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Abstract

This report presents a non-linear finite element simulation of the assembly process
of a collapsible rib-tensioned surface (CRTS) reflector, leading to estimates of its
surface accuracy and prestress distribution. In two previous reports in this series
preliminary estimates had been obtained by a linearised formulation; hence the
main aim of the present study is to access the accuracy of estimates based on the
earlier method.

Carrying out a fully non-linear simulation of an offset CRTS reflector is a
formidable computational challenge, which has required the development of spe-
cial purpose software. Despite this, only for a limited set of test cases it has been
possible to achieve full convergence.

A complete non-linear simulation of an 8-rib offset reflector with focal length
of 0.9 m and diameter of 1 m is presented and the results are compared to the
linear analysis. It turns out that the RMS surface errors predicted by the two
methods are practically identical but the stress magnitudes are less accurate, due
to incomplete modelling of the sliding between the membrane and the cables and
ribs of the reflector.

It is concluded that the linearised method presented in the earlier reports is a
very good way of determining the actual prestressed shape of a CRTS reflector.
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Chapter 1

Introduction

The previous two reports in this series (Lai, You and Pellegrino 1997, Lai and
Pellegrino 1999) have presented a methodology for the design of collapsible rib-
tensioned surface (CRTS) reflectors. A key stage in the design process is the
computation of the cutting pattern for the gores of the reflector, after which
an elastic analysis is carried out to determine the actual prestressed shape of a
reflector made from these gores.

Lai, You and Pellegrino (1997) have proposed a linear-elastic analysis to find
this actual shape, taking the equilibrium surface as a reference and setting up
a linearised stiffness matrix in this configuration. Thus, the initial shape is ob-
tained as a small variation from this configuration. However, this linear approach
requires the shape distortion to be small and. since this cannot be guaranteed
in all cases, a full non-linear finite element analysis scheme has been set up, to
verify the results from the simpler method.

The non-linear finite-element formulation by Tabarrok and Qin (1992) has
been adopted and the present implementation has been validated against the
classical solution (Hencky 1915) for the deflection of a circular membrane —
initially without any tension subjected to a uniform pressure.

To obtain an accurate estimate of the shape and stress distribution in a par-
ticular CRT'S reflector, the simulation approach presented in this report simulates
the final stages of its assembly process, as follows. First, the gores of the reflec-
tor, whose edges are cut according to a cutting pattern determined according to
the earlier reports, are laid out flat in a common plane, unjointed. Then, they
are rotated, each as a rigid body, into their approximate final positions. Next,
the gores are joined to the ribs, which are initially assumed to be rigid and then
allowed to deform elastically under the forces applied by the membrane, while a
series of equilibrium iterations are carried out.
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1.1 Layout of the Report

This report is divided into five chapters.

Following this brief introduction, Chapters 2 and 3 form the main body of the
report: the non-linear finite element formulation of the three elements that form
the reflector, namely membrane, cables, and ribs, is presented in Chapter 2. The
procedure that simulates the assembly process of the whole structure is presented
in Chapter 3.

Chapter 4 presents the results of this simulation for reflectors with 8 and 12
ribs. Intermediate results at each stage of the analysis are presented, but the
analysis of the 12 rib reflector has convergence problem in the final stages, and so
final results are obtained only for the 8 rib reflector. These results are compared
with the results from the linear analysis of the same reflector, from Lai, You and

Pellegrino (1997).



Chapter 2

Formulation

The determination of the shape of a prestressed CRTS reflector surface involves
satisfying the equilibrium equations of three different structural elements: mem-
brane, cable and beam elements. Membrane and cable elements are assumed
to have zero flexural stiffness and hence will readily change their curvature in
response to most applied loads; therefore, large deflection theory is required for
their analysis. On the other hand, the curved ribs can be modelled as a series of
straight beam elements of uniform cross-section; because the ribs behave linearly
within the deflection range of interest, small deflection theory is adequate.

The non-linear finite element formulation that has been adopted for the mem-
brane and cable elements is that proposed by Tabarrok and Qin (1992), and the
overall solution procedure is a standard Newton-Raphson. Readers interested in
further details on the analysis are referred to the paper by Tabarrok and Qin,
and textbooks such as Crisfield (1991) and Belytschko et al. (2000).

2.1 Membrane Element

In geometrically non-linear finite element analysis it is generally preferable to use
a larger number of lower order elements than a smaller number of higher order
elements. Hence, the element that will be used is a three-node, linear displace-
ment field, constant stress triangular element with nine degrees of freedom. The
formulation that is presented in this section is suitable for an iterative solution of
the stiffness equations of the membrane, taking into account the non-linearity of
the interaction between the shape change of the membrane and the loads applied
to it.

Figure 2.1 shows a triangular membrane element in three-dimensional space.
The X. Y, 7 axes represent the global coordinate system; a local coordinate
system x, y, z is used to formulate the element matrices.

The linear displacement field, u(x,y), v(x,y), and w(x,y), of the element can
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Figure 2.1: Coordinate system of 3 node membrane element.

be expressed as

u = o+ ar+ azy
v = aq+ asr+ agy (2.1)
w = a7+ agT + agy

where the nine a; coefficients are not specified. It is preferable to convert the o;’s
to the nine nodal displacements

T
u=/[u; vy wy Uy vy Wy Uz V3 Ws

Determining the displacements at the three nodes and solving for «; leads to the
three shape functions of the element, using which Equation 2.1 becomes

u = (a1 + bz + ay)ur + (a2 + bex + coy)us + (as + bsx + czy)us
v o= (a1 + bz + ery)vr + (ag + box + coy)vg + (as + bz + czy)vs  (2.2)
w = (a1 + b 4 cry)wy + (a9 + baw + coy)wa + (az + bz + csy)ws

where
a1 = (Iﬁgyg — $qy2)/2A b1 = (yg — y'g)/QA, 1 = (Cﬁq - xg)/QA
ag = (w3yr — x1y3) /208, by = (y3 —y1)/20, 3 = (21 — x3) /210
agz(x1y2—x2y1)/2ﬁ, bfg: (y1 *3}2)/2A7 63:($2*$1)/2A
and /A = element area.

A membrane element is not able to sustain any flexural stresses, which means
that only the stresses tangent to the curved membrane surface act to equilibrate
loads normal to it. As the loads change, the stresses and the local curvatures
change to maintain equilibrium and these changes are accompanied by significant
displacements and rotations of the surface. Therefore, small-deflection theory is



2.1. Membrane Element

not applicable, but the quadratic terms in the displacement-strain relations must
be taken into account. The nonlinear displacement-strain relations are (Love

1944)
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Substituting Equation 2.2 into 2.3 and writing the outcome in matrix form gives

where

_bl 0 0 ]72 0 0 b3 0 O-|

BU = 0 Cq 0 0 Co 0 0 C3 0
_Cl bl 0 Cy bg 0 C3 63 OJ
[Ou/0x Ov/dx Ow/dx 0

A = 0 0 0
| Ou/dy  dv[dy Ow/dy

6 = [Ju/dz Ov/dx Ow/dx Ou/dy Ov/dy Ow/dy

1
e = Byu+ §A0

0

(2.4)

0

Ju/dy Jv/dy Ow/dy
Ju/dx Ov/dx Ow/dx

}T

The change of strain e due to infinitesimal nodal displacements éu is obtained
by differentiation of Equation 2.4. Considering the above expressions for A and

6, this gives

where

b€ = (Bg + AG)éu

(5 0 0 b, 0 0 by
0 66 0 0 b 0 0
0 0 b6 0 0 b6, 0
¢t 0 0 ¢ 0 0 ¢
0 ¢ 0 0 e 0 0

10 0 ¢ 0 0 ¢ 0

C3

(2.5)

By differentiating Fquation 2.2, it can be shown that 8 has the following
expression in terms of the nodal variables

0 = Gu
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Since only small strains are of interest, despite the displacements being rela-
tively large, the constitutive relations for linear-elastic plane stress analysis may
be used. Thus

o =De+ oy (2.6)

where o¢ denotes the initial stress vector and D is the elastic matrix defined as

b 1 v 0 -‘
D= v 1 0
00 1;"J

where F and v are the Young’s Modulus and Poisson’s ratio, respectively.

Using the principle of virtual work, the following equilibrium equations are
established for a single element in its local coordinate system

/ be"adV —su'p =0 (2.7)

where V¢ denotes the element volume and p is the external nodal force vector,
in the local coordinate system.

Substituting Equations 2.4 - 2.6 into 2.7 and eliminating du’ gives the fol-
lowing local equilibrium equations for a membrane element

/ (Bo + AG)T[D(Bou + %AG) +6pldV —p=0 (2.8)

These equations must be transformed into the global coordinate system and,
proceeding in the same way for all membrane elements in the surface, a set of
global equilibrium equations can be obtained.

Since these equations will be used within an iterative solution based on the
Newton-Raphson method, they have to be linearised at the element level. Let
the out-of-balance forces be @' at the end of iteration

. . T

o' = | (By+A'G)TDByu’ + §A202) + 60]dV — p (2.9)
Ve

The nodal displacements du’ that are required to correct for these out-of-

balance forces are such that

: RV
+1 1 v _
¢t = ¢4 S ou =0 (2.10)

Thus, the displacements after iteration ¢ + 1 can be obtained by solving Equa-
tion 2.10 and then updating the displacements

u™ =u' 4+ su’ (2.11)

Noting that Equation 2.10 provides a relationship between the change in nodal
forces, ¢'7' — @', and the corresponding nodal displacements, u’, it follows that
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the matrix relating the two, ({)gbi/({)u, is the tangent stiffness matriz for then
element. It consists of two parts, as follows

;¢
k= OJu
. 9 1.
_ ) T Y 7 T Alge
= /Ve(BUJrAG) 6u[D(B0u + 5 A6]dV
d : S R
+ —u[(BO + A'G)"] x [D(Bou' + 5AZ(%) + 6]dV
JVe

/ (Bo + A'G)"'D(Bo + A'G)dV + / G'M'GdV (2.12)

= ki+k

where ki and kj are the material and geometric stiffness matrices in local coor-
dinates. respectively, and

(0., 0 0 7, O 0
0 o, 0 0 7z O
0 0 o0z O 0 7Tuy
Ty 0 0 o4 0 0
0 7 O 0 opn O
0 0 74 O 0 oy

Mi

Note that the geometric stiffness of an initially unstressed membrane is zero
as M = 0. If the membrane is also initially flat, and hence its out-of-plane
material stiffness is also zero, there will be a singularity at the beginning of
the equilibrium iteration. This can be avoided by prescribing an initial, small
out-of-plane displacement of the membrane before starting the standard Newton-
Raphson iteration.

2.2 Validation against Hencky’s Solution

The computer implementation of the membrane element described in the pre-
vious section has been validated against the classical analytical solution for the
deflection of a linear-elastic, circular membrane supported by a rigid foundation.
The membrane is initially unstressed. This problem was first solved by Hencky
(1915); later, Campbell (1956) corrected a numerical error made by Hencky.

Hencky showed that the vertical deflection of an initially horizontal membrane
of outer radius @ and subject to pressure p is given by

w—a<%(;>%f(r) (2.13)

where £ is the Young’s Modulus of the membrane, ¢ its thickness, r the distance

from the centre, and f(r) a function of r which has the expression

f(r) = Ao+ A, (£>2+A4 <£>4+A6 (2)6 (2.14)
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where
By = 1.724* Ap = 0.653,
Ag_*l/Bo, A4:*1/2B4?
Ag = —5/9B, Ag = —55/12BL°,

A= —T/6BY, Ay =—205/108Bl°. ete.

Figure 2.2 shows the deflected shape of such a membrane, divided up into 16
elements. The membrane is fixed along its edge, therefore nodes 11 - 15 are fully
constrained. Only a quarter of the complete membrane has been analysed, and
therefore symmetry boundary conditions are applied to node 1 (constrained in
the X- and Y-direction), nodes 2,4, 7 (constrained in the Y-direction only), and
nodes 3, 6,10 (constrained in the X—direction only).

Node number

Element number.

Deflection
[mm]
0.06 —
0.04 — 0
_ >
0.02 N
N
g
—— Deformed Shape
0 Undeformed Shape
7 Ky
0 0.5
0.1 02 05
X~coordinate [m] 0.4 0.5 06 06

Figure 2.2: Deflection of circular membrane under uniform pressure.

For a given pressure p, the total force acting on each element is given by pA
and its direction is always normal to the element. Then, the forces at the nodes
of element ¢ are f; = p/An/3, where n is the unit vector normal to element 7 in
the current configuration, and the total load acting on a particular node of the
mesh is determined by adding the contributions of all the elements connected to
that node.

* Hencky (1915) obtained the value 1.713, later corrected by Campbell (1956) to 1.724.
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For example, consider the total force acting at node 5, see Figure 2.2, f5 =
fs, + 5, + £5, + £5, + f5, + f5,, where the second subscript corresponds to the
element number.

At the the beginning of the analysis, the unstressed mesh lies in the XY plane
and is unable to sustain any pressure loading, because of its zero flexural stiff-
ness. Therefore, the equilibrium equations are singular and convergence cannot
be achieved in the first step unless we first deform the membrane by imposing a
small out-of-plane displacement proportional to the Hencky solution.

0.7 4

— Hencky
O Finite element analysis

0.6~

Node number

[7.10]

0.4

w/c

0.3

0.2

0.1

[11-15]

‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r/a

Figure 2.3: Comparison of finite element results with analytical solution.

Figure 2.3 compares the deflection of the membrane surface obtained from the
Hencky solution with non-linear finite element results obtained for ¢ = 0.5 m,

t=10.02mm, p =388 N/mm? E=2.7x 10 N/mm?* and v = 0.3. Note that both

axes have been non-dimensionalised by plotting the non-dimensional deflexion

w/ec, where ¢ = a (pa,/Et)%, versus the non-dimensional radius r/a. The figure
shows that there is excellent agreement between the two sets of results, giving us
confidence in the non-linear approach.

2.3 Cable Element

Consider the cable element (7, j) shown in Figure 2.4. If nodes 7 and j have
respectively displacement vectors [U;, Vi, W;]T and [U;, V;, W,]T from the initial
configuration, the strain in the cable is

I — 1y
lo

(=

(2.15)
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Figure 2.4: Cable element in global coordinate system.

where

to= (X, = X2+ (0~ Y02+ (2, - 217

and

b= /(X = X4 Uy = U4 (Y = Vit V= VP 4 (= Zi+ W, — W

represent the lengths of the cable element before and after deformation.
The change in strain has the following matrix expression

56::iB5U (2.16)
where the vector of global displacement components is
U=[U; Vi W, U; V; W] (2.17)
and
B=[-Cx —Cy —C; Cx Cy Cy] (2.18)

contains the direction cosines of the deformed cable

X, — X+ U, — U

Cx =
l

o, _ YimVitVi-V
h

%::@_ztm—m
g

As for the membrane element, a linear elastic constitutive relation is used

o= e+ oy (2.19)
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where o is the initial stress in the cable and F its Young’s Modulus.

The global equilibrium equations can be obtained through the principle of
virtual work. Following the same approach as in Section 2.1, but this time we
use displacement and load components in the global system, we find

1
/ Z—6UTBTaAdZ —§UT™P =0 (2.20)
Jlg b0

from which the global out-of-balance forces have the expression

. '
d = / ~BToAdl - P =BTcA-P (2.21)
lg Yo
where A is the cross-sectional area.
As before, the tangent stiffness matrix consists of material and geometric
contributions

: 0P
K' =
U
BT
- ABTS—S + Aaaa—U (2.22)
EA A
- "B+ 7C
lo Iy
where
[ CE 4 C2 0 0 —CE 2 0 0
0 C% 4+ C2 0 0 —C% -2 0
C— o 0 C% +C¢ 0 0 —C% — (2
—C - (2 0 0 CE+C2 0 0
0 —C% - (C} 0 0 C% +C% 0
0 0 —C: -2 0 0 C% +C2

2.4 Beam Element

A full analysis of the ribs of a CRTS reflector would require a model that cap-
tures the coupling between flexural and torsional deformation, together with the
associated changes in the transverse radius of curvature of the ribs. Only a de-
tailed shell model can hope to capture such complexities; here a much simpler,
equivalent rod model will be adopted.

Consider n nodal points on a curved rib, Figure 2.5, and between two consec-
utive nodes assume the rib to be straight, with uniform thickness ¢, transverse
radius R, and uniform subtended angle 2a.

Unlike the membrane and cable elements, the stiffness of the rib does not
change significantly within the deflection range of interest, hence it is appropriate
to adopt a standard linear beam model. In this model each beam element has
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Figure 2.5: Configuration of a rib.

twelve degrees of freedom, three translation components and three rotations at
each end, related to the corresponding loads by a constant stiffness matrix. Hence,
the out-of-balance forces —in a local coordinate system— can be expressed as

o =9 +Kéd' =0 (2.23)
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2.5 Wrinkling

Thin membranes are unable to resist compressive stresses; instead, they form
wrinkles, thus re-distributing the stresses. Following Tabarrok and Qin (1992) a
simple procedure for dealing with element wrinkling has been adopted, to ensure
that the simulation results are realistic.

The principal stresses oy and oy (01 > 03) are calculated in each element,
at each step of the iteration, and the following checks are then carried out

1. if oy <0, biaxial wrinkling occurs;

2. if 0y > 0 and o9 < 0, uniaxial wrinkling occurs, the wrinkles being aligned
with the first principal direction;

3. if o3 > 0 wrinkling does not occur.

In the case of biaxial wrinkling, the element is inactive and all stresses must be
set equal to zero. The elastic matrix for this element is assumed to be diagonal,
with a very small stiffness s

D=

o O »

00
s 0 (2.25)
0 s

For uniaxial wrinkling, the compressive stress o3 must be set to zero, hence
o=[o; 0 0 (2.26)

and the elastic matrix in the principal stress directions is

o— |0« 0 o

[oosJ

However, note that the stress components in Equation 2.26 and the elastic
matrix in Equation 2.27 need to be transformed to the element coordinate system
(x, y, z) for evaluating the local element stiffness matrix. This is necessary
because a wrinkled element does not behave isotropically.



Chapter 3
CRTS Reflector Assembly

3.1 Overall Procedure

The analysis presented in this chapter is divided into three stages: i. rotation
of (flat) membrane gores; ii. connection of gores and edge cables to the ribs; 3)
determination of the actual surface.

Figure 3.1 shows the first two stages, schematically. A single gore ABCD,
whose edges are shaped according to the cutting pattern computed by Lai, You
and Pellegrino (1997), initially lies in the XY plane with a cable attached to the
top edge. This cable is held stretched by end forces T, since the top edge of the
membrane is longer than the unstressed cable.

+ edge membrane node

® Dbeam node

N

7

.
_

/% %
0

\ x\

Figure 3.1: Connecting the membrane to the ribs (assumed to be rigid).

First, the gore and cable are rotated as a rigid body about AB, through an
angle « such that a straight line through B and C passes through the tip and

15
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root of a rib.

Second, each of the nodes along the edges of the membrane, in the figure
my, may, Mg, My, 18 assigned a displacement such that each node moves to the
corresponding position on the rib. The shape of the membrane surface with its
edges attached to the ribs —assumed to be rigid at this stage— is computed by
carrying out a series of equilibrium iterations. This is repeated for each gore and
the shape obtained at the end is doubly-curved in each gore, but is not the actual
shape of the reflector because the ribs have not been allowed to deform elastically.

Finally, when all ribs have been separately analysed, the actual shape of the
reflector is determined by removing the constraints on the ribs and performing a
series of global equilibrium iterations.

The main reason for dividing the analysis into these three separate steps is
that, by achieving convergence to two intermediate configurations, the chances of
converging in the final iteration are much increased.

3.2 Phase I - Rotation of Membrane

Figure 3.2 shows the sequence of rotations of a gore. First, the cutting pattern for
the gore is generated in the local coordinate system zy and it is rotated through
an angle a about the x-axis, then it is rotated through an angle 3 about 7, such
that corners A and B of the gore are in their required positions on the reflector
surface.

Figure 3.2: Rotation of a gore.
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The calculation of « has been discussed in Section 3.1, and = 2(z — 1)7/g,
where ¢ is the total number of gores in the reflector and 7 is the particular gore
that is being analysed. The transformation of the nodal coordinates is

X cosf3 sinf 0| |1 0 0 x
Y| =|=sinf cosf 0] [0 cosa —sinal| |y (3.1)
7 0 0 1] |0 sina cosa 0

3.3 Phase II - Membrane Attached to Ribs

At the end of Phase [ the edge nodes of each gore are attached to the hub. Then,
one gore at a time, each node on a side edge of the gore is assigned a displacement
vector such that the node moves to the corresponding position on the rib.

This is done by modifying the stiffness equations of the nodes whose displace-
ments have been prescribed. Because these displacements are no longer unknown,
they are multiplied by the corresponding columns of the global stiffness matrix
and then moved to the right-hand-side of the stiffness equations. The corre-
sponding equations are eliminated. It has been found that in some cases these
displacements have to be imposed in several steps, to avoid convergence problems.

When this is done, all the nodes are in equilibrium except for those that are
attached to the ribs, which were not included in the equilibrium equations.

3.4 Phase III - Computation of Actual Surface

In Phase II all the cable and beam nodes were fully connected to the corresponding
membrane nodes, but in the real reflector each rib is accommodated within a
membrane pocket and the cable is covered by a Nylon sheath that allows sliding.
Phase IT allows this sliding to take place, and also removes all residual constraints
on the reflector.

Figure 3.3 illustrates the modelling of these sliding contacts. For clarity, the
three types of elements —membrane, cable and beam— are shown separately.
Sliding between a heam/cable node and its corresponding membrane node occurs
in the direction of the local tangent to the beam/cable, see for example the
enlarged picture of the sliding direction s2 in Figure 3.3. Sliding constraints are
applied by modifying the equilibrium equations of the nodes involved, as follows.

For example, consider cable element cl. Its equilibrium equation has the form

d C P C1
e 9] = [ (32)

Because at node 8 the cable and membrane nodes coincide,

d8c - d8m (33)
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A Fixed node

® Free node

o Free node + extra slide

Element number

S3
5 Sliding direction ON @ - Cable
®2 s
m  Membrane element N \S\ @ \'
107~~~ 85
b Beam element S < @

¢ Cable element

Membrane

Node number

Figure 3.3: Schematic view of gore with sliding elements.

On the other hand, the displacement of cable node 9 is related to the corre-
sponding membrane node by

dy. = dg,, + 0383 (3.4)

where 63 is the unknown magnitude of the sliding between the cable node and
the membrane node, and s3 is the sliding direction

dSm
K | K | KOs, [don | = [ﬁ] (3.5)
63 9cq

Equations similar to Equation 3.5 can be obtained for all other sliding nodes,
thus formulating all stiffness equations in terms of only membrane nodal dis-
placements. For the example shown in Figure 3.3 five extra variables 61, ... 05 are
introduced by doing this. Obviously, the resulting stiffness matrix is no longer
square and hence five additional equations are needed.

These additional equations are obtained by noting that the three-dimensional
external load vector for node 7, shown in Figure 3.4 and containing an internal,
frictionless slider, consists of four components. These components can be taken
as either P,. and R or P;,, and R, depending on whether the equations are being
formulated in terms of cable or membrane degrees of freedom. Note that the
nodal loads can be converted to membrane components with

P, = P, + Rs (3.6)
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ic

=

Figure 3.4: External loads on node with internal slider.

In all five sliding nodes of the CRTS reflector it has been assumed that R = 0.
Hence, for the example shown in Figure 3.3 the five additional equations have
been obtained by taking the dot-product of Equation 3.6 with s; for these nodes.

Considering the elements actually connected to these five nodes one obtains

(P4b1 +Pu, — Papy — Papy — Puyr,

(Pro, + Py, — Pay, — Puyyy — Py,
(P, + Po., — Poy — Py, — Pgy,
(P10c2 + Piocs — Pioms — Pioms — Piomy,
(P11c, + Pric, = Primyy — Primyy, — Piimy,

(3.7)

%
e e e e
n
w
o

-85 =

Each of the terms inside the brackets can be expressed as the product of a stiff-
ness matrix multiplied by some displacement component, e.g. Equation 3.5, and
hence Equation 3.7 can be written in terms of the same membrane displacement
variables and sliding displacements considered above. For the example shown in
Figure 3.3 this yields the following system of stiffness equations

d4m r T
: P

d12m 62

o1

Kaaxaay | . = : (3.8)

' 0

o5

) M,

1o L M2 | (44x1)

L 4 (44x1)
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Note that this system of equations has 44 degrees of freedom, consisting of
9 x 3 = 27 displacement components, plus 4 x 3 = 12 rotation components and
5 for the sliding displacements.

For offset reflector configurations, half of the reflector needs to be considered in
the above analysis, because there is only one symmetry plane (Lai and Pellegrino
1999). However, it should be noted that, if the two ribs in the symmetry plane
are given identical properties to the others, the out-of-balance loads applied to
the nodes on these ribs, which correspond to only half of the reflector, need to be

doubled.

3.5 Simulation Algorithm

The simulation procedure outlined above has been implemented in a series of
Matlab m-files. In Phase Il and Phase III the convergence criterion is that the
norm of the out-of-balance forces should be smaller than 10™* [N].

The overall layout of the simulation is presented in Figure 3.5.
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Figure 3.5: Flow chart of simulation algorithm.



Chapter 4

Results

4.1 Introduction

Severe convergence problems were encountered in running the simulation de-
scribed in the previous chapter. In particular, the out-of-balance loads associated
with the sliding elements described in Section 3.4 showed such poor convergence
converge that the sliding boundaries had to be removed.

This chapter compares the results of non-linear finite-element simulations of
two offset reflectors, whose configurations parameters are given in Table 4.1, with
the results of a linear analysis of the same reflectors.

No. of ribs 3,12
Diameter 1m
F/D 0.9
Offset A 0.1 m
Prestress ¢, | 40 N/m
Prestress t, | 10 N/m

Table 4.1: Details of reflectors analysed.

As the non-linear finite-element simulation provides some insight into the
behaviour of CRTS reflectors. Therefore, intermediate results at the end of Phase
II are presented, as well as the end of the analysis. Also, since the 12-rib reflector
did not converge at the end of Phase Ill, the intermediate results are all that is
available.

4.2 Phase II Results

It normally required less than ten Newton-Raphson iterations for the analysis
to converge. The key results including both the principal stresses and surface
error distribution for both reflectors, are shown in Figure 4.1. Table 4.2 gives the

22
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corresponding RMS error, with respect to a best fit paraboloid of equation
7 = a(X*+YH+b (4.1)

and the corresponding values obtained from the “Linear Analysis”, i.e. the method
described in Lai and Pellegrino (1999).

After the Phase IT iteration, the surface is fairly close to the equilibrium
surface, since the displacement of the ribs is quite small.

| Configuration | | RMS error [m] [ a [m™"] | b [m] |
8 ribs Linear Analysis 0.0026 0.2785 | 0.0024
NLFE 0.0021 0.2778 | 0.0012
12 ribs Linear Analysis 0.0013 0.2782 | 0.0007
NLFE 0.0010 0.2780 | 0.0002

Table 4.2: RMS errors and best-fit paraboloid parameters after Phase II.

4.3 Phase III Results

Figure 4.2 shows plots of the norm of the out-of-balance forces, ||¢||, during the
Newton-Raphson iteration. For the 8-rib reflector ||¢|| decreases to less than 50 N
in about 100 iterations, and then to a very small value after several more iter-
ations. The corresponding plot for the 12-rib reflector showed huge fluctuations
and hence, instead of plotting ||¢||, Fig. 4.2 (b) shows a plot of In||¢||. In this
case convergence was not achieved, and hence the actual shape of the reflector
could not be found.

Therefore, only for the 8-rib reflector we are able to compare the non-linear
finite-element analysis with the linear analysis. Figure 4.3 shows the principal
stress and surface error distribution from the two analyses. Note that the stresses
along the edge of the surface are almost double according to the non-linear finite
element simulation, but this may well be due to the fixed boundary conditions
assumed between the membrane and the cables/beams. The direction of the
principal stresses has hardly changed. Regarding the distribution of the surface
errors, there is very little difference between the linear and non-linear predictions.

Table 4.3 compares the RMS errors of the surfaces obtained from the linear
and non-linear methods. The coefficients of the best-fit paraboloid are a little
different, but the RMS errors are practically identical.
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‘ | RMS error [m] | a [m '] | b[m] |

Equilibrium surface 0.0026 0.2785 | 0.0024
Actual surface

(Linear Analysis) 0.0026 0.2785 | 0.0024
Actual surface

(NLFE) 0.0025 0.2762 | 0.004

Table 4.3: Comparison of RMS errors for 8-rib reflector.



Chapter 5

Discussion

The development of a proper simulation of the assembly process and prestressing
of an offset CRTS reflector has turned out to be a formidable computational
challenge. Special purpose simulation software had to be developed and, despite
this, it was possible to obtain only a limited set of results.

A complete non-linear simulation of an 8-rib offset reflector with £ = 0.9 m
and D = 1 m was carried out and the results have been compared to a linear
analysis carried out with the software described in Lai and Pellegrino (1999).
The RMS surface error predicted by the two methods is practically identical but,
although the principal stress directions match pretty well. discrepancies of up to
100% in the stress magnitudes have been observed. The likely reason for this is
that in the non-linear simulation sliding between the membrane and the cables
and ribs could not be properly modelled. This is a topic that remains open for
further investigation.

It is concluded that the linear-elastic analysis method of Lai and Pellegrino
(1999) is a very good way of determining the actual prestressed shape of a CRTS
reflector.
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