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Abstract

This report presents a non�linear �nite element simulation of the assembly process
of a collapsible rib�tensioned surface �CRTS� re�ector� leading to estimates of its
surface accuracy and prestress distribution� In two previous reports in this series
preliminary estimates had been obtained by a linearised formulation	 hence the
main aim of the present study is to access the accuracy of estimates based on the
earlier method�

Carrying out a fully non�linear simulation of an o
set CRTS re�ector is a
formidable computational challenge� which has required the development of spe�
cial purpose software� Despite this� only for a limited set of test cases it has been
possible to achieve full convergence�

A complete non�linear simulation of an ��rib o
set re�ector with focal length
of �� m and diameter of � m is presented and the results are compared to the
linear analysis� It turns out that the RMS surface errors predicted by the two
methods are practically identical but the stress magnitudes are less accurate� due
to incomplete modelling of the sliding between the membrane and the cables and
ribs of the re�ector�

It is concluded that the linearised method presented in the earlier reports is a
very good way of determining the actual prestressed shape of a CRTS re�ector�
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Chapter �

Introduction

The previous two reports in this series �Lai� You and Pellegrino ����� Lai and
Pellegrino ����� have presented a methodology for the design of collapsible rib�
tensioned surface �CRTS� re	ectors
 A key stage in the design process is the
computation of the cutting pattern for the gores of the re	ector� after which
an elastic analysis is carried out to determine the actual prestressed shape of a
re	ector made from these gores


Lai� You and Pellegrino ������ have proposed a linear�elastic analysis to �nd
this actual shape� taking the equilibrium surface as a reference and setting up
a linearised sti�ness matrix in this con�guration
 Thus� the initial shape is ob�
tained as a small variation from this con�guration
 However� this linear approach
requires the shape distortion to be small and� since this cannot be guaranteed
in all cases� a full non�linear �nite element analysis scheme has been set up� to
verify the results from the simpler method


The non�linear �nite�element formulation by Tabarrok and Qin ����� has
been adopted and the present implementation has been validated against the
classical solution �Hencky ����� for the de	ection of a circular membrane �
initially without any tension� subjected to a uniform pressure


To obtain an accurate estimate of the shape and stress distribution in a par�
ticular CRTS re	ector� the simulation approach presented in this report simulates
the �nal stages of its assembly process� as follows
 First� the gores of the re	ec�
tor� whose edges are cut according to a cutting pattern determined according to
the earlier reports� are laid out 	at in a common plane� unjointed
 Then� they
are rotated� each as a rigid body� into their approximate �nal positions
 Next�
the gores are joined to the ribs� which are initially assumed to be rigid and then
allowed to deform elastically under the forces applied by the membrane� while a
series of equilibrium iterations are carried out


�



���� Layout of the Report �

��� Layout of the Report

This report is divided into �ve chapters�
Following this brief introduction� Chapters � and � form the main body of the

report� the non�linear �nite element formulation of the three elements that form
the re�ector� namely membrane� cables� and ribs� is presented in Chapter �� The
procedure that simulates the assembly process of the whole structure is presented
in Chapter ��

Chapter 	 presents the results of this simulation for re�ectors with 
 and ��
ribs� Intermediate results at each stage of the analysis are presented� but the
analysis of the �� rib re�ector has convergence problem in the �nal stages� and so
�nal results are obtained only for the 
 rib re�ector� These results are compared
with the results from the linear analysis of the same re�ector� from Lai� You and
Pellegrino �����



Chapter �

Formulation

The determination of the shape of a prestressed CRTS re�ector surface involves
satisfying the equilibrium equations of three di�erent structural elements� mem�
brane� cable and beam elements� Membrane and cable elements are assumed
to have zero �exural sti�ness and hence will readily change their curvature in
response to most applied loads� therefore� large de�ection theory is required for
their analysis� On the other hand� the curved ribs can be modelled as a series of
straight beam elements of uniform cross�section� because the ribs behave linearly
within the de�ection range of interest� small de�ection theory is adequate�

The non�linear 	nite element formulation that has been adopted for the mem�
brane and cable elements is that proposed by Tabarrok and Qin 
����� and the
overall solution procedure is a standard Newton�Raphson� Readers interested in
further details on the analysis are referred to the paper by Tabarrok and Qin�
and textbooks such as Cris	eld 
����� and Belytschko et al� 
�����

��� Membrane Element

In geometrically non�linear 	nite element analysis it is generally preferable to use
a larger number of lower order elements than a smaller number of higher order
elements� Hence� the element that will be used is a three�node� linear displace�
ment 	eld� constant stress triangular element with nine degrees of freedom� The
formulation that is presented in this section is suitable for an iterative solution of
the sti�ness equations of the membrane� taking into account the non�linearity of
the interaction between the shape change of the membrane and the loads applied
to it�

Figure �� shows a triangular membrane element in three�dimensional space�
The X� Y � Z axes represent the global coordinate system� a local coordinate
system x� y� z is used to formulate the element matrices�

The linear displacement 	eld� u
x� y�� v
x� y�� and w
x� y�� of the element can

�



���� Membrane Element �
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Figure ���� Coordinate system of � node membrane element�

be expressed as

u � �� � ��x� ��y

v � �� � ��x� ��y 	���


w � �� � ��x� �	y

where the nine �i coe�cients are not speci�ed� It is preferable to convert the �is
to the nine nodal displacements

u � �u� v� w� u� v� w� u� v� w��
T

Determining the displacements at the three nodes and solving for �i leads to the
three shape functions of the element� using which Equation ��� becomes

u � 	a� � b�x� c�y
u� � 	a� � b�x� c�y
u� � 	a� � b�x� c�y
u�

v � 	a� � b�x� c�y
v� � 	a� � b�x� c�y
v� � 	a� � b�x� c�y
v� 	���


w � 	a� � b�x� c�y
w� � 	a� � b�x� c�y
w� � 	a� � b�x� c�y
w�

where

a� � 	x�y� � x�y�
���� b� � 	y� � y�
���� c� � 	x� � x�
���
a� � 	x�y� � x�y�
���� b� � 	y� � y�
���� c� � 	x� � x�
���
a� � 	x�y� � x�y�
���� b� � 	y� � y�
���� c� � 	x� � x�
���

and � � element area�
A membrane element is not able to sustain any �exural stresses� which means

that only the stresses tangent to the curved membrane surface act to equilibrate
loads normal to it� As the loads change� the stresses and the local curvatures
change to maintain equilibrium and these changes are accompanied by signi�cant
displacements and rotations of the surface� Therefore� small�de�ection theory is



���� Membrane Element �

not applicable� but the quadratic terms in the displacement�strain relations must
be taken into account� The nonlinear displacement�strain relations are �Love
����	
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Substituting Equation ��� into �� and writing the outcome in matrix form gives

� 
 B�u�
�

�
A� ����	

where

B� 


�
�b� � � b� � � b� � �
� c� � � c� � � c� �
c� b� � c� b� � c� b� �

	



A 


�
��u��x �v��x �w��x � � �

� � � �u��y �v��y �w��y
�u��y �v��y �w��y �u��x �v��x �w��x

	



� 

�
�u��x �v��x �w��x �u��y �v��y �w��y

�T
The change of strain �� due to in�nitesimal nodal displacements �u is obtained
by di�erentiation of Equation ���� Considering the above expressions for A and
�� this gives

�� 
 �B� �AG	�u ����	

where

G 


�
�

b� � � b� � � b� � �
� b� � � b� � � b� �
� � b� � � b� � � b�
c� � � c� � � c� � �
� c� � � c� � � c� �
� � c� � � c� � � c�

	
������


By di�erentiating Equation ���� it can be shown that � has the following
expression in terms of the nodal variables

� 
 Gu



���� Membrane Element �

Since only small strains are of interest� despite the displacements being rela�
tively large� the constitutive relations for linear�elastic plane stress analysis may
be used� Thus

� � D�� �� ����	

where �� denotes the initial stress vector and D is the elastic matrix de
ned as

D �
E

� � ��

�
�� � �
� � �
� � ���

�

�
�

where E and � are the Youngs Modulus and Poissons ratio� respectively�
Using the principle of virtual work� the following equilibrium equations are

established for a single element in its local coordinate system
Z
V e

��T�dV � �uTp � � ����	

where V e denotes the element volume and p is the external nodal force vector�
in the local coordinate system�

Substituting Equations ��� � ��� into ��� and eliminating �uT gives the fol�
lowing local equilibrium equations for a membrane element

Z
V e

�B� �AG	T �D�B�u�
�

�
A�	 � ���dV � p � � ����	

These equations must be transformed into the global coordinate system and�
proceeding in the same way for all membrane elements in the surface� a set of
global equilibrium equations can be obtained�

Since these equations will be used within an iterative solution based on the
Newton�Raphson method� they have to be linearised at the element level� Let
the out�of�balance forces be �i at the end of iteration i

�i �

Z
V e

�B� �A
iG	T �D�B�u

i �
�

�
Ai�i	 � ���dV � p ����	

The nodal displacements �ui that are required to correct for these out�of�
balance forces are such that

�i�� � �i �
��i

�u
�ui � � �����	

Thus� the displacements after iteration i � � can be obtained by solving Equa�
tion ���� and then updating the displacements

ui�� � ui � �ui �����	

Noting that Equation ���� provides a relationship between the change in nodal
forces� �i��

� �i� and the corresponding nodal displacements� ui� it follows that



���� Validation against Hencky�s Solution �

the matrix relating the two� ��i��u� is the tangent sti�ness matrix for then
element� It consists of two parts� as follows

k
i �

��i

�u

�

Z
V e

�B� �A
i
G�T

�

�u
�D�B�u

i �
	



A

i�i��dV

�

Z
V e

�

�u
��B� �A

i
G�T �� �D�B�u

i �
	



A

i�i� � ���dV

�

Z
V e

�B� �A
i
G�TD�B� �A

i
G�dV �

Z
V e

G
T
M

i
GdV �
�	
�

� k
i
e � k

i
g

where kie and kig are the material and geometric sti�ness matrices in local coor
dinates� respectively� and

M
i �

�
�������

�xx � � �xy � �
� �xx � � �xy �
� � �xx � � �xy
�xy � � �yy � �
� �xy � � �yy �
� � �xy � � �yy

�
�������

Note that the geometric sti�ness of an initially unstressed membrane is zero
as Mi � �� If the membrane is also initially �at� and hence its outofplane
material sti�ness is also zero� there will be a singularity at the beginning of
the equilibrium iteration� This can be avoided by prescribing an initial� small
outofplane displacement of the membrane before starting the standard Newton
Raphson iteration�

��� Validation against Hencky�s Solution

The computer implementation of the membrane element described in the pre
vious section has been validated against the classical analytical solution for the
de�ection of a linearelastic� circular membrane supported by a rigid foundation�
The membrane is initially unstressed� This problem was �rst solved by Hencky
�	�	��� later� Campbell �	���� corrected a numerical error made by Hencky�

Hencky showed that the vertical de�ection of an initially horizontal membrane
of outer radius a and subject to pressure p is given by

w � a
� pa
Et

	 �

�

f�r� �
�	��

where E is the Young�s Modulus of the membrane� t its thickness� r the distance
from the centre� and f�r� a function of r which has the expression

f�r� � A� �A�

�r
a

	
�

�A�

�r
a

	
�

�A�

�r
a

	
�

� � � �
�	��



���� Validation against Hencky�s Solution �

where

B� � ������ A� � ���	
�

A� � ���B�� A� � ����B
�

�
�

A� � �	��B
�

�
� A� � �		���B

��

�
�

A�� � ����B
��

�
� A�� � ���	����B

��

�
� etc�

Figure ��� shows the deected shape of such a membrane� divided up into ��
elements� The membrane is �xed along its edge� therefore nodes �� � �	 are fully
constrained� Only a quarter of the complete membrane has been analysed� and
therefore symmetry boundary conditions are applied to node � �constrained in
the X� and Y �direction�� nodes ���� � �constrained in the Y �direction only�� and
nodes 
� ���� �constrained in the X�direction only��
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Figure ���� Deection of circular membrane under uniform pressure�

For a given pressure p� the total force acting on each element is given by p�
and its direction is always normal to the element� Then� the forces at the nodes
of element i are fi � p�n�
� where n is the unit vector normal to element i in
the current con�guration� and the total load acting on a particular node of the
mesh is determined by adding the contributions of all the elements connected to
that node�

� Hencky ������ obtained the value ����	
 later corrected by Campbell ������ to �����



���� Cable Element �

For example� consider the total force acting at node �� see Figure ���� f� �
f�� � f�� � f�� � f�� � f�� � f��� where the second subscript corresponds to the
element number�

At the the beginning of the analysis� the unstressed mesh lies in the XY plane
and is unable to sustain any pressure loading� because of its zero �exural sti	

ness� Therefore� the equilibrium equations are singular and convergence cannot
be achieved in the �rst step unless we �rst deform the membrane by imposing a
small out
of
plane displacement proportional to the Hencky solution�
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Figure ��� Comparison of �nite element results with analytical solution�

Figure ��� compares the de�ection of the membrane surface obtained from the
Hencky solution with non
linear �nite element results obtained for a � ��� m�
t � ���� mm� p � ��� N�mm�� E� ������� N�mm� and � � ���� Note that both
axes have been non
dimensionalised by plotting the non
dimensional de�exion

w�c� where c � a �pa�Et�
�

� � versus the non
dimensional radius r�a� The �gure
shows that there is excellent agreement between the two sets of results� giving us
con�dence in the non
linear approach�

��� Cable Element

Consider the cable element �i� j� shown in Figure ���� If nodes i and j have
respectively displacement vectors �Ui� Vi�Wi�

T and �Uj� Vj �Wj�
T from the initial

con�guration� the strain in the cable is

� �
l� � l�

l�
������



���� Cable Element ��
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Figure ���� Cable element in global coordinate system�

where

l� �
q

�Xj �Xi�� 	 �Yj � Yi�� 	 �Zj � Zi��

and

l� �
q

�Xj �Xi 	 Uj � Ui�� 	 �Yj � Yi 	 Vj � Vi�� 	 �Zj � Zi 	Wj �Wi��

represent the lengths of the cable element before and after deformation�
The change in strain has the following matrix expression

�� �



l�
B�U ���
��

where the vector of global displacement components is

U � �Ui Vi Wi Uj Vj Wj
T ���
��

and

B � ��CX � CY �CZ CX CY CZ ���
��

contains the direction cosines of the deformed cable

CX �
Xj �Xi 	 Uj � Ui

l�

CY �
Yj � Yi 	 Vj � Vi

l�

CZ �
Zj � Zi 	Wj �Wi

l�

As for the membrane element� a linear elastic constitutive relation is used

� � E�	 �� ���
��



���� Beam Element ��

where �� is the initial stress in the cable and E its Young�s Modulus�
The global equilibrium equations can be obtained through the principle of

virtual work� Following the same approach as in Section ���� but this time we
use displacement and load components in the global system� we �nd

Z
l�

�

l�
�U

T
B

T
�Adl � �U

T
P � � 	����


from which the global out�of�balance forces have the expression

�
i �

Z
l�

�

lo
B

T
�Adl�P � BT

�A�P 	����


where A is the cross�sectional area�
As before� the tangent sti�ness matrix consists of material and geometric

contributions

K
i �

��
i

�U

� AB
T
��

�U
A�

�BT

�U
	����


�
EA

l�
B

T
B

A�

l�
C

where

C �

�
�������

C�

Y
 C�

Z
� � �C�

Y
� C�

Z
� �

� C�

X
 C�

Z
� � �C�

X
� C�

Z
�

� � C�

X
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Y
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X
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Y
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Y
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��� Beam Element

A full analysis of the ribs of a CRTS re�ector would require a model that cap�
tures the coupling between �exural and torsional deformation� together with the
associated changes in the transverse radius of curvature of the ribs� Only a de�
tailed shell model can hope to capture such complexities� here a much simpler�
equivalent rod model will be adopted�

Consider n nodal points on a curved rib� Figure ���� and between two consec�
utive nodes assume the rib to be straight� with uniform thickness t� transverse
radius R� and uniform subtended angle ���

Unlike the membrane and cable elements� the sti�ness of the rib does not
change signi�cantly within the de�ection range of interest� hence it is appropriate
to adopt a standard linear beam model� In this model each beam element has
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Figure ���� Con�guration of a rib�

twelve degrees of freedom� three translation components and three rotations at
each end� related to the corresponding loads by a constant sti�ness matrix� Hence�
the out	of	balance forces 
in a local coordinate system
 can be expressed as

�i�� � �i �K�d
i �  ������
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���� Wrinkling ��

��� Wrinkling

Thin membranes are unable to resist compressive stresses� instead� they form
wrinkles� thus re�distributing the stresses� Following Tabarrok and Qin ����	
 a
simple procedure for dealing with element wrinkling has been adopted� to ensure
that the simulation results are realistic�

The principal stresses �� and �� ��� � ��
 are calculated in each element�
at each step of the iteration� and the following checks are then carried out

�� if �� � �� biaxial wrinkling occurs�

	� if �� � � and �� � �� uniaxial wrinkling occurs� the wrinkles being aligned
with the �rst principal direction�

� if �� � � wrinkling does not occur�

In the case of biaxial wrinkling� the element is inactive and all stresses must be
set equal to zero� The elastic matrix for this element is assumed to be diagonal�
with a very small sti�ness s

D �

�
�
s � �
� s �
� � s

�
� �	�	�


For uniaxial wrinkling� the compressive stress �� must be set to zero� hence

� � ��� � �� �	�	�


and the elastic matrix in the principal stress directions is

D �

�
�
E � �
� s �
� � s

�
� �	�	�


However� note that the stress components in Equation 	�	� and the elastic
matrix in Equation 	�	� need to be transformed to the element coordinate system
�x� y� z
 for evaluating the local element sti�ness matrix� This is necessary
because a wrinkled element does not behave isotropically�



Chapter �

CRTS Re�ector Assembly

��� Overall Procedure

The analysis presented in this chapter is divided into three stages� i� rotation
of ��at� membrane gores� ii� connection of gores and edge cables to the ribs� ��
determination of the actual surface�

Figure ��	 shows the 
rst two stages� schematically� A single gore ABCD�
whose edges are shaped according to the cutting pattern computed by Lai� You
and Pellegrino �	���� initially lies in the XY plane with a cable attached to the
top edge� This cable is held stretched by end forces T� since the top edge of the
membrane is longer than the unstressed cable�
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Figure ��	� Connecting the membrane to the ribs �assumed to be rigid��

First� the gore and cable are rotated as a rigid body about AB� through an
angle � such that a straight line through B and C passes through the tip and

	�



���� Phase I � Rotation of Membrane ��

root of a rib�

Second� each of the nodes along the edges of the membrane� in the �gure

m��m��m��m�� is assigned a displacement such that each node moves to the

corresponding position on the rib� The shape of the membrane surface with its

edges attached to the ribs �assumed to be rigid at this stage� is computed by

carrying out a series of equilibrium iterations� This is repeated for each gore and

the shape obtained at the end is doubly�curved in each gore� but is not the actual

shape of the re�ector because the ribs have not been allowed to deform elastically�

Finally� when all ribs have been separately analysed� the actual shape of the

re�ector is determined by removing the constraints on the ribs and performing a

series of global equilibrium iterations�

The main reason for dividing the analysis into these three separate steps is

that� by achieving convergence to two intermediate con�gurations� the chances of

converging in the �nal iteration are much increased�

��� Phase I � Rotation of Membrane

Figure 	�
 shows the sequence of rotations of a gore� First� the cutting pattern for

the gore is generated in the local coordinate system xy and it is rotated through

an angle � about the x�axis� then it is rotated through an angle � about Z� such

that corners A and B of the gore are in their required positions on the re�ector

surface�

β x

α

X

Z

Y, yz

α

B

C

D

D

C

A

B

A

C

’

D’’

’’

’’

’’

’

Figure 	�
� Rotation of a gore�



���� Phase II � Membrane Attached to Ribs ��

The calculation of � has been discussed in Section ���� and � � ��i� �	��g�
where g is the total number of gores in the re
ector and i is the particular gore
that is being analysed� The transformation of the nodal coordinates is

�
�XY
Z

�
� �

�
� cos � sin� �
� sin � cos � �

� � �

�
�
�
�� � �
� cos� � sin�
� sin� cos�

�
�
�
�xy
�

�
� ����	

��� Phase II � Membrane Attached to Ribs

At the end of Phase I the edge nodes of each gore are attached to the hub� Then�
one gore at a time� each node on a side edge of the gore is assigned a displacement
vector such that the node moves to the corresponding position on the rib�

This is done by modifying the sti�ness equations of the nodes whose displace
ments have been prescribed� Because these displacements are no longer unknown�
they are multiplied by the corresponding columns of the global sti�ness matrix
and then moved to the righthandside of the sti�ness equations� The corre
sponding equations are eliminated� It has been found that in some cases these
displacements have to be imposed in several steps� to avoid convergence problems�

When this is done� all the nodes are in equilibrium except for those that are
attached to the ribs� which were not included in the equilibrium equations�

��� Phase III � Computation of Actual Surface

In Phase II all the cable and beam nodes were fully connected to the corresponding
membrane nodes� but in the real re
ector each rib is accommodated within a
membrane pocket and the cable is covered by a Nylon sheath that allows sliding�
Phase II allows this sliding to take place� and also removes all residual constraints
on the re
ector�

Figure ��� illustrates the modelling of these sliding contacts� For clarity� the
three types of elements �membrane� cable and beam� are shown separately�
Sliding between a beam�cable node and its corresponding membrane node occurs
in the direction of the local tangent to the beam�cable� see for example the
enlarged picture of the sliding direction s� in Figure ���� Sliding constraints are
applied by modifying the equilibrium equations of the nodes involved� as follows�

For example� consider cable element c�� Its equilibrium equation has the form

�K�

c�
j K�

c�
�

�
d�c

d�c

�
�

�
P�c�

P�c�

�
� ����	

Because at node � the cable and membrane nodes coincide�

d�c � d�m ����	
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Figure ���� Schematic view of gore with sliding elements�

On the other hand� the displacement of cable node � is related to the corre�
sponding membrane node by

d�c 	 d�m 
 ��s� ����

where �� is the unknown magnitude of the sliding between the cable node and
the membrane node� and s� is the sliding direction

�K�

c�
j K�

c�
j K�

c�
s��

�
�d�m

d�m

��

�
� 	

�
P�c�

P�c�

�
����

Equations similar to Equation ��� can be obtained for all other sliding nodes�
thus formulating all sti�ness equations in terms of only membrane nodal dis�
placements� For the example shown in Figure ��� �ve extra variables ��� � � � �� are
introduced by doing this� Obviously� the resulting sti�ness matrix is no longer
square and hence �ve additional equations are needed�

These additional equations are obtained by noting that the three�dimensional
external load vector for node i� shown in Figure ��� and containing an internal�
frictionless slider� consists of four components� These components can be taken
as either Pic and R or Pim and R� depending on whether the equations are being
formulated in terms of cable or membrane degrees of freedom� Note that the
nodal loads can be converted to membrane components with

Pim 	 Pic 
Rs ����
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Figure ���� External loads on node with internal slider�

In all �ve sliding nodes of the CRTS re�ector it has been assumed that R 	 
�
Hence� for the example shown in Figure ��� the �ve additional equations have
been obtained by taking the dot�product of Equation �� with si for these nodes�

Considering the elements actually connected to these �ve nodes one obtains

�P�b� �P�b� �P�m�
�P�m�

�P�m�
� � s� 	 


�P�b� �P�b� �P�m�
�P�m��

�P�m��
� � s� 	 


�P�c� �P�c� �P�m�
�P�m�

�P�m�
� � s� 	 
 �����

�P��c� �P��c� �P��m�
�P��m	

�P��m�

� � s� 	 


�P��c� �P��c� �P��m�

�P��m��

�P��m��
� � s� 	 


Each of the terms inside the brackets can be expressed as the product of a sti��
ness matrix multiplied by some displacement component� e�g� Equation ���� and
hence Equation ��� can be written in terms of the same membrane displacement
variables and sliding displacements considered above� For the example shown in
Figure ��� this yields the following system of sti�ness equations

K	�����


�
�����������������

d�m

d�m
���

d��m
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���
��

��
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���� Simulation Algorithm ��

Note that this system of equations has �� degrees of freedom� consisting of
� � � � �� displacement components� plus � � � � 	� rotation components and

 for the sliding displacements�

For o�set reector con�gurations� half of the reector needs to be considered in
the above analysis� because there is only one symmetry plane �Lai and Pellegrino
	����� However� it should be noted that� if the two ribs in the symmetry plane
are given identical properties to the others� the out�of�balance loads applied to
the nodes on these ribs� which correspond to only half of the reector� need to be
doubled�

��� Simulation Algorithm

The simulation procedure outlined above has been implemented in a series of
Matlab m��les� In Phase II and Phase III the convergence criterion is that the
norm of the out�of�balance forces should be smaller than 	��� �N��

The overall layout of the simulation is presented in Figure ��
�



���� Simulation Algorithm ��

Figure ���� Flow chart of simulation algorithm�



Chapter �

Results

��� Introduction

Severe convergence problems were encountered in running the simulation de�
scribed in the previous chapter� In particular� the out�of�balance loads associated
with the sliding elements described in Section ��� showed such poor convergence
converge that the sliding boundaries had to be removed�

This chapter compares the results of non�linear �nite�element simulations of
two o�set re	ectors� whose con�gurations parameters are given in Table ��
� with
the results of a linear analysis of the same re	ectors�

No� of ribs �� 
�

Diameter 
 m

FD ���

O�set A ��
 m

Prestress tx �� Nm
Prestress ty 
� Nm

Table ��
� Details of re	ectors analysed�

As the non�linear �nite�element simulation provides some insight into the
behaviour of CRTS re	ectors� Therefore� intermediate results at the end of Phase
II are presented� as well as the end of the analysis� Also� since the 
��rib re	ector
did not converge at the end of Phase III� the intermediate results are all that is
available�

��� Phase II Results

It normally required less than ten Newton�Raphson iterations for the analysis
to converge� The key results including both the principal stresses and surface
error distribution for both re	ectors� are shown in Figure ��
� Table ��� gives the

��



���� Phase III Results ��

corresponding RMS error� with respect to a best �t paraboloid of equation

Z � a�X� � Y
�� � b �	
��

and the corresponding values obtained from the �Linear Analysis� i
e
 the method
described in Lai and Pellegrino ������


After the Phase II iteration� the surface is fairly close to the equilibrium
surface� since the displacement of the ribs is quite small


Con�guration RMS error �m� a �m��� b �m�

� ribs Linear Analysis ������ ������ �����	
NLFE �����
 ������ ����
�


� ribs Linear Analysis ����
� ������ ������
NLFE ����
� ������ ������

Table 	��� RMS errors and best�t paraboloid parameters after Phase II�

��� Phase III Results

Figure 	�� shows plots of the norm of the outofbalance forces� jj�jj� during the
NewtonRaphson iteration� For the �rib re�ector jj�jj decreases to less than �� N
in about 
�� iterations� and then to a very small value after several more iter
ations� The corresponding plot for the 
�rib re�ector showed huge �uctuations
and hence� instead of plotting jj�jj� Fig� 	�� �b� shows a plot of ln jj�jj� In this
case convergence was not achieved� and hence the actual shape of the re�ector
could not be found�

Therefore� only for the �rib re�ector we are able to compare the nonlinear
�niteelement analysis with the linear analysis� Figure 	�� shows the principal
stress and surface error distribution from the two analyses� Note that the stresses
along the edge of the surface are almost double according to the nonlinear �nite
element simulation� but this may well be due to the �xed boundary conditions
assumed between the membrane and the cables�beams� The direction of the
principal stresses has hardly changed� Regarding the distribution of the surface
errors� there is very little di�erence between the linear and nonlinear predictions�

Table 	�� compares the RMS errors of the surfaces obtained from the linear
and nonlinear methods� The coe�cients of the best�t paraboloid are a little
di�erent� but the RMS errors are practically identical�
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RMS error �m� a �m��� b �m�

Equilibrium surface ������ �����	 �����

Actual surface

�Linear Analysis� ������ �����	 �����

Actual surface

�NLFE� �����	 ������ ����


Table 
�� Comparison of RMS errors for ��rib re�ector�



Chapter �

Discussion

The development of a proper simulation of the assembly process and prestressing
of an o�set CRTS re�ector has turned out to be a formidable computational
challenge� Special purpose simulation software had to be developed and� despite
this� it was possible to obtain only a limited set of results�

A complete non�linear simulation of an ��rib o�set re�ector with F � 	�
 m
and D � � m was carried out and the results have been compared to a linear
analysis carried out with the software described in Lai and Pellegrino ��


�
The RMS surface error predicted by the two methods is practically identical but�
although the principal stress directions match pretty well� discrepancies of up to
�		� in the stress magnitudes have been observed� The likely reason for this is
that in the non�linear simulation sliding between the membrane and the cables
and ribs could not be properly modelled� This is a topic that remains open for
further investigation�

It is concluded that the linear�elastic analysis method of Lai and Pellegrino
��


 is a very good way of determining the actual prestressed shape of a CRTS
re�ector�

��
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