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Abstract 

A data-driven computational framework is applied for the design of optimal ultra-thin Triangular 
Rollable and Collapsible (TRAC) carbon fiber booms. High-fidelity computational analyses of a large 
number of geometries are used to build a database. This database is then analyzed by machine learning 
to construct design charts that are shown to effectively guide the design of the ultra-thin deployable 
structure. The computational strategy discussed herein is general and can be applied to different 
problems in structural and materials design, with the potential of finding relevant designs within high-
dimensional spaces. 
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1. Introduction 
The recent resurgence of interest in buckling of slender structures is well documented [1,2]. This trend 
can be largely explained by the advent of new manufacturing techniques [3] that simplified the 
fabrication of complex shapes, as well as improved modeling capabilities [4] that leverage the 
extensive theoretical understanding of buckling [5]. 

In this article the general data-driven computational framework recently developed in [6] is extended 
to allow for design and analysis of structures subjected to buckling. This procedure is illustrated by 
applying it to ultra-thin deployable composite shell structures. The procedure is applicable to other 
structures (and materials) with different geometries, properties and loading conditions. 

 

Figure 1: Schematic of TRAC boom architecture (modified from [7]). 
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Figure 1 shows a schematic of the structure used to illustrate the computational framework henceforth: 
a triangular rollable and collapsible (TRAC) boom [7] and its packaging behavior. The geometry of 
this structure is remarkably simple: two tape springs bonded on one end forming a flat region (web) 
with twice the thickness of the flanges. When packaged, the TRAC boom is flattened (flat cross-
section) and rolled around a hub of radius R. The deployed geometry is then fully characterized by the 
TRAC boom length L and its cross-section parameters: web height h (thickness 2t), flange radius r, 
angle θ and thickness t. 

The transverse strain caused by flattening the TRAC boom for subsequent rolling it can be predicted 
as follows [8]: 

 
r
t

flat 2
=ε  (1) 

where typically a strain above 1% would be considered excessive for composite materials. The strain 
caused by rolling the flattened structure around a hub could also be included, although this strain is 
usually not the limiting factor since the radius of the hub R used to roll the TRAC booms is large. 

The structures were subjected to two separate boundary conditions: bending moment around X leading 
to compression at the outer edge of the web; and bending moment around Y – see Figure 1. The 
buckling modes obtained for these two loading conditions occur in distinct regions. When bending 
around X the web is in compression, while bending around Y causes compression of one flange. Once 
the buckling load is reached the regions under compression buckle. 

The paper is outlined as follows. Section 2 summarizes the data-driven computational framework. 
Section 3 provides the results obtained from the application of the framework to design TRAC booms 
with improved buckling behavior. Section 4 presents the conclusions of this work and discusses future 
directions. 

 

2. Data driven computational framework 
The data-driven computational framework developed in [6] conjugates three steps in order to model 
the relationship between inputs and quantities of interest for materials and structures: 1) Design of 
Experiments (DoE); 2) computational analyses; and 3) machine learning. The reader is referred to the 
original publication [6] for a detailed discussion of these steps. The framework is summarized in 
Figure 2 for structural applications. 

The first step (DoE) pertains the sampling of the design/analysis space without a priori knowledge of 
the relationship between the input variables and the output quantities of interest. The second step 
concerns the computational analysis of the problem of interest, i.e. predictions of the quantities of 
interest of the structure for each input point. This leads to the creation of a database with the quantities 
of interest for each input point, from which the third step – machine learning – can be conducted to 
learn the relationship between the inputs and outputs. This learning process through artificial 
intelligence can then be used to create continuous design charts for each quantity of interest. 

A particular challenge when using machine learning to establish the relationship between the design 
inputs and outputs is the need to obtain a sufficiently large database in order to achieve a certain 
predictive accuracy. The size of the database depends on multiple factors, namely on the choice of 
methods for each of the three steps of the framework as well as the specific process being analyzed. In 
mechanics of materials and structures the typical bottleneck is the computational efficiency of the 
second step – computational analysis of each input point. Here the focus is on nonlinear buckling of 
deployable structures, where the computational analyses can be completed within reasonable time 
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(approximately 96 CPU-hours) using the finite element method, without the need for considering 
reduced order models [9, 10, 11, 12]. 

 

2. Computational Analyses Design 
Samples

Response 
Database

New Model or 
Design

1. Inputs

IxEcomputer simulations

Predict quantities of interest (QoI) via the 
finite element method

I (=2) Discrete Input points Design of Experiments (DoE) with Epoints

IxEsampling points

Each point samples a set of 
continuous variables.
Example:
• Geometric parameters

Predict Quantity 
of interest

Influence of design 
on response

Refine 
sampling

DoE point j

Discrete 
Input 

point 1

Discrete 
Input 

point 2

3. Machine Learning

Each point includes a set of 
discrete variables.
Example:
• Point 1: Loading condition 1
• Point 2: Loading condition 2

Point E:
height=8mm, angle=20o

Point  1:
height=6mm, angle=190o

 

Figure 2: Data-driven framework applied to structural modeling and design (modified from [6]). 

 

3. Design of ultra-thin TRAC booms for improved buckling behavior 
The TRAC booms’ material is considered to be a composite laminate with stacking sequence [ ]Soo 90,0  
and nominal post-cure thickness t of 71 µm, where the four composite plies are stacked from a 
17GSM unidirectional tape supplied by North Thin Ply Technology (T800 fibers and ThinPreg 
120EPHTg-402 epoxy resin). Since the material does not change in this study, the thickness t of the 
TRAC boom cross-section is kept constant. The total length L is 504 mm of the structure is also 
constant, as well as the volume V of 1963 mm3 in order to establish a fair comparison between the 
different cross-sections. These values coincide with preliminary experiments of a specific geometry of 
this structure reported in [13], where the nominal cross-section parameters were r=10.6 mm, θ=105o, 
and h=8 mm. Note that each geometry in the study described herein is fully characterized by three 
cross-section parameters r, θ, and h. However, since the volume (mass) of the structures is kept 
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constant only two of these parameters remain independent (e.g. θ and h) due to the following 
constraint: 

 
tL
thLVr

θ2
2−

=  (2) 

With V≈1963 mm3, t=71 µm, and L=504 mm, while the two design descriptors θ (in radians) and h 
assume different values for different cross-sections. The DoE for this problem follows from defining 
the bounds for θ and h: 

 [ ]mmh 16,2=    ,   [ ]oo 315,10=θ  (3) 

As proposed in [6] the DoE can be efficiently performed by a Sobol sequence [14] for general n-
dimensional spaces. This method produces a nonuniform space-filling design where different 
hyperplane projections do not lead to coincident points – properties that have been shown to facilitate 
the machine learning process [6]. Figure 3 presents the 1,000 DoE points obtained from a random 
Sobol sequence of the two design parameters used in the investigation of the influence of the structure 
cross-section on its initial buckling behavior. The solid red circles correspond to the first 20 points of 
the Sobol sequence used, demonstrating that this is a nonuniform space-filling design that leads to 
successive refinements of the space with increasing number of points. 

 

Figure 3: Design of Experiments to determine the influence of the TRAC boom geometries on the initial 
buckling behavior of the ultra-thin composite structure. The solid red circles correspond to the first 20 points of 
the Sobol sequence and are labeled with the corresponding sequence number. The black dots correspond to the 

remaining 880 points, and the last 100 points are shown as blue circumferential markers. 

The subsequent step in the data-driven framework after defining the DoE is the computational analysis 
of each DoE point. The structures were subjected to two separate boundary conditions: bending 
moment around X leading to compression at the outer edge of the web; and bending moment around Y 
– see Figure 1. These boundary conditions correspond to the two “Discrete Input points” in Box 2 of 
Figure 2, such that the response of all the different geometries defined by the DoE points shown in 
Figure 3 are analyzed for each boundary condition (2 in this case). Geometric variations of the 
structure are expected to lead to competing effects for these two boundary conditions. For example, 
adding/removing material in the web has significant impact on the bending stiffness and buckling of 
the structure for bending around X, but less impact for bending around Y because the web is in the 
neutral plane in this case. Note, however, that this influence is less intuitive when considering that the 
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structures have constant volume, because the material that is added in the web needs to be respectively 
removed in the flanges, which alters the bending stiffness and local curvature of the structure. The 
actual influence of r, θ, and h is not trivial to predict analytically due to the fact that the structures are 
ultra-thin, leading to localized buckling modes instead of global modes. 

The following procedure is automated for predicting the first bifurcation point of structures 
undergoing nonlinear buckling: 

1. Linear bifurcation analysis of the undeformed configuration of the structure. This provides an 
initial prediction for the first bifurcation point and buckling modes; 

2. Static analysis under displacement control without stabilization until the simulation stops or 
the previously determined bifurcation point is reached; 

3. Sequential linear bifurcation analyses starting from the last available increment of the static 
analysis until reaching an increment where the bifurcation point can be predicted, i.e. an 
increment where the structure is not on the postbuckling regime but where it is close to the 
bifurcation point. 

The outlined procedure was implemented such that it could be performed automatically and in parallel 
for different input DoE points. The output quantities of interest obtained from the simulations, e.g. 
moments and angles at the two ends, are stored in a database that is then used for the machine learning 
process. 

The machine learning process for this study is simplified because there are only two input variables 
per boundary condition, and the quantities of interest have negligible noise (no geometric 
imperfections). In this case a small database is appropriate, favoring the use of the Gaussian process 
method [15] as opposed to methods such as artificial neural networks [16]. This was shown in [6] with 
a comparison of the data-driven framework for higher dimensional design spaces using both Gaussian 
process (also known as kriging) and neural networks. The reader is referred to the work of Rasmussen 
and Williams [15] for detailed discussions on the Gaussian process, and to Demuth et al. [16] on 
artificial neural networks. 

 

Figure 4: Design charts obtained for the variation of the initial buckling moments in X (left) and Y (right) as a 
function of two cross-section parameters (θ  and h ). 

Construction of design charts for the quantities of interest follows from the machine learning process. 
Figure 4 shows the buckling moment obtained at the first bifurcation point of the idealized structures 
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for the different cross-sections. The figure also includes contour lines of the transverse strain εflat 
caused by flattening the structure for packaging given by equation (1), the bending stiffness calculated 
from the moment-angle response, and the radius of the flanges calculated from equation (2). 

Observing Figure 4 one can identify that the maximum buckling moment does not occur for regions 
with maximum bending stiffness for both boundary conditions. This behavior occurs due to the 
presence of local buckling modes, justifying the use of computational analyses to find better designs 
instead of analytical predictions. From the figure it is also clear that constraining the flattening strain 
below 1% does not significantly limit the design space, which is also a direct consequence of the thin 
nature of the structure. Interestingly, there is a common region of the design space that maximizes the 
initial buckling moment for both loading conditions. This region occurs at large flange angles and 
small web heights, at the expense of those structures having low bending stiffness around X. 

 
(a1) DoE point 1 
( o5.24≈θ  and 

mmh 6.9≈ )  

 
(a2) DoE point 9 
( o6.45≈θ  and 

mmh 6.2≈ ) 

 
 

(a3) DoE point 14 
( o2.302≈θ  and 

mmh 0.4≈ ) 

 
(a4) DoE point 19 
( o7.114≈θ  and 

mmh 6.7≈ ) 

 
(b1) DoE point 1 
( o5.24≈θ  and 

mmh 6.9≈ ) 

 
(b2) DoE point 9 
( o6.45≈θ  and 

mmh 6.2≈ ) 

 

 
 

(b3) DoE point 14 
( o2.302≈θ  and 

mmh 0.4≈ ) 

 
 

(b4) DoE point 19 
( o7.114≈θ  and 

mmh 6.7≈ ) 

Figure 5: Buckling modes observed for different geometries subjected to two loading conditions: bending around 
X causing compression of the web (top row labeled a); and bending around Y with buckling of one flange  

(bottom row labeled b). From left to right the geometries shown correspond to DoE points 1, 9, 14 and 19 shown 
in Figure 3. The modes are scaled such that the maximum displacement component is 5 mm for all cases. 

Figure 5 shows the buckling modes corresponding to 4 DoE points shown in Figure 3. Focusing first 
on the modes obtained by bending the structures around the X axis (top row labeled with a), one can 
see that DoE point 9 (a2), and DoE point 14 (a3) show localized buckling modes, as opposed to the 
more global modes seen around the top of the web for the other geometries. The buckling behavior is 
improved in point 9 by localizing the deformation at the ends of the structure, while for point 14 it is 
improved by localizing it in the center after a more compliant behavior in this bending condition. 
Focusing now on the modes obtained by bending the structures around the Y axis (bottom row labeled 



Proceedings of the IASS Annual Symposium 2017 
Interfaces: architecture.engineering.science 

 

 

 7  

b), one can see that only point 14 (b3) shows the localization of deformation at the ends of the 
structure, justifying the fact that only this geometry is in the region of the design chart with a higher 
buckling moment in Y. 

Therefore, DoE point 14 corresponds to the best design of the 4 geometries shown in Figure 5, and is 
within the optimal region found in the design charts. In general, one can conclude that designs with 
large flange angles and small web heights are the most effective when aiming to increase both 
buckling loads for constant mass of the structure. If the design goal is different, then the design charts 
can be used to optimize the structure for other applications, e.g. maximum bending stiffness achieved 
for a desired minimum buckling strength. 

 

4. Conclusion 
A general data-driven computational framework was extended to analyze the buckling behavior of 
ultra-thin composite TRAC booms with different cross-sections and constant mass. The buckling 
modes of these deployable shell structures were shown to vary significantly with the geometry of the 
booms. These differences cause variations on the buckling response that do not scale linearly with the 
bending stiffness of the structures. Such counter-intuitive variations can be well captured by machine 
learning, from which design charts can be trivially obtained. 

Performance improvements were achieved by finding geometries with localized buckling towards the 
ends of the booms. The design charts show that maximizing both buckling moments of the structure is 
possible by considering cross-sections with large flange angles and short web heights, as seen in 
Figures 5 (a3) and (b3). This conclusion, however, is valid under an important simplifying 
assumption: the structures were assumed to be perfect, i.e. without imperfections. Future work on the 
imperfection-sensitivity of these structures for both buckling and postbuckling behavior will be crucial 
to assess how these findings can be useful in practice. 

Acknowledgements 

The authors acknowledge financial support from the Northrop Grumman Corporation. Comments of 
an anonymous reviewer are gratefully acknowledged. 

References 
[1] N. Hu, R. Burgueño, Buckling-induced smart applications: recent advances and trends, Smart 

Materials and Structures 24 (6) (2015) 063001. 
[2] P. M. Reis, A perspective on the revival of structural (in)stability with novel opportunities for 

function: From buckliphobia to buckliphilia, Journal of Applied Mechanics 82 (11) (2015) 
111001–111001–4. 

[3] S. Kalpakjian, S. R. Schmid, K. V. Sekar, Manufacturing engineering and technology, Pearson 
Upper Saddle River, NJ, USA, 2014. 

[4] X. Bai, M. A. Bessa, A. R. Melro, P. P. Camanho, L. Guo, W. K. Liu, High-fidelity micro-scale 
modeling of the thermo-visco-plastic behavior of carbon fiber polymer matrix composites, 
Composite Structures 134 (2015) 132 – 141. 

[5] Z. P. Bažant, L. Cedolin, Stability of structures: elastic, inelastic, fracture and damage theories, 
World Scientific, 2010. 

[6] M. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, W. Chen, W. Liu, A 
framework for data-driven analysis of materials under uncertainty: Countering the curse of 



Proceedings of the IASS Annual Symposium 2017 
Interfaces: architecture.engineering.science 

 

 

 8  

dimensionality, Computer Methods in Applied Mechanics and Engineering 320 (2017) 633 – 
667. 

[7] T. W. Murphey, J. Banik, Triangular rollable and collapsible boom, US Patent 7,895,795 (Mar. 1 
2011). 

[8] T. W. Murphey, D. Turse, L. Adams, TRAC boom structural mechanics, in: AIAA SciTech 
Forum, American Institute of Aeronautics and Astronautics, 2017, pp. –. 

[9] J. Michel, P. Suquet, Nonuniform transformation field analysis, International Journal of Solids 
and Structures 40 (25) (2003) 6937 – 6955, special issue in Honor of George J. Dvorak. 

[10] G. Berkooz, P. Holmes, J. L. Lumley, The proper orthogonal decomposition in the analysis of 
turbulent flows, Annual review of fluid mechanics 25 (1) (1993) 539–575. 

[11] F. Chinesta, A. Ammar, A. Leygue, R. Keunings, An overview of the proper generalized 
decomposition with applications in computational rheology, Journal of Non-Newtonian Fluid 
Mechanics 166 (11) (2011) 578 – 592. 

[12] Z. Liu, M. Bessa, W. K. Liu, Self-consistent clustering analysis: An efficient multi-scale scheme 
for inelastic heterogeneous materials, Computer Methods in Applied Mechanics and Engineering 
306 (2016) 319 – 341. 

[13] C. Leclerc, L. L. Wilson, M. A. Bessa, S. Pellegrino, Characterization of ultra-thin composite 
triangular rollable and collapsible booms, in: AIAA SciTech Forum, American Institute of 
Aeronautics and Astronautics, 2017, pp. –. 

[14] I. M. Sobol, Uniformly distributed sequences with an additional uniform property, USSR 
Computational Mathematics and Mathematical Physics 16 (5) (1976) 236–242. 

[15] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive 
Computation and Machine Learning), The MIT Press, 2005. 

[16] H. B. Demuth, M. H. Beale, O. De Jess, M. T. Hagan, Neural Network Design, 2nd Edition, 
Martin Hagan, USA, 2014. 


	Design of ultra-thin composite deployable shell structures through machine learning
	Abstract
	1. Introduction
	2. Data driven computational framework
	3. Design of ultra-thin TRAC booms for improved buckling behavior
	4. Conclusion
	Acknowledgements
	The authors acknowledge financial support from the Northrop Grumman Corporation. Comments of an anonymous reviewer are gratefully acknowledged.
	References

