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This paper is concerned with the optimization of the cutting pattern of n-fold symmetric super-pressure
balloons made from identical lobes constrained by stiff meridional tendons. It is shown that the critical
buckling pressure of such balloons is maximized if the unstressed surface area of the balloon is mini-
mized under a stress constraint. This approach results in fully stressed balloon designs that in some cases
have a smaller unstressed surface area than the corresponding axisymmetric surface that is in equilib-
rium with zero hoop stress. It is shown that, compared to current designs, the buckling pressures can
be increased by up to 300% without increasing the maximum stress in the lobe.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Lobed balloons have been chosen by NASA for the next genera-
tion of super-pressure balloons for long duration stratospheric
missions. The shape of these balloons results from the pressuriza-
tion of a thin plastic envelope, made of a linear low density
polyethylene (LLDPE) film, contained within equally spaced merid-
ional tendons, Fig. 1(a). This design exploits the high curvature of
the lobes to reduce the forces in the envelope and so makes it pos-
sible to design balloons of larger diameter without having to in-
crease also the thickness of the film, just by increasing the
number of the meridional tendons.

However, it was discovered that balloons with a high degree of
lobing - which is beneficial in reducing the maximum stress - are
prone to buckling and it was then shown that lobed balloons have
a critical uniform buckling pressure at which the n-fold symmetric
inflated shape becomes unstable. An account of these develop-
ments has been presented by Pagitz and Pellegrino (2007) who
went on to show that relatively small changes to the critical pres-
sure could be made by changing the material parameters, includ-
ing the Young’s modulus of the film, the stiffness of the tendon,
and the Poisson’s ratio of the film, but order-of-magnitude changes
could be achieved by changing the cutting pattern for the lobes
from a constant angle (CA) to a constant radius (CR) design; see
Fig. 2 for an explanation of these cutting patterns. The CA and CR
patterns had been derived from simple geometric considerations;
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the present paper will show that significant further improvements
can be obtained from a mathematical optimization approach.

Starting from an extension of Pagitz and Pellegrino (2007), this
research began by searching for the cutting pattern that maximizes
the smallest eigenvalue of the tangent stiffness matrix of a balloon
at a given uniform differential pressure p. It was found that these
optimal cutting patterns lead to fully stressed balloon designs
and thus correspond to balloons of minimal surface area, subject
to a given stress constraint. Therefore, since minimizing the cutting
pattern area is much faster than maximizing the smallest eigen-
value of the tangent stiffness matrix, the former approach was later
adopted. Hence, the optimization technique and the solutions that
will be presented in this paper are all based on this minimum area
approach. Although there is no proof that these solutions corre-
spond to the maximum critical pressures solution, by computing
the critical pressure during the optimization it will be shown that
there is a clear correlation between decreasing the surface area and
increasing the critical pressure.

In addition to buckling under a uniform pressure, lobed bal-
loons are prone to another kind of instability, which occurs when
a balloon is inflated under a pressure gradient. This instability re-
sults in clefted shapes that appear to be stable; it will not be con-
sidered in the present paper. The interested reader is referred to,
for example, Baginski et al. (2006), Schur and Jenkins (2002), Schur
(2004), and Deng and Pellegrino (2008).

The paper is arranged as follows. Section 2 gives a formal defi-
nition of the optimization problem. Section 3 presents the shape
functions that are used to describe the cutting pattern for a lobe
of the balloon and Section 4 presents the optimization algorithm
to minimize the unstressed lobe area, subject to a constraint on
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Fig. 1. Concept of lobed balloon and coordinate system for gore cutting pattern.

the maximum value of the Mises stress in the lobe, for a given dif-
ferential pressure. Section 5 defines the geometry of two balloons,
with diameters of 10 m and 80 m, and their material properties,
assumed to be linear-elastic. Section 6 presents sets of optimized
designs for these two balloon sizes, for different number of lobes.
Section 7 concludes the paper.

2. Formulation of optimization problem

Consider a balloon made from n identical flat lobes. A general
lobe cutting pattern is defined by the semi-width w(x), expressed
in terms of n polynomial shape functions, each multiplied by an
amplitude »(i), Fig. 1. The corresponding area of the unstressed
lobe is

L
fv) :2/ wdkx, (1)
0
where v = [v1,..., v,] and L is the total length of the centreline.

A stress constraint will be imposed by setting a limit on the
maximum Mises stress in the lobe. When the balloon is loaded
by a given uniform pressure p the Mises stress is denoted by

g(v) = \/ 6% + O’% — 0107,

where o1, 0, are the principal stresses. This expression for the
stress limit can take different functional forms, depending on the
type of behavior that needs to be optimized, which in turn depends
on the specific mission for which a balloon is designed. The present
choice aims to minimize visco-elastic effects by imposing a limit
on the effective stress that controls the creep rate. Eq. (2) is a sim-
plified form of the effective stress proposed by Rand and Sterling
(2006).

Hence, the area minimization problem can be stated as follows:

)

Minimize f(v) subject to g(v) = g, where oy is a given Mises stress.

3. Shape functions for cutting patterns

A general cutting pattern can be expressed in terms of shape
functions based on Bernstein polynomials (Bernstein, 1912). The
n + 1 Bernstein polynomials of degree n are defined as
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Fig. 2. Cross-sections of an inflated lobe.
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n - The objective f{v) to be minimized can be expressed as follows:
Bk.n(f) _ <k>§k(-l _ i)n k (3) ] ﬂ ) 1 p
L 1 n 1
with ¢ € [0, 1]; the binomial coefficient (Z) is fov) = 2/0 wax = ZL/O w(c)de = ZLIZ;V"“ /0 Bin(¢)de
n n! 2050 o Vi
_ ) 4 _ k=0 " k+ .
(k) (n—k)lk! 4) nii (10)
Hence, the polynomials for n = 0, 1,2 are, respectively Since the width of the lobe at the apex is zero
Bt —1-¢ B2 =0- W(E=0)=0,  hence v; =0 (1
Boo(8) = 1; {31.1 @=c Bi2(&) =2(1-¢&)¢. (3)  Also, the slope at the mid-point is zero
1 By () = & n
3 ow(1) 0By (1)
"(E=1)=0, h = 1 : =
Fig. 3 shows plots of the polynomials of degree up to n=>5. Bern- wie ) =0, hence o ;VU{JF ) o¢ 0
stein polynomials have a number of useful properties. In particular, hence oy = tn.1. (12)

they satisfy symmetry

Bk.n(é) = Bn—k‘n(‘l - f) (6)
and the sum of all polynomials of degree n is equal to 1, i.e.

n
> Bin(é) =1. (7)
k=0

A property that will be used to simplify the shape optimization is
that the areas under the polynomials of degree n in the interval
¢ €10, 1] are all equal. More formally

! N ds — ! n k n—k _ 1
/OBk,n(q)dc:—/O <k>¢(17¢) dc_m

from which it can be shown that the sensitivity of the lobe area with
respect to the optimization variables is constant.

The profile of the cutting pattern can be expressed in terms of
the above shape functions and of the amplitudes v(i)

(8)

W(cv) = ikaBk.n(f) for e [07 1]

k=0

9)

Here it should be noted that, instead of the variable x € [0, L] defined
over the full length of the lobe, we are using the non-dimensional
variable ¢ that is equal to 1 at the centre of the lobe, as shown in
Fig. 2. Hence, x = ¢L/2. Assuming the lobe cutting pattern to have
mirror symmetry with respect to the centre line x = L/2, only the
upper half of the cutting pattern will be considered.

Using these conditions, it is possible to reduce the number of un-
knowns to n — 1.

In the present study, the value n = 5 was chosen and hence only
the four shape functions shown in Fig. 4(a) are needed. Since
vs = vg, the fourth shape function has been taken as Bys + Bss.
As an example, the decomposition of a CR cutting pattern into
these four shape functions is shown in Fig. 4(b). Note that the ori-
ginal CR pattern has been approximated very accurately.

4. Optimization algorithm

Since the objective is linear, optimization algorithms based on
second-order information are not applicable. A further require-
ment on the algorithm is that a non-linear maximum stress con-
straint has to be taken into account. The shape optimization and
line search algorithms that have been implemented are presented
in the following.

4.1. Method of feasible directions

A gradient based algorithm that is capable of dealing with
highly non-linear constraints is chosen for the shape optimization.
An algorithm that fits into this scheme is the Method of Feasible
Directions (Zoutendijk, 1960). A version of this algorithm is pre-
sented in the following for n optimization variables and one
constraint.
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Fig. 3. Bernstein polynomials of degree n € [0, 5].
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Fig. 4. (a) Shape functions of degree n=5 for shape optimization; (b) decompo-
sition of CR cutting pattern with subtended angle of 118° at equator.

The gradients df /ov and 0g/dv can be written as

F o v w5 gpad B_Jm e o]
av_ dv; 0wy v — |ov; ovy ovn |

ov
(13)

The equation of an hyperplane passing through point v, where the
change in the objective is zero, can be written as

af of of of
au; — Ay +%sz+ +a—nAUn_0 (14)

and solving for Av, gives

Af == Av =

o Avq +6f A02+"'+aaf Avy 1
Avy, = — vy 7 OV n- (15)

dvn

For movements in this hyperplane the gradient of the constraint re-

sults in
Avi + - -
og og a (am 1 )
Ag = 5 ]Avl + - +61/,,,1AU”’1 7 ,
vn
(16)

where Eq. (15) is introduced to keep the objective fixed. The direc-
tion where the constraint has a maximal gradient thus becomes

3 T
og of og _of
0Ag _ |:a_g _ m}gnm/l L. _%g u;g,.m/n 1 0:| (17)

ov oy Kl vy o

dvn dvp

and v, can be obtained by inserting Eq. (17) into Eq. (15)

g [ of 2+ e 2 ¥ ¥ of of o
dvp \0vq Ovp \ 0y 0vy 0vp Oy 0vp_1 OUy Oy

&
(18)

Similar expressions for a hyperplane on which the constraint re-
mains unchanged can be obtained by exchanging f with g. The
directions of steepest descent for both hyperplanes are illustrated
in Fig. 5 and it can be seen that they border a region that is usable
- the objective is decreased or stays the same - and feasible - the
constraint is decreased or stays the same - for vectors of infinites-
imally small length that are located in this region.

Many different methods have been proposed to determine the
angle of the direction with respect to the steepest descent in one
of the hyperplanes. A detailed discussion and references to the ma-
jor papers in this field can be found in Vanderplaats (2001).
Throughout this paper, to simplify matters, the direction of the sin-
gle iteration steps is located along the steepest descent of the
hyperplanes. Starting from a feasible solution, the actual result is
improved by moving in a direction in which the constraint is
unchanged while the objective is improved. If the constraint is
violated then the following iteration uses the other hyperplane

Vg(v) \ f(v)=const.
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Fig. 5. Illustration of method of feasible directions.

that leaves the objective unchanged (for infinitesimally small dis-
placements). Close to the optimum - defined by the Karush-
Kuhn-Tucker condition (Karush, 1939; Kuhn and Tucker, 1951) -
the directions of steepest descent of both hyperplanes become
identical, hence the magnitude of their scalar product can be used
as a convergence criterion.

4.2. Line search

The previous section has shown how to compute the direction
of a new iteration step, however, the step length is still unknown.
It can be determined with the help of so-called “line search algo-
rithms”, which are able to find an extremum of a function of one
variable and also can find the value of the variable for which the
function has a prescribed value. Two of the most popular line
search algorithms have been considered; their advantages and
drawbacks are discussed next.

Since the value of the function and its derivative are known
from the optimization at the origin of the search vector, polyno-
mial approximations are often an excellent choice to find an extre-
mum with a minimum number of function evaluations. However,
these methods have the disadvantage that the accuracy of the
interpolations cannot be guaranteed and for highly non-linear
problems it might be quite poor. Hence, the rate of convergence
for methods that are based on curve-fitting is not known (Vander-
plaats, 2001). The golden section method (Press et al., 2003) is an-
other technique that is able deal with highly non-linear functions;
furthermore, the rate of convergence is known.

Let f(x) be a convex function with a minimum in the interval
x € [0, 1]; the function values f(0) and f(1) are known. If this inter-
val is divided at a point ¢|¢ > n = 1 — ¢ with the function value f(¢)
then the initial state of the line search as shown in Fig. 6 is

1. 1 |
| |
Initial State | g | n |
19t iteration | e T
2" Iteration | €3 &) &
3 teration [ &% [EBq] e |
X

Fig. 6. Scheme of golden section method.
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obtained. The function can only have a minimum in the given
interval iff f(&) < f(0) Af(¢) <f(1).

To determine a new, smaller interval that contains the mini-
mum of the function it is necessary to compute a fourth value.
The location of this value is chosen in the larger interval [0, ¢] -
to guarantee a better distribution — and is determined such that
the ratio between the larger and smaller subinterval is again equal
to ¢/n which results in f(&%) (see first iteration in Fig. 6). If
f(&%) < f(¢) then the minimum can be found in the interval [0, &,
if f(¢%) > f(¢) it is in the interval [¢2,1] and for f(¢%) = f(¢) both
intervals contain the minimum. Assuming ¢ + ¢ > ¢+ 1 then
it is more likely that the minimum is located in the larger interval
[O, &4 511]. Fig. 6 shows, under the assumption that the minimum
is always located in the larger subinterval, the next two iteration
steps. Thus the length L of the subinterval after the nth iteration
becomes

L< &:n+1 +én’,’ (19)

For the case where ¢ = 5 the following convergence rate can be
guaranteed:

L=t e (20)
Since ¢+ n =1 we finally get

-1+5 3-V5
(=—5— =" (21)
such that

C_T1HVS_14V5 4 616033089 (22)

no3-v5 2
is the golden ratio.

4.3. Example

The performance of the golden section method and polynomial
interpolation in finding the minimum of a highly non-linear func-
tion is investigated. The function is

f(xX) = —1—20x + e, (23)

Fig. 7 shows the minimum of f(x) together with the minima
obtained from polynomial interpolations of degree i € [2...4] that
make use of the gradient f'(0) and function values at f(0) and
f(1). The remaining information needed for the interpolations is
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Fig. 7. Comparison between polynomial interpolation of degree i and golden
section method in finding minimum of f(x).

computed according to a grid that is identical to the one obtained
by the golden section algorithm. It can be seen that the predicted
minima are quite poor and clearly insufficient for an optimization
algorithm. Furthermore, it has to be taken into account that increas-
ing the polynomial degree is not advisable due to possible oscilla-
tions. In contrast, the first five iterations of the golden section
method are shown at the top of Fig. 7. It is obvious that much better
and more reliable results than from the polynomial interpolations
are obtained. However, this comes at the cost of a larger number
of function evaluations.

Hence, an algorithm that combines both methods is used in the
following. In a first step, the interval that contains the minimum is
sufficiently reduced by 10 iterations of the golden section method
(which reduces the size of the original interval to 0.8%) and the
minimum is finally approximated by a quadratic interpolation. It
should be remarked that the golden section method can also be
used to find a point where f(x) = k by minimizing |f(x) — k|.

5. Geometric and material properties of balloons

The geometric and material properties of the pumpkin balloons
that have been considered are presented in Table 1, where it
should be noted that a reduced pseudo-elastic modulus has been
provided for the film, to take visco-elastic effects into account.
Identical balloons were studied by Pagitz and Pellegrino (2007).
It should also be noted that the optimized cutting patterns are, in
contrast to the CA and CR designs, a function of the geometry,
the material parameters, and the maximum stress constraint.

6. Optimization results
6.1. Small scale balloons

Small scale balloons with a diameter of 10 m and different num-
bers of lobes n € {16, 80, 145} have been optimized. The optimiza-
tion was done at a differential pressure of p=500Pa and the
maximum allowed Mises stresses in the membrane were set equal
to the maximum stresses that occur in a CR cutting pattern with a
subtended angle of 118°. Furthermore, the initial geometry was ob-
tained by a least square interpolation of the same CR cutting pat-
tern. Note that the subtended angles of the optimized cutting
patterns are not fixed but are in fact a result of the optimization
itself.

The performance of the previously introduced optimization
algorithm is demonstrated in Fig. 8 for a balloon with 145 lobes.
It can be seen that a fully stressed configuration is obtained after

Table 1
Geometric and material properties of balloons under consideration.
Small Flight-size
balloons balloons
Geometric properties
Number of lobes 16-145 290
Total height (m) 5.99 47.92
Diameter (to tendons) (m) 10.00 80.00
Total length of tendons (m) 13.11 104.88
Cutting pattern CA and CR CR
Lobe subtended angle at equator (°) 118 105
Radius of end-fittings (m) 0.29 0.70
Material properties
Young’s modulus of film (N/mm?) 138.70 214.00
Poisson’s ratio of film 0.566 0.450
Thickness of film (mm) 0.038 0.048
Coefficient of thermal expansion of 4%x10°4 4%x10°4
film
Axial stiffness of tendons (kN) 170 540
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Fig. 8. Optimization history of 10 m diameter balloon with 145 lobes for n = 55 iterations: (a) cutting pattern area; (b) buckling pressure; and (c) Mises stresses.

about 40 iterations. Furthermore, the buckling pressure converges
to a value that is nearly 300% above the value of the CR cutting pat-
tern with identical maximum film stresses. The maximum Mises
stresses as well as the change of the optimization variables during
the optimization have been plotted in Fig. 9. Note that of the six
variables 74 to vs, v =0, v; to v4 have been plotted, and »s has
been eliminate through symmetry. The major change during the
optimization occurs in the variable », that has the largest influence
on the width at the equator whereas the other three variables are
only modified by a couple of millimeters. It should also be noted
that we have chosen for this example a maximum step length
|Av| = 1 mm. However, the results presented in this paper are

based on an adaptive step length so that the necessary number
of iterations can be considerably decreased.

Fig. 10(a) shows the stress distribution in the cutting patterns of
balloons with different number of lobes before and after the opti-
mization. It should be noted that in the figure the width of each CR
cutting pattern has been scaled to the same amplitude, and the
width of the corresponding optimized (OP) pattern has been scaled
proportionally. It can be seen that the stresses in the optimized
cutting patterns are nearly uniform. Furthermore, it should be
noted that the optimized cutting patterns have a much smaller
area than the corresponding CR designs. This effect is especially
pronounced for designs with a small number of lobes. For a large
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Fig. 10. Comparison between OP and CR cutting patterns of 10 m diameter balloons at p = 500 Pa: (a) von Mises stresses; (b) shape of cutting patterns.
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number of lobes the width reduction ratio converges to a constant
value. This is illustrated in Fig. 10(b) where the scaled cutting pat-
terns are plotted together with a CR design.

Fig. 11 shows the profile of the tendons of balloons with CR and
OP cutting patterns. It is interesting to note that the optimized ten-
dons, particularly for the smaller values of n, are closer to a sphere.
Since the stresses in the membrane of a 16-lobe balloon with a CR
cutting pattern are relatively high the optimization generates a
nearly spherical balloon with an optimum ratio of surface area to
enclosed volume.

Note that the shapes of lobed balloons with increasing number
of lobes, for both CR and OP cutting patterns, converge towards an
axisymmetric, unlobed shaped that matches the equilibrium sur-
face that carries a uniform differential pressure purely with merid-
ional stress, i.e. the hoop stress is zero everywhere. This surface is
known as the isotensoid.

One reason why it is possible to create cutting patterns with
smaller areas and identical maximum membrane stresses than
conventional CR designs is because of the large strains that occur
at the equator due to the incompatibility between a flat and doubly
curved surface. See Pagitz and Pellegrino (2007) for a detailed dis-
cussion. The main advantage of a fully stressed design is illustrated
in Fig. 12, which shows that the optimized designs are much more
stable than their CA and CR counterparts.

6.2. Flight-size balloons

It has been shown for small scale balloons that optimizing the
cutting pattern can considerably increase the buckling pressure.
This section extends the investigation to flight-size balloons.
Fig. 13 shows the Mises stresses of an original and optimized cut-
ting pattern, for a flight-size balloon at p = 200 Pa. It can be seen
that, as already in the case of the small scale balloons, the Mises
stresses are nearly uniform after the optimization. Furthermore,
the width of the cutting pattern reduces considerably.

A comparison of the corresponding maximum stresses and
cutting pattern areas (A is the unstressed surface area of a given
design and As is the area of a sphere) before and after the optimi-
zation is presented in Table 2. Note that the surface area decreases
considerably, as in the previous examples. Another interesting re-
sult is that the optimized cutting pattern for a balloon where the
tendons are pre-strained during construction results in a balloon
with peic =2117 Pa and a further slight reduction of the total sur-
face area. Hence, the effect that a prestress in the tendons reduces
the buckling pressures, observed for CR designs by Pagitz and
Pellegrino (2007), is not seen in optimized cutting patterns.

Fig. 14 is a plot of the membrane stresses along the centreline of
the gore, for an 80 m diameter CR balloon and its optimized
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Fig. 12. (a) Buckling pressure versus number of lobes for 10 m diameter balloons
with CA, CR and OP cutting patterns; (b) associated mode shapes.

counterpart, at a differential pressure of p =200 Pa. Note that in
both cases the maximum Mises stress is 4 N/mm?, but for the opti-
mized cutting pattern both principal stresses are more uniform
along the arc-length. Fig. 15(a) is a plot of variation along the lobe
of the ratio between the arc-length of the lob cross-section (mea-
sured on the inflated lobe) and its cord-length. This ratio is much
smaller for the optimized cutting pattern due to the reduced width.
It is interesting to consider also the radius of the inflated lobes,
plotted in Fig. 15(b). As expected the CR cutting pattern produces
a nearly uniform radius; however, the optimized result is quite dif-
ferent. The reason for the reduction towards the equator is the high
longitudinal stresses due to the geometric incompatibility, hence
the stresses in the transverse direction have to be reduced in this
region by decreasing the radius.

Fig. 16 shows the undeformed and deformed surface areas of
balloons for CR and optimized cutting patterns together with the
maximum Mises stresses at p = 200 Pa as a function of the number
of lobes. Again, the optimized cutting patterns have a considerably
smaller surface area than the CR designs, at comparable or even
smaller maximum Mises stresses. The undeformed surface area
of some optimized balloons is even smaller than the area of an iso-
tensoid with identical volume. Note that due to the uniform stress
distribution, the pressure-induced increase in surface area of the

(b)

Fig. 11. Tendon profiles for (a) CR and (b) OP cutting patterns of 10 m diameter balloons at p = 500 Pa.
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[N/mm?]
4.0

3.2

CR , oP
' 2.4
' 0.8
0.0

Fig. 13. Mises stresses of CR and OP cutting pattern of 80 m diameter balloon at p = 200 Pa.

Comparison of cutting patterns for 80 m diameter balloons.

Sphere Isotensoid CR orP OP (g = 0.3%)
Volume (m?) 175,731 (~6mcf)
Radius (m) 34.75 40 40 40 40
Area (m?) 15,180 15,790 17,210 16,070 15,860
(A —As)/As (%) 0 41 134 5.9 45
Maximum a; (N/mm?) 72.4 oo 4.7 4.4 4.6
Maximum &, (N/mm?) 72.4 0 2.5 3.8 3.6
Maximum Mises stress (N/mm?) 724 ) 4.0 4.0 4.0
Peric (Pa) o 0 734 1953 2117

CR
— — - Longitudinal
— — - Transverse
; oP
: —__ Longitudinal
: Transverse
0 v . - v L
0 20 40 60 80 100

Tendon arc-length [m]

Fig. 14. Principal stresses along lobe centreline for CR and OP 80 m diameter balloon, at p = 200 Pa.

A Arc/Cord
1.14 S

1.12 / \
1.10 : Y
1.08 . '
1.06 / '
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1.02
1.oo0
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Tendon arc-length [m]

(a)

A R[mm]

Analytical value

400

200 >
0 20 40 60 80 100

Tendon arc-length [m]

(b)

Fig. 15. Comparison of CR and OP cutting pattern of 80 m diameter balloon at p = 200 Pa: (a) ratio between arc-length and cord-length; (b) radius.

optimized designs is proportional to the maximum membrane
stress. Another nice result is that given a maximum Mises stress
the pressurized surface area of the balloons with the smallest pos-
sible number of lobes (represented by solid dots in Fig. 16) is
roughly constant.

6.3. Thermal loading effects

The manufacturing and operational temperatures of a balloon
are different, hence thermal effects need to be taken into account.
The thermal coefficient of the tendons is considerably smaller
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[m?]
17.500-T‘T‘—‘-—‘—— - —
““TT\TTT\>CR
17.000_6.8 6.1 55 51 47 43 40 38 36 34 32
2
Omax [N/mm?] — — Stressed film
— Unstressed film
16.500 | e _ e _
Tt - - L~ T - Optimized for
16.000 - \x“ - Omax=4 N/mm?
Isotensoid Optimized for
15.500 | (unstressed) Omax=6 N/mm?
15.000 Sphere (unstressed) | )
160 180 200 220 240 260 280 300 320 340 360 380

Number of lobes

Fig. 16. Unstressed/stressed surface areas of CR and OP 80 m diameter balloons for p = 200 Pa, as a function of number of lobes.

than that of the membrane and hence will be neglected, for
simplicity.

A typical temperature to which a balloon is exposed during its
mission is ~—30 °C. Assuming a mean temperature during manu-
facturing of 20 °C the overall temperature change is AT = —50 °C.
The effect on the membrane can be modeled by assuming an iso-
tropic prestress of magnitude

AToE
1-v’

r= (24)
where AT is the change of temperature and « is the linear coeffi-
cient of thermal expansion. This equation can be derived by com-
puting the stresses that result in a fixed membrane, of any shape,
from the thermal strains

& =& = ATua. (25)
A new optimized cutting pattern that allows for both a pressure
loading of p = 200 Pa and a thermal loading of AT = —50 °C has been
obtained by running the optimization algorithm. Fig. 17 shows the
stress distribution along the longitudinal centreline for both the CR
lobe and the optimized lobe. It should be noted that, in both cases,
the maximum Mises stress is 8 N/mm?. It can be seen that, for the
optimized cutting pattern, both principal stresses are more uniform
along the arc-length. Again, it is found that given the number of
lobes it is not possible to arbitrarily reduce the maximum Mises
stress in the membrane simply by increasing the width of the lobe
cutting pattern. As in the case of the 10 m diameter balloons, the

reason for this is the stress peak at the equator, which has been fur-
ther increased by the thermal effects.

Fig. 18 compares the shapes of the CR and OP cutting patterns
when loaded by p =200 Pa and AT equal to either O or =—50 °C.
In Fig. 18(a) it can be seen that both cutting patterns become flat-
ter, i.e. the arc/cord-length becomes smaller, when the thermal
loading is considered. It can also be seen that the OP pattern leads
to a lobe up to 11% flatter although the peak stress is practically the
same. Comparing Fig. 18(a) with Fig. 15(a) we see that the cutting
pattern optimized for the thermal as well as pressure loading has
larger arc/cord-length near the apex of the balloon.

Fig. 19 shows the deformed and undeformed surface areas of
balloons with CR and optimized cutting patterns, together with
the maximum Mises stresses that occur for p=200Pa and
AT = —50 °C. Again, it is found that the optimized cutting patterns
have a considerably smaller surface area than the conventional CR
designs, at comparable or even smaller maximum Mises stresses.
Due to the thermal effects, this time the inflated surface area is,
depending on the number of lobes and stress constraint, smaller
than the undeformed area. Therefore, in the plot the dotted lines
lie below the solid lines, but again the change of surface area is re-
lated to the maximum allowed membrane stresses. Furthermore,
the pressurized surface area, for a given maximum Mises stress
and the smallest possible number of lobes, is again roughly
constant.

Finally, Fig. 20 compares the stress distribution in CR and
optimized designs, with and without thermal loading, at a differ-
ential pressure of p =200 Pa. Note that the optimized design re-

CR

— — - Longitudinal

— — - Transverse

oP

—— Longitudinal
Transverse

40 60
Tendon arc-length [m]

20

80

Fig. 17. Principal stresses in longitudinal direction of CR and OP 80 m diameter balloon at 200 Pa and a membrane temperature change of AT=-50 °C.



1506
Arc/Cord - CR
1.14 SN ___T=0°C
112 K Y Somax=4.0 N/mm?
. S * \ T=-50 °C
1.10 KA "7 Gmax=10.2 N/mm?
1 AN
1.08 L \\ oP
,I 1 v T=0°C
1.06 R W T omaxc4.2 N/mm?
v ! v
1.04 A | T=s00c
1.02 - N Omax=8.0 N/mm?
vl N el
1.00 >
0 20 40 60 80 100
Tendon arc-length [m]
(a)
2400
1800
1200
600
0 -
0 20 40 60 80 100
Tendon arc-length [m]
(b)

Fig. 18. Comparison of CR and OP cutting pattern for 80 m diameter balloon at
p =200 Pa: (a) ratio between arc-length and cord-length; (b) radius.
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sults in a relatively uniform stress distribution, both with and
without thermal loading. Furthermore, the maximum stress for
the thermal loading is smaller than that observed for a standard
CR design.

7. Conclusion

It has been shown that the stability of pumpkin balloons can be
considerably increased by optimizing the lobe cutting patterns.
The maximum stability is reached if the surface area of the opti-
mized lobe is minimized under a given stress constraint which re-
sults in a fully stressed design. One of the striking results is that the
unstressed surface area is in some cases smaller than the area of an
unlobed, axisymmetric surface (isotensoid). This suggests a poten-
tial way of eliminating the deployment instability problems that
have affected previous lobed super-pressure balloons. Current
experimental investigations of this design paradigm involving
pumpkin balloons with diameters of 4 m, 27 m and 83 m, are very
promising since no instabilities occurred during inflation (Cathey
and Pierce, 2007; Hand, 2009; Flynn, 2009).

Throughout this paper it has been assumed that the balloons
possess a horizontal symmetry plane at the buckling pressure. This
assumption is reasonable since gravity effects on a symmetrically
designed balloon are small in comparison to the effects of the crit-
ical buckling pressure, but it is by no means essential for the ap-
proach presented in this paper. Actual super-pressure balloons
often use a reinforcing cap near the top apex to carry the stresses
induced by the launch. It would be straightforward to extend our
approach by removing the assumption of a symmetric cutting
pattern.

— — Stressed film
—— Unstressed film

Optimized for
Omax=7N/mm?

" Optimized for

Omax=8N/mm?

[m?]
Gmax [N/mm?]
17.500
1.7 113 11.0 107 105 103 101 100 98 97

F — | — —\ | | | | | | |
17.000 | T ““——L—J——‘——L—i——‘—_>CR
16.500
16.000 - -

Isotensoid
15.500 | (unstressed)
15.000 Sphere (unstressed) ) ) ) ) ) ) )

7160 180 200 220 240 260 280 300 320 340 360 380

Fig. 19. Unstressed/stressed surface areas of CR and OP balloons for p = 200 Pa and AT = —50 °C, as a function of number of lobes.

Number of lobes

Fig. 20. Stresses in CR and OP cutting patterns for p =200 Pa and AT =0, —50 °C.
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