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Abstract

This paper investigates the vibration behaviour of
large, ultra-lightweight membrane structures. A high-
fidelity finite element simulation of a square membrane
is set up, which uses thin-shell elements and a very
careful simulation of the static wrinkling process. It
produces natural modes and frequencies that are in ex-
cellent agreement with experimental measurements in
air. This simulation is used as a benchmark for a lower-
fidelity model, based on a linear-elastic material model
of the membrane, and it is shown that the less accurate
model is able to accurately predict the vibration of a
moderately wrinkled membrane but not of a heavily
wrinkled membrane. Nonlinear identification tests on
a highly wrinkled membrane are also presented, show-
ing that the existence of stiffness nonlinearities results
in energy scattering and hence in an apparent increase
of the damping of the structure when the amplitude
of the excitation is increased.

Introduction

Most space membrane structures remain partially
wrinkled, and hence are not perfectly smooth, in their
operational configuration. Except for high precision
applications, such as reflector antennas and space
based radars which require unwrinkled, i.e. smooth
surfaces, a wrinkled surface is acceptable for many
applications. However, although wrinkled membranes
are much easier to produce in practice than unwrinkled
ones, accurately estimating the vibration behaviour of
wrinkled membranes is much more challenging. A few
modelling techniques have been recently proposed!,
but so far without any experimental validation.

As a follow-on to our recent study of unwrinkled
membrane vibration? in this paper we present a fi-
nite element (FE) simulation technique that predicts
with good accuracy the natural frequencies and mode
shapes of wrinkled membrane structures, both in vac-
uum and in air. This technique is validated against
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experimental measurements in air.

Another important issue, recently reported, is that
structures including wrinkled membranes exhibit vi-
bration damping levels much larger than could possi-
bly be due to material damping®*. We have addressed
this issue by means of an experimental investigation of
the nonlinear vibration behaviour of heavily wrinkled
membranes, which shows that their unually high vibra-
tion damping is actually caused by energy scattering
into harmonics of the excitation frequency.
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Kapton tape

Kevlar cord

Figure 1: Schematic diagram of square membrane.

The layout of this paper is as follows. A brief re-
view of the relevant literature is followed by a finite
element study of the stress distribution and wrinkle
pattern in the square membrane shown schematically
in Figure 1, for different corner force ratios. The in-
vacuum vibration of the membrane is shown to depend
very significantly on the corner force ratio, which af-
fects the wrinkle pattern. For Ty/T5 = 2, there are
only small wrinkles near the corners, and it is shown
that a standard linear-elastic model of the membrane
is adequate. For T)/T, = 4 there are large diagonal
wrinkles, and in this case it is essential to simulate
the formation of wrinkles in the static analysis that
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precedes any vibration analysis. This work is then
extended to the prediction of frequencies and mode
shapes in-air, and the results are verified experimen-
tally. Finally, for the case T1 /Ty = 4 a sets of ex-
periments on this highly wrinkled membrane are pre-
sented. A discussion concludes the paper.

Background

Wrinkled membranes cannot be analysed using stan-
dard linear-elastic membrane models, for a variety of
reasons. From a purely static viewpoint, thin mem-
branes are unable to carry compressive stresses due to
their very low bending stiffness, and hence their stress
distribution has to be purely tensile everywhere; also,
the small bending stiffness of the membrane leads to
the formation of finite-wavelength wrinkles in the sur-
face. From a structural vibration viewpoint, a knowl-
edge of the correct prestress distribution is obviously
necessary to correctly model the out-of-plane stiffness
distribution of the membrane.

Various analytical and numerical techniques have
been developed to analyse wrinkled membrane struc-
tures; those most relevant to this study are briefly re-
viewed next.

Static Analysis

Highly wrinkled membranes, i.e. membranes subjected
to in-plane edge loads or displacements well in excess of
the magnitudes necessary to trigger out-of-plane buck-
ling, were first studied using tension field theory®6. In
this approach, the bending stiffness of a membrane
is neglected and hence no compressive stresses are al-
lowed. Therefore, a uniaxial state of stress is assumed
everywhere, defining a series of tension rays, whose
orientation is such as to maximise the strain energy
in the membrane. This approach has been used for
the analysis of highly wrinkled membranes with simple
shapes but, considering the complexity of the bound-
ary shapes and load conditions that are of current in-
terest, there is limited scope for using tension field
theory.

An analytical formulation based on the concept of
a variable Poisson’s ratio for partially wrinkled mem-
branes was proposed by Stein and Hedgepeth”. A par-
tially wrinkled membrane is thus subdivided into wrin-
kled and taut regions. The membrane behaviour in the
taut regions is estimated using linear elastic models,
but in the wrinkled regions a variable Poisson’s ratio
is defined such that there are no compressive stresses.

A finite element implementation of the variable
Poisson’s ratio approach®-® looks for any elements that
satisfy the wrinkling criterion, to determine whether
they stay taut or become wrinkled. For any element
that becomes wrinkled, the element’s stiffness is modi-
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fied according to the variable Poisson’s ratio approach
and the resulting model is re-analysed with the same
loads until all compressive stresses are removed. This
FE implementation is known as the Iterative Mem-
brane Properties (IMP) procedure and has been re-
cently implemented! as a user subroutine in the com-
mercial FE package ABAQUS?. This implementation
has been used to analyse corner-loaded wrinkled mem-
branes with different load and aspect ratios. The IMP
approach is thus able to compute the extent and shape
of the wrinkled regions and their in-plane stiffness,
but not details of the wrinkles such as amplitudes and
wavelength.

In all of the above approaches the membrane is
treated as a purely two-dimensional structure. Rim-
rott and Cverko'® were the first to consider small out-
of-plane deformations, as well as the bending stiff-
ness of the membrane, in a study of the wrinkles
formed by a “blanket” hanging under gravity between
two points. This approach was developed by Wong
and Pellegrino'!, and led to analytical expressions for
the wavelength and amplitude of the diagonal wrin-
kles that form in long rectangular membranes sub-
jected to shear. The analytical predictions were con-
firmed experimentally and also against simulations
with ABAQUS'2, where the membrane was modelled
with shell elements, seeded with initial imperfections
based on the bifurcation eigenmodes of the lightly pre-
stressed membrane. To form an extensive set of wrin-
kles, a geometrically non-linear analysis was carried
out, under displacement control, until the imposed
edge displacement had been reached. This simulation
technique will be extended in this paper to corner-
loaded square membrane.

Vibration Analysis

The linear vibration behaviour of a wrinkled mem-
brane can be easily predicted once a tangent stiffness
matrix and a mass matrix have been obtained for the
membrane, e.g. using an FE model of the membrane.

The natural frequencies and mode shapes of the
Next Generation Space Telescope sunshield membrane
were obtained using both a cable network model of
the sunshield and a membrane modelled with the IMP
approach!. The cable network model approximates
the membrane with a series of interconnected truss el-
ements, representing the mass and load distribution
in the membrane. The IMP procedure simulates the
effects of the wrinkles, as explained in the previous
section. Several test cases were analysed in Ref. 1 us-
ing both methods, but the results were not validated
against any experiments.

Experiments on a large wrinkled membrane struc-
ture have shown that their vibration amplitude varies
nonlinearly with the excitation®. In addition, modal
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damping coefficients obtained for a random excitation
of 10 mg rms were in the range 3-10 %, hence almost
an order of magnitude higher than if material damping
had been the only source of damping. On the other
hand, unwrinkled membranes have been reported to
behave linearly and to exhibit low damping?. An at-
tempt to characterise the nonlinear behaviour of this
wrinkled structure by means of nonlinear identification
tests were inconclusive®, which provided the inspira-
tion for the investigation of the nonlinear mechanisms
behind the vibration behaviour of wrinkled membrane
structures, described in the latter part of this paper.

In-Vacuum FE Analysis

Finite element analyses of the square membrane shown
in Figure 1 were carried out. This is a square Kapton
foil with side lengths of 0.5 m and a thickness of 25 pym.
It is subject to pairs of equal and opposite corner forces
Ty, Ty, where T7 > Ty. Two different values of this
force ratio were considered, Ty /T» = 2 and Ty /T = 4,
to study the effects of different wrinkling patterns.

The corner forces are applied using 0.92 mm di-
ameter Kevlar cords attached to the corners of the
membrane through 1.5 mm diameter steel pins which
spread the corner forces through 35 mm wide Kapton
tape. An extra mass of 2.5 g is attached to a corner of
the membrane, to simulate the effect of an accelerom-
eter. All material properties of the model are defined
in Table 1.

Table 1: Material properties of membrane.

Parameter Membrane Cord Pin
Material Kapton Kevlar  Steel
Density (kg/m?3) 1500 1450 7840
Young’s Modulus (GPa) 3.5 131 210
Poisson’s Ratio 0.3 0.3 0.3

The wrinkled membrane was modelled using stan-
dard thin shell elements available in ABAQUS. Pre-
liminary analyses led to the conclusion that second-
order elements are unsuitable for the wrinkling anal-
ysis, which is highly nonlinear. Therefore, the first-
order 3-node triangular (S3R) and 4-node quadrilat-
eral (S4R5) thin shell elements were used in all anal-
yses described in this paper. The cords were mod-
elled with truss elements (T3D2) and the steel pins
with beam elements (B31). The Kapton tape was also
modelled using shell elements. All in-plane transla-
tions and out-of-plane rotations of the centre node of
the membrane were constrained, to avoid rigid body
motions due to small numerical asymmetries.

Analysis Details
Analyses were performed for 77 /Ty = 2 and T1 /T5 = 4.

3

Under approximately equal corner forces the mem-
brane is essentially taut everywhere, except for small
wrinkled regions near the corners, but for 77 /Ts > 3
a large diagonal wrinkle appears with small slack re-
gions near the edges of the membrane. Two different
static analyses were performed on the membrane for
each corner load ratio, followed in each case by a linear
frequency analysis.

(i) Wrinkled Model

The wrinkled model provides a close approximation
to the actual membrane, both in terms of its shape
and stress distribution. The static analysis, based on
Ref. 12 was divided into three stages, as follows.

First, a uniform biaxial prestress of 0.5 N/mm?
was applied to the membrane (to avoid numerical sin-
gularities in the following analysis) and then a buck-
ling analysis was performed by applying corner forces
Ty, = 30 N and 75 = 7.5 N. The amount of prestress
and the magnitude of the corner forces are not impor-
tant, as the aim of the buckling analysis is to provide
a reasonable estimate of the geometric imperfections
to be used as an input into the geometrically non-
linear post-buckling analysis, to trigger the formation
of wrinkles. A linear combination of five eigenmodes
similar to the expected wrinkling pattern was selected
for use as an initial geometric imperfection.

Second, a geometrically non-linear post-buckling
analysis was carried out under increasing corner forces,
and with numerical stabilisation provided through the
STABILIZE option in ABAQUS. This option auto-
matically sets up viscous forces which are used in a
pseudo-dynamic integration of the equations of motion
of the structure. While the response of the membrane
is stable, the viscous forces remain small because the
nodal velocities are small, and hence equilibrium is not
affected. When the model is unstable, the nodal veloc-
ities and hence also the viscous forces, become larger
and thus stabilise the solution against numerical singu-
larites. However, it has been found that if the viscous
forces are too large, the final shape of the wrinkles is
not accurate. Therefore, the damping factor has to
be set to the smallest value for which convergence can
be achieved. Its value was set at 2 x 10710 for most
analyses.

Third, after performing the above two static anal-
yses, a frequency analysis was carried out to estimate
the natural frequencies and mode shapes.

(ii) Unwrinkled Model

The unwrinkled model is the simplest to analyse, as
it provides a purely two-dimensional state of stress,
although shell elements are used, because there is no
mechanism to trigger any out-of-plane motion in the
numerical solution. Therefore, in this case the static

American Institute of Aeronautics and Astronautics



analysis does not predict any wrinkles. Although this
approach cannot be expected to accurately predict the
state of stress in highly wrinkled membranes, there are
cases in which it is quite accurate. After applying the
corner forces, a geometrically nonlinear static analysis
was carried out in ABAQUS (to estimate the geometric
stiffness due to the prestress) followed by a frequency
analysis.

Comparison of Wrinkled vs. Unwrinkled Models

The wrinkled and unwrinkled model results are com-
pared for T1/T» = 2 and T1/T» = 4. First, the
principal stress distributions are compared to identify
the differences between the two analysis techniques for
each load case. Also, the wrinkle patterns obtained
from the wrinkled model are correlated with discrep-
ancies in the stress distribution from the unwrinkled
model. Finally, the natural vibration mode shapes
predicted by both models are investigated.

(i) T1 /T2:2

The static and vibration analysis results from both
models, for T3 = 30 N and 75 = 15 N, are discussed in
this section.

The major principal stress distribution from the
wrinkled and unwrinkled models (not shown) are al-
most identical. Higher stresses tend to be concentrated
near the corners, which indicates that the corner loads
are transferred between corners, through most of the
membrane surface.

The minor principal stress contours, plotted in Fig-
ure 2, show that both models predict compressive
stresses at the corners with the larger load (77 = 30
N). However, note that the wrinkled model predicts a
reduction in the compressive stresses along the diago-
nal subjected to the larger load.

Minor Principal
Stress (N/m?)
—+1.12e+07

+3.00e+06
+2.00e+06
+1.00e+06
+0.00e+00

Minor Princigal
Stress (N/m°)
—+1.12e+07|

+3.00e+06
+2.00e+06|
+1.00e+06
+0.00e+00

-8.92e+05 -8.92e+05

(a) (b)
Figure 2: Mid-plane minor principal stresses for
T, /T> = 2: (a) wrinkled and (b) unwrinkled models.

The wrinkle pattern from the wrinkled model is
shown in Figure 3. This shows that smaller wrinkles
form along the two opposite corners which are subject
to the larger loads. The amplitude of the wrinkles is
of the order of 1072 mm. Comparing the wrinkled
shape in Figure 3 with the corresponding minor prin-
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cipal stress plot in Figure 2(a), it becomes clear that
through the formation of wrinkles some of the mid-
plane compressive stresses have been removed.

Figure 3: Wrinkle pattern for 77 /T5 = 2.

.

Mode 3 (36.25 Hz)

Mode 1 (2.26 Hz)

Mode 2 (2.64 Hz)

Mode 6 (50.90 Hz)
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Y
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Mode 9 (59.40 Hz)

Mode 4 (43.83 Hz) Mode 5 (50.63 Hz)

Mode 8 (53.40 Hz)

Mode 7 (51.44 Hz)

Figure 4: Wrinkled model mode shapes for T} /T» = 2.

Mode 9 (36.25 Hz)

Mode 7 (36.20 Hz)
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Mode 11 (50.60 Hz)

Mode 10 (43.83 H'z'l) Mode 12 (50.83 Hz)
Figure 5: Unwrinkled model mode shapes for T /T =
2.

The first nine mode shapes obtained from the wrin-
kled model are plotted in Figure 4; note that modes
1-2 are local modes with very low frequency and neg-
ligible modal effective mass. Mode 3 is the dominant
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membrane mode with the largest modal effective mass
in the out-of-plane direction.

The unwrinkled model predicts negative eigenval-
ues for the first four modes, one of which is plotted
top-left in Figure 5 as a zero frequency mode. These
modes, often called noise modes, appear as a result
of negative geometric stiffness terms. Modes 5-8 are
local membrane modes which have almost the same
frequency; these four modes have very small modal ef-
fective mass in the out-of-plane direction. Mode 9 has
the largest modal effective mass (> 80%) and appears
to be the dominant global membrane mode.

The local, low frequency modes predicted by both
models are due to small, residual compressive stresses
which are left in the membrane during the post-
buckling analysis.

Modes 3-6 predicted by the wrinkled model are
practically identical, and have the same frequencies of
modes 9-12 predicted by the unwrinkled model. Thus,
it can be concluded that for 77 /75 = 2 the unwrin-
kled model accurately predicts the dominant mem-
brane modes and hence can be used to predict the key
modes using much smaller computer resources than
the unwrinkled model.

(ii) T1/Te=4
This section presents the results from the two models
for T7=30 N and T5=7.5 N.

The major principal stress distributions from the
two models are significantly different. Figure 6(a)
shows that the wrinkled model predicts corner stress
distributions that join together along the diagonal
with the larger load, whereas the stresses near the
edges of the membrane are very small. This indicates
that most of the corner tensions are transferred along
the most heavily loaded diagonal. None of this is pre-
dicted by the unwrinkled model.

Major Principal Major Princifal
Stress (N/m?) j;., Stress (N/m’)
- +6.676+07 - +5.95e+07
+1.30e+07 ~ +1.30e+07
9.00e+06 +9.00e+06
I:5.00e+06 l +5.00e+06
'+1.00e+06 +1.00e+06

a o

(a) (b)

Figure 6: Major principal stress contours for Ty /T» =
4: (a) wrinkled and (b) unwrinkled models.

Figure 7 shows the minor principal stress distri-
butions from the two models. The unwrinkled model
predicts compressive stresses in large parts of the mem-

brane, whereas the wrinkled model predicts compres-
sive stresses only along the crests and troughs of the
wrinkles.

r
Minor Principal
Stress (N/mf)

+1.18e+07
+3.00e+06
. +2.00e+06

Minor Principal
Stress (N/m?)
+1.12e+07
+3.00e+06
+2.00e+06
+1.00e+06

I +0.00e+00
-8.92e+05
‘4

(a) (b)

Figure 7: Minor principal stress contours for T /T =
4: (a) wrinkled and (b) unwrinkled models.

Figure 8: Wrinkle pattern for 77 /T5 = 4.

It is clear that for T7 /T» = 4 the stress distribution
predicted by the unwrinkled model is far from correct.

The wrinkled shape of the membrane predicted by
the wrinkled model is plotted in Figure 8. It shows
large amplitude diagonal wrinkles, together with small
amplitude corner wrinkles along the two corners which
carry the larger loads. Small corner wrinkles form near
the corners which carry the smaller loads.

Figure 9 shows the first nine mode shapes predicted
by the wrinkled model. Note that modes 1 and 2 are
local modes, involving only the smaller corner wrin-
kles near the low-tensioned corners. Modes 3, 8 and
9 have large modal effective mass and hence are the
dominant modes. Modes 4-6 are local modes only in-
volving flapping of the membrane edges. Most of the
other modes have similar features to those described
above, having a small modal effective mass.

Figure 10 shows the first nine significant mode
shapes predicted the unwrinkled model. Modes 1-16
are noise modes. Note that only modes 17 and 18
have large modal effective mass; most of the others
involve almost randomly distributed motions of the
membrane. This could be due to singularities arising
from the presence of compressive stresses in the un-
wrinkled model.
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Figure 9: Wrinkled model mode shapes for T7 /T5 = 4.

Mode 20 (40.42 Hz)

Mode 19 (38.25 Hz) Mode 21 (41.54 Hz)

Mode 22 (41.81 Hz) Mode 23 (41.98 Hz) Mode 24 (44.32 Hz)

Figure 10:
T /Ty = 4.

Unwrinkled model mode shapes for

Most importantly, and unlike the case T} /T» = 2,
note that there is not even a single corresponding mode
shape between the predictions from the two models,
hence it can be concluded that for the case Th /1o = 4
the unwrinkled model predictions are not useful.

In-Air Finite Element Analysis

The natural frequencies and mode shapes of a wrin-
kled membrane vibrating in air were estimated using
the coupled acoustic-structural analysis described in
Ref. 2. Analyses were carried out using the wrinkled
model, for T} /T> = 2 and T1/T> = 4. In the mod-
elling, a cubic air box with dimensions of 2.5 x 2.5 x 2
m was defined with the membrane in the middle. The
dimensions of the air box were determined from the
in-vacuum fundamental frequency of the membrane,
as discussed in Ref. 2.

First, a nonlinear static analysis was performed
to obtain the wrinkled shape, without coupling with
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acoustic elements. Then, a linear dynamic analysis
was performed after coupling the membrane with the
acoustic elements. This analysis was performed by ap-
plying a unit load at the corner of the membrane where
an accelerometer had been simulated, and by varying
the frequency in the range 0-50 Hz. The responses of
all membrane nodes to this input were recorded and
the natural frequencies of the membrane were identi-
fied by examining the frequency response at a selected
point of the membrane. The first six identified mode
shapes are plotted in Figures 11 and 12.

Comparison of In-Air and In-Vacuum Modes
The in-air modes for T; /T» = 2, Figure 11, are com-
pared with the in-vacuum modes obtained from the
wrinkled model, Figure 4. The first two modes in Fig-
ure 4 and also the local modes which involve flapping
of the membrane edges, predicted by the in-vacuum
model, do not appear in air. This shows that local
modes with very low modal effective mass are sup-
pressed by air mass effects.

On the other hand, modes 3-5 from the in-vacuum
model, which are the dominant modes, agree fairly well
with the first three mode shapes from the in-air model.
Of course, the in-air frequencies of these three modes
are much lower than the corresponding in-vacuum fre-
quencies, due to the added air mass.
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Mode 4 (33.9 Hz) Mode 5 (36.5 Hz)

Figure 11: FE in-air mode shapes for T; /T» = 2.
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Figure 12: FE in-air mode shapes for Ty /Ts = 4.

For Ty/T> = 4, the mode shapes in-air and in-
vacuum, plotted in Figures 12 and 9 respectively, do
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not show any correlation. It was noted in the previ-
ous section that most in-vacuum modes are local and
involve only very small effective mass. On the other
hand, the in-air modes plotted in Figure 12 appear to
be global membrane modes. This suggests that the
vibration of membranes with large amplitude diagonal
wrinkles is sensitive to the surrounding medium.

When the in-air modes for the two load ratios are
compared, it can be seen that the first three mode
shapes are fairly similar. This indicates that in-air
modes may not be sensitive to even large changes of
load path.

Experiments

An experimental investigation of the linear and nonlin-
ear vibration behaviour of a corner-loaded square wrin-
kled membrane in air is described in this section. Two
types of vibration tests were carried out: (i) a linear
identification test using slow sine sweep and constant
sine excitation, and (ii) a nonlinear identification test
using slow sine sweep excitation. A Polytec PSV300
scanning laser vibrometer was used to measure the re-
sponses in both tests.

Figure 13: Photograph of experimental model with di-
agonal wrinkle.

The test model is shown in Figure 13 and its geome-
try was defined in the Section In-Vacuum FE Analysis.
Note that the Kevlar cords connecting the membrane
to the frame go through a strain-gauged turnbuckle
which is used to tension the membrane.

The membrane was excited using an LDS V201
electromagnetic shaker, connected to the lower-right
corner of the membrane through a stinger. The stinger
was glued to the membrane and the acceleration input
to the membrane was measured using a PCB M353 ac-
celerometer (calibration 10.3 mV/g) mounted in-line
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with the stinger, in front of the membrane. The ac-
celerometer signal was amplified using a PCB 480E09
conditioning amplifier. A TG1241 waveform signal
generator was used to provide the input signals to the
shaker through a CA5220 power amplifier.

Linear Identification

The natural frequencies and mode shapes of the mem-
brane with load ratios of 2 and 4 were identified in
the range of 0-50 Hz. The amplitude of the exci-
tation was selected to be small enough to minimise
any nonlinear effects. First, approximate natural fre-
quencies were obtained using a broad-band sine sweep.
Then, more accurate frequencies and damping values
were obtained by performing a fine-scale sine sweep
around the approximate natural frequencies. Finally,
the mode shapes of the membrane were measured by
scanning the surface with the laser vibrometer while
exciting the model at a constant frequency.

(i) Natural Frequencies

Broad-band sine sweep excitation, with an amplitude
of approximately 2.4 m/s?, was applied by the shaker
to obtain a frequency-response function from which
the approximate resonant frequencies of the membrane
could be estimated. The response was measured at a
point near the centre of the membrane, slightly away
from the diagonal wrinkle. A linear sine sweep rang-
ing from 0 to 50 Hz over 100 seconds was applied using
the waveform generator and the response was sampled
at 100 Hz. Each test was repeated five times and the
results were averaged to reduce the signal-noise ratio.
The frequency-response functions were derived using
a MATLAB program.

50

40 40
o
T 20 20
2
g0 0
=
-20 -20
0 10 20 30 40 50 0 10 20 30 40
Frequency (Hz) Frequency (Hz)

(a) (b)
Figure 14: Frequency-response plots for (a) 11 /Ty = 2
and (b) Tl/T2 =4.

Then, narrow-band frequency sweeps were used to
obtain accurate resonant frequencies and damping val-
ues. Frequency bandwidths of 2 Hz around each ap-
proximate frequency were swept at a linear rate over
50 seconds. The response of the membrane was sam-
pled at 100 Hz. The natural frequencies and damp-
ing factors obtained by fitting circles to the Nyquist
plots are tabulated in Table 2. Frequency-response
plots obtained from the broad-band sine sweep test,
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for T1/T> = 2 and Ty /T» = 4, are reconstructed using
the accurate frequencies and damping values obtained
from the narrow-band sweep, and are plotted in Fig-
ure 14.

Table 2 shows that the modal damping ratios, (,
of the wrinkled membrane for T} /T = 2 range from
0.61% to 1.71 % while for T7/T> = 4 they range from
0.77% to 2.05%. The average damping ratio for the
higher load ratio is slightly higher.

Table 2: Natural frequencies and damping ratios.

Mode T1/T2 =2 Ty /Ty = 4
fHz) (%) fHz) ¢ (%)
1 113 061 104  0.77
2 186 068 135  0.70
3 28.0  1.04  20.2 1.52
4 332 120 231 1.37
5 374 095 277 205
6 444 171 29.1 1.42

(ii) Mode Shapes

The mode shapes of the membrane were obtained by
measuring the responses at 300 target points, regularly
spaced throughout the surface, for 2 seconds at each
point.

Contour plots of the first six identified modes —or,
more correctly, the experimental operating deflection
shapes (ODS)— of the membrane are plotted in Fig-
ures 15 and 16.

Table 3: In-air FE and experimental frequencies.

TV Ty =2 TV )Ty = 4
Mode
f (Hz) Error f (Hz) Error
FE Exp () FE Exp (%)
1 11.7  11.3 3.4 10.8 104 3.7
2 184 186 -1.1 13.6 13.5 0.7
3 27.0 28.0 -3.7 19.9 202 -1.5

Compare the in-air experimental and FE mode
shapes for T /T> = 2, Figures 15 and 11. The first
three mode shapes are almost identical with only mi-
nor differences in the corresponding frequencies. Sim-
ilarly, the first three mode shapes for Ty /T5 = 4, plot-
ted in Figures 16 and 12, also show good correlation
with minor differences in frequencies.

Table 3 shows that the frequencies obtained from
the in-air FE simulation are within 4% of the experi-
mentally measured frequencies.
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Figure 16: Experimental in-air mode shapes for

T\ /T, = 4.

Nonlinear Identification

Nonlinear vibration behaviour of the membrane oc-
curs under corner loads 77 = 30 and 75 = 7.5 N (load
ratio 4). First, the overall behaviour of the model
was studied in the frequency range 0-30 Hz, which in-
cludes the first six identified modes of the membrane.
A slow sine sweep input was used to excite the mem-
brane while measuring the response of a particular tar-
get point. The results from this preliminary test show
the presence of harmonics in each mode of vibration.
Therefore, a detailed study of the first three modes was
carried out, to understand the presence of harmonics
of the primary resonances. In this study, frequency-
response plots of the primary resonances and power
spectrum of the output signals were plotted for three
levels of excitation, to better characterise the underly-
ing nonlinear mechanisms.

(i) Overall Behaviour

The nonlinear behaviour of the wrinkled membrane
was investigated by applying three different ampli-
tudes of broad-band sine sweep excitation. These am-
plitudes will be referred to as low, medium and high,
and are 4.74, 9.48 and 18.96 m/s?, respectively.
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Figure 17: Sonogram for membrane with 73 = 30 and
T, =75 N.

The frequency range 0-30 Hz was swept linearly
over 180 seconds while measuring the response at a
target point near the diagonal wrinkle. The results
are presented in Figure 18 as a “sonogram”!3, i.e. as
a plot of power-spectral amplitude of the experimen-
tally measured response against time and frequency.
A sonogram is, in effect, a collection of Fourier trans-
forms for successive time windows, which maps out
the response of the membrane at continuously varying
excitation frequencies.

The sonogram for response of the membrane with
low amplitude of excitation is plotted in Figure 17 for
the frequency range 5-25 Hz. On the vertical axis of
the contour plot one can plot the time corresponding
to each particular time window, as shown in Figure 17,
or the excitation frequency at each particular time, as
shown in Figure 18. The resonant frequencies of the
membrane are identified by the peaks in the sonogram.
For example, in Figure 17 the first peak response is at
around 10.5 Hz.

This type of plot clearly shows any harmonics of
the resonant frequencies, and it is interesting to com-
pare what happens when the excitation amplitude is
increased from low, to medium and then to high; the
corresponding sonograms are shown in Figure 18. This
time the sonogram is plotted in the frequency range
0-90 Hz, to identify the harmonics. In the frequency
range 0-30 Hz, which corresponds to the excitation fre-
quencies, there are six peaks as marked in Figure 18(a).
These peaks correspond to the primary resonances of
the membrane.

Note that above 10 Hz the response at the driv-
ing frequency forms almost continuous contours. The
contours of the harmonic response at twice the driv-
ing frequency change from clearly discontinuous at low
excitation, to almost continuous as the excitation is
increased. Clearly, the amount of energy scattering,
responsible for the harmonic response, increases. This
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indicates that the response of the membrane at the
excitation frequency would appear to be much more
highly damped.
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Figure 18: Sonograms of membrane with corner loads
Ty =30 and Ty = 7.5 N for (a) low, (b) medium, and
(c) high excitation levels.

(ii) Detailed Behaviour

Detailed tests around the first three natural frequen-
cies were carried out to explore the nonlinear be-
haviour observed in the previous overall study. In the
test, the response of the membrane was measured at
a target point by applying fine-scale sine sweep ex-
citation. An input band of 2 Hz around the natural
frequencies of the first three modes identified in the lin-
ear test, was swept over 60 seconds. The resonant fre-
quencies and damping ratios of the first three modes,
for three different excitation amplitudes are listed in
Table 4.

Table 4 shows that the damping increases in all
three modes as the amplitude of excitation increases.
On the other hand, the frequency variation differs for
each mode. The first mode has almost the same fre-
quency of vibration at all excitation levels, whereas
the second and third mode frequencies increase slightly
with the increase in the amplitude level of excitation.
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Table 4: Experimental natural frequencies and damp-
ing ratios for Ty /Ty = 4.

Mode Input Force f (Hz) ¢ (%)
Low 10.39 1.12
1 Medium 10.38 1.54
High 10.38 2.10
Low 13.48 1.02
2 Medium 13.50 1.51
High 13.59 2.13
Low 20.30 1.61
3 Medium 20.31 2.11
High 20.44 2.75

Frequency-response plots of the second mode for
three different excitation levels are plotted in Fig-
ure 19. When the amplitude of excitation is increased
from low to medium and then to high, the resonance
frequency increases from 13.48 Hz to 13.50 Hz and
then to 13.59 Hz, respectively. In addition, the peak
amplitude reduces from around 20 dB to 18 dB and
then to 14 dB, and the damping increases from 1.02%
to 1.51% and then to 2.13%. This shows that the
response of the membrane is characterised by a hard-
ening nonlinearity'#:1°.

The output responses at the resonance frequency
with each amplitude of excitation were investigated to
identify the nonlinearity more clearly. Figure 20 shows
the output spectra of the second resonant frequency, at
the three excitation levels. When the amplitude of ex-
citation is increased, both the amplitude and the order
of the harmonics present in the response increase. The
presence of the second and third harmonics of the exci-
tation frequency shows the existence of both quadratic
and cubic stiffness nonlinearities in the response of the
wrinkled membrane, when it is excited in the second
mode.
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Figure 19: Frequency-response plot for mode 2.
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Figure 20: Output spectrum for mode 2 with (a) low,

(b) medium and (c) large excitations.

Conclusion
The in-air FE modes and natural frequencies obtained
from a high-fidelity simulation of a wrinkled mem-
brane, which uses thin-shell elements and a very care-
ful simulation of the static wrinkling process, are in
excellent agreement with the experiments that have
been carried out.

The results from this type of model have been used
as a benchmark for a lower-fidelity model, and have
shown that a linear-elastic model of the membrane
(unwrinkled model) is able to accurately predict the
vibration of a moderately wrinkled membrane (load
ratio of 2), but not of a heavily wrinkled membrane
(load ratio of 4), both in vacuum and in air.

The key problem of the unwrinkled model con-
sidered in this paper is that it fails to properly cap-
ture the stress distribution in highly wrinkled mem-
branes. However, it seems likely that a more refined
two-dimensional model of the membrane, e.g. based on
the IMP formulation, should be adequate.

The nonlinear identification tests on a highly wrin-
kled membrane reported in this paper have shown the
existence of quadratic and cubic nonlinearities in the
stiffness of the membrane. These result in scattering of
the energy input into higher harmonics and hence in an
apparent increase of the damping of the structure. In
our tests, the average damping ratios for the first three
global membrane modes increased from 1.2% to 2.3%
when the amplitude of the excitation was increased by
a factor of 4.
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