational predictions and experimental data, however, can be
expected, as exhibited in the cases where adjustment is only possible
at either end of deployment.

Conclusions

In conclusion, this study has established a methodology for mod-
eling the interaction between deployable structures and gravity com-
pensation systems. It has been shown that the effects of adjustments
to the suspension system can be accurately predicted and that some
improvements in the distribution of forces applied by the system
to the structure can be achieved by means of a single adjustment
of the suspension system. However, to fully optimize the perfor-
mance of the suspension system, active adjustment techniques will
be required, allowing for variable adjustment while the structure

moves. An even more advanced, closed-loop control algorithm may
be needed to simulate zero gravity with respect to the dynamic be-
havior of the structure. Work on these topics has begun.
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Solid Fueled Ramjets » High Mach Number Applications
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