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Micromechanical Modeling of Deployment and Shape

Recovery of Thin-walled Viscoelastic Composite Space

Structures

Kawai Kwok∗ and Sergio Pellegrino†

California Institute of Technology, Pasadena, CA 91125

The first part of the paper presents an experimental study of the deployment and shape
recovery of composite tape-springs after stowage at an elevated temperature. It is found
that tape-springs deploy quickly and with a slight overshoot, but complete recovery takes
place asymptotically over time. Stowage has the effect of slowing down both the short-
term deployment and long-term shape recovery. The second part of the paper presents
a micromechanical finite element homogenization scheme to determine the effective vis-
coelastic properties of woven composite laminas. This solution scheme is employed in
numerical simulations of deployment and shape recovery of composite tape-springs. The
proposed micromechanical model predicts both the short-term deployment and long-term
shape recovery response with close agreement to the experimental measurements.

I. Introduction and Background

Deployable structures made of thin composite materials present a promising solution for spacecraft ap-
plications because of their high thermal stability and specific stiffness. Notable examples of composite
deployable structures include the Springback Antennas on the Mobile Satellite System (MSAT)1 and the
Flattenable Foldable Tubes, Fig. 1, forming the Mars Advanced Radar for Subsurface and Ionospheric
Sounding (MARSIS) antenna on the Mars Express Spacecraft.2

A common issue in designing composite deployable structures is the inherent creep behavior of the polymer
matrix, which often limits the amount of deployment force and the shape precision that can be achieved.
As deployable structures are routinely stowed for extended periods and subject to varying temperature
environments, realistic predictions on, for instance, the loss in deployment force during stowage and the
time required for a complete shape recovery are required for robust designs. A detail material model that
accurately computes viscoelastic composite properties can effectively guide the design process of composite
deployable structures.

Viscoelastic behavior of deployable structures has started to be addressed only recently. While exper-
imental results on recovery time and vibration characteristics of composite tubes after stowage have been
reported,3,4 a general method of analysis is lacking. A more fundamental study of viscoelastic deployable
structures was undertaken by Kwok and Pellegrino, who employed a linear viscoelastic constitutive model to
study the folding, stowage, and deployment of beams5 and tape-springs6 as a time-continuous event. These
previous studies were limited to homogeneous viscoelastic materials.

Micromechanical material modeling of viscoelastic composites is more well studied. Many analytical mod-
els have been developed for determining viscoelastic moduli of unidirectional composites from constituent
fiber and matrix properties. The underlying approach is to extend existing micromechanical models for elas-
tic composites to viscoelastic composites by exploiting the elastic-viscoelastic correspondence principle.7,8

Viscoelastic moduli have also been obtained numerically through direct finite element analysis9 assuming
a uniform distribution of fibers. For woven composites, Govindarajan et al.10 and Shrotriya and Sottos11

proposed analytical models based on simplified weave geometries, but the flexural deformation of the fiber
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tows was not accounted for and was believed to be the source of significant discrepancy between predicted
and measured viscoelastic responses. Predictions were improved when two-dimensional11 and three- dimen-
sional12 finite element based methods were utilized to incorporate the influence of weave geometry, but still
did not match the experimental results.

The present investigation bridges the gap between existing micromechanical modeling techniques for
viscoelastic composite materials and global analysis of large deployable structures. We present a detailed
study of a particular structure that poses the general challenges typical of thin-walled deployable structures
with viscoelastic properties and then demonstrate the modeling techniques for predicting its response. The
particular structure selected is a composite tape-spring made of epoxy matrix reinforced with plain weave
carbon fabric. Tape-springs are thin shells with curved section, typically of uniform curvature and subtending
an angle smaller than 180◦, Fig. 2. This structural form can be folded by forming a local buckle and
is therefore routinely employed as self-deployable hinges on spacecrafts. In the current study, carefully
controlled experiments on stowage, deployment, and shape recovery of composite tape-springs are presented
along with numerical predictions using a finite element based micromechanical model for thin composites
consisting of linear viscoelastic matrix and linear elastic fibers.

The paper is arranged as follows. Section II describes the experimental procedures and presents the
results of deployment and shape recovery experiments. Section III presents the the finite-element based
homogenization scheme for viscoelastic behavior of thin composites. The model is employed in Section IV to
simulate the viscoelastic response of tape-springs. The predicted deployment and shape recovery response
are compared with measured responses in Section V. Section VI discusses the findings of the study and
concludes the paper.

Figure 1: Flattenable foldable tubes used on MARSIS (Astro Aerospace).

II. Deployment and Shape Recovery Experiments

To assess the deployment and shape recovery behavior after stowage, experiments were carried out on
composite tape-springs with a diameter of 38 mm, a thickness of 0.125 mm, a length of 596 mm, and an
areal density of 131.2 g/m2. The tape-springs were made of ±45 plain-weave fabric with 1 k tows of T300
carbon fibers impregnated with PMT-F4 epoxy resin. They were fabricated by laying the resin-impregnated
fabric on a steel mandrel, wrapping the assembly in release films, and cured under vacuum for 2 h at 120◦C
and 400 kPa.

An important feature of viscoelastic behavior in polymers is the temperature dependence of the relaxation
time. Polymers behave almost elastically at temperatures well below the glass transition temperature Tg.
The change of material response over time accelerates as the temperature moves towards Tg. Since the glass
transition temperature for PMT-F4 is 133◦C, an unrealistically long stowage time would be required before
noticeable viscoelastic response can be observed at room temperature. Tape-springs were therefore stowed
at a higher temperature in the experiments to increase the rate of relaxation.

Each test consisted of stowing the tape-spring for a given length of time at a specified temperature,
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(a) (b)(a)

Figure 2: Composite tape-spring: (a) deployed and (b) folded.

deploying it, and measuring the shape change over time after deployment. Experiments were performed inside
a thermal chamber that stabilizes the temperature of the specimens within 0.1◦C over the test period. The
test specimen was clamped on the bottom and positioned vertically on a granite table to reduce background
vibration. Thermocouples were placed at three different locations in the vicinity of the specimen to monitor
the temperature uniformity, which can be controlled within ±0.5◦C. In previous studies, it was discovered
that the behavior of viscoelastic tape-springs is characterized by a short-term deployment phase followed by a
long-term recovery phase. Tape-springs undergo large displacements within a short period during deployment
and exhibit infinitesimal deformations over extended periods during shape recovery. Two displacement
measurement schemes were therefore employed to probe the behavior under such drastically different length
and time scales. The deployed angle was extracted from images taken using a high resolution camcorder
with a frame rate of 30 fps. Full field displacements of the fold region in the tape-spring were measured
using a three dimensional digital image correlation system during the recovery phase. The system consists
of two Point Grey Research CCD cameras with a resolution of 2448 x 2048 and a pixel size of 3.45 µm x
3.45 µm. The cameras were positioned to capture a series of images of the inner surface of the tape-spring
throughout the test. The experimental configuration is shown in Fig. 3.

The test procedure proceeded as follows. The chamber was first heated and stabilized at 60◦C. The
chamber was then opened for manually stowing the tape-spring to an angle of 90◦. To minimize the distur-
bance of the thermal environment, the chamber was kept opened for only a short time. The specimen was
stowed for a period of 8 h and then deployed. Displacements were measured continuously over time from the
instant of deployment to 8 h after deployment. The same experiment was repeated at 23◦C as a reference
for comparison.

As noted previously, the behavior of tape-springs after stowage can be divided into two stages, namely
deployment and recovery. Fig. 4 plots the measured deployed angle over time for both temperatures and
Fig. 5 shows a series of intermediate shapes of the tape-spring during deployment at 60◦C. In both cases,
the tape-spring passes through the undeformed configuration and overshoots by a small amount, after which
the deployed angle gradually tends towards zero. It is noted in Fig. 5 that the fold location is constant
throughout deployment. The same behavior was observed in polymer tape-springs6 and is different from
that of metallic tape-springs in which deployment is accompanied by the fold traveling towards the fixed
end.13 The effect of stowage at two different temperatures is apparent in Fig. 4. At 23◦C, the maximum
overshoot occurred at 0.4 s with a magnitude of -1.4◦. At 60◦C, the overshoot was delayed to 0.65 s with a
larger angle of -2.5◦.

Fig. 6 shows the measured out-of-plane displacement field in the fold region of the tape-spring super-
imposed on images of the specimen over a longer time span at 60◦C. The displacement field measurements
were obtained from analyzing images of the deformed specimens with the Vic-3D digital image correlation
software. The principle of analysis is the following. A reference image is first chosen and divided into small
square regions. The software then matches these regions between any subsequent image and the reference
image based on pattern recognition algorithms and determine the movements of the regions between the two
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images. The result is then a displacement field for each image relative to the reference. To illustrate the
small movements during recovery, the image taken at the instant of maximum overshoot was chosen to be
the reference. As shown in Fig. 6, an out-of-plane displacement of about 3 mm was recorded over 5743 s
(1.6 h). This indicates that the cross-sectional shape of the tape-spring was slowly changing over a long
period after deployment, even though the tape-spring had nearly reached the undeformed configuration in
about 1 s. If the tape-spring had been made of a time-independent material, the cross section would have
fully recovered and arrived at the fully deployed configuration in a few seconds.

The presented experimental results demonstrate that stowage has the effect of slowing down deployment
and shape recovery in viscoelastic composite structures.

Specimen

Thermocouples

Thermal 

chamber

Digital image 

correlation system 

Figure 3: Experimental configuration.

0 0.2 0.4 0.6 0.8 1 1.2
−10

0

10

20

30

40

50

60

70

80

90

t [s]

θ
 [d
eg
]

 

 

60°C

23°C

Figure 4: Measured deployed angle vs. time.
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Figure 5: Snapshots at 0 s, 0.13 s, 0.26 s, 0.39 s, 0.52 s, 0.65 s, 0.78 s, 0.91 s, and 1.04 s of deployment
sequence.
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Figure 6: Measured out-of-plane displacements of the fold region relative to the configuration of maximum
overshoot: (a) at overshoot (reference), (b) after 50 s, and (c) after 5743 s.
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III. Micromechanical Modeling of Viscoelastic Composites

The effective viscoelastic response of a woven composite lamina consisting of elastic carbon fibers embed-
ded in viscoelastic epoxy matrix depends on factors such as the matrix relaxation moduli, weave geometry
and tow sizes. To model material and geometric effects at lower length scales, a finite element homogeniza-
tion approach is proposed in the present study. In particular, homogenization of the viscoelastic properties
is carried out both at the tow level and at the lamina level using the properties of its constituents.

A. Constituent Properties

The epoxy matrix is treated as an isotropic viscoelastic solid and its time and temperature dependent
mechanical properties are modeled using a Prony series. The Prony series representation of the relaxation
modulus is written as

E(t) = E∞ +
n∑

i=1

Eie
−(t/ρi), (1)

where t is time, E∞ is the long term modulus, Ei are the Prony coefficients, and ρi are the relaxation times.
The effects of temperature on the material behavior can be treated in the same manner through the

time-temperature superposition principle,14 which states that the modulus at temperature T and time t is
the same as the modulus at a reference temperature T0 and at a reduced time t′,

E(t, T ) = E(t′, T0), t′ =
t

aT (T )
, (2)

where aT (T ) is the temperature shift factor. Thus, one can relate the viscoelastic behavior at one temperature
to that at another temperature by a shift in the time scale. When the temperature varies with time, the
reduced time is obtained by integration,

t′(t) =

∫ t

0

dτ

aT (T (τ))
. (3)

Based on this principle, a master curve can be constructed at an arbitrary reference temperature by
shifting the relaxation moduli at any other temperatures to the reference temperature. On a log-log plot of
relaxation versus time, this is equivalent to a horizontal shift with a distance of log aT (T ). The resulting
master curve is a plot of relaxation modulus on the reduced time scale and describes both the time and
temperature dependence of the material behavior.

A commonly used relation for the temperature shift factor of polymers is the Williams-Landel-Ferry
(WLF) equation,15

log aT = − C1(T − T0)

C2 + (T − T0)
, (4)

in which C1 and C2 are material constants that depend on the particular polymer and the logarithm is of
base ten.

The master curve for PMT-F4 epoxy matrix is obtained via creep tests and is shown in Fig. 7. The
corresponding parameters that describe the Prony series representation of the relaxation modulus are sum-
marized in Table 1. The Poisson’s ratio of the matrix is assumed to be constant over time and is determined
to be 0.33. The material constants C1 and C2 were found by fitting the temperature shift data to the WLF
equation, Eq. (4), and the values obtained for the reference temperature T0 = 40◦C were

C1 = 28.3816 and C2 = 93.291

Carbon fibers are regarded as transversely isotropic elastic solid. The mechanical properties of T300
fibers are listed in Table 2.
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Figure 7: Master curve of PMT-F4 at a reference temperature of T = 40◦C.

i Ei [MPa] ρi [s]

∞ 1000 —–

1 224.1 1.0e+ 3

2 450.8 1.0e+ 5

3 406.1 1.0e+ 6

4 392.7 1.0e+ 7

5 810.4 1.0e+ 8

6 203.7 1.0e+ 9

7 1486.0 1.0e+ 10

Table 1: Relaxation times and relaxation coefficients for PMT-F4.

Properties Value

E1 [MPa] 233, 000

E2 [MPa] 23, 100

G12 [MPa] 8, 963

ν12 0.2

ν23 0.4

Table 2: Elastic properties of T300 carbon fibers.
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B. Viscoelastic Behavior of Tows

The viscoelastic properties of a straight and transversely isotropic fiber tow were determined from the
constituent properties by direct finite element analysis of a unit cell. The cross section of a representative
tow is shown in Fig. 8, from which the fiber diameter and volume fraction were determined to be df = 7.0 µm
and vf = 0.64 respectively. The unit cell model is composed of a single fiber surrounded by matrix. This
implicitly assumes square array fiber arrangement. Hexagonal array and random array fiber arrangements
were also implemented, but the difference between these configurations was found to be insignificant at this
volume fraction.

The particular finite element model shown in Fig. 9 is a cube with edge length of ℓ = 7.7 µm and is
composed of 16800 8-node brick and 800 6-node triangular prism elements. The material properties defined
in Sec. A were assigned to the fiber and matrix elements accordingly. Periodic displacement boundary
conditions are enforced between each pair of opposite boundary faces of the unit cell through constraint
equations in terms of normal and shear strains of a homogeneous continuum solid:

u(
ℓ

2
, y, z)− u(− ℓ

2
, y, z) = ϵxxℓ (5)

v(
ℓ

2
, y, z)− v(− ℓ

2
, y, z) = ϵxyℓ (6)

w(
ℓ

2
, y, z)− w(− ℓ

2
, y, z) = ϵxzℓ (7)

u(x,
ℓ

2
, z)− u(x,− ℓ

2
, z) = ϵyxℓ (8)

v(x,
ℓ

2
, z)− v(x,− ℓ

2
, z) = ϵyyℓ (9)

w(x,
ℓ

2
, z)− w(x,− ℓ

2
, z) = ϵyzℓ (10)

u(x, y,
ℓ

2
)− u(x, y,− ℓ

2
) = ϵzxℓ (11)

v(x, y,
ℓ

2
)− v(x, y,− ℓ

2
) = ϵzyℓ (12)

w(x, y,
ℓ

2
)− w(x, y,− ℓ

2
) = ϵzzℓ, (13)

where u, v, and w denote displacements in the x, y, and z directions respectively, and ϵ denotes strain.
The constitutive equation for a homogenized transversely isotropic solid with fibers aligned with the

1-axis is written as

[σ(t)] =

∫ t

0

(
[C(t− τ)] [ϵ̇(τ)]

)
dτ, (14)

where C(t) is written as

C(t) =



C11(t) C12(t) C12(t) 0 0 0

C12(t) C22(t) C23(t) 0 0 0

C12(t) C23(t) C22(t) 0 0 0

0 0 0 C44(t) 0 0

0 0 0 0 C55(t) 0

0 0 0 0 0 C55(t)


. (15)

Only four separate analyses are needed to compute the independent time-varying functions in C(t)
because each analysis provides more than one function and the homogenized solid has a plane of isotropy.
The analyses were carried out in Abaqus/Standard. In each analysis, a unit amplitude of one of the six strain
variables in the form of a step function was applied to the unit cell and the corresponding time-dependent
stresses were obtained. Each entry in the C(t) matrix was modeled by a Prony series having the same
relaxation times as the matrix and was computed by invoking the virtual work principle. The computed
results are plotted with respect to time in Fig. 10.
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Figure 8: Cross section of a tow.
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Figure 9: Finite element model for a unidirectional fiber tow unit cell.
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Figure 10: Viscoelastic properties of a unidirectional fiber tow.

C. Viscoelastic Properties of Laminas

A plain-weave composite lamina is modeled as a Kirchhoff plate consisting of viscoelastic tows and matrix.
The cross section geometry of the lamina is shown in Fig. 11. It has a weave length of L = 3.5 mm, a
maximum tow thickness of h = 0.063 mm, a tow width of w = 1.05 mm, and an overall fiber volume fraction
of νf = 0.52. The lamina unit cell model is composed of four tows defined by sinusoidal functions and pure
matrix that fills the gaps between the tows, as shown in Fig. 12. Each tow is made of 960 brick elements
and the matrix is made up of 1920 brick and 640 triangular prism elements. The material properties for the
tows were defined by the relaxation moduli obtained in Sec. B through a user defined material subroutine
(UMAT) in Abaqus/Standard. To impose the Kirchhoff constraint, nodes lying on the boundary faces of
the unit cell are tied to nodes in the mid-plane through rigid connections. The displacements and rotations
of each mid-plane node on one face are paired to the corresponding node on the opposite face by constraint
equations that impose periodic boundary conditions in terms of mid-plane strains and out-of-plane curvatures
of a homogenized Kirchhoff plate. The kinematic relations are

ϵx =
∂u

∂x
(16)

ϵy =
∂v

∂y
(17)

γxy =
∂u

∂y
+

∂v

∂x
(18)

κx = −∂2w

∂x2
(19)

κy = −∂2w

∂y2
(20)

κxy = −2
∂2w

∂x∂y
. (21)

The displacement constraints are written as

u(
L

2
, y)− u(−L

2
, y) = ϵxL (22)
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v(
L

2
, y)− v(−L

2
, y) =

1

2
γxyL (23)

w(
L

2
, y)− w(−L

2
, y) = −1

2
κxyyL (24)

θx(
L

2
, y)− θx(−

L

2
, y) = −1

2
κxyL (25)

θy(
L

2
, y)− θy(−

L

2
, y) = −κyL (26)

θz(
L

2
, y)− θz(−

L

2
, y) = 0 (27)

u(x,
L

2
)− u(x,−L

2
) =

1

2
γxyL (28)

v(x,
L

2
)− v(x,−L

2
) = ϵyL (29)

w(x,
L

2
)− w(x,−L

2
) = −1

2
κxyxL (30)

θx(x,
L

2
)− θx(x,−

L

2
) = κxL (31)

θy(x,
L

2
)− θy(x,−

L

2
) =

1

2
κxyL (32)

θz(x,
L

2
)− θz(x,−

L

2
) = 0, (33)

where θ are rotations and the subscripts denote the rotation directions.
The constitutive relationship for the homogenized plate is written as

[N(t)] =

∫ t

0

(
[A(t− τ)] [ϵ̇(τ)] + [B(t− τ)] [κ̇(τ)]

)
dτ, (34)

[M(t)] =

∫ t

0

(
[B(t− τ)] [ϵ̇(τ)] + [D(t− τ)] [κ̇(τ)]

)
dτ, (35)

where the matrices [N ] and [M ] denote force and moment resultants; [A], [B] and [D] are the in-plane
stiffness, stretching-bending coupling, and bending stiffness matrices. For a plain-weave lamina, the ABD
stiffness matrix is written as

ABD(t) =



A11(t) A12(t) 0 0 0 0

A12(t) A11(t) 0 0 0 0

0 0 A66(t) 0 0 0

0 0 0 D11(t) D12(t) 0

0 0 0 D12(t) D11(t) 0

0 0 0 0 0 D66(t)


. (36)

Similar to the homogenization procedure conducted for the fiber tows, each entry in the ABD(t) matrix
was modeled by a Prony series having the same relaxation times as the matrix. Six separate analyses, each
corresponding to a unit amplitude of the six deformation variables, were carried out in Abaqus/Standard to
determine all the entries. The computed results are plotted with respect to time in Fig. 13 and Fig. 14.

Figure 11: Cross section geometry of a plain-weave lamina.
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Figure 12: Finite element model for a plain-weave lamina unit cell: (a) fiber tows only, and (b) fiber tows
filled with matrix.
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Figure 13: Viscoelastic in-plane stiffnesses of a plain-weave lamina.
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Figure 14: Viscoelastic bending stiffnesses of a plain-weave lamina.

IV. Finite Element Analysis of Tape-springs

The deployment and recovery responses of composite tape-springs, studied experimentally in Sec. II, were
simulated in Abaqus/Standard using a model with 2268 quadrilateral shell elements (S4) with a maximum
dimension of 3.85 mm. The viscoelastic stiffness properties of the shell elements were defined by assigning
the ABD matrix obtained in Sec. C via user defined shell section subroutine (UGENS). The temperature
shift factor of the shell elements was taken to be the same as the that of the matrix.

The boundary conditions were applied as follows. The bottom end section was held fixed throughout
the analysis. To reach the stowed configuration, the cross section at the fold region was first flattened by
applying equal and opposite rotation on the two edge nodes. At the same time, a rotation of 90◦ was applied
to the middle node of the top cross section of the tape-spring. The prescribed rotations on the edge nodes
were then removed and the tape-spring was kept at the stowed configuration for 8 h. The boundary condition
on the top node was released instantaneously at the end of the stowage step. The analysis was quasi-static
for the folding and stowage steps, and was switched to dynamic after the removal of the top node constraint.
The deployment process was simulated for 8 h. Gravity loading was imposed throughout the simulation.

V. Results Comparison

Fig. 15 compares the deployed angle vs. time profile during deployment between experimental measure-
ments and finite element simulations for T = 60◦. Overall, the simulations show good agreement with the
observed response. The overshoot angle is overpredicted by about 1.5◦. The predicted response also shows
oscillations in deployed angle. This is due to the relative large time steps used in the present simulations to
reduce computational time. Nonetheless, the predicted and measured mean response are in close agreement.
The measured and predicted deformed shapes of the fold during long-term recovery are compared in Fig. 16,
which shows a reasonable match between the out-of-plane displacement distribution.

VI. Conclusions

The present paper is the first systematic experimental and finite element modeling study for deployment
and shape recovery behavior of thin composite space structures after stowage. It has been found that a
tape-spring deploys quickly and overshoots the deployed configuration by a small amount, and then moves
slowly towards its final reference configuration. The full shape recovery from the overshoot position to the
fully deployed state takes place in an asymptotic manner. Stowing a composite tape-spring has the effect of
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Figure 16: Comparison of recovery of fold region: (a) out-of-plane displacements measured 5 s after overshoot
(left) and 35600 s after overshoot (right), (b) predicted displacements 5 s after overshoot (left) and 35600 s
after overshoot (right).
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extending the time required for deployment and shape recovery.
A micromechanical finite element modeling framework for determining the homogenized viscoelastic prop-

erties of woven composite laminas has been demonstrated to be capable of capturing the temperature and
time dependent behavior of thin composite structures. Both the short-term deployment behavior and the
long term recovery of the localized fold are well predicted by simulations using the developed micromechanical
model.
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