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Abstract Computational modeling software facilitates
the creation of any surface geometry imaginable, but
it is not always obvious how to create an efficient
grid shell structure on a complex surface. This paper
presents a design tool for synthesis of optimal grid
structures, using a Multi-Objective Genetic Algorithm
to vary rod directions over the surface in response to
two or more load cases. A process of grid homogeniza-
tion allows the tool to be rapidly applied to any grid
structure consisting of a repeating unit cell, including
quadrilateral, triangular and double layer grids. Two
case studies are presented to illustrate the successful
execution of the optimization procedure.

Keywords Structural optimization · Multiobjective ·
Grid shell · Free form structure · Homogenisation

1 Introduction

The advent of free-form 3-D modeling software has
allowed architects and designers to create any shape
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imaginable. In order to physically realize these com-
puter models, say as a building or a sculpture, an
internal armature can be used along with non-load
bearing panels to create the required external surface
e.g. Gehry’s Guggenheim Museum in Bilbao. Use of
a ‘grid-shell’ structure, consisting of a lattice of rods
(see Fig. 1) may be more desirable due to the potential
for reductions in material usage and increased internal
space. However, it is not always obvious how to create
an efficient grid structure on a given surface.

The need for new computational structural engineer-
ing tools that can be applied to complex geometries has
been highlighted by several authors, including Schlaich
et al. (2005). Michalatos and Kaijima (2007) describe
a number of new tools for grid mapping. In general,
the task of creating an efficient grid structure is made
more difficult by the diverse range of requirements on
architectural engineering projects, which might include:
ultimate limit failure criteria, serviceability/comfort cri-
teria for a variety of load cases, and aesthetics. As
such, a conventional optimization algorithm which finds
a single ‘best’ structure may not be desirable since
it can restrict overall design freedom. Therefore this
paper will present a novel method for synthesis of grid
structures on free-form surfaces, which utilizes a Multi-
Objective Genetic Algorithm (MOGA) to find optimal
rod orientations.

Topology optimization can be used to create an
efficient structure on a given surface, as described by
Maute and Ramm (1997). However, the solutions ob-
tained are akin to a continuum shell with holes cut
away, and so complex post-optimization rationalization
would be required to convert this into a structure con-
sisting of discrete rods and nodes.
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Fig. 1 British Museum Great Court Roof, London, UK (Cour-
tesy of Andrew Dunn)

Prager and Rozvany, e.g. (1979, 1982), develop sim-
ple analytical solutions for optimal ‘grid-shells’ (also
referred to as ‘arch-grids’) of minimum weight. Vari-
ations in orientation of rods are considered, as well
as variations in height; hence the surface geometry is
not necessarily fixed. This may be useful to inform the
design engineer of the best structural scheme for a
given set of boundary conditions. However, there is a
practical requirement in many architectural projects to
realize a given, fixed, surface form.

The algorithms developed in this paper are based
on techniques for finding optimal orientation of fibres
in a composite, e.g. Gurdal and Olmedo (1993), which
allows the practical limitations of topology optimization
and analytical solutions to be avoided. Although the
final structure must be a set of discrete rods, a process
of homogenization allows for the lattice of rods to
be represented by anisotropic continuum shell finite
elements throughout the optimization process. A novel
parametrization of the problem reduces the number
of design variables, thus making the use of a MOGA
more feasible and improving the constructibility and
visual appeal of optimized designs. The basis of this
approach was first described by the authors (Winslow
et al. 2007), but this current paper describes significant
new developments to the method and explores the use
of a MOGA in detail.

2 Overview of methodology

Figure 2 gives an outline of our new optimisation tech-
nique. The starting point is a surface geometry which
remains fixed throughout the whole procedure. On this

Fixed surface geometry

Specify basic properties and connectivity
of desired repeating unit cell

Calculate homogenised stiffness
matrices for variable geometry unit cell

Design variables define orientation of
primary rods everywhere over surface

Create finite shell element model

For each shell element:
(i) Find primary rod orientations at centroid
(ii) Look up corresponding homogenised stiffness matrix
(iii) Use this matrix as continuum material properties

Evaluate structural performance

Results visualisation

Multi-Objective Genetic
Algorithm.

Improve rod orientations
based on structural

performance objectives

Fig. 2 Overview of methodology

surface we wish to create an optimal grid shell by
varying the orientation of two primary sets of rods.
The designer specifies a primary rod spacing, L, defines
rod cross sections and whether triangulation and/or
infill panels are required. These choices define the basic
connectivity and properties of the grid’s repeating unit
cell. However, the precise unit cell geometry will vary
as primary rod directions change, see Fig. 3.

Before starting the optimisation process, the ho-
mogenised stiffness matrix is calculated for all possible
unit cell geometries. The result is that the components
of the homogenised stiffness matrix are defined as func-
tions of the angle between the two primary rods. See
Section 3 for full details.

The next step is to use a modest number of design
parameters to define directions of the two primary sets
of rods on the surface, as described by the scheme in
Section 4. A larger number of parameters will allow
creation of more complex rod paths and thus a wider
range of grid geometries, but at the expense of conver-
gence rate.

The surface is meshed with shell finite elements,
and at the centroid of each element the two primary
rod orientations are computed (Figs. 9 and 10). Cal-
culation of the angle between the primary rods allows
the appropriate homogenised stiffness matrix to be
rapidly looked up, and input as unique (anisotropic)
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(b) Unit cell

Fig. 3 Definition of repeating unit cell for a triangulated grid of
rods (a, b)

material properties for that particular continuum shell
element. Note that the average direction of the primary
rods defines the orientation of this equivalent stiffness
anisotropic material. Since the rod orientations are able
to vary over the surface, so each shell element can
have different continuum material stiffness properties.
Suitable load cases are then applied to the FE model
and the structural performance is evaluated.

Using structural performance as the objective(s), any
number of optimisation algorithms could be iteratively
used to improve the design parameters (rod directions).
For the reasons discussed in the Introduction we use a
MOGA; details are given in Section 5. A key benefit
of the scheme described in this paper is that it allows

exploration of a wide variety of different grid designs
without the need to recalculate and update complex
free-form geometry. Instead we alter (anisotropic) ma-
terial stiffness matrices within a continuum model.

Upon completion of the optimisation process opti-
mal designs are defined in terms of continuum shells
with given anisotropic material properties. Section 6
describes how these results can be used to synthesise
exact structural layouts.

3 Homogenization

3.1 Overview

The algorithm described in this paper is based upon
the lattice of rods being represented by an anisotropic
continuum material of equivalent stiffness. The op-
timization can therefore be applied to any structure
consisting of a repeating quadrilateral unit cell, such
as a triangulated single layer grid (see Figs. 1 and
3a), a quadrilateral single layer grid or a double layer
space frame. A novel aspect of the approach used
in this paper is that we consider a variable geome-
try for the unit cell. So for the triangulated unit cell
shown in Fig. 3b the angle α is a variable. Therefore
a scheme is required to find the stiffness matrix for
this homogenised plate, as a function of the geometrical
parameters α and β. This matrix will give the stress re-
sultants (Nx, Ny, Nxy)

T and bending / twisting moments
per unit length (Mx, My, Mxy)

T in terms of mid-plane
strains (ε0

x, ε
0
y, ε

0
xy)

T and curvatures (κx, κy, κxy)
T for the

homogenised plate:

⎡
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⎥⎥⎥⎥⎥⎥⎦

(1)

This approach can be viewed as a subset of free
material optimization (Bendsoe and Sigmund 2003).
In the free material approach components of the stiff-
ness matrix are individually optimized (subject to some
overall constraints, such as positive definiteness), and
then a post processing step attempts to fit a real mate-
rial/structure to the optimised stiffness matrix. In our
approach the stiffness matrix is formulated from the
desired unit cell, which reduces the design space but
eliminates the need for post processing.
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3.2 Derivation

The homogenized stiffness matrix is found by calculat-
ing the stiffness of a grid unit cell (Fig. 3), which is sub-
jected to periodic boundary conditions and Kirchhoff’s
thin plate assumption. Hence the kinematic variables
for the plate are mid-plane strains and out of plane
curvatures:

εx = ∂u
∂x

(2)

εy = ∂v

∂y
(3)

εxy = ∂u
∂x

+ ∂v

∂y
(4)

κx = −∂2w

∂x2
(5)

κy = −∂2w

∂y2
(6)

κxy = −2
∂2w

∂x∂y
(7)

The periodic boundary condition procedure de-
scribed by Kueh and Pellegrino (2007) is followed, to
calculate the coefficients of the ABD matrix (1) (c.f.
classical laminate plate theory of composites). Oppos-
ing pairs of boundary nodes on the unit cell are con-
sidered (e.g. a and c, b and f ) in Fig. 4. We couple

a

b

f

e

d

c

x,u
y,v

z,w

Δly

Δlx

h

g

Fig. 4 Unit cell definition, as used in periodic boundary condi-
tions equations

their displacements and rotations by integrating (2–7)
between limits defined by these pairs of nodes:

u j − ui = εx�lx (8)

v j − vi = 1

2
εxy�lx (9)

ul − uk = 1

2
εxy�ly (10)

vl − vk = εy�ly (11)

θ j
x − θ i

x = −1

2
κxy�lx (12)

θ j
y − θ i

y = κx�lx (13)

θ l
x − θk

x = −κy�ly (14)

θ l
y − θk

y = 1

2
κxy�ly (15)

θ j
z − θ i

z = 0 (16)

θ l
z − θk

z = 0 (17)

where superscripts i, j and k, l describe pairs of oppos-
ing nodes, as per Tables 1 and 2.

The grid geometry is assumed to be planar, as shown
in Fig. 4. Therefore even before the numerics are im-
plemented it is clear that there can be no coupling be-
tween stretching and bending effects, i.e. Bnm = 0, due
to symmetry. In addition A16 = A26 = D16 = D26 = 0
(c.f. balanced symmetric lay-up in laminated plates).
This may not be true in all practicable grid struc-
tures, however the general homogenisation technique
described in this section is always applicable.

Table 1 Nodal pairs for x-direction periodic boundary conditions

Superscripts i j

Nodal pair 1 a c
Nodal pair 2 h d
Nodal pair 3 g e
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Table 2 Nodal pairs for y-direction periodic boundary conditions

Superscripts k l

Nodal pair 1 a g
Nodal pair 2 b f
Nodal pair 3 c e

The remaining stiffness matrix coefficients are found
by carrying out six separate finite element analyses. For
each analysis we calculate the nodal reactions due to a
unit deformation imposed on the unit cell, as shown in
Table 3.

Virtual work is then used to calculate the matrix
components A11 to D66 in (1). For example:

Mxxκy�lx�ly

=
∑
nodes

(
Fxu + Fyv + Fzw + Mxθx + Myθy + Mzθz

)

(18)

where Fx, Fy, Fz, Mx, My, Mz are nodal reactions from
analysis 4 (corresponding to Mxx, the ’real’ set), whilst
u, v, w, θx, θy, θz are nodal displacements/rotations
from analysis 5 (corresponding to κy, the ‘virtual’
set). For this example κy = 1 so from Eq. 1 Mxx =
D12 = [ABD]45. Therefore:

D12 =[ABD]45

=

∑
nodes

(
F4

xu5+F4
yv

5+F4
zw

5+M4
xθ

5
x + M4

yθ
5
y +M4

zθ
5
z

)

�lx�ly

(19)

or more generally

[ABD]ij

=

∑
nodes

(
Fi

xu j+Fi
yv

j+Fi
zw

j+Mi
xθ

j
x+Mi

yθ
j
y+Mi

zθ
j

z

)

�lx�ly

(20)

for i = 1,2,3,4,5,6 and j = 1,2,3,4,5,6.

Table 3 Applied deformations

Analysis number εx εy εxy κx κy κxy

1 1 0 0 0 0 0
2 0 1 0 0 0 0
3 0 0 1 0 0 0
4 0 0 0 1 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1
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Fig. 5 Extensional stiffness matrix coefficients

For the purposes of this paper the unit cell geometry
is variable (due to angle α), hence the ABD matrix
must be calculated for a wide range of values of α.
ABD matrix coefficients for the unit cell in Fig. 3b are
plotted against α in Figs. 5 and 6. Rod properties are as
follows: Ixx = 0.88 m4, Iyy = 0.0072 m4, J = 0.015 m4,
A = 0.14 m2 and L = 5 m, which correspond to the grid
in Example 1 (Section 8).

For simple unit cells it is possible to derive the
ABD matrix analytically, as function of α. For exam-
ple, the authors give the analytical expressions for a
parallelogram unit cell (Fig. 3b without the vertical
rods) in Winslow (2006). However, arguably one of the
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biggest strengths of the research presented in this paper
is that the homogenization process allows us to readily
consider optimization of structures with any unit cell,
however complex. Thus analytical derivations would
not always be practical, and so homogenization by
the periodic boundary conditions approach is generally
preferred.

3.3 Validation

Validation is required in order to show that the ho-
mogenised approach can be used to model the behav-
iour of a discrete grid shell to a reasonable degree of
accuracy. Absolute precision is not mandatory, since
the purpose is not to carry out detailed design checks.
Instead the aim is to develop a tool which facilitates
exploration of a wide range of designs using stiffness
properties which are indicative of the final discrete grid
structure.

The homogenised approach is validated by consid-
eration of a piece of discrete structure consisting of N
unit cells side by side, see Fig. 7. In this paper each
rod in the structure is meshed with beam elements for
FE analysis, though validation could also be conducted
experimentally (Aoki and Yoshida 2007). For example,
to ascertain the accuracy of the homogenised bending
stiffness a positive couple is applied to the top edge of
the structure and a negative couple is applied to the bot-
tom edge. Stiffness is then calculated from the resulting
edge rotations, which are dependent upon the width of
the validation model. Figure 8a and b show stiffness
versus width for A11 and D22 validation tests (tests were
carried out for all other ABD matrix entries, but are
not shown here for conciseness). For small N it can be
seen that end effects significantly reduce the stiffness
of the validation model. The y-intercept of the best
fit line gives stiffness of the discrete validation model
without end effects (as width tends to infinity). Any

√2 L

√2 L N

Applied boundary conditions

√2 L

Fig. 7 Variable width discrete analysis model. N = number of
unit cells under consideration
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Fig. 8 Comparison of homogenised stiffness with the variable
width discrete validation model shown in Fig. 7. (N = number
of unit cells in model) (a, b)

discrepancy between the y-intercept and the homoge-
nized stiffness value (previously calculated by periodic
boundary conditions and shown in Figs. 5 and 6) would
indicate inaccuracies in the homogenized approach, e.g.
because it cannot capture in-plane rotations. However,
the discrepancy was approximately 0.1% for all entries
in the ABD matrix, and is in fact not visible in Fig. 8a
and b; an adequately small source of error.

The validation charts Fig. 8a and b serve another
purpose; they can give an indication of the circum-
stances in which the homogenized ABD matrix can be
successfully used to model a complete grid shell. For
instance, suppose we wish to synthesize a grid with rod
spacing L = 0.5 m. If curvature and stress variations are
small over a length scale of around 3–4 m then N ≈ 7,
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and so Fig. 8a and b indicate that errors of order 5%
are to be expected. However, if curvature and stress
vary over a much shorter length scale then N drops, and
expected errors will rise. A smaller value of rod spacing
L would then be required in order to keep errors to an
acceptable level.

4 Solution representation

In order to optimize the homogenized structure one
could assign two independent design variables to every
shell element in the FE mesh (angle between the rods
α, and rotation of the principal material directions β).
However, from a practical point of view this is unnec-
essary; we hope to obtain structures with some degree
of rod continuity and with limited curvature, so that it
is both constructible and visually appealing. Therefore
the designer chooses a number of points on the surface
	 at which α and β are independently defined, see
Fig. 9. Piece-wise linear interpolations are then used to
define α and β at the centroid of every finite element
between these ‘design points’. So, for instance, if the
surface 	 was meshed with shell elements, any element
centroid lying within the gray shaded region would be
assigned rod angles based on a linear interpolation of
α2,α4,α7 and β2,β4,β7 . The interpolation patches can be
created manually or by Delaunay triangulation of the
‘design’ points in the surface parameter domain. Note
that quadratic interpolation patches could be used if
mid-side design points were defined; it is simply a sub-
class of the same problem.

Given that the surface 	 may by highly curved, it
is necessary that the rod angles are defined relative
to local coordinate systems (the direction of which
must vary smoothly over the surface). In this paper all
surfaces are represented using NURBS, thus they have
an underlying (u, v) parametrization. At any point on
the surface we can therefore define rod angles to be

α1 , β1

α7 , β7

α5 , β5

α2 , β2

α3 , β3

α4 , β4

α6 , β6

Ω

Fig. 9 Subdivision of surface 	 into regions using 7 points

u

v

α4 , β4

α2 , β2

α7 , β7

β− /2

β+α

α

/2

Fig. 10 Single region (from Fig. 3), shown with underlying (u,v)
surface parametrization. Angles of the two sets of rods, β + α/2
and β − α/2, are measured anti-clockwise from local u-axis (dot-
ted line)

measured clockwise from the positive u-direction, as
shown in Fig. 10. For surfaces with complex topology
each region becomes a chart with its own (u, v) para-
metrization, and transition functions ensure continuity
between charts (as is well established in field of discrete
differential geometry (Tong et al. 2006)).

The above procedure ensures that there is tangent
continuity of the rods between the interpolation patch
region. However, it relies upon having a surface para-
meterization with low distortion of angles and lengths.
For some surface geometries it is possible to obtain
a satisfactory surface parameterization from commer-
cially available CAD packages. Creation of low distor-
tion surface parameterizations for any given surface has
been addressed in the field of computer graphics e.g.
Computational Geometry Algorithms Library (Saboret
et al. 2007).

Although commonly used in genetic algorithms, a bit
string solution encoding is not used here for a number
of reasons:

– Use of real numbers allows continuous variables to
be represented exactly.

– Simulated binary crossover (Deb 2001) allows
real-numbered representations to be successfully
evolved.

– A one dimensional bit string would result in loss
of the (two dimensional) surface geometry and re-
gional connectivity information when considering
crossover and mutation operators.

The data used to represent each solution is therefore
real numbered values of αi and βi for all region corner
nodes.
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5 Optimization scheme

The flow chart in Fig. 11 shows the multi-objective op-
timization procedure. The aim is to minimize a number
of objectives

f1(α, β), f2(α, β)..... fn(α, β) (21)

subject to

(0 + σ) < αi < (180 − σ) (22)

0 < βi < 180 (23)

where:

σ = minimum allowable angle between the rods, and

i = design point number
The flowchart is explained in more detail by the sub-

sections below.

Fig. 11 Multi-objective optimization procedure

5.1 Selection

A key part of the optimization process is selection
of suitable parents from which the next generation of
designs will be evolved. For this purpose an elitist algo-
rithm, the Non-dominated Sorting Genetic Algorithm
II (NSGA-II) (Deb et al. 2000), is used since it has
been shown that for most multi-objective test problems
elitist algorithms perform better than other selection
methods. NSGA-II chooses parents using not only their
fitness but also by considering their spread. Thus a more
diverse Pareto-optimal front is generated and so there
is greater freedom when choosing a design from the
final population. The PISA implementation of NSGA-
II (Bleuler et al. 2003) is used for this paper.

5.2 Crossover operators

For this paper two specific operations are used to create
new designs from a pair of parents:

1. Simulated binary crossover (SBX)
A real-valued representation of designs is used,
so standard bit string one point cross-over opera-
tors are not applicable. However, simulated binary
cross-over (Deb 2001) overcomes this limitation
whilst allows retention of the other benefits asso-
ciated with a real valued representation.

2. Uniform crossover
Direct swapping of a design variable between two
parents (c.f. two-point bit-string crossover)

5.3 Mutation operators

A mutation operator is used which considers each real-
numbered design variable in turn. A random number is
generated and if it is less than the pre-specified muta-
tion probability then that design variable is mutated. A
non-uniform probability density function is used so that
small changes in the design variable have a high likeli-
hood of occurrence, whilst larger mutations are rare.

6 Visualization of results

The output of the main optimization loop is a pop-
ulation of designs, and for each design α and β are
defined everywhere on the surface (see Section 5). The
local coordinate systems (from which these angles are
measured) are known, hence it is a trivial matter to
create a pair of vector fields on the surface which define
the directions of the two primary sets of rods. Note
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that these directions are defined by angles β + α/2 and
β − α/2, see Fig. 10.

Representing the results is a post-processing step,
and two alternative methods are proposed:

1. Conduct a minimal amount of post-processing; sim-
ply draw the directions of these vector fields at a
number of discrete points on the surface e.g. at
the centre of each region. The designer would then
use these optimized directions as guidance whilst
drawing a complete grid, over which they have
ultimate control.

2. Synthesize a complete grid, by plotting two sets of
rod paths which follow the two optimized vector
fields.

A simple step-wise algorithm is used for the rod
path plotting in this paper. The user picks a start point
(which may be the top of a column, apex of a dome or
a point on the surface boundary), and a path is drawn
from that point in a step-wise manner such that it is
tangential to one of the vector fields everywhere along
its length (c.f. plotting streamlines in fluid flow). This
process is repeated until the desired density of rods
is achieved for both vector fields. For a triangulated
grid, the two primary directions are drawn first and
triangulation is added afterwards. Research into the
application of automated global rod plotting algorithms
(such as Michalatos and Kaijima (2007) and Tong
et al. (2006)) is currently ongoing; more detail is given
in Winslow et al. (2008).

7 Example I

The first illustrative example is a dome subject to two
eccentric load cases. The surface is a spherical cap with
a height of 25 m, cut from a sphere of radius 174.5 m
(cap diameter is 180 m), see Fig. 12a. Also shown in this
figure are three support points which are fixed against
translation, and the surface is shaded according to the
wind load objective (see below). The objectives are:

1. Minimize deflection under combined self-weight
and asymmetric wind loading. Referring to Fig. 12a
the dark grey area (upwind 1/3 of the surface) is
subject to +2 kPa, light gray area (downwind 2/3 of
surface) is subject to −1 kPa).

2. Minimize deflection under combined self-weight
and 2 m/s2 lateral acceleration (indicative of the
peak acceleration in an earthquake)

The structure is to be constructed from a triangu-
lated grid of rods (see Fig. 12b) with perpendicular
spacing L = 5 m. However, given the large span of this

Fig. 12 Spherical cap
problem definition.
a Support points shown in
black, and wind loading
zones by gray shading.
b Schematic definition
of rod angles

(a)

βα

(b)

dome each ‘rod’ is a 5 m deep planar truss made from
0.5 m diameter steel tubes of wall thickness 0.05 m.
It is straightforward to implement this more complex
structure because the homogenized stiffness matrix is
simply calculated using values of Ixx, Iyy, J, A which are
representative of a truss rather than of a single tube.

For simplicity in this preliminary example each grid
design is represented by two design variables

10 < α < 170 and 0 < β < 180

as shown in Fig. 12b. Thus design space is represented
by a pair of contour plots:

Wind loading objective = F(α,β) in Fig. 13
Earthquake objective = F(α,β) in Fig. 14

These contour plots are created numerically by eval-
uating the objective functions for many different val-
ues of α and β. This allows us to readily visualize
the progress of the genetic algorithm. Starting with an
initial population of 20 random designs, the evolving
population is plotted at generation numbers 1,5 and 20
on a trade-off plot (Fig. 15) and on the two contour
plots (Figs. 13 and 14). Note that the scale on Fig. 15
is enlarged, thus many designs in generation 1 are not
visible.

Also included on the trade-off plot (Fig. 15) is the
optimal Pareto-front. This has been calculated numer-
ically from the two contour plots, and gives a effective
visual indication of how rapidly the genetic algorithm
is converging towards the optimum. A commonly used
measure of convergence is the mean Euclidean dis-
tance between all designs in a given generation and the
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Fig. 13 Contour plot of
objective 1 (deflection due to
wind) with genetic algorithm
results
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Fig. 14 Contour plot of
objective 2 (earthquake
deflection) with genetic
algorithm results
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Fig. 15 Trade-off plot for generations 1, 5, 20, and optimal
Pareto-front

Fig. 16 Example II problem
definition. a Doubly curved
surface geometry, with end
supports shown in black
b Surface subdivision scheme
(6 design points, 4 regions) (a)

(b)

+1.5 kPa -0.5 kPa

(a) Asymmetrical wind loading
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(b) Symmetrical wind loading

Fig. 17 Wind loading definition for example problem II (a, b)
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Fig. 18 Trade-off plot showing design evolution over 50
generations

optimal Pareto-front (Deb 2001). For this example the
convergence is very rapid; after just 20 generations the
mean Euclidean distance is 7.4 × 10−4 (which is ≈ 0.1%
of the value of the objective functions).

It is interesting to note that in Fig. 13 a number of
the designs in the 20th generation have converged to a
minima where the value of β is very near its upper limit
of 180 degrees, whereas the maximum value of β in
the initial population is ≈ 160. It was thus found that a

(a) Optimal directions

(b) Complete grid

Fig. 19 1st design from 50th generation: High stiffness for load
case 1 (a, b)
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(a) Directions

(b) Complete grid

Fig. 20 2nd design from 50th generation: high stiffness for load
case 2 (a, b)

relatively large amount of mutation was crucial in order
to successfully explore the design space and converge
to a minima near the limits of design variables. A study
was carried out to investigate the effect of the genetic
algorithm parameters on the rate of convergence. Using
the mean and standard deviation of the Euclidean dis-
tance (as described above), the following probabilities
were found to give good convergence: SBX = 0.6,
Variable swap = 0.2 and Non-uniform mutation = 0.2.

8 Example II

For the second example a 54 m span doubly-curved
arch will be considered. The surface, shown in Fig. 16a,
is fixed against translation at both ends. The grid struc-
ture will be constructed from a bi-directional grid of
steel tubes with aluminium infill panels. The steel tubes
are 114.3 mm in diameter and have 5 mm wall thickness.
The panels are 2 mm thick, and it is assumed that
they are rigidly attached to the bi-directional grid. The
perpendicular spacing between the rods is taken as
0.5 m, which means that the total length of rods in
the structure is fixed. Therefore total structural mass
is constant throughout the optimization. Two objective
functions are considered:

1. Minimize deflection under combined self-weight
and asymmetrical wind loading from the prevailing
direction (see Fig. 17a)

2. Minimize deflection under combined self-weight
and symmetrical wind loading from direction 2 (see
Fig. 17b)

The surface is divided into a number of regions; 6 de-
sign points are chosen for this example, giving 4 regions
and 12 design variables (see Fig. 16b). A population size
of 100 is used, and the initial population is generated
randomly.

The results from 50 generations of evolution are
shown in Fig. 18. It should be noted that only some
of the designs from the initial population can be seen
on this chart, since the others are off the scale. By the
50th generation a very clear trade-off surface of optimal
designs has evolved, and two of these are plotted in
Figs. 19b and 20b. A rendered image of Design 2 is

Fig. 21 Design 2, from 50th
generation, has high
resistance to loadcase 1
(symmetrical wind loading)
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shown in Fig. 21. Visual inspection of these diagrams
shows that the latter design (which is optimal for the
symmetric wind load case) is very close to being sym-
metrical; the mean difference between rod angles at
one region corner node and the opposing corner node
is ∼5 degrees. Hence despite not enforcing symmetry
(e.g. by only considering half of the structure) the
genetic algorithm has converged to a logical, rational
solution. The small amount asymmetry in Fig. 20b
could be reduced further by adopting a self-adaption
approach (more akin to Evolution Strategies) whereby
the probability and magnitude of any mutations is re-
duced in later generations, hence increasing the ability
to converge to the optimum.

9 Conclusions and further work

A novel tool for multi-objective optimization of grid
structures has been presented in this paper. Given a
surface and a desired grid type it has been shown, by
example, that the rod orientations can be successfully
evolved to create a population of optimal designs. The
homogenization process allows us to synthesize any
type of grid structure provided it has a repeating unit
cell e.g. triangular, double-layer or quadrilateral with
infill panels etc. The sample problems presented in this
paper suggest that using a relatively modest number
of generations it is possible to evolve a diverse range
of solutions, which appear constructible and visually
rational.

The main direction of future research is to develop
a reliable automated scheme for plotting optimized
rod paths. It is envisaged that this will form part of a
second-pass optimization and refinement tool, in which
the objective functions are evaluated by FE analy-
sis of the discrete grid of beams/rods. It may also
be interesting to compare results from multi-objective
optimization to analytical solutions e.g. Rozvany and
Prager (1979).
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