Membrane Spin Up in a Normal Gravity Field:
Experiments and Simulations
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Finite element simulations and experimental observations of the spin up in vacuum of
a thin membrane loaded by gravity are presented. The numerical techniques take into
account the run time of each simulation and energy convergence; it is shown that accurate
results can be obtained quite quickly in a rotating reference frame, and that including
stiffness-proportional material damping helps convergence of the integration. It is also
found that a very fine finite element mesh around the hub of the membrane is required
to obtain consistent results. The experimental setup allows spinning of the membrane
in a vacuum box; a measurement technique that uses stereo Digital Image Correlation is
presented. A comparison between experiments and simulations using characteristic pa-
rameters of the shape of a membrane, i.e. the number of rotational symmetric waves, the
average deflection, and the elastic bending strain energy of the membrane, shows good
agreement between experiments and simulations.

I. Introduction and Background

Thin membranes provide larger area, light structures that can be packaged tightly for launch, for appli-
cations that include space-based antennas and solar sails. A key requirement is being able to apply a state
of prestress to stabilize the deployed shape of the structure. Frequently, prestressing is done by applying
corner forces through a set of deployable booms, but there is an increasing interest in lighter and potentially
simpler solutions, through the use of centrifugal force. This approach was recently demonstrated by the
Ikaros solar sail.!

Our long term interest is to characterize the dynamic behavior of large membrane structures spinning
in space, through numerical simulations and laboratory experiments. Previous work in this field is rather
limited. The natural frequencies of vibration of thin spinning plates (floppy disks) were studied by Bogy
and co-workers,? membranes with negligible bending stiffness were analyzed by Eversman* and Simmonds.?
To our knowledge, the first experimental study of spinning membranes with very low bending stiffness
was carried out by Okuizumi.® In this study, the natural frequencies of axisymmetric modes were found
experimentally using a single point laser vibrometer and the structure was excited by shaking the central
hub. We too are interested in these effects, but before attempting this kind of experiments, we have carried
out a detailed study of the process of membrane spin up, which is significantly affected by the presence of
gravity. This is the topic of the present paper.

Consider a circular membrane, attached to a small, central rigid hub. Under static conditions, due to
gravity the membrane takes the shape of a taco shell. To avoid high strains that may plastically deform the
membrane, we put a horizontal support plate under the membrane, a few centimeters below the hub. This
support plate will also have the function of uniformly illuminating the membrane as we are going to describe
in Section ITI.A. Then the membrane hub is rotated about a vertical axis, with a linearly increasing angular
velocity, when the required angular velocity is reached, it is kept constant. It will be shown in this paper
that the dynamic behavior of the membrane is characterized by a series of successive shape instabilities, as
the membrane surface is deformed into a wavy shape with an increasing number of rotationally symmetric
waves. Eventually, an axisymmetric shape is reached. These instabilities were also noticed by Okuizumi,”
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who provided a criterion for the first instability of a flat spinning structure. In this paper we quantify these
effects, and particularly the angular velocities at which these instabilities occur during spin up and measure
the successive shapes experimentally.

The particular dimensions listed in table 1 were chosen, from a dimensional analysis presented in a
previous publication.? These dimensions where chosen to achieve a structure dominated by centrifugal
force effects and with negligible gravity effect on the natural frequencies and modes shapes (less than 10 %
difference among the vibration frequencies with and without gravity).

Figure 1: Spin up in a normal gravity field.

Young’s modulus £ 2.5 GPa
Poisson’s ratio v 0.34
Density p 1420 kg m—3
Thickness h 50 pm
Outer radius b 20 cm
Inner Radius a 2 cm

Table 1: Membrane geometry and material properties.

This paper consists of three parts. In the first part we present the numerical techniques used to accurately
simulate the spin up, taking into account the run time of each simulation and energy convergence past each
instability. First we find that simulations in a rotating reference frame are orders of magnitudes faster than
simulations in a stationary reference frame. Then we show that, although using an energy conservative
integration scheme would improve the energy convergence across each instability, the computations take far
too long for this approach to be applied. Instead, we include stiffness proportional material damping to
help the integration and represent reality more accurately. We also find that using a very fine finite element
mesh around the hub (where the stress is concentrated) is necessary to obtain consistent results. In the
second part we present the experimental setup and the measurement technique, using stereo Digital Image
Correlation. To mitigate air effects we use a low vacuum chamber. With this setup we were able to measure
similar shape instabilities to those predicted by the simulations. We also present solutions to some of the
challenges associated with using stereo DIC for measuring the shapes of spinning, transparent and very
flexible structures. The last part of the paper presents a comparison between experiments and simulations
using characteristic parameters of the shape of a membrane, i.e. the number of rotational symmetric waves,
the average deflection, and the elastic bending strain energy of the membrane. We find good agreement
between experiments and simulations.

II. Finite Element Simulations

Results of nonlinear dynamic implicit integrations performed with Abaqus/Standard finite element soft-
ware, to simulate the large deflection and the instabilities of the membrane during spin up are presented.
First we compare simulations in a stationary reference frame to simulations in a membrane-mounted (spin-
ning) reference frame. Then stress concentrations around the hub are investigated by considering a finer finite
element mesh. Lastly energy convergence across the instabilities and the time required to run simulations of
different accuracy levels is considered.
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We consider a linear elastic material with the properties of Kapton film and in some simulations we
introduce stiffness proportional damping. All simulations are carried out with S4R elements: 4-node doubly
curved thin shell elements with reduced integration, hourglass control, finite membrane strains, 5 thickness
integration points elements. They are numerical efficient elements based on the Kirchhoff shell theory. We
simulate the central hub by rigidly constraining the nodes along the inner radius circle. Lastly, we test the
integration scheme by running simulations without the support plate, with the acceleration profile in figure 2,
and later we include a frictionless support plate 3.4 cm below the hub and use the experimental acceleration
profile shown in figure 3.
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Figure 2: Spin up profile 1. Figure 3: Spin up profile 2.

A. Stationary and rotating frames of reference

Figure 4: Problem in ”Stationary Frame” Figure 5: Problem in "Rotating Frame”

We investigated two ways of modeling the spinning behavior using Abaqus/Standard. One can carry out
the analysis in the stationary frame, where the hub spins and the whole structure rotates accordingly, or in
the rotating frame that follows the hub rotation. A representation of this change of frame is illustrated figures
4 and 5. As in the stationary frame we do not have forces that depend on velocities, the two approaches
should give exactly the same results.

In the rotating frame one needs to add the following fictitious forces to gravity:

Feen = —p22 x 2 x (M — O) (1)
Feuler = — % x (M - 0O) (2)
Fc=—-20Q X vy (3)
where:
Q(t) is the angular velocity;
g is the gravity acceleration;
v, is the velocity in the rotating frame;
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p is the density of the membrane;
Fcen is the centrifugal force;
FEguler is the rotary acceleration;
F¢ is the Coriolis force.

These forces are available in the Abaqus library but care is needed in using the built-in library, as different
angular velocity-related inputs have to be provided if Abaqus/CAE is used instead of a run file. Hence, we
implemented our own centrifugal load and rotary acceleration using the user subroutine DLOAD, and used
the Coriolis force implemented in the Abaqus library. To test our own implementation of the centrifugal
force, through an Abaqus subroutine, we considered the simplified case of a spinning rigid blade for which
we can also derive an analytical solution.

Consider the rigid blade shown in figure 6. It is hinged, with only one degree of freedom allowed, the
rotation along an axis perpendicular to a rotating rod. The rod was rotated with an angular velocity linearly
increasing from 0 rad s™! to 12 rad s™! over a period of 6 s. The dimensions used are in the following table
and were chosen to represent the membrane dimensions.

Figure 6: Blade in ”Stationary Frame”. Figure 7: Blade in ”Rotating Frame”.

Density p 1420 kg m—3
Thickness h 50 pm

Length L 20 cm
Width B 1 cm
d 2 cm
Qaot 2 rad.s~2

Table 2: Blade dimensions and properties.

This is a one degree of freedom problem. The unknown is 6(¢) the angle of the blade with the vertical.
We simulated this problem in Abaqus in the stationary frame (figure 6) and in the rotating frame (figure 7)
with Abaqus Centrifugal load and a user subroutine that we had written.

The analytical solution for this case is the solution of the differential equation:

2
dhQ? . pt*sin 6 (4)

1 . 1 1 BL
gBL?’th = —§BL2ghp cosf — gBL?)hQZotth cosfsinf = — 5
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Figure 8: Comparison of analytical solution with
Abaqus solution.

The results are shown in figure 8. The red line is the solution of the differential equation 4, solved with
the Runge-Kutta solver, the blue line is the solution obtained with the subroutine.

There is excellent agreement between our implementation of the centrifugal force and the MATLAB
solution for this simple case. Hence from now on we use the implemented subroutine. Note that this case
study did not test the rotary acceleration or the Coriolis force as only the centrifugal load affects 6.

Next, we go back to the membrane spin up case and compare the efficiency of the two techniques. We
run the simulation in both frames for the full spin up and compared the time to run each simulation in table
3. The simulations in table 3 were performed on a computer with 2 Intel(R) Xeon(R) processors running at
2.33 GHz, with 4 cores per processor. For the rest of the simulations we use a computer with 2 processors
Intel(R) Core(TM) running at 2.2 GHz, with 4 cores.

Simulation Total CPU Time (s)
Stationary Frame 302,844
Rotating Frame 4,335

Table 3: Simulation time in stationary and rotating frames of reference.

In order to compare the two results, we have plotted the strain energy as a global way of comparing
the shapes, in figure 9. Is is also a quantity not affected by the change of frame. Table 3 shows that there
is good agreement but the simulation in the rotating frame is two orders of magnitude faster for the same
mesh, same integration scheme and time step refinement algorithm. The reason why it is faster is that the
time step can be much larger in the rotating frame. For this reason we chose to simulate the spin up in the
rotating frame and not in the stationary frame and we will use our implementation of the centrifugal force
and rotary acceleration.

B. Equilibrium shape under gravity of stationary membrane

The first step in the analysis consists in finding the equilibrium shape of the membrane hanging under
gravity. We perform this static analysis, considering two cases: with and without the support plate. It is
computationally expensive to go through the same shape instabilities that occur during the spin up to find
the equilibrium shape. A simpler approach is to apply the gravity preload in two steps. First we impose two
boundary conditions in two diametrically opposed points (P1 and P2) as displacements in the es direction
of 10 cm without the plate and until we reach the plate (i.e. 3.4 cm) with the plate. Then we relax those
constraints and impose the gravity field while maintaining the circumferential position of one point (P1). It
is obvious that any rotation of the shape obtained from this process, around eg, is also an equilibrium shape.
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Figure 9: Strain energy in rotating and stationary
frames.

This last constraint is to make sure that the solution is unique. This technique converges better than simply
imposing a gravity field on an initially flat membrane. The two steps of the preload application are shown
in figure 10 and 11, with the support plate, and figures 12 and 13, without the plate. Note that the plate is
not shown in these figures.

s |U3=-3.4

Figure 10: Step 1 with support plate.

* ase J3=-10 Us;=-10

Figure 12: Step 1 without support plate. Figure 13: Step 2 without support plate.

C. Membrane spin up results

In this section we show the behavior of the membrane during the spin up phase, when it is initially supported
by a flat plate. All the results presented were obtained with numerical damping and mesh 4 as described in
Section II.E. During spin up the membrane goes through successive, sudden changes of shape. The different
numbers of rotationally symmetric waves, 2, 4, 5, 6, 7, 8, 10, 11, can be identified in figure 14. The final
axisymmetric shapes is shown in figure 15.

Since it is difficult to show the shape of the membrane at each instant, we consider different global
parameters related to energy. In particular we look at the strain energy of the membrane, which gives an
idea of the global deformation of the structure both in bending and stretching and is shown in figure 16.
During the static analysis in section II.B the membrane mainly bends due to gravity and gains internal
energy up to 2.1 107* J. When it starts spinning the centrifugal force flattens the structures thus decreasing
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Figure 14: Successive shapes of spinning membrane.
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Figure 15: Membrane shape at 2= 1000 rpm.

the bending energy. The number of rotationally symmetric waves increases. As the bending energy decreases
and the membrane is spinning faster the stretching energy becomes dominant in the internal energy which
explains the increase of energy after 20 s. The potential energy (strain energy minus external work) is shown
in figure 17. Notice the sudden decreases of energy corresponding, to instabilities of the membrane.
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Figure 16: Strain energy. Figure 17: Potential energy.

In the next two parts we will analyze the respective influence of integration scheme, numerical damping,
increment tolerance and mesh density. We look into the strain energy, the kinetic energy, the external work
and the total energy. We also compare the time for each simulation. We will see that without any source
of damping it is difficult to achieve energy convergence. We will finally add stiffness proportional material
damping.

D. Numerical damping and time increment

We used the two main implicit integration schemes available in Abaqus/Standard:!'* Euler-Backward (EB)
and Hilber-Hughes-Taylor (HHT) which is a modified Newmark method that averages the internal and
external forces between adjacent time steps. The first is mainly used for quasi-static simulations. The
second can be used for a wide range of applications, with different amount of numerical damping depending
on the coefficient a (-0.5 < o <0). Smaller values of a correspond to more accurate simulations, which take
longer to run; larger values of « lead to faster simulations but less accurate (more dissipative).

We also used Abaqus time step refinement algorithms. For transient fidelity simulations the algorithm is
based on the half-increment residual and is constrained by the half increment tolerance. Smaller tolerance
means finer time steps and longer, more accurate simulations. The half increment tolerance and « are the
parameters that we changed in the simulations. We also used a rather coarse mesh, corresponding to Mesh1
in Section E.

We compared the results in terms of energy in the plot in figure 18 and the time of each simulation in
table 4 for the five following cases (some of which are default Abaqus/Standard parameters):

e Case 1: EB (default Quasi-Static option in Abaqus/Standard)

e Case 2: HHT-a=-0.41 t,,4,=Time step/10 (defaults Moderate Dissipation option in Abaqus/Standard)
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e Case 3: HHT-a=-0.05 t,q4,=Time step/100 (default Transient Fidelity option in Abaqus/Standard).
The time step refinement algorithm is base on the half increment residual with a scaling factor of 1000.

e Case 4: HHT-a=-0.01 HAFTOL=0.1 (absolute value of the tolerance for the half increment residual

algorithm)
e Case 5: HHT-=-0.001 HAFTOL=0.1 (absolute value of the tolerance for the half increment residual
algorithm)
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Figure 18: Plots of energy components.
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(d) Total Energy.

We noticed improved energy convergence, but also longer run times. For case 5 (the most energy conser-
vative case) the energy loss is 20 % better than in case 1 (the least conservative one) while the run time is

63 time longer.

Simulation | Time (s)
Case 1 4,335
Case 2 16,140
Case 3 48,982
Case 4 107,484
Case 5 263,229

Table 4: Simulation times.
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E. Mesh effects

We used the parameters of case 3, which provided the best combination between energy conservation and
run time, to examine the effects of changing the mesh density. We considered different meshes, increasing
the mesh density around the hub by varying the number of elements along each of the edges 1, 2 and 3, as
shown in figures 19 and 20:

e Mesh 1: Seed 20-100, total number nodes: 1746

e Mesh 2: Seed 40-200, total number of nodes: 5098

e Mesh 3: Seed 80-60-200, total number nodes: 5735

e Mesh 4: seed 150-100-200, total number nodes: 11895

Figure 19: Mesh 2 and edges 1 and 3. Figure 20: Mesh 4 and edges 1, 2 and 3.

The density of the mesh influences significantly the results. Finer meshes lead to more chaotic simulations
and more gradual transitions between successive shapes of the membrane. We illustrate this by comparing

the strain energy in figure 21. Note that the energy oscillates more and more. We compare the run time of
each simulation in table 5.

——Mesh4
——Mesh3

Mesh2
——Mesht

1074

Energy (J)

10°
0 10 20 30 40 50
Time (s)

Figure 21: Strain energy for different meshes.

Mesh time (s)
Mesh 1 | 48,982
Mesh 2 | 278,003
Mesh 3 | 274,110
Mesh 4 | 492,219

Table 5: Simulation time for each mesh.
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These studies have shown that it is difficult to capture all the wavelengths and frequency of the dynamics
across the instabilities of the structure. Not only energy convergence is difficult to achieve, but also conver-
gence according to the mesh density. The successive shapes are different depending on the mesh and the
integration scheme and the time associated with each snap changes.

F. Effects of material damping

Next, we tried to obtain more stable results by including material damping while using a less conservative
integration scheme. We also introduced the support plate in the simulation, and a flat angular velocity
plateau at the end of the simulation, for a closer match to the conditions of the experiments.

We introduced stiffness proportional damping of 0.0008 s~!. Frictionless contact between the membrane
and the support plate is introduced. We used the moderate dissipation parameters corresponding to case 2
in section II.D. The transient fidelity option doesn’t work properly when there is contact. Also, having in-
troduced material damping high frequency dynamics were suppressed. We considered three different meshes.
Meshes 3 and 4 introduced before and mesh 5 to check the convergence. Mesh 5 has seeds 200-100-200 and
12,347 nodes in total.
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Figure 22: Energy components.

There are clear differences between the results obtained with mesh 3 and 4. As a matter of fact the first
snap is from 2 to 3 waves for the case of mesh 3, while for meshes 4 and 5 it is from 2 to 4 waves. The results
with mesh 4 and 5 are quite similar, even though a closer look to the potential energy shows a difference of
about 3% on the final potential energy, for example (figure 22a).

For the comparison between experiments and simulations in section IV we use the results obtained with
mesh 4. The results are presented figure 22 and the run times in table 6. We notice that the total energy
(figure 22d) loss is now less than 3.10~5 which is an order of magnitude less than in the case without damping.
The energy is dissipated by material damping, as seen in figure 22¢. It is difficult to compare the run times
as in this set of simulations we have included frictionless contact with the support plate. It is surprising that
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it is more than twice as expensive to run the simulation with mesh 5 than mesh 4 even if the increase in the
number nodes is only 4 %.

Mesh time (s)
Mesh 3 | 512,994
Mesh 4 | 603,908
Mesh 5 | 1 599,120

Table 6: Simulation time for each mesh.

III. Experiments

We studied membrane spin up experimentally, to assess the accuracy of the simulations and to develop
experimental measurement techniques using stereo DIC.

A. Setup description

We have developed a setup that enables spinning the membrane in vacuum. It is also possible to shake the
membrane but shaking was not applied in the experiments described in this paper.

The main challenges of setting up a lab experiment was to decouple the source of rotation (electric motor)
from the vertical motion (shaker). We decoupled rotation and linear motion with a system of gears and ball
splines as shown in figure 23. A reflective support plate was used to provide uniform lighting during image
acquisition for DIC. The whole setup is under vacuum, as shown in figure 24 and reaches a vacuum level
of 6.5 kPa. We can see the stereo DIC system on top, the vacuum box with the membrane setup inside, in
the middle and the vacuum pump at the bottom. There also are 4 halogen lights around the setup. We use
stereo Digital Image Correlation (DIC) to record the time variation of the shape and displacements of the
membrane.

Hub

White Plate

= Motor

Shaker

Figure 23: Mechanical setup. Figure 24: Complete test setup.

B. Measurement technique

Our stereo DIC system consists of two Point Grey Grasshopper cameras GRAS-50S5M-C with a resolution
of 2448 x 2048, 3.45 pum pixel size and a gain range between 0 dB and 24 dB. We used lenses with a focal
length of 12 mm to image our sample. The stereo angle was about 25°. We used the commercial software
Vic3D 2010 by Correlated Solutions to correlate the images. The membrane is 40 cm in diameter and the
field of view is about 50 cm which corresponds to a pixel size of 200 um. We hand drew speckles about 3 mm
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wide (15 px) on the membrane, with a black marker. We illuminated the sample from below by reflecting 4
halogen lights on a white plate as shown in figure 25.

The membrane spins at an angular velocity of up to 1000 rpm. To reduce the blur on the outer edge, we
used a short exposure time. The DIC system is able to achieve sub pixel resolution and the exposure time
should be chosen such as to keep motion below 0.01 px. Even with 4 halogen lights we could not go as low
as this and instead took images at 63 us, which corresponds to a motion of 1 mm ( 5 px) on the very edge
and thus creates blur. A better lighting system would have been required for faster exposures .

Figure 25: Lighting arrangement.

Kapton has an orange color and is transparent, which makes it difficult to obtain images with high
contrast. Black Kapton with white speckles is an alternative option for future experiments.

One of the challenges when studying very flexible structures is to get an unstressed reference image.
Under gravity this state is difficult to find. We assumed that the unstressed membrane is flat and we
supported the membrane on a flat aluminum plate, to take our reference image.

Another challenge is to deal with the optical distortions created by the thick (2,54 cm) acrylic lid of the
vacuum box. Each camera is looking through the lid at a different angle and at a different location. Each
camera is thus going to see a different rigid body motion and a different optical distortion of the membrane
due to the lid. We corrected for the different rigid body motions by correcting the calibration of the DIC
system. The steps for the stereo DIC processing are as follows:

1. Calibration with membrane placed below the acrylic lid.
2. Take images of the membrane from two points at a known distance.

3. Using these two points optimize the camera angles for the lowest projection error to form an epipolar
line due to the refractive influence of the lid.

4. Run the correlation.

This technique does not correct the optical distortion but reduces the projection error due to the rigid
body motion part that the optical distortion introduced on each camera.

We performed a ”stationary images” test to estimate the errors due to lighting, speckles and contrast.
To this end we took two successive images of the same stationary sample and run a correlation. Any
displacement field between these two images correspond to an error, of course this error does not include the
blurring due to rotation of the membrane. We obtained a random error with zero mean and a maximum
amplitude of about 20 pum on the out-of-plane displacement component.

The parameters used for the correlation were subset of 45 pixels (corresponding to a square with side
length of about 1 cm) and density of 3 pixels (meaning that we computed a data point every 3 pixels). Such a
high density of points is not needed, but it seemed to help the software correlate the images, despite the large
amplitude rotation between the reference image and the current image. We used the following parameters
in the software: the shape functions assume linear deformation within subset with Gaussian weights, the
pixel interpolation uses 8-tap splines, the minimization algorithm used a zero-normalized square difference
(unaffected by offset plus scale change is lighting). Each image had an average projection error of about 0.06
pixel. Choosing a large subset helped the correlation and decreased the noise but also decreased the spatial
resolution by averaging the deformation linearly within a subset during matching. Once again this choice
was driven by the difficulty of correlating large deformations and the low contrast in the images (meaning
high noise).

Altogether, with the current setup we estimate a resolution of about 1 cm and a precision of +20um.
The bias was not estimated.
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C. Experimental results
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Figure 26: Angular velocity profile.

The experimental spin up curve is shown in figure 26. Images obtained at different times, and hence
associated with different velocities, are shown in figure 27. Note that these images are unsmoothed, and
without any extrapolation near the edges (to get data up to the edge of the sample). These images were
despun using speckles on the rigid hub and by calculating for each frame the average rigid body motions on
the hub. All the images in figure 27 are thus in the rotating frame.

Notice the close resemblance of these images to the predictions from the simulations. The final shapes
though, shown in figure 29, are not fully axisymmetric as predicted. This could be due to the imperfections
of the setup, e.g. vibrations of the shaft, the aerodynamic excitation due to the remaining air in the box, the
slight initial curvature of the membrane, or the projection error due to optical distortions associated with
the acrylic lid.

IV. Comparison of Experiments and Simulations

We ran two experiments and compared the results to the damped simulation with high density mesh (mesh
4) and low numerical damping. Here we compare three quantities: the number of rotationally symmetric
waves according to angular velocity, the average displacement over the membrane and the bending strain
energy. The bias introduced by the acrylic lid, the non flat reference image and the different post processing
techniques is not considered.

It is important to note that the experimentally measured deflections and bending energies have not been
smoothed, whereas the shapes and curvatures are. A problem when evaluating global quantities over the
whole membrane is that the DIC does not correlate up to the edges. We used the MATLAB function
7scatteredInterpolant” with linear extrapolation to evaluate the scatter data on a uniform grid up to the
edges of the membrane. Finally we simply integrated by multiplying by a Boolean operator and added the
matrix components, each multiplied by the size of each element.

A. Number of waves and average displacement

We determined the angular velocities at which the instabilities occur up to 10 waves formed; a higher number
of waves was difficult to estimate in the experimentally obtained images. We defined the average magnitude
of displacement (not just the vertical component of displacement) to avoid projection errors, relative to the
initial shape:

1
S ) //Qf \/U(am yr)? + Vi, yp)? + Wilas, yr)?dusdyy (5)

where: (27, ys) are the coordinates in the reference configuration; (U, V, W) are the components of displace-
ment; and €y is the membrane domain in the reference state.

Before evaluating the average magnitude of displacement we smoothed the images using a decay filter
which is a 90 % center-weighted Gaussian filter with size of 31. This means that we averaged the displace-
ments over a square of 93 px*93 px.

The number of waves observed in the experiments and average magnitude of displacements (without rigid
body motion) obtained experimentally and numerically are figures 30 and 31.

14 of 18

American Institute of Aeronautics and Astronautics



Y (mm)

Y (mm)

Y (mum)

Y (mm)

Z
tmrg]

200 200
150 -5 150
100 -10 100
50 -1 50
0 -20 ER
-
-50 -25 -50
-100 -30 =100
-150 -35 =150
-200 40 -200
-200 -100 0 100 200 -200 -100 0 100 200
X{mm) X{mm)
(a) 2= 0 rpm (b) Q= 120 rpm
200 200
150 150
100 100
50 50
0 0
-50 -50
100 100
150 150
-200 -200
-200 -100 0 100 200 -200 -100 0 100 200
X{mm) X{mm)
(c) Q= 260 rpm (d) Q= 475 rpm
200 200
150 150
100 100
50 50
0 E 0
-
-50 -50
-100 -100
=150 =150
-200 -200
-200 -100 0 100 200 -200 100 0 100 200
X{mm) X{mm)
(e) Q= 515 rpm (f) Q= 575 rpm
Z (mm)
200 200 ]
150 150 05
100 100 4
50 . 50 iE
0 E 0
- -2
-50 -50
25
-100 =100
-3
=150 =150
-200 -200 s
-200 -100 0 100 200 -200 -100 0 100 200
X{mm) X{mm)
(g) Q= 595 rpm (h) Q= 600 rpm
Figure 27: Successive shapes during spin-up.
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1000

Figures 30 and 31 show a good agreement between simulations and experiments. The discrepancy at the
beginning of the spin up is likely due to errors in the position of the support plate or friction between the
plate and the membrane. More general errors can come from imperfections in the membrane, measurement
noise, resolution and bias, remaining air in the box, or material damping estimation in the simulations.
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B. Bending energy
The elastic strain energy Up of a Kirchhoff plate is given by:

1 Eh

UP:_§1—V2 // I0+ey0—|—2uezoey,o+ D) %yo)dxfdyf

1  ER 1-—
—|—2121_y2 // /<; —&—/-@ + 2Wkpky + —— 5 y)dxfdyf

where:
(€2,05 €y,05 Yoy,0) are the mid-plane strain components;
(Kaskyykzy) are the curvatures.

The first term of equation 6 is the membrane or stretching energy and the second term is the bending
energy. Our current experiments are not sufficiently precise to evaluate the strains accurately. Hence, we
only consider the bending part of the strain energy which is dominant at the beginning of the spin up. The
curvatures are evaluated from the position vectors using a decay filter and a filter size of 51 (to smooth the
noise). This means that we average the curvature over a square of 153 px x 153 px. Our spatial resolution
decreases significantly but so does the noise level.

The results are presented in figure 32. The experiments give different results for 2 < 200 rpm but show
very similar trends for the rest of the spin up. However, the final value of the bending energy is an order of
magnitude higher in the experiment than in the simulation. This could be due to the noise in the experiment
as in the bending energy evaluation we sum the square of the noise on the whole membrane. Unfortunately
the noise in the curve is too big and the temporal resolution too small to see any jumps in bending energy.
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Figure 32: Bending strain energy.

V. Conclusion

It has been shown that when a membrane is spun up in a normal gravity field, it goes through successive
sudden changes of shapes characteristic of shape instabilities. The average deflection of the membrane
decreases during the spin up while the number of rotational symmetric waves increases until the membrane
becomes axisymmetric.

We have studied this problem both experimentally and numerically and found quite good agreement
between the two approaches. The simulations are fully-integrated, nonlinear dynamic implicit simulations.
We have presented techniques to simulate accurately the instabilities of the membrane. We have found that
to stabilize the simulations it is beneficial to introduce a dissipation mechanism and to include stiffness
proportional material damping. We have developed an experimental setup and measurement techniques
using DIC to capture the deformation of the membrane during the spin up. It is challenging to take high
quality pictures of a transparent membrane spinning at 1000 rpm. We developed a lighting method to
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mitigate these challenges and obtained good measurements of the deformed shape of the membrane. We
were able to compare experiments and simulations by means of three quantities: number of waves, average
deflection and bending energy.
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