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Buckling analyses of heavily corrugated cylindrical shells based on detailed full finite
element models are usually computationally expensive. To address this issue, we have pro-
posed an efficient computational method of predicting the onset of buckling for corrugated
cylindrical shells which builds on the Bloch wave method for infinitely periodic structures.
We modified the traditional Bloch wave method in order to analyze the buckling of rota-
tionally periodic shell structures. We have developed an efficient algorithm to perform our
modified Bloch wave method. The buckling behavior of composite corrugated cylindrical
shells with a range of numbers of corrugations was analyzed. Linear and nonlinear buckling
analyses of detailed full finite element models were also performed and compared to our
method. Comparisons showed that our modified Bloch wave method was able to obtain
highly accurate buckling loads and it was able to capture both global and local buckling
modes. It was also found that the computational time required by our modified Bloch wave
method did not scale up as the number of corrugations increased.

I. Introduction

Corrugated shells have been widely used over decades as aerospace, civil and naval structures such as
rocket and aircraft shells, ship panels, roof panels, cores of sandwich structures, etc. Corrugated shells
are stiff in the longitudinal direction along corrugations, enabling them to carry longitudinal loads with
high mass efficiency [1]. Compared to their longitudinal stiffness, corrugated shells are relatively compliant
transverse to the corrugation direction. This anisotropic property has been recently exploited and led to
their applications as flexible or morphing wings [2, 3].

Although current commercial finite element codes allow us to analyze the buckling behavior of corrugated
shells, simulations on detailed finite element models could be very computational expensive. In practice,
the dimensions of corrugated shells are much larger than the period and amplitude of corrugations. For
example, the corrugated shell designed by Johnson [1] has a diameter of 3 meters, whereas the period and
amplitude of its corrugations are only 11.4 and 1.1 centimeters, respectively. Therefore, it is necessary to
use very small elements to mesh the corrugations in order to obtain accurate results, leading to heavy finite
element analyses. The high computational effort has been the major constraint on the use of finite element
analysis in the optimization of corrugated/stiffened shells [4].

A variety of methods have been introduced to reduce the computational costs of buckling analysis of
corrugated shells. A common approach is to replace the exact corrugated cross-section with a smooth
shell that has equivalent stiffness properties. The smeared-out method is a simple method to compute the
equivalent properties, and it has been used in the buckling analysis of both stiffened and corrugated shells
since 1960s [1, 5–7]. In the smeared-out method the discrete stiffeners or corrugations are distributed over
the original shell surface by adding an equivalent continuous layer, and then calculations are preformed on
the uniform but anisotropic shell [8].

Motivated by recent studies on morphing wings, various homogenization methods have been developed
to obtain more rigorous equivalent stiffness properties than the smeared-out method for corrugated shells,
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see Refs. [9–12]. In the homogenization methods strains and curvatures are applied independently on a
single corrugation and, utilizing the periodicity of corrugated shells, the corresponding reaction forces and
moments on the corrugation boundaries are analytically or numerically computed. The equivalent stiffness
properties are then calculated through the load-displacement relations.

Both the smeared-out and homogenization methods can reduce the computational costs of finite element
models because fine meshes are no longer required due to the simple geometry of the equivalent shells.
However, these two methods are valid only when the buckling is global, i.e. the wave length of the buckling
mode is much larger than the period of corrugations or stiffeners [4,8]. They cannot be used to capture local
skin or stiffener buckling or to calculate stresses [13].

In 1980s Williams and co-workers developed a stiffness matrix method for the buckling and vibration
analysis of corrugated and stiffened shells which treats the shells as assemblages of flat plates that are
connected along their common longitudinal edges [14–17]. The stiffness matrices in this method are computed
based on the flat plate theory, and the buckling loads and modes are obtained by solving the corresponding
eigenproblems. The program VIPASA was developed based on the stiffness matrix method, and it was
found that VIPASA is much more efficient than general-purpose finite element programs [17, 18]. VIPASA
can analyze both flat and cylindrical corrugated and stiffened shells.

A unique feature of the stiffness matrix method by Williams and co-workers is that, based on the period-
icity of corrugated or stiffened shells, the buckling mode of a repetitive portion can be expressed as a product
of a complex-valued exponential term times the buckling mode of any other repetitive portion [19,20]. This
relation makes it possible to condense the full stiffness matrix of the whole shell into a smaller matrix of only
a single repetitive portion. However, this method can only analyze corrugated/stiffened shells made of flat
plates. Shells with curved walls, e.g. sinusoidally corrugated shells, must be approximated by a series of flat
panels. In addition, it should be noted that the buckling modes are assumed to vary sinusoidally along the
corrugations in this method. Therefore, this method could provide inaccurate results if the shells are short
and clamped in the longitudinal direction.

In 1990s Triantafyllidis and co-workers developed the Bloch wave method for the buckling analysis of
infinitely periodic structures [21–23]. It has been one of the major tools for the buckling analysis of cel-
lular structures such as honeycombs [24], porous solids [25], and foams [26]. This method is based on the
assumption that the buckling modes of a infinitely periodic structure follow the form of the Bloch wave
propagation which is the product of a complex-valued plane wave exponential term times a function with
the periodicity of one repetitive unit cell [27]. The buckling loads and modes can be computed by performing
eigenvalue analyses on a single unit cell whose boundaries are coupled by the Bloch relations rather on the
whole structure, resulting in the reduction of computational costs.

We propose an efficient computational method for the buckling analysis of corrugated cylindrical shells
in this paper that builds on the stiffness matrix method and the Bloch wave method. We modified the Bloch
wave method based on the work by Williams and co-workers to make it applicable for the buckling analysis
of rotationally periodic structures. We also implemented the modified Bloch wave method in Abaqus and
developed an efficient algorithm to perform the computation.

The paper is organized as follows. Section II reviews the stiffness matrix method for rotationally periodic
structures and the theory of Bloch wave method. The modified Bloch wave method for corrugated cylindrical
shells is presented in Section III. The method of implementing the Bloch wave method in Abaqus and
the algorithm of finding the critical buckling loads are presented in Section IV. We applied our modified
Bloch wave method to analyze the buckling behavior of corrugated composite cylindrical shells with various
numbers of corrugations. The results are presented and compared to the linear and nonlinear full finite
element analyses in Section V. Section VI concludes the paper.

II. Background

A brief review on the stiffness matrix method for the buckling analysis of rotationally periodic structures
is first presented, followed by the theory of Bloch wave method. The similarities and differences between
these two methods are also discussed. The reader is referred to Refs. [14–17] and Refs. [21–23] for extensive
details of the stiffness matrix method and Bloch wave method, respectively.
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A. Stiffness Matrix Method for Rotationally Periodic Structures

A buckling problem can be expressed as an eigenvalue problem:

Kc(λ)Ũc = 0 (1)

where Kc is the complete global stiffness matrix of a structure, and Ũc is its eigenvector which is also
the buckling mode. λ is the critical buckling load factor which is the load or displacement applied on the
structure. For a rotationally periodic structure, such as the ones shown in Fig. 1, with N repetitive portions,
Ũc can be separated into

Ũc = [Ũ1, Ũ2, Ũ3, ..., ŨN ]T (2)

where Ũq is the eigenvector of the q
th portion of the structure. Due to the rotational periodicity, the stiffness

matrix has the following form [19]:

Kc(λ) =


K1 K2 K3 . . . KN

KN K1 K2 . . . KN−1

KN−1 KN K1 . . . KN−2

...
...

...
...

...

K2 K3 K4 . . . K1

 (3)

where Kq is the stiffness matrix corresponding to the qth portion of the structure. Let the degree of freedom
of a repetitive portion be J , then Kq is a J × J matrix.

Axis

ψ

(a) (b)

A

B

Figure 1: (a) A rotationally periodic 2D truss structure with 6 repetitive portions. ψ is the angle spanned
by a repetitive portion which is π/3 in this example. (b) A rotationally periodic cylindrical truss structure.
The nodes on edge “A” or “B” are “axis nodes”, i.e. they have the same deformation. [20]

Hence, Eq. 1 can be written as a set of m equations:

ΣNq=1Kq(λ)Ũm+q−1 = 0, m = 1, 2, 3, ...N (4)

where the eigenvectors must satisfy the following relation due to the rotational periodicity:

Ũq+N = Ũq (5)

The most general solution to Eqs. 4 and 5 is [19]

Ũq = Ũ1e
i(q−1)nψ (6)

with i =
√
−1, n = 0, 1, 2, ..., N , and ψ = 2π/N . Substitute Eq. 6 into Eq. 4 and divide it by eimnψ, we can

reduce the set of m equations into the same equation:

(ΣNq=1Kq(λ)e
i(q−1)nψ)Ũ1 = 0, n = 0, 1, 2, 3, ...N (7)
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It should be noted that
ei(q−1)(N−n)ψ = e−i(q−1)nψ (8)

Therefore, n and N−n are not independent and the range of n can be reduced to n = 1, 2, 3, ...{N/2}, where
{N/2} is the largest integer no larger than N/2.

The eigenvalue problem in Eq. 1 of the complete stiffness matrix Kc of the whole structures are separated
into {N/2} + 1 eigenvalue problems of ΣNq=1Kq(λ)e

i(q−1)nψ which has the same dimension as the stiffness

matrix of only one repetitive portion of the structure. The displacement vector Ũi is complex-valued. Hence,
both the real and imaginary parts of Ũi are possible buckling modes. However, when n = 0 or n = N/2 for
even N , the exponential term in Eq. 6 is a real value. There is only one buckling mode corresponding to
these two cases. The critical buckling load is the lowest one among the buckling loads for all n’s.

λcrit = min
n=0,1,...,{N/2}

(λ(n)) (9)

It is very common for rotationally periodic structures to have “axis nodes”, i.e. nodes sheared by all
the repeating portions or have the same translational and rotational deformation with respect to the axis,
as shown in Fig. 1 (b). For example, stiffened or corrugated cylindrical shells subject to axial uniform
end-shortening have “axis nodes” on their two ends. Let ŨZq be the displacement w.r.t axis Z of the “axis
nodes” of the qth portion, and substitute it into Eq. 6:

ŨZq = ŨZ1e
i(q−1)nψ, n = 0, 1, 2, 3, ...{N/2} (10)

Because the nodes are “axis nodes”, ŨZq must satisfy ŨZq = ŨZ1. Therefore, ŨZq is always zero for n > 0.

B. Bloch Wave Method

The Bloch wave method [21–26] is a robust and efficient way of predicting the onset of buckling for infinitely
periodic structures. In this section we briefly review the theory of the Bloch wave method for a two-
dimensional infinitely periodic structures. A unit cell of this structure is shown in Fig. 2. Let K(λ) be the
stiffness matrix of the unit cell, and then the equilibrium equation of buckling can be written as:

A

D C

B

b
a

y
x

Figure 2: Schematic of a unit cell of a 2D infinitely periodic porous structure. A, B, C, and D are four points
on the corners of the unit cell. Region “a” includes edges “AD”, “AB”, and point A; region “b” includes
edges “CD”, “BC”, and points B, C, and D.

K(λ)Ũ = F̃ (11)

where Ũ and F̃ are the buckling modes and the corresponding force vector. It should be noted that F̃ is not
zero. However, if Eq. 11 of each unit cell is assembled into the complete stiffness of the whole structure, the
complete force vector of the whole structure is zero when buckling happens, as seen in Eq. 1.

Ũ and F̃ can be separated into the values on boundary and internal nodes:

Ũ = [Ũi, Ũa, Ũb]
T

F̃ = [F̃i, F̃a, F̃b]
T

(12)
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where i, a and b denote the internal nodes, nodes in regions “a” and “b”, respectively, as shown in Fig. 11.
Therefore, the displacements and forces of regions “a” and “b” are:

Ũa = [Ũ(AD), ŨA, Ũ(AB)]
T

F̃a = [F̃(AD), F̃A, F̃(AB)]
T

Ũb = [ŨB , Ũ(BC), ŨC , Ũ(CD)]
T

F̃b = [F̃B , F̃(BC), F̃C , F̃(CD)]
T

(13)

The notation (∗) means edges without their end nodes.
Because of the periodicity of the structure, the buckling mode and the corresponding force can be assumed

to follow the Bloch wave propagation function:

Ũ(x, y) = Pu(x, y)exp[i(
n1
L1
x+

n2
L2
y)]

F̃ (x, y) = Pf (x, y)exp[i(
n1
L1
x+

n2
L2
y)]

(14)

where Lj and nj/Lj , j = 1, 2 are the sizes of the unit cell and the wave numbers. Pu(x, y) and Pf (x, y) are
periodic functions with the same periodicity as a unit cell:

Pu(x, y) = Pu(x+m1L1, y +m2L2)

Pf (x, y) = Pf (x+m1L1, y +m2L2)
(15)

where m1 and m2 are integers. Using Eqs. 14 and 15, we can obtain the following Bloch relations for the
displacements on the boundary nodes:

UB = µ1UA; U(BC) = µ1U(AD); UC = µ1UD; UC = µ2UB; U(CD) = µ2U(AB); UD = −µ2UA (16)

where µ1 = exp(in1) and µ2 = exp(in2). Similarly, the forces on the boundaries have the following Bloch
relations:

FB = −µ1FA; F(BC) = −µ1F(AD); FC = −µ1FD; FC = −µ2FB ; F(CD) = −µ2F(AB); FD = −µ2FA
(17)

Using Eq. 16, the displacements can be written as:

[Ũi, Ũ(AD), ŨA, Ũ(AB), ŨB, Ũ(BC), ŨC , Ũ(CD)]
T = Q[Ũi, Ũ(AD), ŨA, Ũ(AB)]

T (18)

where the transformation matrix Q is: 

I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 0 [µ1] 0

0 [µ1] 0 0

0 0 [µ1µ2] 0

0 0 0 [µ2]


(19)

The notation [∗] represents a submatrix of Q. Substitute Eq. 19 into Eq. 11, multiply it by QT , and use
Eq. 17, we can obtain:

QTK(λ)QŨa = K̂(n1, n2, λ)Ũa = QT F̃ = 0 (20)

Therefore, the buckling load and mode can be obtained by solving the eigenvalue problem of matrix K̂. It
should be noted that K̂ also depends on the n1 and n2; hence, the buckling load factor λ is a function of n1
and n2:

λ = λ(n1, n2) (21)
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The critical buckling load is obtained by finding the lowest λ for all possible n1 and n2.

λcrit = min
n1,n2

(λ(n1, n2)) (22)

The Bloch wave relations in Eqs. 16 and 17 are complex-valued functions. However, most finite element
packages, including Abaqus, cannot handle complex-valued fields. Therefore, the stiffness matrices K and K̂
in most Bloch wave analyses are analytically formulated, and the calculations are very difficult and tedious.
To address this issue, Gong et. al. [26] used Abaqus to extract the element stiffness matrices and then
assembled them into the stiffness matrix of a unit cell. It was pointed out by the authors that this procedure
could be very time-consuming if the geometry of the unit cell is intricate. Aberg and Gudmundson [28]
invented an alternative technique for studying the wave dispersion relations of infinitely periodic structures
that used two identical meshes in Abaqus to split the complex-valued fields into real and imaginary parts.
The boundaries of the two meshes were coupled in order to satisfy the Bloch wave relations. Following Aberg
and Gudmundson [28], Bertoldi et. al. [25, 29] introduced this technique in the buckling analysis of porous
periodic elastomeric structures. More details of applying the Bloch wave method in Abaqus are presented
in Section IV.

Recently, the Bloch wave method was introduced in the buckling analysis of stiffened cylindrical shells
by Wang and Abdalla [30]. They used the Bloch wave method to find the local buckling loads and modes
of stiffened shells, whereas the global buckling was predicted through a homogenized stiffness model. The
Bloch wave method for infinite periodic structures was used, i.e. the local buckling analysis was performed
on a unit repetitive grid that is assumed to be in a circumferentially and axially infinite stiffened cylindrical
shell. Therefore, the boundary conditions were essentially not considered in Wang and Abdalla [30].

C. Comparison between the Stiffness Matrix Method and the Bloch Wave Method

The stiffness matrix method for rotationally periodic structures and the Bloch wave method for infinitely
periodic structures have similar features. First, both methods achieve the reduction of computational costs
by separating the eigenproblem of the whole structure into a series of smaller eigenproblems which involve
stiffness matrix with the same dimension as the matrix of a single unit cell. Second, the assumed buckling
mode relations among repeating portions in the stiffness matrix method (Eq. 6) are essentially the same as
the Bloch wave relations in Eq. 16.

However, these two methods formulate the eigenproblems in different ways. The stiffness matrix method
involves the stiffness matrices of all the repetitive portions of a rotationally periodic structure, as shown in
Eq. 7. The stiffness matrix in the Bloch wave method involves only a single unit cell, and the boundaries of
the unit cell are coupled by the Bloch wave relations to transform the equilibrium equation (11) of a unit
cell into an eigenproblem, as seen in Eq. 20.

III. Methodology

We tailored the Bloch wave method based on the stiffness matrix method for rotationally periodic struc-
tures in order to apply the Bloch wave method in the buckling analysis of corrugated cylindrical shells. The
methodology is presented in this section.

A. Bloch Wave Method for Corrugated Cylindrical Shells subject to Axial Compression

Corrugated cylindrical shells are periodic only in the circumferential direction, as shown in Fig. 3. The shell
is compressed by applying a uniform end-shortening on one of its ends. Hence, Eq. 14 can be reduce into
the following relation for corrugated shells:

Ũ(z, ϕ) = Pu(z, ϕ)exp(ikϕ)

F̃ (z, ϕ) = Pf (z, ϕ)exp(ikϕ)
(23)

z and ϕ denote the shell axial coordinate and angular position in the circumferential direction. k is the wave
number. Let the angle spanned by a corrugation be ψ, we have:

Ũ(z, ϕ+ ψ) = Pu(z, ϕ+ ψ)eik(ϕ+ψ) = Pu(z, ϕ)e
ikϕeikψ = Ũ(z, ϕ)eikψ (24)
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D
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B φ
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(a) (b)

Figure 3: (a) Cross-section of a corrugated cylindrical shell. (b) Perspective view of a corrugation. ϕ and z
are the circumferential and axial directions, respectively. A, B, C, and D are four points on the corners of
the corrugation

When ϕ = 0, Eq. 24 is written as:
Ũ(z, ψ) = Ũ(z, 0)eikψ (25)

Eq. 25 means that the displacement field on the right edge of the corrugation is always the product of
the displacement field on the left edge times an exponential term eikψ. It should be noted that Williams
also obtained this relation in Ref. [19], although it was not refereed to as the Bloch relation.

For a rotationally periodic structures with N repetitive portions, the following constraint must be satis-
fied: [19]

Ũ(z,Nψ) = Ũ(z, 0) (26)

Using the Bloch wave relation (Eq. 25), the above equation is now:

Ũ(z,Nψ) = Ũ(z, 0) = Ũ(z, 0)eikNψ (27)

We can have:
eikNψ = 1 (28)

Therefore,

kψ =
2π

N
n, n = 0, 1, 2, ..., N (29)

Using Eq. 29, the Bloch relation Eq. 25 can be written as:

Ũ(z, ψ) = Ũ(z, 0) exp(i
2π

N
n), n = 0, 1, 2, ..., N (30)

Similarly, the Bloch relation for force vectors is

F̃ (z, ψ) = −F̃ (z, 0) exp(i2π
N
n), n = 0, 1, 2, ..., N (31)

By the symmetry of the above relation:

Ũ(z, 0) exp(i
2π

N
(N − n)) = Ũ(z, 0) exp(−i2π

N
n) (32)

The wave numbers N − n and n are a pair of same waves propagating in the opposite directions and they
have the same buckling loads and modes. Therefore, only the following n’s are necessary in the buckling
analysis:

n = 0, 1, 2, ..., {N/2} (33)

where {N/2} is N/2 for even N and (N − 1)/2 for odd N .
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Let the circumferential coordinate of edges “AD” and “BC” be 0 and ψ, respectively. Ũ and F̃ are the
eigenvector and corresponding force vector of a corrugation:

Ũ = [Ui, U(AB), U(CD), U[AD], U[BC]]
T

F̃ = [Fi, F(AB), F(CD), F[AD], F[BC]]
T

(34)

The notations (∗) and [∗] represent edges without and with nodes on their nodes. The Bloch relations Eqs. 30
and 31 are now:

Ũ[BC] = Ũ[AD] exp(i
2π

N
n), n = 0, 1, 2, ..., {N/2}

F̃[BC] = −F̃[AD] exp(i
2π

N
n), n = 0, 1, 2, ..., {N/2}

(35)

The equilibrium equation of a corrugation during buckling is

K(λ)[Ui, U(AB), U(CD), U[AD], U[BC]]
T = [Fi, F(AB), F(CD), F[AD], F[BC]]

T (36)

The stiffness matrix K(λ) and force vector [Fi, F(AB), F(CD), F[AD], F[BC]]
T in Eq. 36 can be assembled into

the global stiffness and force vector of the whole corrugated shell, and the following eigenproblem can be
obtained:

Kc(λ)Ũc = F̃c = 0 (37)

where Kc and Uc are the global stiffness matrix and the eigenvector of the whole structure. F̃c is zero when
the structure buckles. Note that the force vectors Fi, F(AB), and F(CD) remain unchanged when they are
assembled into the force vector in Eq. 37 because the edges “(AB)”, “(CD)”, and internal nodes do not
interact with the nodes in other corrugations. Therefore, Eq. 36 can be written as:

K(λ)[Ui, U(AB), U(CD), U[AD], U[BC]]
T = [0, 0, 0, F[AD], F[BC]]

T (38)

Similar to Eq. 18, the incremental displacements on edge “AD” can be eliminated by the following
relation:

[Ui, U(AB), U(CD), U[AD], U[BC]]
T = Q[Ui, U(AB), U(CD), U[AD]]

T (39)

where Q is

Q =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

0 0 0 [exp(i 2πN n)]

 (40)

Let [Ui, U(AB), U(CD), U[AD]]
T = Ũa, and similar to Eq. 20, we can obtain the following eigenproblem:

QTK(λ)QŨa = K̂(n, λ)Ũa = QT F̃ = 0, n = 0, 1, 2, ..., {N/2} (41)

where λ is the loading factor. The critical buckling load are the lowest one among all buckling loads for n’s

λcrit = min
n=0,1,2,...,{N/2}

(λ(n)) (42)

B. Buckling and Natural Frequency Analysis

Operationally, the eigenvalue analysis of the buckling problem in Eq. 41 is solved by analyzing the cor-
responding natural frequency problem. This is based on the fact that buckling happens when the lowest
natural frequency decreases to zeros as the loading increases [31]. The equation of motion of a corrugation
for a natural frequency problem is:

M ¨̃u+Kũ = F̃ (43)

where M and K are mass and stiffness matrices, respectively. ũ is the complex-valued displacement field
and ¨̃u denotes its second derivative with respect to time t. The displacement can be written as:

ũ = Ũeiωt (44)
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where ω is the angular frequency. Substitute Eq. 44 into 43, multiply it by QT , use the relation in Eq. 39,
and eliminate the exponential term, we obtain the following relation:

QT (K − ω2M)QŨa = 0 (45)

Therefore, Eq. 45 is an eigenvalue problem, and the eigenvalue ω2 and eigenvector Ũ are respectively square of
nature frequency and vibration mode. If the lowest natural frequency is zero, i.e. ω2 = 0, Eq. 45 degenerates
into the eigenproblem in Eq. 41. The buckling problem can be solved through the natural frequency problem
by finding the load when the lowest natural frequency is zero. The vibration mode of the frequency problem
in this case is also the buckling mode.

When the eigenvalue ω2 is positive, the angular frequency ω is a real value. ũ can be written as

ũ = Ũeiωt = Ũ(cos(ωt) + isin(ωt)) (46)

However, when ω2 < 0, ω is a complex value and eiωt exponentially grows with time, leading to an unstable
structure. Therefore, ω2 = 0 corresponds to the onset of buckling and this relation is exploited to facilitate
the implementation of the Bloch wave method in Abaqus.

IV. Numerical Implementation

Most of current commercial finite element packages, including Abaqus, cannot deal with complex-valued
fields. We modified the technique developed by Aberg and Gudmundson [28] and Bertoldi et. al. [25, 29] to
apply our modified Bloch wave method in Abaqus. Our technique is first presented in this section, followed
by an efficient algorithm of finding the critical buckling loads and modes.

A. Finite Element Implementation

The complex-valued fields can be separated into real and imaginary parts, and the equation of motion of a
corrugation (Eq. 43) can be written as([

K 0

0 K

]
− ω2

[
M 0

0 M

])[
ŨRe

Ũ Im

]
=

[
F̃Re

F̃ Im

]
(47)

where ŨRe, Ũ Im, F̃Re, and F̃ Im are the real and imaginary parts of the displacement and force fields of a
corrugation. The complex Bloch relation of displacements in Eq. 35 can be separated into two equations,
each of which represents the real or imaginary relation:

ŨRe[BC] = ŨRe[AD]cos(
2π

N
n)− Ũ Im[AD]sin(

2π

N
n)

Ũ Im[BC] = ŨRe[AD]sin(
2π

N
n) + Ũ Im[AD]cos(

2π

N
n)

(48)

Eq. 48 can be represented by two identical meshes in Abaqus whose boundaries are coupled by the *MPC
function in Abaqus. Similar to the derivation of Eq. 39, the transformation matrix Q can also be separated
into real and imaginary parts based on Eq. 48.

URei
URe(CD)

URe[AD]

URe(AB)

URe[BC]

U Imi
U Im(CD)

U Im[AD]

U Im(AB)

U Im[BC]



= Q



URei
URe(CD)

URe[AD]

URe(AB)

U Imi
U Im(CD)

U Im[AD]

U Im(AB)


(49)
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where Q matrix is 

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 [cos( 2πN n)] 0 0 −[sin( 2πN n)] 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I

0 0 [sin( 2πN n)] 0 0 [cos( 2πN n)] 0 0



(50)

The Bloch relations of forces are:

F̃Re[BC] = −(F̃Re[AD]cos(
2π

N
n)− F̃ Im[AD]sin(

2π

N
n))

F̃ Im[BC] = −(F̃Re[AD]sin(
2π

N
n) + F̃ Im[AD]cos(

2π

N
n))

(51)

We can also obtain the following relation by multiplying Eq. 47 by QT and using the above force Bloch
relations and Fi = 0, F(AB) = 0, and F(CD) = 0:

QT

([
K 0

0 K

]
− ω2

[
M 0

0 M

])
Q



URei
URe(CD)

URe[AD]

URe(AB)

U Imi
U Im(CD)

U Im[AD]

U Im(AB)


= QT



0

0

FRe[AD]

0

FRe[BC]

0

0

F ImAD
0

F Im[BC]



= 0 (52)

The calculation of ω2 consists of two steps: a nonlinear static analysis (pre-buckling analysis) and a
frequency analysis (eigenvalue analysis). In the static analysis the pre-buckling deformation of corrugated
cylindrical shell has a periodicity of one unit cell, i.e. ŨRe[BC] = ŨRe[AD] and Ũ Im[BC] = Ũ Im[AD]. Edge “AB” is
fully clamped and the shell is compressed by applying a uniform axial end-shortening on edge “CD”, i.e.
ŨRe[AB] = Ũ Im[AB] = 0 and ŨRez,[CD] = Ũ Imz,[CD] = Uz. Therefore, the load parameter λ in the previous discussion

is λ = |Uz|.
In the frequency analysis the edge “AB” is fully clamped, i.e. ŨRe[AB] = Ũ Im[AB] = 0. As discussed in the

previous section, ŨRe[CD] and Ũ
Im
[CD] are zero when n > 0 in order to satisfy the Bloch relation. For the case

n = 0, the real and imaginary parts are not coupled and the only free degree of freedom of edge “CD” is the
uniform translational displacement in the z (axial) direction.

B. Algorithm of Finding Critical Buckling Load

In principle, we need to run {N/2} + 1 simulations in order to find the lowest buckling load according to
Eq. 42:

λcrit = min
n=0,1,2,...,{N/2}

(λ(n))

This process could be computationally expensive. We developed an algorithm to reduce the number of
simulations required to find the lowest buckling load. Our algorithm consists of three major steps.
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1. Step 1: Finding the Buckling Load for n = 0

Both the pre-buckling deformation and buckling modes for n = 0 have the periodicity of one unit cell,
i.e. ŨRe[BC] = ŨRe[AD] and Ũ Im[BC] = Ũ Im[AD]. The real and imaginary parts are not coupled in both static and
frequency steps since the sine terms in Eq. 48 are zero. In the nonlinear static analysis, a corrugation of
a shell is compressed by applying incremental uniform end-shortening until it reaches the bifurcation point
B0, as shown in the schematic Fig. 4. The increment containing the bifurcation point is further refined until
the required accuracy is achieved. The detection of B0 is based on the eigenvalues ω2 obtained from the
frequency analysis. Four possible situations could happen.

o

B0

A

Axial End-Shortening

Load

3

2
1

Figure 4: Schematic of possible post-buckling branches. B0 is the bifurcation point corresponding the branch
of n = 0.

Even though nonlinear analysis is used for the static step, it is still possible that the shell stays on the
primary branch B0 − A when the load exceeds the bifurcation point. The shell is in an unstable state as
it has passed the bifurcation points. The shell is not stable either if it is on the bifurcated branch B0 − 1.
Therefore, the eigenvalues ω2 obtained for the points on branches B0 − A and B0 − 1 are negative. B0 can
be accurately found by checking the change of signs of the eigenvalues during the loading.

The branch B0 − 2 is also unstable. The shell is subject to displacement controlled loading (λ = |Uz|)
in the static step and the applied compressive end-shortening incrementally increases. Hence, the shell can
never reach the branch B0 − 2. The increments of the nonlinear static analysis are set to automatically
decrease in order to find the equilibrium state. Therefore, the shell can reach a very close vicinity of B0.
The last point on the primary branch is used as the bifurcation point.

B0 is relatively difficult to find for the case of stable post-buckling branch B0 − 3 because its eigenvalues
are still positive and B0 cannot be found by checking the change of signs of eigenvalues. The eigenvalue
decreases dramatically when the load is close to the bifurcation point and it increases from zero when the
load exceeds B0 and goes onto branch B0 − 3. In addition, the slope of the load-displacement curve is
different for the primary and secondary branches. These two signatures are used to determine if the shell is
in the stable post-buckling state. Since all eigenvalues except that of the bifurcation point are all positive
on O − B0 − 3, we use the point with largest slope change, i.e. largest curvature, on the load-displacement
curve as the bifurcation point, instead of finding the point with zero eigenvalue which is operationally very
difficult for this case.

2. Step 2: Sorting other n’s According to Eigenvalues

We can use the location of B0 obtained in step 1 to filter and sort the other n’s for further simulations. Fig. 5
is a schematic for this process. If the load of B0 is larger than the buckling load of a certain branch, e.g. n1,
n2, and nk in Fig. 5, the eigenvalues corresponding to the coupled boundaries of Eqs. 48 for these n’s are
guaranteed to be negative. If the eigenvalues are positive, then the load of B0 is smaller than the buckling
load of these branch, e.g. nj in Fig. 5, and no further calculations are need since we are only interested in
the lowest buckling load. The critical buckling mode is among the n’s with negative eigenvalues and they
are sorted increasingly according to their eigenvalues. The n with lowest eigenvalue is more likely to be
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the critical one. It should be noted that this is not a rigorous assumption; however, it can provide useful
information in order to find the critical n as fast as possible.

o

B0

A

Axial End-Shortening

Load

Bn1

Bn2

Bnk

Bnj

Figure 5: Schematic of the bifurcation points on the primary branch. Bnk
is the bifurcation point when

n = nk.

3. Step 3: Finding the Critical Buckling Load

As discussed in step 2, the sign of eigenvalues is always negative if the load has passed the bifurcation point
Bn1. Hence, change of signs of eigenvalues can be used to detect Bn1. The increment containing Bn1 is
iteratively refined until it reaches the required accuracy. We then check the eigenvalues of n2, n3, ..., nk on
the load of Bn1 and sort them according to their eigenvalues (step 2). If there exist other n’s with negative
eigenvalues, the one with lowest eigenvalue is then analyzed to find its buckling load (step 3). Steps 2 and 3
are repeated until the critical load λcirt corresponding to the critical branch ncrit is found. The eigenvalue
of λcirt is zero for ncrit and positive for all other n’s. The buckling modes of the whole structure are then
obtained through Eq. 23.

This algorithm can avoid unnecessary simulations as much as possible so as to reduce the computational
time. The frequency analyses are independent with each other. Therefore, they can be carried out in a
parallel way. The parallel computation of frequency analyses can further reduce the computational time.

V. Validation

We applied our modified Bloch wave method in the buckling analyses of corrugated cylindrical shells in
order to validate the method. Both linear and nonlinear analyses of detailed full finite element models are
also carried out, and their results and computational time are compared to the modified Bloch wave method.

A. Corrugated Composite Cylindrical Shells

The corrugations are sinusoidal and the cross-sections were obtained by superposing a sinusoidal wave on a
reference circle:

r(ϕ) = R+∆r sin(Nϕ), (53)

where N is the total number of corrugations and ∆r their amplitude. In this paper, the number of corruga-
tions N is chosen as N = 12, 13, 16, 17, 19, 22, 23, 34, 25, 26, 29, 30, 31, 32, 37, 40

The shells were chosen to have a square aspect ratio. The dimensions presented in Table 1 were chosen.
A symmetric six-ply laminate, [+60◦,−60◦, 0◦]s was adopted, and 0◦ direction is shell axial direction. It

consisted of 30 µm thick unidirectional laminae of T800 carbon fibers and ThinPreg 120EPHTg-402 epoxy,
provided by the North Thin Ply Technology company, with a fiber volume fraction of approximately 50%.
The following lamina properties were measured: E1 = 127.9 GPa, E2 = 6.49 GPa, G12 = 7.62 GPa, and
ν12 = 0.354, where E1 is the modulus along the fiber direction. The ABD matrix of the laminate was
calculated from these properties, using classical lamination theory:
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Table 1: Dimensions of wavy shell designs

Thickness, t 180 µm

Radius, R 35 mm

Length L 70 mm

Maximum deviation from circle, ∆r 1.5 mm

ABD =



9.919× 106 2.670× 106 0 0 0 0

2.670× 106 9.919× 106 0 0 0 0

0 0 3.625× 106 0 0 0

0 0 0 0.0108 0.0099 0.0034

0 0 0 0.0099 0.0373 0.0081

0 0 0 0.0034 0.0081 0.0125


(54)

where the units of the A and D matrices are N/m and Nm, respectively.

B. Results and Comparison

Around 1,500 S4 fully integrated shell elements were used for a corrugation in the Bloch wave method. Both
linear and nonlinear analyses of detailed full finite element models were carried out. The full finite element
models have the same element size as the models in the Bloch wave method. All simulations were run on a
Xeon X5680 server with 12 CPUs on a single motherboard.

The linear eigenvalue analysis *Buckle function of Abaqus was used for linear buckling analysis. Abaqus
offers the Lanczos and the subspace iteration eigenvalue extraction methods. It was found that the Lanczos
method was much slower than the subspace method and it failed to solve the eigenvalue problem for the
shells with more than 23 corrugations. Therefore, the subspace method was used for the linear buckling
analysis. As discussed in the previous sections, there are two coincided buckling modes for the cases n > 0.
It was found that the subspace method could provide an inaccurate second buckling mode and load if the
number of extracted eigenvalues is too small. Therefore, we extracted the first 10 eigenmodes although we
are only interested in the first two buckling modes. We found that this setup was able to provide accurate
second buckling modes.

The nonlinear analyses of full detailed finite element models consisted of two steps, similar to the Bloch
wave method, that are a nonlinear static analysis and a frequency analysis. The shells were first compressed
by applying a uniform end-shortening at one end, and then a frequency step was carried out to find the
eigenvalue ω2 corresponding to this stress state. The critical buckling load was found when the eigenvalue
ω2 decreased to zero. The frequency analyses are independent with each other so they were performed in a
parallel way.

The critical axial end-shortening obtained from the Bloch wave method, nonlinear and linear full finite
element analyses are plotted in Fig. 6. The buckling loads are plotted in Fig. 7. In the linear analysis
the end-shortening is extracted as the eigenvalue. Therefore, the critical loads were not obtained for linear
analysis. The results obtained from the Bloch wave method and the linear full finite element analyses are
compared to the ones obtained from the nonlinear full finite element analyses. Figs. 6 and 7 show that all
buckling loads and critical end-shortening are very close. It is found that their differences are less than 0.5%.

The buckling modes obtained from the Bloch wave method, linear and nonlinear full model analysis for
N = 13, 31, 40 are plotted in Figs. 8, 9 and 10. The buckling is local for N <= 30 and global for N >= 31.
These figures show that the Bloch wave method can capture both local and global buckling and the buckling
modes match the results obtained from the nonlinear full model analyses. Although the linear full model
analysis can provide accurate buckling loads, it cannot obtain correct buckling modes for some cases, as seen
in Fig. 9 (c).

The computational time for these three methods is plotted in Fig. 11. It can be seen that the compu-
tational time of the nonlinear analysis increased linearly with respect to the number of corrugations. For
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Figure 6: Critical end-shortening obtained from the Bloch wave method, nonlinear and linear full finite
element analyses.
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Figure 7: Critical buckling loads obtained from the Bloch wave method, nonlinear and linear full finite
element analyses.
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Figure 8: Buckling modes of the shell with N = 13 corrugations obtained from (a) Bloch wave method, (b)
nonlinear full finite element model, and (c) linear full finite element model.
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Figure 9: Buckling modes of the shell with N = 31 corrugations obtained from (a) Bloch wave method, (b)
nonlinear full finite element model, and (c) linear full finite element model.
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Figure 10: Buckling modes of the shell with N = 40 corrugations obtained from (a) Bloch wave method, (b)
nonlinear full finite element model, and (c) linear full finite element model.
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linear analysis, the computational time increased faster for larger number of corrugations and it was just
slightly smaller than the nonlinear analysis for N = 40. However, the computational time of the Bloch wave
method did not scale up as the number of corrugations increased.
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Figure 11: Computation time for the Bloch wave method, linear and nonlinear full finite element analyses.

VI. Conclusion

We have developed an efficient computational method for the buckling analysis of corrugated cylindrical
shells which builds on the Bloch wave method and the stiffness matrix method of rotationally periodic
structures. The traditional Bloch wave method is applicable for the buckling analysis of infinitely 2- or
3-dimensional periodic structures. We modified the Bloch wave method in order to analyze the buckling
behavior of rotationally periodic shell structures such as corrugated cylindrical shells. The Bloch wave
method involves the computation of complex-valued displacement fields. Following the work by Aberg and
Gudmundson [28] and Bertoldi et. al. [25,29], we set up two identical meshes in Abaqus to represent the real
and complex fields and their boundaries were coupled according to the Bloch relations. We also developed
an algorithm to efficiently perform the Bloch wave method for corrugated cylindrical shells.

We used our modified Bloch wave method to analyze the onset of buckling for a range of composite
corrugated cylindrical shells. Linear and nonlinear analyses based on detailed full finite element models were
also performed in order to validate our method. It was shown that our modified Bloch wave method can
achieve highly accurate results. Compared to the nonlinear full finite element analyses, the errors of the
buckling loads obtained by our method are smaller than 0.5% for all analyzed corrugated shells. In addition,
our method was able to accurately capture both global and local buckling modes.

The computational time required by our modified Bloch wave method did not scale up as the number
of corrugations increased. However, both linear and nonlinear full finite element analyses required much
higher computational time for heavily corrugated shells than lightly corrugated ones. The reduction of
computation time of our method is due to three reasons. First, the Bloch wave method was performed on
a single corrugation rather than on the whole corrugated shell, reducing the size of finite element model.
Second, the prediction of the critical buckling loads and modes was separated into a series of small eigenvalue
problems which were carried out in a parallel way. Third, the algorithm we developed to perform our modified
Bloch wave method was able to avoid unnecessary simulations.

It should be noted that the Bloch wave method is applicable to the prediction of onset of buckling and it
cannot be used to find the post-buckling behavior. The Bloch wave analysis is performed on a unit repetitive
portion of a periodic structure. Therefore, predicting the onset of buckling for imperfect structures using
the Bloch wave method is also a challenge due to the random nature of imperfections. It is common to use
a buckling mode as the shape of imperfection. It is possible to use the Bloch wave method to study the
imperfection-sensitivity of structures if the assumed shape of imperfection is periodic. Otherwise detailed
full finite element models are necessary for analyzing the imperfection-sensitivity.
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