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Abstract

This paper presents a study of the elastic buckling behavior of Triangular Rol-
lable And Collapsible (TRAC) booms under pure bending. An autoclave manu-
facturing process for ultra-thin composite booms is presented and the behavior
of three test samples is investigated experimentally. Two regimes are observed, a
pre-buckling regime and a stable post-buckling regime that ends when buckling
collapse is reached. The buckling collapse moment, marking the end of the sta-
ble post-buckling regime, is typically four times higher than the initial buckling
moment. A numerical simulation of the boom behavior with the Abaqus finite
element package is presented and all of the features observed experimentally are
captured accurately by the simulation, except buckling collapse. The numerical
model is also used to study the effect of varying the boom length from 0.3 m
to 5.0 m. It is shown that the pre-buckling deformation of the flanges under
compression leads to a constant wavelength lateral-torsional buckling mode for
which the critical moment is mostly constant across the range of lengths.

Keywords: Buckling, Thin-shell, Composite materials, Deployable boom,
Space structure

1. Introduction1

Deployable booms that can be flattened and coiled around a cylindrical hub2

are attractive for their packaging efficiency and their ability to deploy passively,3

by releasing the stored elastic strain energy. Coilable booms can be used to de-4

ploy large planar structures such as antennas (Leipold et al., 2005), photovoltaic5

surfaces (Campbell et al., 2006; Hoang et al., 2016) and solar sails (Leipold et al.,6

2003; Banik and Ardelean, 2010). The simplest example is the standard tape7

measure, but other designs such as the Storable Tubular Extendible Member8

(STEM) (Rimrott, 1965), the Collapsible Tube Mast (CTM) (Aguirre-Martinez9

∗Corresponding author. Email: sergiop@caltech.edu

Preprint submitted to Elsevier July 9, 2020



et al., 1986; Herbeck et al., 2001), and the SHEARLESS boom (Fernandez, 2017,10

2018) offer better mechanical performance.11

A concept for coilable booms that is of particular interest to the present study12

is the Triangular Rollable And Collapsible (TRAC) boom (Murphey and Banik,13

2011) invented by Murphey and Banik and developed by the Air Force Research14

Laboratory. The TRAC boom cross-section consists of two circular arcs (tape15

springs) attached along one edge, forming two curved flanges and a flat web, as16

shown in Figure 1. It has higher bending stiffness-to-packaged-height ratio than17

the CTM and the STEM booms (Roybal et al., 2007). Booms of this type have18

been flown on three different solar sails demonstrations, NASA’s NanoSail-D19

(Whorton et al., 2008; Johnson et al., 2011), the Planetary Society’s LightSail-20

1 (Biddy and Svitek, 2012) and LightSail-2 (Betts et al., 2017). In all three21

cases, the booms were made from a metal alloy. Recent research has shown22

that metallic TRAC booms are sensitive to thermal gradients, causing large tip23

deflections when one flange is facing the sun in space, while the other flange24

remains in the shadow (Stohlman and Loper, 2016). This has led to TRAC25

booms made of composite materials being studied extensively in recent years.26

(a) TRAC boom partially coiled around a cylin-
drical hub (modified from Murphey and Banik
(2011)).

(b) TRAC boom cross-section.

(c) Sign convention for positive bending moments.

Figure 1: TRAC boom architecture. The main geometric parameters are the flange radius r,
thickness t and opening angle θf , the web width w, and the coiling radius R.
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Due to its thin-walled open cross-section, the TRAC boom shows a com-27

plex, nonlinear behavior both in the deployed configuration and during coiling28

(Murphey et al., 2017). It has previously been shown that local buckling occurs29

during flattening and coiling of these booms, which can lead to material failure30

(Leclerc et al., 2018; Cox and Medina, 2019). Furthermore, localized buckling31

was observed to be the main structural failure mode for deployed booms under32

pure bending (Murphey et al., 2017; Leclerc et al., 2017). Banik and Murphey33

(2010) showed that nonlinear finite element analysis can accurately predict the34

bending behavior of booms that are relatively thick (t ≈ 1 mm). Bessa and35

Pellegrino (2017) studied numerically the behavior of ultra-thin (t < 100 μm)36

TRAC booms under pure bending and presented an optimization of the cross-37

section that reduces the effect of shape imperfections on the moment for which38

the boom collapses. Both of these studies considered rather short booms, with39

lengths of 0.6 m and 0.5 m, respectively.40

A recent system-level study of deployable space solar power satellites envis-41

ages simply supported structural elements with the TRAC cross-section and up42

to 60 m long, requiring a relatively small bending stiffness of around 5Nm2
43

(Arya et al., 2016). These structural elements are mainly loaded in bending.44

This study also showed that the packaging efficiency of these satellites increases45

significantly by reducing the flange thickness of the elements with TRAC cross46

section.47

The present paper focuses on the performance of ultra-thin composite TRAC48

booms loaded in bending, aiming to study their buckling behavior under pure49

bending. This problem shares some similarities with pure bending of other types50

of thin-walled beams with open cross-section, and more particularly T-beams,51

where both local buckling of the web and lateral-torsional buckling modes have52

been observed (Corona and Ellison, 1997).53

A TRAC cross-section meeting the stiffness requirement was previously54

designed by the present authors (Leclerc et al., 2017), with dimensions r =55

12.7 mm, θ = 90◦ and w = 8 mm, and it was also found that a FlexLam-type56

laminate (Pollard and Murphey, 2006), consisting of glass fiber/carbon fiber57

composites with a total thickness of 80 μm significantly reduces stress concen-58

trations during coiling and hence allows a more compact packaging (Leclerc and59

Pellegrino, 2019).60

One challenge of studying structures made of ultra-thin composites is that61

their material properties and structural performance are closely related to the62

manufacturing process through which they are built. Therefore, the present63

study begins with extensive experimental work that addresses these aspects.64

Then, a numerical model is developed and validated by comparison to the ex-65

perimental results on booms of laboratory scale. This model is used to predict66

the behavior of booms of different lengths.67

The paper is organized as follows. Section 2 describes the manufacturing of68

ultra-thin TRAC booms, the characterization of their material properties, and69

the technique to measure the shape of the booms. The experimental setup and70

the results are also presented. Section 3 describes the finite element simulations71

to analyze the buckling of the booms. Section 4 compares the experiments with72
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the numerical simulations and discusses the results. The effect of varying the73

boom length is then studied in Section 5. Section 6 concludes the paper.74

2. Experimental Characterization75

A detailed experimental study of the buckling of TRAC booms under pure76

bending was carried out. The first part of this section describes the manufac-77

turing process used to fabricate the test samples. Then, the material character-78

ization and the shape measurements of the samples are presented, followed by79

a description of the experimental procedure and the results obtained from the80

tests.81

2.1. Sample fabrication82

TRAC booms were manufactured from ultra-thin composite prepregs. The83

laminate stacking sequence was [±45GFPW /0CF / ± 45GFPW ], where GFPW84

represents the JPS E-glass fabric (style 1067, 31 gsm) glass fiber plain weave85

prepreg with Patz PMT-F4 epoxy resin, while CF represents a unidirectional86

Torayca T800 carbon fiber prepreg tape with North Thin Ply Technology Thin-87

Preg 120 EPHTg-402 epoxy resin (30 gsm). The total thickness of this 3-ply88

laminate is about 80 μm.89

Manufacturing was done in an autoclave using a two-cure process. The90

flanges were cured separately and then bonded together in a second cure cycle.91

The main steps are illustrated in Figure 2. First, the laminate was draped over92

two U-shape aluminum molds (Fig. 2a) to form the two flanges. Both parts93

were vacuum bagged together and autoclave cured. Then, a single ply of glass94

fiber plain weave, oriented at ±45◦ to the axis of the molds, was used to bond95

together the two flanges (Fig. 2b). This step forms a 7-ply web region with96

stacking sequence [±45GFPW /0CF / ± 453,GFPW /0CF / ± 45GFPW ]. The two97

molds were clamped together using a set of bolts in order to apply adequate98

consolidation pressure on the web region (Fig. 2c). As all the bolts are situated99

below the laminate, shims were added at the base of the mold to ensure an even100

pressure distribution over the web region. A second autoclave cure was then101

performed to cure the bonding ply. Finally, the part was removed from the102

molds (Fig. 2d), the excess material was trimmed, and the samples were cut to103

a length of 575 mm (Fig. 2e).104

The mold geometry and the final cutting step were designed to achieve the105

nominal geometric parameters for the TRAC boom: r = 12.7 mm, θ = 90◦106

and w = 8 mm. However, due to cure-related residual stresses, the mean flange107

radius and opening angle of the resulting booms varied, as detailed in Section108

2.3. In the current study shape variations are not a concern, but in future a109

post-cure cycle could be used to partially release the residual stresses before110

demolding the booms.111
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(a) (b) (c)

(d) (e)

Figure 2: TRAC boom manufacturing process. Configuration for first cure, with two U-shape
stacks shown in green (a), addition of bonding ply, shown in blue (b), configuration for second
cure (c), cured part (d), and final structure (e).

2.2. Material characterization112

E1 and ν12 for the glass fiber plain weave, with the 1 and 2 directions113

aligned with the weave, were measured by performing tension tests on three114

165 mm × 40 mm 4-ply flat laminate samples. The tensile force was measured115

with a 50 kN Instron load cell, while the axial and transverse strains between116

pairs of reflective tape strips attached to the samples were measured with two117

laser extensometers (LE-01 and LE-05 from Electronics Instrument Research).118

As the glass fabric has the same fiber count in the warp and weft directions, it119

was assumed that E1 = E2.120

The shear modulus, G12, was measured by performing 3-rail shear tests,121

as described in ASTM D4255/D4255M - 15a (2015). Three 151 mm × 138122

mm samples were tested, with dimensions matching the Wyoming Test Fixtures123

CU-3R-6 used for these tests. The shear force was measured with a 50 kN Instron124

load cell, and the shear displacement with a laser extensometer.125

The properties of the unidirectional carbon fiber prepregs had been previ-126

ously measured by Ning and Pellegrino (2017). The properties of both materials127

are summarized in Table 1.128

The elastic stiffness of the laminates was modeled with the A,D matrices129

for symmetric laminates (Daniel and Ishai, 2005),130

[
N
M

]
=

[
A 0
0 D

] [
ε0

κ

]
(1)

where N and M are the in-plane forces and out-of-plane moments per unit131

length, ε0 and κ are the mid-plane strains and curvatures, A is the in-plane132

stiffness matrix and D is the bending stiffness matrix.133
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The matrices A and D for the flange laminate were first calculated using134

the properties from Table 1, using classical lamination theory (CLT) (Daniel135

and Ishai, 2005). Tension and bending tests in both longitudinal and trans-136

verse directions were performed on flat samples of the flange laminate. From137

the tension tests, it was found that CLT had overestimated a11 by 13% and138

underestimated a22 by 15%, where the matrix a is the inverse of the A matrix.139

Therefore, these two elements of the a matrix were corrected accordingly and140

the A matrix was computed by inverting the corrected a matrix. D11 and D22141

were measured by performing 4-point bending experiments. It was found that142

CLT had underestimated D11 and D22 by 8% and 6% respectively. Hence, the143

complete D matrix obtained from CLT was scaled up to correct the average144

error of 7%, as suggested in Sakovsky and Pellegrino (2019). In conclusion, the145

following flange laminate stiffness matrices were obtained:146

A =

⎡
⎣5432 619 0
619 942 0
0 0 737

⎤
⎦N/mm (2)

D =

⎡
⎣1.076 0.482 0
0.482 0.781 0
0 0 0.459

⎤
⎦Nmm (3)

For the web laminate, CLT was used to estimate the A and D matrices.147

The A matrix was scaled in the same way as the flange laminate, increasing148

A11 by 14% and decreasing A22 by 13%. The D matrix was left unchanged.149

The stiffness matrices for the web were therefore:150

A =

⎡
⎣11369 1512 0
1512 2269 0
0 0 1727

⎤
⎦N/mm (4)

D =

⎡
⎣28.20 4.32 0
4.32 7.44 0
0 0 4.93

⎤
⎦Nmm (5)

Table 1: Elastic properties of carbon fiber and glass fiber plain weave prepregs.

E1 [GPa] E2 [GPa] G12 [GPa] ν12 t [μm]

CF 128 6.5 7.6 0.35 30
GFPW 23.8 23.8 3.3 0.17 25

2.3. TRAC boom shape characterization151

Measurements of the actual shape of the three boom samples were made152

using a FaroArm Edge 14000 with a 3D laser scanner ScanArm HD attachment.153

A Matlab script was created to extract the cross-section geometry (flange radius154
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and opening angle) at 10 locations along the length of each boom from the point155

cloud generated by the FaroArm. The script also estimated the twist angle along156

the length and the camber of the boom, defined as the distance between the157

centroid of the cross-section at each location and a straight line connecting158

the end centroids. The average cross-section geometric properties for the three159

samples obtained in this way are presented in Table 2. The specific geometry160

of each test sample was used in the simulation of each specific test.161

Table 2: Nominal and average measured cross-section geometry for 575 mm long TRAC boom
samples.

r [mm] θf [◦] w [mm] Twist [◦] Camber [mm]

Nominal 12.7 90 8 0 0
Sample 1 11.8 91.3 8 10 0.8
Sample 2 11.9 88.5 8 9 1.0
Sample 3 11.5 95.7 8 7 0.4

2.4. Bending tests162

The test setup for the bending experiments is shown in Figure 3. The samples163

were potted at each end with epoxy into flat acrylic plates with laser-cut thin164

slits matching the cross-section of each specific test sample. This ensured that165

the cross-section of the thin-shell booms was not distorted near the ends prior166

to testing.167

The test setup allowed independent control of the rotation at each end, by168

means of hand-operated worm drives. The longitudinal translation of one end169

was not constrained, allowing the distance between the two ends to shorten in170

order to allow large bending deformations of the boom. A calibrated camera171

above the setup provided tracking of four targets installed on two rigid rods,172

to magnify the rotation at each end. The rotations were measured from the173

images using a Matlab script. The sample was mounted on hollow aluminum174

shafts instrumented with strain gauges to measure the moment at each end using175

a Vishay P3 strain amplifier. The resolution of the moment measurements was176

0.009 Nm.177

To perform a bending test, the end rotations were manually increased in178

small steps, keeping the moments equal in order to ensure a pure moment load-179

ing. Each step increased the applied moment by 0.018 Nm, and the readings180

at both ends were equal within the resolution of the measurement. Once the181

buckling collapse condition had been reached, the measured moments dropped182

significantly, and became different between the two ends. This condition indi-183

cated that the sample had buckled asymmetrically and was no longer loaded184

under pure bending.185

Each sample was tested in bending around both axes, X and Y (defined186

in Figure 1). In the case of bending around X, the TRAC cross-section is187

not symmetric. Positive moments cause the web to be in compression, while188
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(a)

(b)

Figure 3: (a) Sketch of bending experimental setup. The sliding end is mounted on a linear
bearing that allows longitudinal translation. (b) Top view of test setup showing a sample with
long-wave buckling of web.

negative moments cause it to be in tension. Bending around Y is nominally189

symmetric.190

2.5. Experimental results191

The three test booms behaved consistently (although each boom behaves192

a bit differently, due its own unique geometry) and therefore only the results193

for the first boom are presented herein. Bending tests were performed three194

times in each of the four directions ( both positive and negative moments MX ,195

MY ) up to buckling collapse. In all cases, two regimes were observed. The first196

regime is a linear pre-buckling phase that lasts until the first buckling event.197

The corresponding moment is referred to as the critical moment. The second198

regime, following the initial buckling event, is a stable post-buckling phase that199

lasts until the buckling collapse. A loading-unloading test was also performed200

for each axis of bending, without reaching buckling collapse. For this test, the201

bending moment was increased starting from zero until one step before buckling202

collapse. Then, the moment was decreased to zero using the same step size. This203

loading-unloading cycle was performed for both signs of the moment. This result204

indicates that the behavior of the booms is fully reversible up to the buckling205

collapse, i.e. well beyond the critical moment.206

The experimental results are shown in Figures 4 and 5. These plots show the207

measured moment as a function of the total rotation angle. The experiments208

were repeated three times and the measured behavior was practically indistin-209

guishable, with an average variation of the angle for a given moment of 0.04◦.210
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More importantly, the same buckling events (as described in the next para-211

graphs) were observed at the same loads and locations. Also, the results from212

the loading-unloading cycles show that the structural behavior of the booms is213

fully reversible even in the stable post-buckling regime.214

Under moments MX the overall deviation in the buckling collapse moment215

was 5%. Furthermore, the behavior was consistent between loading and un-216

loading. Deviation between loading and unloading was only observed when a217

negative moment close to the collapse value was applied. Under moments MY218

the deviation in buckling collapse moments was 10%. In the case of negative219

moments, tests 2 and 3 captured some unstable behavior at rotations larger than220

3◦, while test 1 directly reached buckling collapse. Practically no difference was221

observed between loading and unloading.222

Figure 4: Measured moment vs. rotation results for sample 1 under moments MX .

Figure 6 shows photos of the buckling modes during an experiment in which223

a moment MX was applied. The web is under compression for MX > 0. Beyond224

the critical moment (about 0.1 N m), the web starts to buckle globally in a wave225

pattern, with a wavelength of 1/4 of the total length. This reduces the effective226

stiffness of the boom and a softening of about 45% is observed in the moment-227

angle plot. Subsequently increasing the moment increases the amplitude of228

the web waviness, until the deformation localizes (always at the same location,229

90 mm from the fixed end) and buckling collapse is reached. The maximum230

moment for this load case is 0.43Nm. Overall, two regimes were observed: pre-231

buckling, followed by a first buckling event, and stable post-buckling, followed232

by buckling collapse.233
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Figure 5: Measured moment vs. rotation results for sample 1 under moments MY .

The behavior of the boom loaded by a moment MX < 0 has the same234

two regimes, but is different otherwise as in this case the flanges are under235

compression. At a critical moment of about −0.21Nm, a small localized buckle236

appears in one flange, quickly followed by a buckle in the other flange. These237

buckles lead to a softening of about 40%, as shown in Figure 6. At a load of238

−0.4Nm, the buckle in one flange moves longitudinally 20 mm towards the239

closest end of the boom. However, this displacement occurs at a different load240

(about −0.35Nm) during unloading, explaining the difference between loading241

and unloading observed in Figure 4. Buckling collapse occurs when a torsional242

instability forces one buckle to flatten transversally and form a kink at the243

junction of the flange with the web. The maximum moment for this load case244

is −0.5Nm.245

Figure 7 shows the observed buckling modes when the boom was loaded by a246

moment MY . As the behavior is nominally symmetric, only the behavior under247

positive moments will be discussed. Since the inner flange is under compression,248

the buckling modes are similar to the case MX < 0. First, there is a mostly249

linear pre-buckling regime. Then, at a critical moment of about 0.1Nm, a250

small localized buckle appears in the compression flange, which reduces the251

effective stiffness of the boom by about 60%. In the stable post-buckling regime252

that follows, the buckle slowly increases in amplitude until the flange flattens253

and forms a kink at the root of the web. Buckling collapse occurs at a load254

of 0.23Nm, due to a large buckle at a distance of 180 mm from the sliding255

end of the boom. Comparing Figures 6 and 7, the buckling collapse mode for256
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Figure 6: Buckling modes for positive and negative moments MX .
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moments MY of any sign is practically identical to the buckling collapse mode257

for moments MX < 0.258

Figure 7: Buckling modes for moments MY > 0.

In summary, the initial buckling of ultra-thin TRAC booms under pure259

bending loading occurs when small localized buckles first appear, reducing the260

effective bending stiffness. This instability is followed by a stable post-buckling261

regime, where the structure is able to withstand moments up to four times higher262

than the initial buckling moment. In both of these regimes there is almost no263

difference between loading and unloading behavior, showing that the structural264

behavior is fully reversible up to the point of buckling collapse. Therefore, there265

is no residual deformation when a boom that has previously entered the stable266

post-buckling range is unloaded and then re-loaded. This is a useful result for267

applications involving cyclic loading.268

3. Finite Element Simulations269

The finite element model shown in Figure 8 was built in Abaqus/Standard270

2018, to predict and study the detailed behavior of ultra-thin TRAC booms271

loaded by pure moments. The boom is modeled using 4-node shell elements with272

reduced integration (S4R). The finite element mesh is uniform, with element size273

of 2 mm corresponding to 20 elements across each flange and 4 elements across274

the web.275

The material properties were defined through the ABD stiffness matrices276

given in Section 2.2.277

The nodes forming the two end cross-sections were kinematically coupled to278

two reference points, in effect creating rigid cross-sections that match the end279

conditions of the experimental setup. All six degrees of freedom of the reference280

point at end 1 were constrained, defining a clamped condition. At the other281
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Figure 8: Finite element model with boundary conditions (T = translation, R = rotation)
and applied moments.

end, a pure moment load was applied at the reference point. In the case of a282

moment MX , the translational degrees of freedom along Y and Z as well as283

the rotational degree of freedom around X were left free, while the other three284

degrees of freedom were fixed. In the case of moments MY , the same boundary285

conditions were used, only inverting X and Y .286

While these boundary conditions do not match the kinematics of the exper-287

imental setup, in both analysis and experiment the loading condition on the288

boom is that of a pure moment. Therefore, the two loading conditions are stat-289

ically equivalent. A comparison was made between the model described above290

and a different model that matches exactly the boundary conditions of the ex-291

periments, and it was observed that they both predict the same buckling load.292

For this reason, the simpler model, where the applied moment and the resulting293

rotation are extracted at a single point, was chosen.294

The analysis procedure consists of 4 steps and is similar to Bessa and Pelle-295

grino (2017):296

1. A preliminary buckling prediction (eigenvalue calculation) is performed297

starting from the undeformed configuration (linear buckling prediction).298

2. An implicit, nonlinear static analysis is then performed, starting from299

the undeformed configuration until buckling occurs, at which point the300

analysis does not converge. This buckling load can be lower or higher301

than the previous, linear prediction. The goal of this step is to compute302

the deformed geometry just before buckling.303

3. Next, a new linear buckling prediction is performed in the deformed con-304

figuration, using the results from the previous step. An iterative process305

is used to find the last increment at which the buckling prediction can306
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be obtained, as the nonlinear analysis will sometime converge for a few307

additional increments in the post-buckling regime. To achieve this, the ap-308

plied load in the nonlinear static analysis is reduced until a linear buckling309

analysis can be performed successfully in the deformed configuration. The310

outcome of this analysis is a new prediction of the buckling load (nonlinear311

buckling prediction).312

4. A simulation of the post-buckling regime is performed using an arc-length313

method (modified Riks method (Crisfield, 1981)), by introducing an initial314

geometric imperfection based on the first buckling mode found in step 3.315

For this study, an amplitude of 20% of the flange thickness (16 μm) was316

sufficient to trigger the post-buckling regime without changing the pre-317

buckling behavior.318

Therefore, two buckling predictions are obtained from this analysis. The319

linear prediction is strictly from the undeformed configuration and does not320

account for geometric deformations, while the nonlinear prediction is obtained321

in the deformed configuration, and thus accounts for geometric nonlinearity in322

the prebuckling regime.323

As in the experiments, three loading conditions were studied numerically.324

Figure 9 shows the different buckling modes obtained from the linear and non-325

linear buckling predictions, as well as the post-buckling analysis, for each loading326

condition of a boom with the nominal cross-section and a length of 500 mm. A327

careful study of Fig. 9 leads to several interesting observations.328

First, when a moment MX > 0 is applied (web under compression), both329

the linear (fig. 9a) and nonlinear (fig. 9b) buckling involve a global wave pattern330

in the web, and the wave patterns in the two cases are in close agreement. In331

the post-buckling regime (fig. 9c) the buckling mode becomes localized.332

Second, when a moment MX < 0 is applied (flanges under compression), the333

linear buckling analysis (fig. 9d) predicts a global wave pattern for both flanges.334

The nonlinear analysis (fig. 9e) predicts localized buckles close to the two ends,335

whereas the post-buckling deformation (fig. 9f) has two kinks in each flange,336

close to the ends.337

Third, in the case of a moment moment MY the linear buckling prediction338

(fig. 9g) is a global wave pattern on the flange loaded in compression, whereas339

for nonlinear buckling (fig. 9h) the buckling mode is localized in the middle. In340

the post-buckling regime (fig. 9i), a kink forms in the middle of the boom.341

4. Comparison with Experiments342

To assess the ability of the numerical model to closely predict the nonlinear343

buckling behavior of actual TRAC booms, simulations of specific experiments344

were carried out. Each simulation was set up with the cross-section of the finite345

element model matching the cross-section of the specific test sample, using the346

measured dimensions in Table 2. Since the agreement between experiments and347

their respective simulations was similar, only results for sample 1 are presented348

here.349
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Figure 9: Buckling modes from three types of finite element simulations, for three load cases.
MX > 0 : linear buckling (a), nonlinear buckling (b), post-buckling (c). MX < 0 : linear
buckling (d), nonlinear buckling (e), post-buckling (f). MY linear buckling (g), nonlinear
buckling (h), post-buckling (i). Contours show displacement magnitude.
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Figure 10 shows the moment-angle plot for bending around X. For negative350

moments (web in tension), the simulations did not converge in the post-buckling351

regime. However, the initial buckling load from the simulation (−0.25Nm)352

is close to the first appearance of small localized buckles in the experiment353

(−0.21Nm). For positive moments (web in compression), the stable post-354

buckling regime is very well captured in the simulation. The softening observed355

in the experiments, due to the web undergoing global buckling, is also seen in356

the numerical results. Furthermore, the buckling collapse from the simulation357

(0.5Nm) is close to the experimental value (0.43Nm). The main difference358

between these two results is that while the simulation shows a clear transition359

from the pre-buckling regime to the post-buckling regime, this transition is more360

gradual in the experiments.

Figure 10: Comparison of simulation and experiment for sample 1 under MX .

361

Figure 11 shows the moment-angle plot for bending around Y . In this case,362

the simulation predicts well both the pre-buckling and stable post-buckling stiff-363

nesses. A key aspect of the numerical results is a sudden drop in both moment364

and rotation following the initial buckling, before transitioning to a stable post-365

buckling regime. This unstable region is not seen in the experimental results,366

as the test apparatus is not able to capture such events, but note that the buck-367

ling load from the simulation (0.1Nm) matches very well with the observed368

appearance of a small localized buckle during the experiment (0.11Nm). Due369

to multiple bifurcations encountered during the post-buckling simulation, the370

current numerical results do not predict the buckling collapse load as conver-371

gence is challenging at each of these bifurcations. The end of the simulation372
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curve marks the point where convergence was no longer obtained. A different373

numerical technique, such as the generalized path-following, would be necessary374

to fully capture the complete post-buckling regime (Eriksson, 1998; Groh et al.,375

2018).376

Figure 11: Comparison of simulation and experiment for sample 1 under MY .

5. Effect of Length on Buckling Load377

The simulation framework presented in Section 3 was used to investigate the378

buckling behavior of TRAC booms with the nominal cross-section in Table 2379

and length varying from 0.3 m to 5 m. Both linear (step 1 in Section 3) and380

nonlinear predictions (step 3) of buckling were obtained. The results are shown381

in Fig. 12 for each loading condition.382

The first loading case is moments MX < 0, compressing both flanges. The383

linear and nonlinear buckling moment predictions are plotted as a function of384

length in Figure 12a. From the linear prediction, two regimes are observed.385

For lengths smaller than 700 mm, the buckling mode is a global wave pattern386

with a uniform wavelength of about 52 mm for both flanges (Figure 13a.1).387

In this length range, the buckling load is constant with length. Increasing the388

length beyond 700 mm leads to a lateral-torsional buckling mode, as often found389

in thin-walled open cross-section beams Bazant and Cedolin (2010), (Figure390

13a.2) and in this case the buckling load decreases with length. The nonlinear391

buckling prediction results show three regimes. For lengths up to 1000 mm the392

buckling mode is localized close to both ends of the boom (Figure 13b.1). For a393
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Figure 12: Critical moment as a function of boom length, both linear and nonlinear predic-
tions, for MX < 0 (a), MX > 0 (b), and MY (c).
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Figure 13: Buckling modes from simulation for MX < 0. Linear buckling, boom length of 500
mm (a.1) and 1,250 mm (a.2). Nonlinear buckling, boom length of 500 mm (b.1), 2,000 mm
(b.2) and 5,000 mm (b.3).

lengths over 5000 mm, buckling occurs with a lateral-torsional mode, but with394

a shorter wavelength (Figure 13b.3) than in the linear prediction. For lengths395

between 1000 mm and 5000 mm, the buckling mode is a combination of the396

two mentioned previously, as seen in Figure 13b.2. In this regime, the buckling397

moment is mostly constant, decreasing only by 3% when the length is increased398

from 1000 mm to 4000 mm.399

The second loading case is moments MX > 0 , compressing the web. The400

plot of the buckling load as a function of length is shown in Figure 12b. For401

this loading condition, the linear and nonlinear buckling predictions practically402

coincide for the full range of lengths. Two regimes are observed. First, for403

lengths varying from 300 mm to 2000 mm, the buckling load is constant. The404

buckling mode (Figure 14a) is a global wave pattern with a wavelength of about405

77 mm (13 half-wavelengths for a 500 mm boom), and this wavelength remains406

constant when the length is increased. The second regime, for lengths above407

2000 mm, is once again a lateral-torsional mode (Figure 14b). However, in408

contrast with what was observed for moments MX < 0, in this case both the409

linear and nonlinear results predict a single wave along the boom, with the410

buckling moment decreasing with length.411

The last loading case is a moment MY . The buckling load for this case is412

plotted as a function of length in Figure 12c. Similarly to the other two cases,413

the linear prediction consists of two regimes. The critical moment is constant414

for lengths ranging from 300 mm to 800 mm, where the buckling mode is a415

wave pattern for the inner flange (Figure 15a.1), with a uniform wavelength of416

45 mm that remains constant with varying length. Lateral-torsional buckling417
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Figure 14: Buckling modes from simulation for MX > 0. In this case the linear and nonlinear
buckling modes are identical. (a) boom lengths of 500 mm and (b) 3,000 mm. The buckling
mode in (b) is a classical lateral-torsional mode.

is observed for lengths above 800 mm (Figure 15a.2), and the critical moment418

decreases with length. The nonlinear buckling response is also similar to that419

observed for MX < 0, with three regimes. First, for lengths varying from 300420

mm to 1,000 mm the buckling mode is localized in the middle of the flange421

(Figure 15b.1) and the buckling load is relatively constant. For lengths above422

2000 mm, the buckling mode is once again lateral-torsional with a shorter wave-423

length (3 full waves for a boom of length 3000 mm, Figure 15b.2). In the range424

1,000-2,000 mm both modes are competing. The result is that the nonlinear425

simulation predicts an almost constant critical moment over the full range of426

lengths, with the buckling load decreasing by only 10% when the length increases427

from 1,000 mm to 5,000 mm.428

While the linear buckling simulation and also the nonlinear simulation for429

MX > 0 predict a typical buckling behavior for a thin-shell structure, with430

a region of constant load followed by a region where the load decreases with431

length, the nonlinear results for both MX < 0 and MY of any sign are rather432

unexpected because the critical buckling moment remains almost constant when433

the length is increased.434

This behavior can be explained by considering the effect of deformations435

that occur during the pre-buckling phase. Bending around Y will be used as an436

example. As shown in Figure 11, the first buckling event follows a seemingly lin-437

ear phase. However, while the global structural behavior is linear in this region,438

large deformations occur locally in the boom. Figure 16 shows the deformation439

(magnified by a factor of 4) of a 3,000 mm long TRAC boom loaded by MY .440

The critical moment for this case is 117Nmm. At a moment of around 23Nmm441

the inner flange has already deflected down along the full length. This defor-442

mation pattern remains mostly unchanged when the moment becomes larger.443

For a moment of around 90Nmm there is some torsional deformation and the444

inner flange moves down close to the ends, but not in the middle. Finally, when445

the moment approaches the critical value, the torsional deformation decreases446
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Figure 15: Buckling modes from simulation for MY of any sign. Linear buckling of boom with
length of (a.1) 500 mm and (a.2) 1,000 mm. Nonlinear buckling of boom with length of (b.1)
500 mm and (b.2) 3,000 mm.

in wavelength, as shown in Figure 16 for an applied moment of 115Nmm. This447

torsional deformation prior to buckling constrains the buckling mode to a higher448

order lateral-torsional mode, leading to a mostly constant critical moment that449

is independent of the length of the boom.450

6. Conclusion451

This paper has investigated the buckling of ultra-thin composites TRAC452

booms. An in-autoclave manufacturing process was proposed, where the flanges453

are first cured and then bonded together in a subsequent step. The laminate454

used consisted of glass fiber plain weave fabric and unidirectional carbon fiber455

prepregs arranged symmetrically, and the stiffness properties of the laminate456

were measured experimentally. Three boom tests samples were built. Due to457

residual stresses from manufacturing, their shapes differed from the mold shape458

and were measured with a 3D laser scanner.459

Bending of the booms was investigated experimentally by applying a pure460

moment around both axes of the cross-section. In both cases, a linear pre-461

buckling regime was observed, followed by further buckling events transitioning462

to a stable post-buckling regime. Buckling collapse occurred at loads up to463

four times higher than the initial observed buckling. For the loading cases464

where the flanges are in compression ( MX < 0 and MY of any sign ), the first465

buckling event was associated with the formation of a localized buckle, which466

decreased the structural bending stiffness. Buckling collapse occurred when one467
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Figure 16: Nonlinear deformation in the pre-buckling regime during Y bending of a 3000
mm long boom. The color contours represent the Y displacement component, where blue is
negative (down) and red is positive (up). Displacements have been magnified by a factor of 4.

flange partially flattened at the same location where the first buckle had formed,468

forming a kink at the intersection of the flange with the web. For MX > 0 ,469

the web is under compression and the initial buckling mode is a global wave470

pattern of the web. This wave pattern appeared very early in the test and led471

to a gradual decrease of the bending stiffness. Buckling collapse occurred when472

the deformation localized.473

A numerical simulation using the Abaqus finite-element software was used474

to predict the behavior of TRAC booms subjected to pure bending. The same475

three loading conditions were studied: MX < 0 (web in tension), MX > 0 (web476

in compression) and MY of any sign. In all cases, the simulation results matched477

closely the experimental results. The stable post-buckling regime was accurately478

predicted for both MX > 0 and MY using the modified Riks method, although479

gradual softening near buckling collapse was not fully captured for MX < 0 and480

MY .481

The effect of varying the length of the booms from 300 mm to 5,000 mm482

was also studied numerically. When the flanges are loaded in compression (483

MX < 0 and MY of any sign), nonlinearities during the pre-buckling phase have484

a significant effect. They lead to a length independent buckling mode across485

most of the length range. Hence, the critical moments for MX < 0 decreased486

by only 3% when increasing the length from 1,000 mm to 4,000 mm, and the487

critical moments for MY of any sign decreased by only 10% when increasing488

the length from 1,000 mm to 5,000 mm. However, the critical moment for489

MX < 0 and a boom length of 5,000 mm was shown to decrease significantly,490

suggesting that changes of behavior may occur for even longer booms. It may491

be interesting to further investigate this effect, if longer booms are of practical492

interest. When the web is loaded under compression ( MX > 0), both linear493

and nonlinear predictions agree well. After a regime with constant buckling494

moment, the critical load decreases with length, dropping by 60% from 2,000495

mm to 5,000 mm. Knowledge of this behavior will be important for the design496
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of TRAC booms.497

Lastly, it is noted that the present study did not find significant changes498

in behavior between different booms with nominally identical properties and499

geometry. However, a systematic quantification of the stochastic behavior of500

booms was not carried out, and remains an open topic for further research.501
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