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ABSTRACT

This paper presents a new deployable reflector concept for an Earth observation mission that
requires a low-cost L-band Synthetic Aperture Radar (SAR) instrument with a large aperture. A
novel “hollow solid” structural concept is proposed that comprises curved surfaces formed from
thin sheets of carbon-fiber-reinforced-plastic connected by flexible hinges along the edges. The
front surface of the hollow solid provides the reflective surface. This proposed structure has
very high stiffness-to-mass-ratio, because of its thin-walled box-type construction. A detailed
study of a half-scale technology demonstrator, including design, manufacture and testing, is
presented in the paper.

INTRODUCTION

This paper presents a novel deployable reflector structure for a mission requiring a low-
cost L-band Synthetic Aperture Radar (SAR) instrument. This comprises an offset parabolic
cylinder with a linear feed array. The satellite in its flight configuration and SAR imaging
orientation is shown in the schematic diagram of Figure 1. This configuration provides some of
the advantages of phased arrays (like low loss and elevation beam steering), at much reduced
cost. The required reflector shape is an offset parabolic cylinder with an arc-length of 7.9 m and
width of 3.2 m. The reflector structure is connected to the spacecraft bus by a truss structure,
which would be deployed before the reflector structure; this structure will not be discussed in
the paper.

 

Figure 1: Flight configuration (courtesy of EADS Astrium).
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A novel structural concept for this application is presented. The idea is to form a “hollow
solid” from thin, curved sheets of carbon-fiber-reinforced-plastic (CFRP), connected by flexible
hinges along the edges. One face of the hollow solid has the required shape for the reflector.
This structure has very high stiffness-to-mass-ratio, because of its thin-walled box-type con-
struction. Only minimal use of stiffening elements is required, as the curvature of each surface
is an effective way of increasing the local buckling stress of a very thin sheet.

A brief outline of the paper is as follows. First we explain the proposed approach, then we
derive the cutting pattern for the four sheets that make up the structure. Then, we outline the
key stages of the design process of this novel structure, including the constraints imposed by
the requirement to elastically fold the structure, and the preliminary design of a full-scale flight
structure. The design and construction and laboratory testing of the half-scale demonstrator are
presented. A discussion concludes the paper.

STRUCTURAL CONCEPT

The key geometric ideas behind the proposed new concept can be explained as follows.

Consider a flat sheet A with a curved edge, connected to a coplanar, flat sheet B with a
matching curved edge, as shown in Figure 2(a). If sheet A is rotated through 90◦, both sheets
become curved, as shown in Figure 2(b).
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B

B
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(a) Flat

(b) Deployed

Figure 2: Use of a shaped sheet A to shape sheet B into a singly-curved surface.

Next consider the “hollow-solid” structure shown in Figure 3, made by connecting two pairs
of identical flat sheets. Sheets A and A’, which are identical, are connected to sheets B and B’,
also identical. The curved edges are identical in all four sheets. In the configuration shown in
Figure 3(b) the four sheets form curved surfaces which define a hollow solid, whose shape is
defined by the cutting pattern of the sheets. The folded configuration shown in Figure 3(a) is
obtained by introducing fold lines in the middle of sheets A and A’ (shown as broken lines in
Figure 3(b)).

Once the hollow solid structure has been flattened (which we will call stage one of the fold-
ing process), it can then be folded longitudinally (which we will call stage two of the folding
process) as an accordion.

The required reflective surface is obtained by replacing sheet B with a rectangular sheet, see
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Figure 3: Hollow solid structure.
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Figure 4: Antenna structure in deployed configuration.

Figure 4.

Next, we explain how to determine the edge profile of sheet A. Figure 5(a) shows two cylin-
drical surfaces, A and B, that intersect along the three-dimensional curve OEC. Surface B can
be generated by considering the two-dimensional curvez = d(x), and by translating this curve
along a generator segment, e.g. EM, parallel to they-axis. Note that in Figure 5(a) a general
point onz = d(x) is point D; also note that thex-axis starts at the origin O and passes through
the end point C of the curve. Finally, note that all points on EM have the same arc-length
distances from they-axis, and the same distanced from thexy plane.

Let F and G be the projections of D and E onto thexy plane, clearly

DF = EG = d (1)

Now consider flattening the surface B onto thexy-plane, without moving its edge along the
y-axis. During this process EM moves in bothx andz directions, while remaining parallel to
they-axis. The distanced of E from thexy-plane becomes zero.

Next, we consider the additional conditions that need to be satisfied for the two surfaces, A
and B, to be flattened together. We look for the locus of points E on the surface B defining the
curved profile of surface A, and hence the curve along which the two surfaces intersect. It will
be assumed that the generator EM is perpendicular to the surface A in the curved configuration
(i.e. the deployed configuration), although a more general situation could be considered. It will
also be assumed that the two surfaces are tied to each other at the general point E and there is
no relative motion of the tie points when the surfaces are flattened.

The following conditions apply
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Figure 5: Edge profile of sheet A.
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• Condition 1: The arc-length of OE, measured along surface B, is equal to the arc-length
of OE measured along surface A.

• Condition 2: When the surfaces are flattened, both points D and G move towards point
F, and so D and G coincide when the surfaces are flattened, see Figure 5(b). Hence, it
follows that

DE = EG = d (2)

In conclusion, given a cylindrical surface (surface B) defined by the curvez = d(x), first one
has to determine the arc-length,s(x), along the curve and then one has to determine the edge
profile of surface A, given byd(s). Note thatd(s) also defines the curve along which surface A
is to be connected to surface B. Ifd(s) cannot be found explicitly, then an implicit description
in terms ofs(x) andd(x) can be used instead.

Note that it follows from Equation 2 that the two sheets form identical cylindrical surfaces,
i.e. with equal diretrix.

CUTTING PATTERN

Here we work out the cutting pattern for the sheets of a reflector structure, to provide the
required focal length, aperture, and offset distance.
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Figure 6: Profile of RF surface (dimensions in mm).

The required parabolic profile for the reflective surface is shown in Figure 6. The cutting
pattern of the flat sheets requires the arc lengths(x) and the perpendicular distance from the
chord line to the parabolad(x) to be worked out, as discussed in previous section.

The equation of a parabola with vertex at (0, 0) is given by

y2 = 4ax (3)

wherea is the focal distance. The arc length from the offset(x0, y0) to a generic point A(x, y)
on the parabola, is calculated from

s(x) =

∫ x

x0

√
1 + (dy/dx)2dx (4)
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Substituting Eq. 3 into Eq. 4 and carrying out the integration yields

s(x) =
√

x (x + a)−
√

x0 (x0 + a)

+
a

2
ln

2 x + a + 2
√

x (x + a)

2 x0 + a + 2
√

x0 (x0 + a)

(5)

The equation of the chord line of the reflector, which joins the start point(x0, y0) and end
point (xf , yf ) of the reflective surface, is written as

yc = a0 + a1x (6)

wherea0 = (y0xf − x0yf )/(xf − x0), anda1 = (yf − y0)/(xf − x0).

Consider a general point on the chord line, B(xc, yc). The distance between A and B is

dAB =
√

(x− xc)2 + (y − yc)2 (7)

Substituting Eqs. 3 and 6 into Eq. 7 we obtain

dAB =

√
(x− xc)2 + (2

√
ax− a0 − a1xc)2 (8)

The shortest distanced(x) from point A to the chord line can be obtained by minimizingdAB.
Hence we set the first derivative ofdAB with respect toxc equal to zero and solve forxc, to
obtain

xc =
(x + 2a1

√
ax− a0a1)

(1 + a2
1)

(9)

The shortest distanced(x) is obtained by substituting Eq. 9 into Eq. 8

d(x) =
| (x a1 + a0 − 2

√
ax ) |√

1 + a1
2

(10)

The cutting pattern for the flat sheets, defined bys(x) andd(x) in Eqs 5, 10, is shown in
Figure 7.

Two more parameters are needed to completely determine the cutting pattern for the reflector,
namely the distance between the two matching profiles in each of the four sheets that form the
hollow solid. These parameters are determined by thinking about the size of the packaged
structure and by optimizing the performance of the structure in the deployed configuration [1].

DESIGN FOR FOLDING

The reflector structure is to be constructed from thin sheets of CFRP. This section presents the
analysis and detailed testing of those elements of the reflector structure that need to elastically
deform in order to allow folding of the structure.

Connections

Two types of connections have been used, see Figure 8. These connections have been made
with adhesive tape in order to provide a uniform stress distribution across the two sheets being
connected.
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Figure 7: Cutting pattern for reflector structure.
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Figure 8: Types of connection.

Elastic Hinge Lines

Elastic hinge lines are formed between parts of a sheet of CFRP that describe an essentially
rigid-body rotation with respect to each other. Careful design of the parts of the structure that
have to flex is required, limiting the maximum curvature to which they are subjected. In simple
terms, the maximum strain imposed by the folding process has to be smaller than a threshold
value, which depends on the properties of the CFRP sheet.

An elastic hinge line is made to latch in one particular configuration by fastening tape springs
(lengths of steel carpenter tape were used for the demonstrator, but CFRP tape springs have been
subsequently developed) to it. Note that in Figure 8 a small part of the sheet under each tape
spring has been removed to form a cut-out which provides the clearance needed for the tape
springs to fold without being overstressed.

Bending tests were carried out to measure the minimum radius of curvature prior to failure
of laminated plates. Because of their small thickness, these plates can be bent into very small
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Figure 9: Bending test for thin composites.
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Figure 10: Stage two of folding process; (a) isometric view of flattened reflector; (b, c) views
of partially and fully-folded folded transverse hinge line.

radii, and hence standard three-point and four-point bending tests are unsuitable to measure
the minimum bend radius. An alternative test that allows large displacements was devised, see
Figure 9. Strip specimens with a width of 15 mm are attached to circular rods with a diameter of
15 mm, in turn connected to an Instron materials testing machine. The specimens areπRi + 30
mm long, whereRi is an initial estimate of the minimum radius of curvature, in order to ensure
that failure takes place roughly in the configuration shown in the figure.

The tests were recorded with a digital video camera. Once the specimen had failed, the
minimum bend radius was measured using one or more images captured just prior to failure.
If the specimen is too long, its ends come into contact prior to failure and in this case the test
needs to be repeated using a shorter specimen. See Ref. [2] for more details.

Sizing of Cut-outs in Side Walls

Cut-outs are required to reduce the maximum strain in the region where two fold lines cross.
It is desirable for these cutouts to be as small as possible, to reduce the loss of stiffness of the
structure. A rectangular shape (with rounded corners) of widthw and lengthL was adopted.

The width,w, of a cut-out has to be such that the sidewall can be bent 180◦ along a longitu-
dinal fold line; this requires

w ≥ πRmin (11)

to prevent material failure, whereRmin is the minimum bend radius of the side wall.

The length of the cut-out is determined by considering a 180◦ transverse fold, Figure 10(a), in

8



the already flattened reflector structure. Assuming that the side walls and the RF surface have
the same thickness and material properties, and hence the same minimum radius of folding
Rmin, the length of the cut-out can be estimated from

L ≥ 2πRmin + πt (12)

Note that the part of the side wall that lies on the inside of the fold needs to bend first in
one sense and then in the opposite sense. If the radius of curvature is assumed to beRmin

everywhere, the inner part of the side wall would interfere with the outer part; however this can
be eliminated by considering a fold with a non-uniform radius.

DESIGN AND TESTING OF DEMONSTRATOR

A half-scale structure that can be tested in the laboratory without complex gravity compen-
sation, was designed.

A T300/LTM45 plain weave CFRP, 3-ply laminate (0/45/0) with uniform thickness was
adopted.Rmin was set at 24 mm, which provides a margin of 2.3 on material failure, in the
folded configuration.

Each side wall has three windows whose dimensions are, from Equations 11 and 12, 210 mm
long by 75 mm wide. The ends of the structure are stiffened by thin walled square section
stiffeners (10 mm wide, 0.5 mm thick) made of the same material.

A preliminary finite element analysis indicated that this structure is prone to buckle into a
mode involving localised deformation of the upper part of the side wall, between the third cut-
out and the tip. This mode was stiffened by attaching steel tape springs to both edges —for
symmetry— of the side walls. Additional stiffening of the side walls was provided by attaching
tape springs to the edges of all the cut-outs. The total mass of the demonstrator was estimated
at 7.2 kg.

A detailed design of the demonstrator was then prepared; the CFRP sheets and angle stiff-
eners were constructed and water-jet cut by Brookhouse Paxford Ltd; all fixtures were made
of Aluminium-alloy in the Workshops of the Engineering Department; the tape springs were
made by cutting suitable lengths of Sears steel tape measure; 48 mm high cup-and-cone spacers
made of a structural foam were made for the side walls, on either side of each hinge line; and all
connections were made with 3M 79 woven-glass tape and 3M Scotch-Weld DP490 epoxy resin.
The structure was then assembled in the the Deployable Structures Laboratory at Cambridge
University. Its total mass was 11 kg, due to the mass, previously unaccounted for, of all spacers,
washers, nuts and bolts, etc. Further details on the parts and assembly process are available in a
technical report [1].

The reflector structure, see Figure 11, was attached through an interface frame to a tubular
steel support structure, with a 2.5 kg single-point gravity offload at the root of the back surface,
and a 4 kg offload connected to the top edge of the RF and back surfaces, through a horizontal
bar.

Measurements of surface accuracy and stiffness were then taken, in the deployed configu-
ration. The stiffness of the demonstrator was measured before packaging, whereas the surface
accuracy was measured both before packaging and after deployment.

9



Figure 11: Half-scale demonstrator attached to support rig and with gravity off-load at the tip.

Measurements of Stiffness

Displacement measurements of the tip of the structure were carried out in the deployed con-
figuration. These measurements were taken with a LK 081 (Keyence Co.) laser displacement
sensor.

Static loads in the out-of-plane and transverse directions were applied to the tip of the re-
flector structure, by means of a string and pulley system. The displacements in the direction of
the load were measured in each test, and in each case a linear best-fit relationship was obtained,
in order to estimate the stiffness of the structure for the both load cases. Figures 12 and 13
compare the measured response to the results from an ABAQUS linear-elastic static analysis.
The ABAQUS model is stiffer in both cases, by 15% in the out-of-plane direction, and by 49%
in the vertical direction.

Obviously, some refinement of the model (e.g. by measuring the actual elastic properties of
the composite sheets and by modelling the support conditions in more detail) would be desir-
able. However, note that the out-of-plane stiffness of the structure, which is the lowest one, is
in good agreement with the measurements.

Measurement of Surface Accuracy

A PC based photogrammetry package, PhotoModeler Pro 4.0 [3], was used to measure the
surface accuracy of the RF surface of the half-scale demonstrator. 680 circular, equally spaced
targets, were attached to the surface. The measurements were carried out both before packaging
the structure for the first time and after deploying it.

Since we are dealing with a parabolic cylinder, the problem is essentially in two dimensions.
Thez-coordinates of the target points, wherez is perpendicular to the plane of the parabola, see
Figure 6, can be disregarded. The equation of the best-fit parabola, in a coordinate system in
whichX andY are parallel tox andy, respectively, andX0 andY0 are the measured coordinates
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Figure 13: Response to vertical tip loads.
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of the vertex of the parabola, is

X =
1

4a∗
Y 2 − Y0

2a∗
Y +

(
X0 +

Y 2
0

4a∗

)
(13)

Note that, once the best fit parabola in Eq. 13 has been obtained, the focal length isa∗.

Forn target points that are equally spaced on the surface, the root mean square (RMS) error
in the axial directionX, with respect to the best fit parabola, is calculated from [4]

δex =

√∑
(X̂i −Xi)2

n
(14)

whereX̂i is the axial coordinate of a general target point andXi is the corresponding axial
coordinate of the best fit parabola.

Before packaging, the best-fit focal length wasa∗ = 1550 mm, which is very close to the
design focal length ofa = 1544.5 mm. The RMS error of the target points from the best fit
parabola was 3.8 mm. It was noticed that the points near the upper edge of surface, between
the two stiffeners that form the longer edges of the interface frame, yielded higher errors. It
was thus realised that the interface frame and the RF surface had not been not correctly aligned
during assembly. When this misalignment was corrected, the RMS error reduced to 3.0 mm.

The surface accuracy measurements were repeated after packaging and deployment of the
structure. The best-fit focal length was 1547.1 mm. The total RMS error from the best fit
parabola remained unchanged.

PACKAGING AND DEPLOYMENT OF THE DEMONSTRATOR

Packaging

Packaging consists in flattening the structure and then introducing three transverse folds that
allow it to fold into an accordion. The folding sequence is shown in Figure 14.

Flattening the structure involves bending the side walls through 180◦. The process through
which this happens needs to be carefully controlled, to prevent damaging the structure. First,
the demonstrator was placed on a plywood mold, with the RF surface facing down and the back
surface facing up. Foam plugs that fit snugly inside the “hollow solid” were placed inside the
structure to prevent it from suddenly collapsing. Easy-release cable ties were passed through
corresponding sets of cup-and-cone spacers, and were tied to take up any slack.

Next, flattening of the structure was initiated by pulling the side walls outwards with a pair
of wooden poles placed inside the structure, between the sets of cup and cone spacers. Each
pole was loaded, through a cable and pulley system, with counter weights, while the foam plugs
were slowly pulled out to allow the back surface to come down.

Note that as the structure flattens the back surface and the RF surface need to move symmet-
rically, respectively upwards and downwards, to keep the longitudinal fold lines in the sidewalls
straight and horizontal. To ensure this, plywood sheets were gradually pushed between the mold
and the structure, and slowly raised at the far ends, to move the RF surface upwards.

It was discovered that the structure has a tendency to “roll-over”, i.e. to slew sideways during
folding. This was avoided by cross-bracing both ends with cable ties attached to adjustable
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plastic ties, which are held taut at all times. Also, two people held the upper ends of the back
surface.

Once the back surface had stopped coming down under its own weight, weights were added
on top of expanded polystyrene sheets to bring the back surface down. Throughout this process
the easy release cable ties were progressively tightened to take up any slack, and the foam plugs
were gradually pulled out from either end. Once the demonstrator had substantially flattened,
plastic ties were introduced at 150 mm spacing along the fold line of the side walls.

Longitudinal folding is much simpler than flattening. First, the two end sections are rotated
through 180◦, making sure that the RF surface ends up on the outside, and then the middle fold
is introduced, this time placing the RF surface on the inside.

Figure 15 shows the the packaged structure, whose outer envelope is 1700 mm long, 950 mm
wide, and 260 mm high. Note that the packaged envelope of the full-scale, flight structure would
have the same height, but double the length and width.

Deployment

It is planned to deploy this structure by cutting all the restraints and then releasing the struc-
ture by slowly paying out a tether. However, this could not be demonstrated because the side
surfaces of the demonstrator are too thick and hence store an excessive amount of strain energy
stored for all longitudinal and transverse constraints to be released at once. Instead, an operator
assisted deployment was carried out.

The packaged structure was attached to a tubular steel support structure, through the corners
of the rectangular interface frame. The structure was then deployed under quasi-static condi-
tions, in two stages, with gravity supports provided along the three transverse fold lines.

The photographs at the start of the sequence in Figure 16 show the first stage of the deploy-
ment process, in which the structure deploys as an accordion and ends up flat. Friction in the
gravity offload system held the structure in equilibrium in any of its intermediate configurations.

Once the first stage of the deployment process had been completed, the side walls were
allowed to unfold by gradually releasing the cable ties, thus separating the RF surface from the
back surface. The structure was cross-braced at both ends to prevent it from slewing.

CONCLUSION

An innovative concept for large deployable reflectors for synthetic aperture radar applications
has been presented. This concept can deliver a parabolic profile of high accuracy with a structure
of very low mass, high stiffness, and potentially very low cost.

At full scale, i.e. for a reflecting surface that is 7.9 m long and 3.2 m wide, it has been
estimated that the proposed approach would lead to a structure with a mass of about 33 kg,
which is two-and-half times lighter than a traditional reflector structure made from lightweight,
curved panels with self-locking hinges.

The new concept is based on forming a collapsible hollow solid, defined by four cylindrical
surfaces. These surface are formed from thin-walled CFRP sheets hinged along their edges.
This is just one particular approach, and it should be noted that there are many other ways of
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Figure 14: Packaging sequence, from top left to bottom right.
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Figure 15: Packaged demonstrator.

implementing this type of structural concept. Patent applications protecting the new concept
presented in this paper have been filed [5].

The key to forming a cylindrical surface with the required shape lies in the cutting pattern
for the edges of the sheets. A general methodology for determining the cutting pattern has been
presented, and for the case of parabolic shapes an analytical expression for the cutting pattern
has been obtained, in terms of the focal length, aperture and offset distance of the reflector.

The proposed concept has been demonstrated by designing, constructing and testing a half-
scale physical demonstrator made from 0.3 mm thick CFRP sheets, which would also be used
for the full-scale structure. This model has achieved a surface accuracy of 3.0 mm RMS, typical
mass of 1.7 kg/m2, and packaging density of 1/20th of deployed volume.
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Figure 16: Deployment sequence, from top left to bottom right.
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