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ABSTRACT

Mooring cables under wave loading interact dynamically
with the seabed; this interaction is nonlinear and can be mod-
elled in full only by performing lengthy time integration of the
equations of motion. However, time domain integration is far too
computationally expensive to be carried out for all load cases.
A new method of modelling the interaction between a cable and
the seabed in the frequency domain, but without considering fric-
tional effects and impact, is therefore proposed. The section of
cable interacting with the seabed is truncated and replaced with a
system of coupled linear springs, with stiffnesses linearised from
static catenary equations. These springs would model the be-
haviour of the truncated cable and hence the time-varying bound-
ary condition at the touchdown. The entire cable-spring system
is then analysed in the frequency domain with a centred finite
difference scheme. The proposed method has shown to increase
the accuracy of frequency domain analysis in certain cases with
affordable computational overhead.

∗Address all correspondence to this author.

NOMENCLATURE
AE Axial stiffness
CN Normal drag coefficient
CT Tangential drag coefficient
FDn Normal drag force
FDt Tangential drag force
H Horizontal force component
Lg Grounded cable length
L Total cable length
Te Effective tension
Tf Mean fairlead tension
V Vertical force component
Vc Current flow velocity
d0 Unstretched cable diameter
h Water depth
k Spring stiffness
m0 Dry unit mass
ma Added unit mass
s Arc length
u Tangential cable velocity
v Normal cable velocity
w Submerged unit weight
x Horizontal cable coordinate
z Vertical cable coordinate
ε Axial strain
ω Excitation frequency
φ Inclination of cable w.r.t. horizontal
ρ Water density

1 Copyright c© 2003 by ASME



INTRODUCTION
As mooring structures are becoming increasingly important

to the offshore oil and gas industry, there is a continuing need to
improve the designs of such structures through better prediction
of their nonlinear behaviour. Many time domain codes exist to
fulfil this need but many fall short of a fast prediction required
for the analyses of numerous test cases.

Although more efficient and equally widely used, frequency
domain analysis requires the linearisation of various nonlinear
aspects of mooring cable behaviour. One such aspect is the time-
varying interaction between the grounded cable and the seabed,
which can only be modelled in full by performing lengthy time
integration of the equations of motion.

Thus, for simplicity, some early investigators of frequency
domain methods have conservatively assumed the touchdown of
a cable as fixed throughout the dynamic analysis [1, 2]. While
others like Kwan and Bruen [3] have replaced the grounded cable
with an equivalent horizontal spring with no lift off allowed. In a
comparative study carried out by Wu [4] using both methods, it
was found that the spring model works well only in deep waters
where a small portion of line lies on the seabed.

Both the fixed touchdown and linear spring models however
restrict the grounded cable from lifting off and touching down.
To model this effect, while ignoring friction on the seabed and
any impact force arising from the touchdown action, Chatjige-
orgiou and Mavrakos [5] computed quasi-statically the instanta-
neous touchdown point before solving dynamically for the sus-
pended cable. Comparing this approach with the horizontal
spring model, the latter was found to severely over-predict the
working tensions whenever the excitation at the fairlead is also
large.

Alternatively, liftoff and touchdown effects can be modelled
in the time domain by applying an upthrust to any nodes on the
cable that touches the seabed, as proposed by Ghadimi [6]. The
grounded cable would appear to rest on the seabed as long as
the upthrust was maintained. A similar approach, in a form of
a “mattress” with distributed elastic support, was also attempted
by Inoue and Surendran [7] and Webster [8]. The primary diffi-
culty with this approach is in determining the appropriate stiff-
ness constants for the type of soil concerned.

Depending on the speed of the touchdown point, the action
of lifting off and touching down may generate large dynamic ten-
sion peaks, as pointed out by Triantafyllou et al. [9]. This effect
was further validated through experiments and numerical simu-
lations by Gobat and Grosenbaugh [10]. To prevent shocks from
occurring in numerical simulations, researchers like Thomas and
Hearn [11] reduced the nodal mass of any nodes approaching the
seabed.

This paper introduces a new method of modelling seabed
interaction which accounts for the effect of axial stretching as
well as liftoff and touchdown in the frequency domain, but ig-
noring any frictional effects and impact between the cable and
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Figure 1. Schematic of mooring cable

seabed. This is achieved by truncating and replacing the section
of grounded cable with a system of coupled linear springs. These
springs would model the behaviour of the truncated cable and
hence the time-varying boundary condition at the touchdown.
The paper begins by first outlining the governing equations and
the formulation of a frequency domain analysis. The new method
of seabed modelling will be described next, together with the lin-
earisation process required to establish the spring stiffnesses. Fi-
nally, test solutions obtained for various cable configurations will
be compared to that of time domain and conclusions drawn.

FREQUENCY DOMAIN ANALYSIS
Governing Equations

The standard equations governing the dynamic behaviour of
a general catenary mooring cable shown in Fig. 1 are [1]:

(m0 +ma)
∂v
∂t

+(m0u+maVc cosφ)
∂φ
∂t

= Te
∂φ
∂s

−wcosφ−FDn

m0

(

∂u
∂t

− v
∂φ
∂t

)

=
∂Te

∂s
−wsinφ+FDt

∂ε
∂t

=
∂u
∂s

− v
∂φ
∂s

(1)

(1+ ε)
∂φ
∂t

=
∂v
∂s

+u
∂φ
∂s

∂z
∂t

= vcosφ+usinφ

∂x
∂t

= ucosφ− vsinφ

2 Copyright c© 2003 by ASME



For simplicity, the linear stress-strain relationship ε = Te/AE is
assumed.

For the purpose of frequency domain analysis, we linearise
the above equations by assuming the cable is undergoing simple
harmonic motion about its static equilibrium position. Hence, we
assume

u = u0 +u1eiωt

v = v0 + v1eiωt (2)

Te = Te0 +Te1eiωt

φ = φ0 +φ1eiωt

where subscripts 0 and 1 denote static and dynamic values re-
spectively.

We also linearise the nonlinear Morrison’s drag forces, FDn

and FDt , in Eqs. (1) using the linearisation method developed
by Krolikowski and Gay [12]. Equations. (1) can therefore be
simplified to
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(3)

where

a12 =
dφ0

ds

a13 =
iω
AE

a21 = −
dφ0

ds
a24 = iω(1+ ε0)

a31 = iωm0 +FDt1

a34 = wcosφ0 (4)

a42 = [iω(m0 +ma)−FDn1]
1

Te0

a43 = −
dφ0

ds
1

Te0

a44 = [iωmaVc cosφ0 −wsinφ0]
1

Te0

b31 = −FDt1uw

b41 = (FDn1vw)
1

Te0
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Figure 2. Schematic representation of finite difference scheme

Numerical Scheme
Equation (3) is solved using an explicit centred finite differ-

ence scheme [13]. Dividing the cable into N-1 elements and N
nodes, see Fig. 2, we rewrite Eq. (3) as

Qi+1 −Qi

∆s
=

Ai+1Qi+1 +Bi+1 +AiQi +Bi

2
+O(∆s2) (5)

where Q = [u1 v1 Te1 φ1], A and B denote the 4-by-4 matrix
and the vector in Eq. (3) respectively, subscript i the i-th node on
the cable, and O(∆s2) the error ∆s2. It is hence possible to relate
the dynamic values at fairlead to the touchdown by

QN = C̄N-1,1Q1 + D̄N-1,1 (6)

where

C̄n,1 =
n

∏
i=1

Cn−i+1

D̄n,1 =







n
∏
i=2

(

CiD̄i−1,1 +Di
)

n > 1

D1 n = 1
(7)

Ci =

[

I−Ai+1
∆s
2

]−1 [

I+Ai
∆s
2

]

Di =

[

I−Ai+1
∆s
2

]−1

[Bi+1 +Bi]
∆s
2

which can be further divided into two matrix equations

UN = c11U1 + c12T1 +d1 (8)
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Figure 4. Modelling of seabed interaction with linear springs

TN = c21U1 + c22T1 +d2 (9)

where U = [u1 v1], T = [Te1 φ1], ci,j is the 2-by-2 sub-matrix of
C̄N-1,1, di the 2-by-1 sub-matrix of D̄N-1,1, and the subscripts
N and 1 denote the respective nodes.

As it is conventionally assumed that the touchdown of a
mooring cable is pinned at its static position and the motion pre-
scribed at the fairlead, i.e. U1 = 0 and UN is known, the re-
maining two unknowns, TN and T1, can be obtained easily from
Eqs. (8) and (9).

SEABED INTERACTION
When a cable undergoes excitation, a section of the cable

measuring from the anchor to the touchdown interacts with the
seabed. This interaction, schematically represented in Fig. 3, can
be sub-divided into two distinct actions—(i) the axial stretching
of the cable lying on the seabed which we call grounded cable,
and (ii) the liftoff-and-touchdown behaviour which we call cate-
nary action. To model this interaction, we truncate the static ca-
ble at an arbitrary node D near the static touchdown and replace
it with a system of equivalent linear springs shown in Fig. 4.

Since node D is now free i.e. UD 6= 0, we have three un-
knowns and require one more equation. The third equation can
be derived from the linear springs at D by relating the dynamic
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Figure 5. Modelling of grounded cable with a linear spring

component forces at D to their respective dynamic displacements

[

V1

H1

]

=

[

kzV kxV

kzH kxH

][

z1

x1

]

(10)

where kzV ,kxV ,kzH ,kxH each denotes the stiffness of the respec-
tive springs. Similarly, z1 and x1 are related to u1 and v1 by

[

z1

x1

]

=
1
iω

[

sinφ0 cosφ0

cosφ0 −sinφ0

][

u1

v1

]

(11)

and the force components V1 and H1 to Te1 and φ1 in the original
formulation by

[

V1

H1

]

=

[

sinφ0 Te0 cosφ0

cosφ0 −Te0 sinφ0

][

Te1

φ1

]

(12)

The third equation required to relate TD to UD at node D can
thus be found by combining Eqs. (10), (11) and (12), which can
then be substituted into Eqs. (8) and (9) to solve for TN.

Grounded Cable
The axial stretching of the cable lying on the seabed is usu-

ally modelled by a linear spring [2–4] attached horizontally to
the suspended cable at the static touchdown, as shown in Fig. 5.

Ignoring any catenary action and the friction between cable
and seabed, we have

[

kzV kxV

kzH kxH

]

=

[

0 0
0 kg

]

where kg =
AE
Lg

(13)

Catenary Action
The liftoff and touchdown behaviour of the cable can be

approximated by replacing the truncated dynamic cable with a
static catenary between node D and the anchor, see Fig. 6. It
is assumed that the effects of fluid drag and inertia on this sec-
tion of cable are relatively small and therefore can be ignored.
Rather than solving for the actual cable at D, the static catenary
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is approximated by a system of linear springs, whose stiffnesses
are determined from either full or linearised catenary equations.
Presently, any impact forces arising from the catenary action
[9, 10] are ignored.

Full Catenary. Closed form catenary equations can be
obtained by assuming the cable is pinned and horizontal at touch-
down, i.e. z = x = φ = 0 when s = 0, and no fluid drag. Hence,
the horizontal and vertical coordinates of the catenary are

Z =
H
w





√

(

V
H

)2

+1−1



+
V 2

2wAE
(14)

X =
H
w

[

sinh−1
(

V
H

)

+
V

AE

]

(15)

where X is measured from the instantaneous touchdown of the
static cable, and which can be converted to the local coordinate
of x0 measured instead from the fixed static touchdown. Taking
into account the extension of the grounded cable due to H1, we
can relate the local coordinates to the global system by x1 = X1−
V1/w + H1/kg, as illustrated in Fig. 6. Note that the last term in
the expression for x1 is due to the axial stretching of the grounded
cable mentioned earlier.

Linearised Catenary. The above catenary equations are
nonlinear and will therefore have to be linearised for the scheme
to be adopted into the frequency domain analysis. The linearisa-
tion will “transform” the catenary relationship into the system of
linear springs described above.

To do this, we first express the catenary equations as cubic
polynomials using Taylor’s expansion, thus rewriting Eqs. (14)
and (15) as

z1 = g1H1 +g2V1 +

g3H2
1 +g4H1V1 +g5V 2

1 +

g6H3
1 +g7H2

1V1 +g8H1V 2
1 +g9V 3

1 (16)

x1 = ( f1 +1/kg)H1 +( f2 −1/w)V1 +

f3H2
1 + f4H1V1 + f5V 2

1 +

f6H3
1 + f7H2

1V1 + f8H1V 2
1 + f9V 3

1 (17)

where the Taylor’s coefficients gi and hi are

g1 =
1
w

(cosφ0 −1)

g2 =
1
w

(

sinφ0 +
V0

AE

)

g3 =
V0

2wH2
0

(

sinφ0 − sin3 φ0
)

g4 = −
1

wH0

(

sinφ0 − sin3 φ0
)

g5 =
1

2wV0

(

sinφ0 − sin3 φ0 +
V0

AE

)

g6 = −
V0

2wH3
0

(

sinφ0 −2sin3 φ0 + sin5 φ0

)

g7 =
1

2wH2
0

(

2sinφ0 −5sin3 φ0 +3sin5 φ0

)

g8 = −
1

2wH0V0

(

sinφ0 −4sin3 φ0 +3sin5 φ0

)

g9 = −
1

2wV 2
0

(

sin3 φ0 − sin5 φ0

)

(18)

f1 =
1
w

[

sinh−1
(

V0

H0

)

− sinφ0 +
V0

AE

]

f2 =
1
w

(

cosφ0 +
H0

AE

)

f3 = −
1

2wH0
sin3 φ0

f4 =
1
w

(

1
AE

+
1

V0
sin3 φ0

)

f5 = −
H0

2wV 2
0

sin3 φ0

f6 =
1

6wH2
0

(

4sin3 φ0 −3sin5 φ0

)

f7 = −
3

2wV0H0

(

sin3 φ0 − sin5 φ0

)

5 Copyright c© 2003 by ASME



f8 =
1

2wV 2
0

(

2sin3 φ0 −3sin5 φ0

)

f9 = −
H0

6wV 3
0

(

sin3 φ0 −3sin5 φ0

)

Preliminary tests have shown that the expansion to the power
of cubic is sufficiently accurate when compared to the original
catenary equations. These polynomials are then linearised to
yield a set of closed form linear equations which would other-
wise not be easily obtained from the full catenary equations.

Suppose the cubic expressions of z1 and x1 can be linearised
into a system of linear equations expressed in a matrix form as

[

z1

x1

]

=

[

e11 e12

e21 e22

][

V1

H1

]

(19)

The required spring stiffnesses at D can therefore obtained in-
versely by

[

kzV kxV

kzH kxH

]

= (e11e22 − e12e21)
−1

[

e22 −e12

−e21 e11

]

(20)

In the case of regular wave excitation, we linearise z1 and
x1 by minimising the square of the residual error over a period—
the same method adopted in the linearisation of Morrison’s drag
[14]. Therefore, to determine e11 and e12, we must satisfy

∂
∂e11

∫ 2π
ω

0
E 2

z dt =
∂

∂e12

∫ 2π
ω

0
E 2

z dt = 0 (21)

and to determine e21 and e22, we must satisfy

∂
∂e21

∫ 2π
ω

0
E 2

x dt =
∂

∂e22

∫ 2π
ω

0
E 2

x dt = 0 (22)

where Ez = z1 − e11V1 − e12H1 and Ex = x1 − e21V1 − e22H1 are
the residual errors.

Substituting the complex notation of V1 and H1 as V1 =
|V |cos(ωt + φV ) and H1 = |H|cos(ωt + φH), we obtain the fol-
lowing solutions

e11 =
h1A2 −h2A1

(h1h3 −h2
2)|V |

(23)

e12 =
h3A1 −h2A2

(h1h3 −h2
2)|H|

(24)

e21 =
h1A4 −h2A3

(h1h3 −h2
2)|V |

(25)

e22 =
h3A3 −h2A4

(h1h3 −h2
2)|H|

(26)

where

A1 = g1h1|H|+g2h2|V |+

g3h4|H|2 +g4h5|H||V |+g5h6|V |2 +

g6h8|H|3 +g7h9|H|2|V |+g8h10|H||V |2 +g9h11|V |3

A2 = g1h2|H|+g2h3|V |+

g3h5|H|2 +g4h6|H||V |+g5h7|V |2 +

g6h9|H|3 +g7h10|H|2|V |+g8h11|H||V |2 +g9h12|V |3(27)

A3 = ( f1 − kg)h1|H|+( f2 −1/w)h2|V |+

f3h4|H|2 + f4h5|H||V |+ f5h6|V |2 +

f6h8|H|3 + f7h9|H|2|V |+ f8h10|H||V |2 + f9h11|V |3

A4 = ( f1 − kg)h2|H|+( f2 −1/w)h3|V |+

f3h5|H|2 + f4h6|H||V |+ f5h7|V |2 +

f6h9|H|3 + f7h10|H|2|V |+ f8h11|H||V |2 + f9h12|V |3

and hi are integrals of cosines over a period

h1, h3 = π

h2 =
1
2

[(π−2)cos2(φH −φV )+π+2]

h4, h7 =
8
3

h5, h6 =
2
3

[cos2(φH −φV )+3] (28)

h8, h12 =
3π
4

h9, h11 =
1
8

[(3π−4)cos2(φH −φV )+3π+4]

h10 =
π
4

[cos2(φH −φV )+2]

The entire scheme must be solved iteratively until all the
coefficients ei j converge. Once the ei j’s are established, the re-
quired spring stiffnesses can be obtained easily from Eq. (20).

Further consideration must be given to the location of trun-
cation node D. If node D is located too high up in the cable, too
much dynamic cable will be lost thus forfeiting the purpose. Ide-
ally, the location of D must always lie above the seabed but yet
as close as possible to the seabed. This can be determined by first
carrying out a preliminary analysis of the cable with the ground
spring kg and then deciding on a node that always lies above the
seabed over a period of excitation.

RESULTS AND VALIDATION
The proposed seabed interaction models are programmed in

MATLAB [15] and compared to non-linear time domain analyses
carried out in Orcaflex [16].
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Test Data Units Cable 6 Cable 7

Line type - - Chain Wire

Cable diameter d m 0.140 0.130

Submerged weight w kN/m 3.2020 0.6644

Axial stiffness AE kN 1.69E6 1.30E6

Dry mass m0 kg/m 365.6 81.7

Added mass ma kg/m 25.3 13.6

Normal drag coeff. CN - 3.2 1.8

Tangential drag coeff. CT - 0.6 0.2

Water depth h m 82.5 500

Mean fairlead tension Tf kN 688 2268

Total length L m 711 4000

Table 1. Properties of test cables

Two test cables, taken from a comparative study on the dy-
namic analysis of moorings initiated by the International Ship
and Offshore Structures Congress Committee I2 [17] and de-
tailed in Table 1, are selected for the exercise. Cable 6 represents
a chain mooring in shallow waters while Cable 7 a wire mooring
in deep waters. These conditions generally reflect the usage of
the two line types in different water depths. The horizontal off-
sets given in the paper [17] are already taken into account in the
mean fairlead tensions.

The cables are further divided into six different configura-
tions, detailed in Table 2 and shown in Fig. 7, to examine the
effect of seabed interaction and compare results obtained from
quasi-static, frequency and time domain analyses.

The cables are excited at the fairlead by a horizontal exci-
tation of 1m over wave periods of 4s to 40s. For simplicity, the
cable is assumed to be in still water with no wave current or wave
excitation, i.e. Vc = Aw = 0. These additional effects can be eas-
ily included once the proposed model has shown to work. For
Model E, the truncation node D for Cable 6 and 7 are chosen
at 7.3m and 76.9m (both at 4.3% of the total suspended length)
respectively from the initial static touchdown.

Figures 8 and 9 show the dynamic amplifications of fairlead
tension for different models. The results show that the effect of
seabed interaction is more profound for Cable 7 than Cable 6.
For Cable 6, the amplification remains the same for any config-
urations, proving there is little stretching of the grounded cable
or catenary action. In this case, analysing the cable as pinned
provides accurate results. For Cable 7, significant reduction in
tensions can be seen in Models A, D and E where seabed inter-
action is included. Furthermore, it is observed that the modelling

Model Description

A Time domain simulations in Orcaflex:
• Cable pinned at anchor
• Grounded cable present
• Seabed flat and frictionless

B Time domain simulations in Orcaflex:
• Cable pinned at static touchdown
• Grounded cable absent
• Seabed absent

C Frequency domain simulations in MATLAB:
• Cable pinned at static touchdown
• Grounded cable absent
• Seabed absent

D Frequency domain simulations in MATLAB:
• Cable truncated at static touchdown
• Grounded cable modelled with ground spring
• Catenary action ignored

E Frequency domain simulations in MATLAB:
• Cable truncated at node D
• Grounded cable modelled with linearised catenary
• Catenary action modelled with linearised catenary

F Quasi-static simulations in MATLAB:
• Cable pinned at instantaneous touchdown
• Grounded cable absent
• Catenary action modelled implicitly

Table 2. Description of various cable analyses

of the grounded cable alone in Model D produces sufficiently ac-
curate results compared to time-domain simulations of Model A.
The linearised catenary in Model E has little effect but neverthe-
less also produces equally accurate results. Note that there is no
dynamic amplification for Model F since it is based purely on a
static calculation.

For both cables, catenary action appears to be less important
than stretching of the grounded cable. Both Models D and E of
Cables 6 and 7 produce very similar and accurate results. This is
because both cables have been excited by a fairly small excita-
tion of 1m, leading to catenary actions that are hardly noticeable.
Stretching of the cable has become more important than catenary
action in this case.

The effect of catenary action becomes more prominent when
the amplitude of excitation increases. Figures 10 and 11 show the
dynamic amplifications of Cables 6 and 7 in 10s excitation for an
amplitude of up to 10m. The results from Model B are not shown
here because the dynamic amplification due to the touchdown
being pinned are unrealistically large.

From Fig. 10, it can be deduced that although Cable 6 ex-
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Figure 7. Cable configurations of Models A to F

hibits little stretching of the grounded cable, as discovered ear-
lier, the effect of catenary action becomes more profound with
increasing excitation. As excitation increases, the results from
Model C and D where catenary action is not modelled begin to
deviate from the time domain solution of Model A. In this case,
the linearised catenary system implemented in Model E produced
better results.

For Cable 7, Models D and E both produce very similar and
accurate results, demonstrating again the more dominant effect
of grounded cable over catenary action. We also see that the as-
sumption of a pinned touchdown in Model C produces erroneous
results. For both cables, the static solutions of Model F have
become unreliable, especially in Cable 7.

To further investigate the effect of catenary action, Cable 6
is reanalysed under pretensions of 400kN to 4000kN in 10m 10s
excitation. As a result of larger displacements near the seabed,
the truncation point of Cable 6 in Model E was also repositioned
at 16.4% of the total suspended length. The profiles of the cable
under various pretensions are shown in Fig. 12.

Figure 13 shows the dynamic amplification of Cable 6 un-
der various pretensions. For pretensions under 2000kN, Model
E gives more accurate results than Model D, proving that cate-
nary action is more dominant. As pretension increases beyond
2000kN, the effect of catenary action diminishes and is taken
over by the stretching of grounded cable in Model D. At this
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Figure 8. Fairlead dynamic amplification of Cable 6 at 1m excitation

point, the situation in Cable 6 becomes similar to that of Cable
7 where the excitation of 10m is relatively small in comparison
with the total suspended length, thus catenary action has little
effect on the fairlead.

On the whole, the variation in dynamic amplification of
Model E compares well with that of Model A. However, the ten-
sions in Model E are always lower than that of D because a sec-
tion of the dynamic cable has been replaced by springs which ig-
nore fluid drag and dynamic effects. Again, the same conclusion
can be drawn for Model C where pinning the cable at touchdown
produces erroneous results.

CONCLUSIONS
By resolving seabed interaction into two primary actions—

(i) axial stretching of grounded cable and (ii) catenary action at
touchdown, we have shown that it is possible to model each ac-
tion with a system of linear springs.

The following principal conclusions can be drawn from this
study:

1. Seabed interaction is important even for cables under small
excitation. Pinning the cable at touchdown can lead to erro-
neous results.

2. For cables under low pretensions, catenary action is impor-
tant and can be modelled using the proposed linearised cate-
nary method.

8 Copyright c© 2003 by ASME



4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

Periods (s)

F
ai

rle
ad

 D
yn

am
ic

 A
m

pl
ifi

ca
tio

n 
(T

e0
+

T
e1

) 
/ T

e0

Model A
Model B
Model C
Model D
Model E
Model F

Figure 9. Fairlead dynamic amplification of Cable 7 at 1m excitation

3. For cables under high pretensions, the stretching effect of
grounded cable becomes more important and modelling of
this effect alone with an equivalent linear spring will suffice.

The proposed method of modelling liftoff and touchdown of
the cable using a system of linearised springs has been shown to
work well in two test cases. In other cases, modelling the stretch-
ing of grounded cable alone with a horizontal spring will suffice.
Whether to adopt the former or latter will depend on the cable
configuration. In general, the combination of both methods will
yield results in reasonable agreement with time domain simula-
tions, as we have shown.
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